JOHN L. BELL

LocicaL RerLEcTIiONS ON THE
K ocHEN-SPECKER THEOREM

IN THEIR WELL-KNOWN PAPER, Kochen and Specker (1967) intro-
duce the concept of partial Boolean algebra (pBa) and show that certain
(finitely generated) partial Boolean algebras arising in quantum theory
fail to possess morphisms to any Boolean algebra (we call such pBa’s
intractable in the sequel). In this note we begin by discussing partial
Boolean algebras within a category-theoretic framework!; our analysis
will result in what appear to be some new formulations of intractability
in purely logical terms, and an open problem.

Partial Boolean algebras arise naturally in connection with ortho-
lattices (a concept we take to be familiar: see, e.g. Birkhoff (1984)). Let
L = (L,v,1,1) be an ortholattice and let = be the binary relation
("compatibility”) on L defined by: x=y < {x,y} generates a Boolean
subalgebra (= distributive subortholattice) of L. Clearly ~ is reflexive
and symmetric. Now consider the partial algebra L™ obtained from L by
restricting the domain of v to those pairs (x,y) of L for which x=~y. The
concept of partial Boolean algebra employed here is obtained by ab-
stracting from the properties of L™.

Thus a partial Boolean algebra (pBa) is a structure B=(B,v,l,1=)in
which Bis a nonempty set, 1€B, = is a reflexive, symmetric relation (the
compatibility relation) on B, and L,v are maps to B from B and {(x,y):
x=~y} respectively, satisfying the conditions:

1121 ;
for all x,yeB: l=x ;
xmy = xmyl & (xvy)=X;
for any x=~y in B: the substructure of B generated by {x,y}
is a Boolean algebra.

We note that the partial Boolean algebras of Kochen and Specker sat-
isfy the additional condition that {xj,....xp} generates a Boolean sub-
algebra whenever x;~x; for any i,j: this condition is satisfied by pBa's
induced by orthomodular ortholattices. For our purposes here, there is
no need to impose this additional constraint.

We can now define the category of partial Boolean algebras. We de-

1 An earlier investigation of the category of partial Boolean alie::ras, in which
results different from those included here are obtained, appears in Kamber (1964).
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fine a morphism of pBa's B, B' tobe amap h: B—B’ such that:

for any x~y inB:  h(x)~h(y) ;
h(xvy) = h(x)vh(y) ;
h(x+) = h(x)+.

The category PRA of partial Boolean algebras then has as objects all
partial Boolean algebras and as arrows all morphisms between them.
Clearly the category Bool of Boolean algebras and (Boolean) homomor-
phisms is a subcategory of PBA which is full in the sense that if B, B’ are
objects of Bool, then any morphism of B to B' in PB4 is also in Bool (i.e. is
a Boolean homomorphism in the usual sense).

Although it is obvious that not every pBa is a Boolean algebra, it is
natural to ask whether, nonetheless, any pBa B has a best "Boolean ap-
proximation” in the following sense: there is a pair (B,i) consisting of a
Boolean algebra B and a morphism i: B—B such that, for any morphism
f:B—C to a Boolean algebra C, there is a (unique) morphism g:B—C
such that the diagram

B— 8
\J«g
C

commutes: we call this the universal conditionon (B,i). We shall call a
pBa Btractable if a pair (B,i) satisfying the universal condition exists.

Kochen and Specker showed, in effect, that not every pBa is
tractable: more on this later. For the moment, consider the subcategory
Trac of PRA whose objects are all tractable pBa's: clearly Bool is a (full)
subcategory of Zrac. Every object B of Zrac has a "Boolean approxima-
tion" (B,i) which is easily shown to be unique up to isomorphism in the
evident sense. In that case, the map B—B: Trac—>Bool defines what
category-theorlsts call a reflection: for any object B of Trac, B is the

"reflection” of B in the subcategory Bool.

We are going to characterize the objects in 7rac, and }Jrovide an ex-

plicit description of the reflection B of any tractable pBa.

2Kamber (1964) constructs the Boolean reflection of a pBa by a method differ-
ent from that to be formulated here. Moreover, because he allows degenerate (= 1-
element) pBa's - a possibility which has been explicitly excluded here - every (not
necessarily tractable) pBa has a (possibly degenerate) reflection in his sense.
However for that reason, the concept of tractability, which occupies centre stage
here, plays no role in his discussion.
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Given a partial Boolean algebra B, let L be the (classical) proposi-
tional language with propositional variables {pb: beB}, and let =g be
the set of all sentences of the form:

PaVPb <> pavp, fora~b in B;
“Pc «* pci, forceB.

Theorem 1
Let Bbe a pBa. Then the following conditions are equivalent:
(i) B is tractable;
(ii) Zgis consistent;
(iii) there is a morphism from B to the two element
Boolean algebra 2;
(iv) there is a morphism from B to some Boolean algebra.

