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 Call a family F of subsets of a set E inductive if ∅ ∈ F and F is closed under unions 
with disjoint singletons, that is, if ∀X∈F ∀x∈E–X(X ∪ {x} ∈ F]. A Frege structure is a pair (E, 
ν) with ν a map to E whose domain dom(ν) is an inductive family of subsets of E such that ∀X 
Y ∈ dom(ν)(ν(X) = ν(Y) ⇔ X ≈ Y).2 In [1] it is shown in a constructive setting that each Frege 

structure determines a subset which is the domain of a model of Peano's axioms. In this note we 
establish, within the same constructive setting, three facts. First, we show that the least inductive 
family of subsets of a set E is precisely the family of decidable Kuratowski finite subsets of E. 
Secondly, we establish that the procedure presented in [1] can be reversed, that is, any set 
containing the domain of a model of Peano's axioms determines a map which turns the set into a 
minimal Frege structure: here by a minimal Frege structure is meant one in which dom(ν) is the 
least inductive family of subsets of E. And finally, we show that the procedures leading from 
minimal Frege structures to models of Peano's axioms and vice-versa are mutually inverse. It 
follows that the postulation of a (minimal) Frege structure is constructively equivalent to the 
postulation of a model of Peano's axioms. 
  
 All arguments will be formulated within constructive (intuitionistic) set theory3. 
 
 1. Some definitions of finiteness. Fix a set E. By "set" "family", "singleton", etc. we 
shall mean "subset of E", "family of subsets of E", "singleton of E", etc. For a set X define  
  
 K(X) ⇔ X is in every family containing ∅, all singletons, and closed under unions of 
pairs of its members. If K(X), we shall say that X is Kuratowski finite. 
 L(X) ⇔ X is in every family containing ∅ and closed under unions with singletons. If 
L(X), we shall say that X is finite. 
 M(X) ⇔ X is in every inductive family. If M(X), we shall say that X is strictly finite.  
 D(X) ⇔ for every x,y ∈ X, either x = y or x ≠ y. If D(X), X is said to be decidable. 
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2We write X ≈ Y for there exists a bijection between X and Y. 

3This set theory may be taken to be intuitionistic Zermelo set theory or the local set theory 
presented in [2]. 
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 1.1. Lemma. ∀X[M(X) ⇒ L(X)]. 
 Proof. Obvious. 
 
 1.2. Lemma. ∀X[K(X) ⇔ L(X)]. 
 Proof. Clearly L(X)⇒ K(X). To prove the converse, it suffices to show that the family L 
= {X: L(X)} is closed under unions of pairs. To this end let Φ(U) be the property                    
∀X∈L U ∪X ∈L. It suffices to show ∀U[L(U) ⇒ Φ(U)]. Clearly Φ(∅). Assuming Φ(U) and  
X∈ L we have U  ∪ X ∈ L and so U ∪ X ∪ {x} ∈ L for arbitrary x, whence Φ(U ∪{x}). Hence 
∀U[L(U) ⇒ Φ(U)] and the result follows.  
 
 1.3. Lemma. ∀X[M(X) ⇒ D(X)]. 
 Proof. Obviously D(∅). If D(X) and x ∉ X, clearly D(X ∪ {x}). The result follows. 

1.4. Lemma. ∀X[M(X) ⇒ ∀a[D(X ∪ {a}) ⇒ (a ∈ X or a ∉ X)]]. 
 Proof. Write Φ(X) for the condition following the first implication. Clearly Φ(∅). 
Suppose that Φ(X) and x ∉ X. If D(X ∪ {x}  ∪ {a}), then D(X ∪ {a}), so, since Φ(X), either       
a  ∈ X or a ∉ X. Since D(X  ∪ {x} ∪{a}),  it follows that a = x or a ≠ x. Hence 

(a ∈ X & a = x) or (a ∉ X & a = x) or (a ∈ X & a ≠ x) or ( a ∉ X & a ≠ x), 
The first three disjuncts each imply a ∈ X ∪ {x}, and the last disjunct means a ∉ X  ∪ {x}. 
Accordingly a ∈ X ∪ {x} or a ∉ X ∪ {x}. We conclude that Φ(X  ∪ {x}) and the result follows.  
 
