Shape Constraints for Set Functions

A. More Related Work

Older work for set functions is support distribution ma-
chines (Muandet et al., 2012; Poczos et al., 2012), which
we note can be expressed in the form of (1) as follows:

N _ 1 M (z) 1 M(z*)
oy’ , E(2zm,) ,
2w\ 2 ey 22, Mo

where {(z°,y%)} are training examples, k(-,-) is a kernel,

and parameters {a; }.

B. Proof of Proposition 1

Proposition 1 follows by the fact that monotonicity is pre-
served under function composition.

C. Satisfying the Edgeworth Constraint for
Composed Functions

Ensuring the Edgeworth constraint for a multi-layer func-
tion, such as a set function, is challenging. To illustrate
that, here we show that even for the simple case of K =1
aggregation and M (z) = 1 element in the set, the simplest
sufficient condition to ensure the Edgeworth constraint holds
after composition with p requires monotonicity of f(z) w.r.t
the conditioning feature w and convexity of p:

Proposition 2. Suppose K = 1 and M (x) = 1, such that
the set function is a standard function, and suppose f is
differentiable, such that the trust constraint can be expressed
using derivatives. For a composition p(¢(z)) to satisfy the
sensitivity trust shape constraint, it is sufficient that: (i) ¢
satisﬁes the Edgeworth constraint, (ii) g—g > 0, and (ii1)

p
that 2 537 > 0.

Proof. 1t is straightforward to show that in this special case
the set function reduces to a standard function such that the
derivative is well-defined, and that in the limit the Edge-

worth constraint can be written % > 0. By Faa
9%p((=))

di Bruno’s formula: W Z 0 requires %m

+ 0¢§ af[fﬂ] Biﬁi] > 0, which is satisfied by the assump-
tions. O

D. Edgeworth Constraints without
Monotonicity Constraints

We give an example of a function f where an Edgeworth
shape constraint holds but f is not monotonically increasing
in either d or w. Suppose a firm x has M (z) employees,
and chooses whether to buy each employee a new software
program d,,, € {0, 1} and whether to pay for up to 16 hours
of recommended training on that new software for each

employee, w,, € [0, 16], and f is the net value to the firm.
Without any training, buying the mth employee software is a
loss of money. And paying for training is a loss of money if
the employee doesn’t have the software. Thus the net value
to the firm f is not always increasing in d,,, or w,,. But the
more training w,, the employee gets, the the bigger value
there is in having d,,, = 1 vs d,,, = 0. Thus the function f
satisfies the Edgeworth shape constraint.

E. Satisfying Trapezoid Constraint with a
Composed Function

Proof of Lemma 1. Since p is monotonic w.r.t each of its
inputs and each ¢y, is monotonic w.r.t input d, the result-
ing f is monotonic w.r.t input d. Since both p and each
¢ are continuous so is the resulting f. Finally let z,
gmin= gmint gmax— ,max+ he a9 defined in the lemma.
Then for each k € {1,..., K}, since ¢ satisfies the trape-
zoid constraint, we have:

1 M(z) M(z)
O (") = Zm), (12)
Vi 2, 2,
and
M (x) M (x)
max+

Z st max—

Since p is monotonic w.r.t each of its inputs, it follows that

M (z) 1 M(z)
II]ll’l > m1/n+
m}/:l e >0\ 31 mZ::l Plam™)
and
M (z)
max max+
Z e <p M Zl ¢(x
Thus (3) holds. O

F. Edgeworth Shape Constraint for Lattice
Models

Throughout this section, we index D-dimensional vectors
by {1,2,..., D}, and use the notation v[i] to denote the
entry with 1ndex 1 of such a vector v. As before, we index
D_dimensional vectors by {0, 1}, and use the notation
Wy, to denote the entry with index p, of such a vector w.

Proof of Lemma 2. We first show the “only if” direction.
Assume that g satisfies the Edgeworth’s Shape Constraint,

Shape Constraints for Set Functions

and let p be as defined in the lemma. It’s easy to verify
that since the calibrators are surjections on [0, 1] and c|d]
and c[w] are monotonically increasing, there must exist
ztt a7 2t~ 2=t € RP as specified in Definition 2
such that: co(277) = p, ca(zT7) =pteq co(z™F) =
pP+ey,and c,(z7) = p+ey+e,. By our assumption on
9.9(@* ") —g(x™%) = g(a"7) — g(a™ 7). Inequality (7)
now follows from the fact that for every q € {0,1}7, 64 =
0" (a).