Proof

(i)=(iv) is obvious, as is (iv)=>(iii) since every Boolean algebra has
a homomorphism to 2.

(iii)=>(ii). Let h:B—2 be a morphism, and let [ - ]| be the valuation
on Lp induced by h (i.e. such that [pplI=h(b) for beB). It is easily veri-
fied that [¢ 1=1 for every ¢ €Xp, so that Zp is consistent.

(ii)=(i). Suppose that g5 is consistent. Then the Lindenbaum-
Tarski algebra B of 5 (obtained by identifying formulas of £ when
their equivalence follows from ZB) is a nondegenerate Boolean algebra,
and the canonical map b [py] (where [¢] is the image - i.e., equiva-
lence class modulo ) provable equivalence from~2 B -of aformula ¢ in B) is
amorphismi:B—»B. We have to show that (B.i) satisfies the universal
condition. :

To this end, suppose that f is a morphism of B to a Boolean algebra
C. Let Form be the set of formulas of £Lp and define the map f:Form—C
recursively by:

f(pp) = f(b) forbeB ,
f(ovy) = f(9)vi(y),
f(~¢) = f(¢)L.

Now define g:B—»C by g([¢ 1)=£(¢ ) for ¢ € Form. Clearly g will be a ho-
momorphism provided we can show that it is well-defined. To do this,
it suffices to show that, if ¢.yeForm, then [¢]=[y] = f(¢)=f(y). To
this end, let h be any homomorphism C—2 and let [ - [ be the truth
valuation on Form induced by taking [py, 1= h(f(pp)) for beB. It is eas-
ily shown by induction on formulas that [¢ 1= h(f($)) for any ¢ € Form.
Clearly also [o]l=1 for any o€2p. Thus if (¢ ]=[y], then Zp F ¢ <>y, s0
[¢ <>y =1, whence h(f(¢))=0¢ D=0 yI=h(f(y)). Since this equality
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holds for arbitrary h:C—2, and homomorphisms to 2 distinguish the
points of any Boolean algebra, it follows that f(¢ )=f(y) as required.

Therefore g is a homomorphism; clearly gei = f, and it is easy to see
that it is the unique such homomorphism. So (B,i) satisfies the univer-
sal condition. |j

As a consequence, we obtain the

Corollary
A pBa is tractable if and only if all of its finitely generated sub-
pBa's are tractable.

Proof
If the pBa B is tractable, there is a morphism h:B—2 whose restric-
tion to any sub-pBa B’ of B is a morphism B’ 2. Accordingly, B’ is
tractable.
Conversely, supposeB is intractable. Then =g is inconsistent and so
there are finite subsets {a;,...,ap}, {b1,...,bp}, {c1,...,.c;m} of B for
which aj=b; (i=1,...,n) and the set of sentences

{palvpbl ) paiVbi: i=1,..., n} U {"pcj S pch.: J:].,,m}
is inconsistent. It follows that, if A is the sub-pBa of B generated by

{a1,...,an} U {by,....,ba} U {c1.....cm}
then Z 5 is inconsistent, so that A is intractable. |

It is natural to single out those tractable pBa's B for which the
canonical morphism i: B— B is injective. In this connection - following
Kochen and Specker - we call a morphism h:B—>B' in PB4 an embedding
(resp. weak embedding) if a=b = h(a)=h(b) (resp. azb & asb => h(a)#h(b))
for abeB. It is straightforward to adapt the proofs of Theorem 1 to
establish:

Theorem 2
The following conditions on a pBa B are equivalent:

(i) Bis tractable and i:B—B isan embedding (resp. weak em-
bedding);

(ii) ZB ¥ pa<spp for any a=b (resp. azb & a~b)in B;

(iii) for any a=b (resp. a=b & a~b) in B there is a morphism
h:B—2 such that h(a)=h(b);

(iv) there is an embedding (resp. weak embedding) of B into
some Boolean algebra. |
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Simple examples of pBa's which, while not Boolean algebras them-
selves, are embeddable therein, arise in the following way.

Let (A.f) be a structure consisting of a nonempty set A and a map
f: A— A such that f(x)=x and f(f(x))=x for every xeA. Let 0,1 be two dis-
tinct objects not in A, and on the set A=AU{0,1} define the relation =~
by:

~ = {(x,x): x€A} U {(x,fx): x€A} U {0,1}xA U Ax{0,1} .
Clearly = is reflexive and symmetric. Define L:A—>A by:

0i=1;
14=0 ;
forxeA: xi=fx,

and v:{(x,y): x=y}—>A by:

Ov0=0 ;
Ovli=1v0=1vl=1;
for every x~y, x#y inA:  xvy=1.

Then (A,v,1,1,~)is a pBa which is evidently not a Boolean algebra if A
has more than two elements.