 1.5. Lemma. ∀X[L(X) & D(X) ⇒ M(X)]. 
 Proof. We need to show  ∀X[L(X) ⇒ Φ(X)], where Φ(X) is D(X) ⇒ M(X). Clearly Φ(∅). 
Assume Φ(X) and D(X ∪ {a}).  Then D(X), so, since Φ(X), it follows that M(X). Since            
D(X ∪ {a}), 1.4 gives a ∈ X or a ∉ X. In either case we deduce that M(X ∪ {a}). Hence         
Φ(X ∪ {a}), and the result follows. 
 
 From these lemmas we immediately infer  
 
 1.6. Theorem. For any set E, the families of strictly finite, decidable finite, and decidable 
Kuratowski finite subsets coincide.  
 
 2. Frege structures from models of Peano's axioms. Let (N ,s, 0) be a model of Peano's 
axioms; we use letters m ,n, p as variables ranging over N. We write < for the usual 
(constructively  definable)  strict  order  relation  on N (see,  e.g.,  Prop.  7.5  of  [2]).   Define    
g: N → PN by g(n) = {m: m < n}; then g satisfies (and in fact can be defined by) the equations 
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g(0) = ∅       g(sn) = g(n) ∪ {n}. 
 In order to prove the next Lemma we require the following fact, which is proved 
constructively as Lemma 3 of [1]:  
 

(*)    for any sets X, Y, and any x, y such that x ∉ X, y ∉ Y,  if X ∪ {x}  ≈  Y ∪ {y},   

       then X  ≈ Y. 

 2.1. Lemma. For all m, n, g(m)  ≈  g(n) ⇔ m = n. 

 Proof. Write Φ(n) for ∀m[g(m) ≈ g(n) ⇔ m = n]. Then clearly Φ(0). If Φ(n) and g(m)≈ 

g(sn) = g(n) ∪ {n}, then m ≠ 0 so that m = sp for some p. Hence    
g(p) ∪ {p} = g(sp) = g(m) ≈ g(sn) = g(n) ∪ {n}. 

Since p ∉ g(p) and n ∉ g(n), (*) above implies that g(p) ≈  g(n), so, since Φ(n), p = n and m = 

sp = sn. Hence Φ(sp), and the result follows by induction.   
 
 Now suppose that E is a set such that N ⊆ E. Define  

ν = {(X,n) ∈ PE × N: X ≈ g(n)}. 

 
 2.2. Lemma. dom(ν) is the family of strictly finite subsets of E.  
 Proof.  We need to show that dom(ν) is the least inductive family. First, dom(ν) is 
inductive. For it clearly contains ∅ and, if X ∈ dom(ν), then X ≈  g(n) for some n. If x ∉ X, then 

X ∪ {x} ≈ g(n) ∪ {n} = g(sn), whence X ∪ {x} ∈ dom(ν). And dom(ν) is the least inductive 

family. For suppose that F is any inductive family. For each n let Hn = {X: X ≈ g(n)}. We claim 

that Hn ⊆ F for all n. For obviously H0 = {∅} ⊆ F. Now suppose that Hn ⊆ F. If X ≈  g(sn), 

then X ≈ g(n) ∪ {n}, so for some x ∈ X (which may be taken to be the image of n under the 

bijection g(n) ∪ {n} ≈ X), we have X – {x} ≈ g(n). It follows that   X – {x} ∈ Hn ⊆ F, and so  X =            

(X – {x}) ∪ {x} ∈ F. The claim now follows by induction; accordingly dom(ν), as the union of 
all the Hn, is included in F. Therefore dom(ν) is the least inductive family and the Lemma is 
proved.    
 
 2.3. Lemma. ν is a function and X ≈ g(ν(X)) for all X ∈ dom(ν). 

 Proof. Suppose that (X,n) ∈ ν and (X,m) ∈ ν. Then X ≈ g(n) and X Φ g(m) whence     

g(m) ≈ g(n) and so m = n by Lemma 2.1. The remaining claim is obvious. 
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2.4. Lemma. For all X, Y ∈ dom(ν), X ≈ Y ⇔ ν(X) = ν(Y). 