We next prove the “if” direction. We first show that the
Edgeworth’s Shape Constraint is preserved when one adds
monotonic calibration to the function’s inputs. Let L :
RP — R denote the lattice function given by: L(t) =
0Ty(t). So g(z) = L(c[1](x[1]),...,c[D](x[D])). Let
x € RP be a vector, a=*, ,a™™, a*~, a*T, be real numbers
satisfying a™* < @™, and a*~ < a*T

For v, 8 € {+, —}, denote by 27° the vector obtained from
x by setting its entry with index d to a”* and its entry with
index w to a*°, as per Definition 2.

Similarly, denote by c,, ()7 the vector obtained from c,, (z)
by setting its entries with index d to ¢[d](a”*) and its entries
with index w to c[w](a*?). By the assumed monotonicity
of ¢[d] and c[w], it follows that ¢[d](a™*) < ¢[d](a**) and
clw](a*~) < c[w](a*T). Thus if L satisfies the Edgeworth
shape constraint, we have

L(ca() ") =L(ca(x)™") = Llca(®) ") —L(ca(z) "),

Observing that ¢, (27°) = cq(z)?? for all 7,6 € {+, -},
the above can be re-written:

L(ca(a™F))=L(ca(z™")) = L(cal(z¥ ™))~ L(cal(z™7)).

Thus if L satisfies the Edgeworth shape constraint, then so
does g.

It remains to be shown that the conditions in the lemma
imply that L satisfies the Edgeworth shape constraint. We do
this separately for the multilinear and simplex interpolation
kernels.

Proof for Multilinear Interpolation. In this case, L is given
by:

Le)= Y o [T et

pe{0,1}P @

Differentiating both sides with respect to ¢[d], and noting
that the expression inside the product is 1 — ¢[¢] if p[i] is 0
and ¢[i] if p[i] is 1, we obtain

oL .
o = 1)Pld+1)Pl (1 1-p[i]
D e Y | (LU CET)
p i#d
= Z (0P+ed70})) H(t[ﬂ)p[i] (lit[i])lfp[i]’
p:p[d]=0 itd

Thus OL/0t[d] is the multilinear interpolated lattice on the
D — 1 dimensional unit hypercube with vertex values given
by {0pte, — 0p : P € {0,1}7,p[d] = 0}. By Lemma 1
of Gupta et al. (2016), the inequality (7) implies that this
lattice or equivalently 9L /0t[d] is monotonically increasing
in tfw]. The result now follows by integrating OL/0t[d]
with respect to ¢[d] as integration is a monotonic operator.

Proof for Simplex Interpolation. For an interior point s of a
simplex of [0, 1] (that is, the entries of s are distinct and
each one lies in (0, 1)), L/dt[d](s) = H[SZS[d]] - 9[S>S{d]],
where [s > s[d]] (resp. [s > s[d]]) denotes the vector in
{0,1}P, with ith entry 1 if s[i] > s[d] (resp. s[k] > s[d])

and 0 otherwise. See (Gupta et al., 2016) and the references
therein for proofs.

Now assume that (7) holds for all suitable p, and let s, r €
[0, 1] be 2 interior points of simplices of [0, 1]7, such that
r = s + de,, for some positive real 5. We will show that
(0L/0t[d])(r) > OL/0t[d])(s), or equivalently that

Or>rial] = Op>ria) 2 Oszsia)] = Ofs>sia- (13)

Since r and s differ only in their wth coordinate, if
rlw], sjw] < s[d] or r{w], sjw] > s[d], then (13) holds with
equality. Otherwise, it must be that s{w] < s[d] < r[w]. Set
p = [s > s[d]]. It’s easy to verify that [s > s[d]] = p + ey,
[r > r[d] = p+ey and [r > r[d]] = p + €4 + ey.
Inequality (13) follows by substituting the LHS of these
equalities into (7).
Thus
oL < oL
o™ = i

for every positive real ¢ and interior point s of a simplex
of [0,1]P. Since L is continuous, the result follows by
integrating 0L /0t[d] w.r.t t[d] as integration is a monotonic
operator. O

(s+ dey)