To show that A is embeddable in a Boolean algebra, we argue as fol-
lows. Suppose given a=b in A. If b=fa, let k be a function (whose existence
is ensured by the axiom of choice for pairs) which selects an element
from each pair {x,fx} for xeA-{a,b}. Now defineh:A—2 by:

h(a) =h(1)=1 ;
h(b) =h(0)=0 ;
forxeA-{a,b}: h(x) =1, if xerange(k) ;
=0, otherwise.

It is easy to see that h is a morphism and h(a)#h(b). When b=fa, or one
orboth of aorbis 0 or 1, the construction of h is similar. It follows from
Theorem 2 that A is embeddable in a Boolean algebra.3

We now turn our attention to intractable pBa's. If B is intractable,

3The standard case arises of course when A is the set of rays in the plane E,
and f the map assigning to each ray its orthogonal complement in £,. In this case, we
do not need to invoke the axiom of choice to prove the existence of two-valued mor-
phisms, since a simple geometric argument suffices. However, in the general case we
doneed to use the axiom of choice, since it is not hard to show that the assertion
that every partial Boolean algebra of the form A is embeddable in a Boolean alge-
bra is equivalent to the axiom of choice for pairs.
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then, as we have seen, 2g is inconsistent, which means that there exist
finite subsets {aj,...,an}, {b1....,bp}, {¢1.....cm} of Bsuchthat aj=b;
(i=1,...,n) and the sentence

m
’KI Pa;VPb; > Pajvb; A 'Al “Pcj*> Pejt (*)
i= j=

is a classical contradiction. Now in (¥) we may delete any conjunct in
which aj, bj, orcj isOor 1 and still ensure that the remaining conjunction
- call it ® - is a contradiction, since if ® is satisfied by some truth valua-
tion [ - 1, then () is satisfied by the valuation [- 1" which agrees with
[ - Dexcept that Ippll’=0, Lp;1’'=1. Next, in ® delete each conjunct of
the form -p¢; “Pcjt and each conjunct pa; vpy; <> Pa;vb; for which
ajvb; = ¢jt for any j=1,...,m. In each remaining conjunct, replace the
termp,; vb; by ~Pcj where a; vb; = ¢j*. The result is a formula of the
form

AN qvg e -~ (%)

<i,j,k>eR
in which each qj, i=1,...,N is a propositional variable and R is a set of
triples of integers 1,...,N such that <i,j,k>eR = i=j. Since (x) was a

contradiction, it is not hard to see that (*x) is also. Moreover, for each
<i,j.k>€R, there exist (unique) a,b,ceB for which q; is pa, gj is py, and
gk is pe, where a=b and avb=c?. It follows that, if we assign the values
a,b,c in B to gj,qj, qk respectively, the formula gjvq; < -gx receives
value 1. Doing this for each conjunct in (*x) thus assigns value 1 to (xx).
Now for each natural number N>1 write N for the set {1,...,N}. Let
us define an N-skeleton tobe a structure S of the form (N,R) with RCN3
satisfying <i,j,k>eR => izj. Given an N-skeleton S, let q1,...,qN be
propositional variables and denote the resulting formula (x+) by ¢ 5: we
shall call this the formula associated with S. A representation of § in a
pBa Bis an injective map b:N—>B-{0, 1} such that, writing b; forb(i),

VijkeN [<i,j,k>eR = bj=bj & bjvbj=byL] .

Clearly any representation b of § in B assigns the (well-defined) value
b(és)=1 to ¢ 5 in B.If, in addition, ¢ is a classical contradiction, then B
must be intractable. For if h were any morphism B—+2, then h(b(¢)) is
the value in 2 of ¢ g under the valuation obtained by assigning the value
h(b;) to each q;; this value must be 0 since ¢ 5 is a classical contradic-
tion. On the other hand, since b(¢ s)=1, we must also have h(b(¢ 5))=1.
This inconsistency shows that B has no two-valued morphisms, and so is
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intractable.
We may sum up our findings so far by the assertion:

A pBa B is intractable if and only if there is a skeleton
which is representable in B and whose associated formula
is a classical contradiction.

If S is representable in B and ¢ 5 is a classical contradiction, it may
be regarded as a canonical example of a formula which is true in Band at
the same time a classical contradiction.