 Proof. We have, using the previous Lemma, ν(X) = ν(Y) ⇔ g(ν(X)) ≈ g(ν(Y)) ⇔  

X ≈ Y. 

 
 Lemmas 2.2 - 2.4 establish 
 
 2.5. Theorem. (E, ν) is a minimal Frege structure.  
 
 (E,ν) is called the minimal Frege structure associated with E and (N, s, 0). 
 
 Finally, we show that the processes of deriving models of Peano's axioms from minimal 
Frege structures and vice-versa are mutually inverse.  
 
 Suppose that we are given a minimal Frege structure (E,µ). As shown in [1], the 
associated model (N,s,0) of Peano's axioms is obtained in the following way. First, the family  

is defined as the least subfamily of dom(µ) containing ∅ and such that, if X ∈  and µ(X) ∉ X, 

then X ∪ {µ(X)} ∈ : it is shown that µ(X) ∉ X for all X ∈ . The associated model (N,s,0) of 

Peano's axioms is then defined by N = {µ(X): X ∈ }, s(µ(X)) = µ(X  ∪ µ(X)}), and 0 = µ(∅). 

 We observe that since (E,µ) is minimal, for any X ∈ dom(µ) there is a (unique) X* ∈  

for which X ≈ X*, and so µ(X) = µ(X*). To prove this, it suffices to show that the set of X ∈ 

dom(µ) with this property contains ∅ and is closed under unions with disjoint singletons. The 
first claim is obvious. If X ∈ dom(µ), x ∉ X, and X ≈ X* with X* ∈ , then  

X ∪ {x} ≈ X* ∪ {µ(X*)}  ∈ , 

since, as observed above, µ(X*) ∉ X*. This establishes the second claim, and the observation. 
 
 Now let (E,ν) be the minimal Frege structure associated with the model (N,s,0) of Peano's 
axioms in turn associated with (E,µ). We claim that µ = ν. To prove this it suffices to show that 

(**) X  ≈ g(µ(X)) for all X  ∈ , 

where  is defined as above. For then, by Lemma 2.3, we will have g(ν(X)) ≈ X ≈ g(µ(X)) and 

so µ(X) = ν(X) by Lemma 2.1. This last equality for all X ∈  in turn yields µ(Y) = ν(Y) for all  

Y ∈ dom(µ) = dom(ν). For then, by our observation above,  µ(Y) = µ(Y*) = ν(Y*) = ν(Y). 
 So it only remains to prove (**). It is clearly satisfied by ∅. If X  ≈ g(µ(X)) with  

X  ∈ , then, since µ(X) ∉ X, 
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X ∪ {µ(X)} ≈ g(µ(X)) ∪ {µ(X)} = g(sµ(X)). 

(**) now follows from the definition of . So our claim that µ = ν is established. 

 Conversely, suppose we are given a set E and a model (N, s, 0) of Peano's axioms with   
N ⊆ E. Let (E,ν) be the associated minimal Frege structure. We note first that, for any n ∈  N, we 
have ν(g(n)) = n, where, as before, g(n) = {m: m < n}. For by Lemma 2.3, g(n) ≈ g(ν(g(n)), so 

that, by Lemma 2.1., n = g(ν(n)). Now let (N*,s*,0*) be the model of Peano's axioms associated 
with the Frege structure (E,ν). We claim that (N,s,0) and (N*,s*,0*) are identical.   
 First, N* = {ν(X): X ∈ *}, where * is the least subfamily of dom(ν) containing ∅ and 

such that X ∈ * and ν(X) ∉ X implies X ∪ {ν(X)} ∈ *. Using the fact that ν(g(n)) = n for all n  

∈ N, it is easily shown that * = {g(n): n ∈ N}. Thus N* = {ν(X): X ∈ *} =                  

{ν(g(n)): n ∈ N} = {n: n ∈ N} = N. Finally 0* = ν(0) = ν(g(0)) = 0 and   
s*(n) = s*(ν(g(n))) = ν(g(n ) ∪ {ν(g(n))}) = ν(g(n) ∪ {n}) = ν(g(sn)) = sn, 

so that s* = s. 
 
 Thus we have established that the two processes are mutually inverse. 
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