G. Satisfying the Trapezoid Constraint with a
Calibrated Lattice

Proof of Lemma 3. By Lemma 1 of Gupta et al. (2016) for
multilinear interpolation and by Lemma 3 of Gupta et al.
(2016) for simplex interpolation, given the assumption cw]
is monotonically increasing, and that the calibrators are sur-
jections, the inequalities 0p1e,+e,, = Op+e, are equivalent
to ¢ in (6) being monotonically increasing w.r.t z[w] on

Shape Constraints for Set Functions

the sub-domain defined by z[d] = dpax, and because the
composition of a decreasing function with an increasing
function is decreasing (by the chain rule), the inequalities
Opte, < Op are equivalent to g in (6) being monotoni-
cally decreasing w.r.t. z[w] on the sub-domain defined by
z[d] = dmin, that is,

99() >0 and 2@ <0.
2[W]] ()= d o Ox[w] |41 =d,p

(14
The first derivative in (14) is equivalent to (5), and the
second derivative in (14) is equivalent to (4). Note (14)
means calibrated lattice functions that satisfy the trapezoid
constraint twist over every 2-d slice of the input domain

over d and w, as illustrated in Fig. 2. O

Q

H. Complete Example of SFE Runtime
Evaluation

Fig. 4 illustrates how the SFE runtime logic works where
the input z is a set of categories. The general idea is to find
large subsets of the input to cover all the categories, and
if a large subset is not found in a pre-built table of token
estimates, then fall back to its smaller subsets, and do so
recursively until estimates are found that cover all of the
original input z if possible. We recommend not storing
an estimate for a token (here, a subset of categories) if it
does not appear frequently enough in the training data to be
useful (how frequent is frequent enough which may depend
on the application, the noise in the training labels, and the
desired precision-recall trade-off). For the example in Fig. 4
we only included estimates if there were at least five relevant
examples to use in computing a token’s estimate.

I. Complete Example of SFE Token Estimate
Computation

Here we show how to compute a table of token estimates
following a predefined partial order of tokens. Suppose the
SFE training set consists of the following 20 examples:

We tokenize each of the 20 examples into its ngrams (un-
igrams, bigram, and trigrams). We only include ngrams
appearing at least 5 times.

At evaluation time, we will filter out any ngrams if their
parent ngram has an estimate, which we find improves de-
buggability and often accuracy. To be consistent with that
runtime filtering, at training time we should not double
count an example for both a ngram and its sub-ngrams. We
partition the set of unique ngrams into a sequence of dis-
joint subsets {7}, ¢ = 1,...,3, in which {7;} is the set
of ngrams with order ¢q. Then we iterate through a decreas-
ing ¢, compute estimates of ngrams in {7;} and add those
appearing enough times to the Token Table. While com-

puting estimate of ngram ¢, we only use examples that are
not already used to estimate its parent ngrams in the Token
Table.

Ngram

green tea
green tea
green tea
green tea

mint green tea
birthday cake
birthday cake
stale cake
cheese cake
chocolate cake
almond cake
black forest cake
green eggs and ham
d green

black tea
pu-erh tea
chamomile tea
roobis tea
mint tea
oolong tea

Label

O OO OO OO R rMFP =P OFR OO ==

o

We first look at all the trigrams mint green tea, black forest
cake, green eggs and, eggs and ham. None of these trigrams
meets the specified count threshold of appearing 5 times, so
we do not compute estimates for any of them.

Next, we find the set of bigrams that appear at least 5 times:
green tea. The bigram green tea appears 5 times, including
the 4 green tea examples and the mint green tea example.
Using these examples we compute the maximum likelihood
estimate of E[Y |green tea] = 4/5 and add it to the token
table (shown below).

Finally for each unigram, we count the number of examples
containing the unigram, excluding those that have already
been used to estimate higher-order ngrams covering this
unigram. This means that the 4 “green tea” examples and
the “mint green tea” example are not used when estimating
the values for the unigrams green and fea because they were
already used to estimate their parent bigram green tea. But
“mint green tea’ is still used for unigram mint, which is
not in the token table. This way we get the set of frequent
unigrams cake, tea that have at least 5 examples to use in the
estimation. We compute their estimates E[Y |cake] = 5/7,
E[Y|tea] = 0/6 and add them to the token table.

We also add other information about each of the tokens that
we think will be useful for the SFE set function, such as
the ngram order and the number of counts the estimate was
based on (ngram frequency).