For any Hilbert space H, write B(H) for the pBa of closed subspaces
of H, and E, for n-dimensional Euclidean space. Kochen and Specker
showed, in effect, that some finitely generated subalgebra of the pBa
B(E3) is intractable. (We note that, by the Corollary above, it suffices
for this purpose to show that B(E3) itself is intractable, which of course
follows from Gleason's (1957) theorem.) For intractable subalgebras of
B(E3), we can always find a skeletal representation of a particularly
simple form which gives rise to a canonical contradiction. This is be-
cause each element of B(E3) is of the form 0,1,a,at where a is an atom
(= 1-dimensional subspace of E3). Accordingly, corresponding to each
conjunctqj vg; <> =g in a canonical contradiction for an intractable sub-
algebra of B(E3) is an equality b; vb; =bk L in which b; ,bj,bg arecom-
patible, bj#bj, and each is either an atom or a complement of one. It is
easy to see that there are then only three possibilities:

(i) b;,b;,bk are mutually orthogonal atoms;
j y &

(ii) b; ,b_i-L are atoms, by =b;j 1, and bj<b;;

(iii) b; -L.bj are atoms, bx=b;*, and bj<b;.

Now for eachi define ¢;eB(E3) by ej=bj if b; is an atom, e;=b;* if b;*
is an atom. Then corresponding to each conjunct qjvg; «<» - gk in a canoni-
cal contradiction is a triple (ej,ej,ex) of atoms for which either (a)
€j,€j, ek are mutually orthogonal, or (b) ¢; is orthogonal to e, and e is
either e; or ej. (Similar, but more complicated, representations can be
formulated for B(E,) with n>4.)

It is interesting to note that the negation of the formula constructed
by Kochen and Specker ((1967), Cor. to Thm. 4) to establish the in-
tractability of a finitely generated subalgebra of B(E3) is canonical in
the sense of this note (and in fact only involves conjuncts arising under
clause (a) above). For the negation of their formula is a conjunction of
formulas of the form

qi + qj + gk + qiAGjAQk (xx*)
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(where "+" denotes exclusive disjunction) over a finite set of orthogonal
triples of atoms (ej,ej,ex) in B(E3). And it is easy to see that (x*x) is
equivalent to the formula

(qivgy <= =~qx) A (qkVvqi <> ~q) A (qjvagk <> -qj)

since both assert that exactly one of g, qj,qx is true. Therefore, any con-
junction of formulas of the form (**x) is canonical.

*k kR

I conclude with two problems. The first of these is, to my knowledge,
unresolved. The second was resolved some years ago, but this fact does
not seem to be well-known.

In producing examples of intractable pBa's, Kochen and Specker in
effect showed that there is no reflection from P84 into its subcategory
Bool. Suppose, however, that we replace Bool by the category Ortf of or-
tholattices and orthohomomorphisms. Ortf may be identified as a (non-
full) subcategory of PBRA by identifying each ortholattice L with the cor-
responding pBa L= defined at the beginning of the paper. We may now
ask whether there is a reflection PRA—O0rt#, that is, corresponding to
each pBa B there is a pair (Lp,j) consisting of an ortholattice Lg and a
morphism j:B—Lp such that, for any morphism f of B to an ortholattice
L, there is a unique orthohomomorphism g:Lg—L such that the dia-

gram

B—L 1,

f lg
L

commutes.Lp, if it exists, would be the best "ortholattice approxima-
tion” to B. It is not hard to see that Lg exists if and only if there is a
morphism of B to some ortholattice: since all the examples of intractable
pBa'sknown tome arise as partial subalgebras of ortholattices, Ly cer-
tainly exists in these cases. I do not know whether Lg exists for arbi-
trary (intractable) B.

Finally, we note that the intractability of B(E3) implies the in-
tractability of any B(E,) with n>3, despite the fact that B(E3) is not a
partial subalgebra of B(E,) (if it were, the implication would be auto-
matic). For if h were any two-valued morphism on B(E,,) with n>3, then
h must send some atom a to 1, so that the restriction of h to the partial
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Boolean algebra of subspaces of any E3 containing a is a two-valued ho-
momorphism. Now consider any infinite dimensional Hilbert space H. Is
B(H) intractable? Since no B(E,) is actually a partial subalgebra of
B(H), and a two-valued morphism on B(H) need not send any finite-
dimensional subspace of H to 1 (since it need not define a countably
additive measure in the sense of Gleason (1957)), the intractability of
the latter does not immediately follow.

However, a straightforward argument, (essentially) due to Jost
(1976)3, shows that each B(E,) is embeddable in B(H), from which the
latter's intractability follows easily. To show that B(E,) is embed-
dable in B(H), let {eg.€1,...}, {a0,....an-1} be orthonormal bases for H
and E;, respectively, and let Hy be the subspace of H generated by {exn:
k=0,1,...}. Then the map

exkn®aj > egp+i 1=0,...,n-1

is a bijection between the bases of H,®E, and H, which induces in a
natural way an isomorphism between H,®En and H, and hence an
isomorphism j between B(H,®Ep) and B(H). It follows that the map
which sends each subspace S of Ej, to j(Ha®S) is an embedding of B(E)
into B(H).

University of Western Ontario
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4This observation seems first to have been made in Cook (1968). I thank
William Demopoulos for bringing this review to my attention.
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