The final SFE token table used at runtime is:

Shape Constraints for Set Functions

Original Input z Token Table
Q=4 {a, b, c,d} subset estimate count | subset size
Q=3 {a,b, o}, {a, b, d}, {a, o, d}, b, 0,) abe os 03
a 0.4 50 1
Q=2 {a, d}, {b, d}, {c, d}
b 0.5 40 1
ﬂ c 0.6 100 1
{a,b, c} {b, d} {c, d} cd 0.1 5 2
Set x [0.9, 10, 3] [0.8, 6, 2] [0.1,5, 2] d 0.3 15 1
bd 0.8 6 2

Figure 4. Example SFE handling at run-time of an input z that is a set. SFE training has already produced a stored table with per-token
estimates and other features, labeled Token Table in the figure. The left side of the figure shows how the SFE handles an input 2 that is a
set of 4 attributes: {a, b, ¢, d}. SFE starts by enumerating the highest-order subsets of z, here @ = 4, and then SFE checks if any of those
enumerated tokens have estimates in the Token Table. For () = 4, there is only the one token {a, b, ¢, d} and it is not found in the Token
Table, so next SFE enumerates all four Q = 3-order tokens. Of the four @ = 3 subsets, one is found in the Token Table: {a, b, ¢}, which
is marked in blue to denote it was found. If the original input z had just been {a, b, ¢}, we would now be finished because the entire z has
been accounted for. But since z = {a, b, ¢, d}, there is still the attribute d that is not covered by our token estimates. So the SFE continues
on, enumerating all the @ = 2 subsets. Out of the 6 subsets of size 2, SFE filters out the three () = 2 subsets {a, b}, {a, ¢}, {b, c} that
are already fully covered by the found higher-order @ = 3 token {a, b, c}; the filtered subsets are marked in gray. Out of the remaining
three subsets of size Q = 2, two of them are found in the Token Table, {b, d} and {c, d}. Now, all attributes in z have been covered by a
token estimate, so SFE does not need to enumerate the () = 1 subsets. The three tokens found form the set z = {x1, x2, x3}, each of
which is a D = 3 feature vector (the estimate, the count, the subset size). The set x is passed to the set function, which produces a final
estimate for z.

Ngram E[Y|Ngram] Order Freq. the number of aggregations K {1,2,3,4,5, 8,16}, and the
green tea 0.8 2 5 number of training epochs {100, 200, 500, 1000}. All the
cake 0.71 1 5 DLN models were run with monotonicity constraints on the
tea 0.0 1 6

primary feature.

Deep Neural Networks Hyperparameters: The learning
rate for the ADAM optimizer from le-6 to le-3, the number
of hidden layers {1, 2,3, 4,5}, and the number of training
epochs {50,100, 150} (note the DNN’s had 9x as much
training data as the set functions - as detailed in the experi-
ments section).

J. Experiment Details: Hyperparameter
Choices

Hyperparameters were chosen by joint validation over all
hyperparameter options on the validation set (see Table 1
for dataset sizes) using parallelized training on the cloud.
Hyperparameter ranges were expanded when optimal mod-
els were on the edge of an initial search range, explaining
the differences across models.

K. Recipe Experiment: More Details

We detail the inner workings of the aggregation function on

Deep Sets Hyperparameters: The learning rate for the
ADAM optimizer from le-6 to le-3, the number of
units {10, 20, 30, 40, 50, 80, 160, 640} in each hidden layer
(fixed to be the same for all 6 layers), and the number
of training epochs {50, 100, 200, 400, 800, 1600}. Prelim-
inary experiments using only 2-layers for ¢ and p did not
improve the metrics.

Deep Lattice Network Set Function Hyperparameters:
The learning rate for the Adagrad optimizer from 0.01 to
1.6, the number of keypoints {5, 10, 15, 20, 25, 30} in the
1-d calibrators ¢ (fixed to be the same for all calibrators),

an example from the recipes dataset. The example, whose
true cuisine is French but for which we are evaluating the
candidate cuisine of Mexican, consists of the six ingredients
{sugar, salt, fennel bulb, water, lemon olive oil, grapefruit
juice}. As mentioned above, we consider subsets of up to
size 3 for this problem. As the combination of ingredients
is rather rare, we only find 2 subsets of size 3 (out of (g)
possibilities) that appeared in the training data at least 5
times and are therefore in the token table: {salt, water, fen-
nelbulb} and {salt, water, sugar}. Since neither lemon olive
oil nor grapefruit juice appear in any frequent subsets of

Shape Constraints for Set Functions

size 3, the model searches for any subsets of size 2 contain-
ing one of those ingredients and doesn’t find any; finally it
finds grapefruit juice as a singleton in the token table, while
lemon olive oil never appears in any form in the token table.

We therefore have the following 3 total tokens:

1. {salt, water, fennel bulb}: P {Mexican} = 0.059;
count = 17; subset size = 3; number of ingredients:
6; number of tokens: 3

2. {salt, water, sugar}: P {Mexican} = 0.043; count =
510; subset size = 3; number of ingredients: 6; number
of tokens: 3

3. {grapefruit juice}: P {Mexican} = 0.2; count = 10;
subset size = 1; number of ingredients: 6; number of
tokens: 3

Recall that there are 20 possible cuisines, so 0.05 is the
break-even uninformative prior value. Here, both subsets
of size 3 have fairly weak/neutral evidence while the token
estimate for grapefruit juice is actually quite high.

The intermediate outputs ¢(z) for these tokens are:

1. {salt, water, fennel bulb}: -0.005
2. {salt, water, sugar}: -0.156
3. {grapefruit juice}: 0.075

Our labels are -1/1, so positive outputs represent the model
leaning towards yes and negative outputs are the opposite.
Interestingly, the {salt, water, sugar} subset is much more
negative than {grapefruit juice} is positive, even though
its estimate is much closer to neutral. We can explain this
by looking at the supporting information: the former has a
subset size of 3, teaching the model to trust it more than a
subset of size 1, and it appears 510 times vs. 10, leading to
the same conclusion.

Finally, the outputs are averaged together and fed through
p, which in the K = 1 case is a simple piece-wise linear
transform, yielding the final output of -0.28. The classifier
has correctly identified the recipe as not being Mexican.

L. Kickstarter Results Details

Here is a portion of the SFE table of some of the most com-
mon title ngrams (excluding stop words, pronouns, preposi-
tions, and other common words). The average success rate
over all projects is 40.4%.

Title Ngram # Counts P(success)
a short film 871 0.726
debut album 751 0.634
album 1072 0.535
book 1039 0.416
documentary 853 0.407
game 1015 0.351
music 956 0.336
clothing 616 0.149
app 773 0.103

M. Enhanced Debuggability

Debuggability of a machine-learned model arises from one’s
ability to form hypotheses about what could be wrong, and
from one’s ability to test those hypotheses. In the next
sections, we discuss the debuggability of both constrained
set functions and of the semantic feature engine.

The SFE approach is much easier to debug than embeddings
followed by deep models because one can explicitly see
what tokens the tokenization produced and which tokens
had estimates retrieved. Then we know that the set function
is well-behaved in terms of its monotonicity constraints so
that high per-token estimates are guaranteed to only increase
the final score, and are possibly also guaranteed behavior
in terms of its trapezoid constraints, which helps zero-in on
which tokens the model is more sensitive to. Each of these
steps makes it easier to form hypotheses and test hypotheses.

One can also create partial dependence plots (Friedman,
2001) to understand the effect of each of the D features
on the set function. Features that are constrained to be
monotonic have clearer and more generalizable partial de-
pendence plots.

The most common problems one sees when debugging is
that estimates for tokens did not exist (because the token
was too rare in the SFE training set) and instead the model
had to rely on less-precise tokens (for example, if “bowling
alley” does not have a stored estimate, and the model is
forced to fall-back to just making a decision from just the
unigram “alley”), or the per-token estimates differ from the
value one expected due to imprecision of the token.

Please see the extended worked examples for SFE in Ap-
pendix H, I, and J for concrete examples that highlight the
information obtainable for debugging and analysis.

N. Reduced Churn

Churn measures how different the decisions of two models
are (Cormier et al., 2016). Churn is low for SFE because
the parameters are more limited in what they represent,
for example, an SFE per-token estimate must represent the
expectation of the label for that token, and thus cannot

Shape Constraints for Set Functions

change drastically with a different random draw of training
data.

Similarly, using shape constraints for set functions reduces
the ways the model can fit a given random draw of training
examples, and thus are more likely to fit two random draws
of training data in a more similar way.

