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THE CLOSE CONNECTION BETWEEN mathematics and philosophy 
has long been recognized by practitioners of both disciplines. The 
apparent timelessness of mathematical truth, the exactness and 
objective nature of its concepts, its applicability to the phenomena of 
the empirical world—explicating such facts presents philosophy with 
some of its subtlest problems. We shall discuss some of the attempts 
made by philosophers and mathematicians to explain the nature of 
mathematics. We begin with a brief presentation of the views of four 
major classical philosophers: Plato, Aristotle, Leibniz, and Kant. We 
conclude with a more detailed discussion of the three “schools” of 
mathematical philosophy which have emerged in the twentieth century: 
Logicism, Formalism, and Intuitionism. 
 
 
Classical Views on the Nature of Mathematics.  
 
Plato (c.428–347 B.C.) included mathematical entities—numbers and 
the objects of pure geometry such as points, lines, and circles—among 
the well-defined, independently existing eternal objects he called Forms. 
It is the fact that mathematical statements refer to these definite Forms 
that enables such statements to be true (or false). Mathematical 
statements about the empirical world are true to the extent that 
sensible objects resemble or manifest the corresponding Forms. Plato 
considered mathematics not as an idealization of aspects of the 
empirical world, but rather as a direct description of reality, that is, the 
world of Forms as apprehended by reason.  
 Plato’s pupil and philosophical successor Aristotle (384–322 
B.C.), on the other hand, rejected the notion of Forms being separate 
from empirical objects, and maintained instead that the Forms 
constitute parts of objects. Forms are grasped by the mind through a 
process of abstraction from sensible objects, but they do not thereby 
attain an autonomous existence detached from these latter. 
Mathematics arises from this process of abstraction; its subject matter 
is the body of idealizations engendered by this process; and 
mathematical rigour arises directly from the simplicity of the properties 
of these idealizations. Aristotle rejected the concept of actual (or 
completed) infinity, admitting only potential infinity, to wit, that of a 
totality which, while finite at any given time, grows beyond any 
preassigned bound, e.g. the sequence of natural numbers or the 
process of continually dividing a line.    
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 Leibniz divided all true propositions, including those of 
mathematics, into two types: truths of fact, and truths of reason, also 
known as contingent and analytic truths, respectively. According to 
Leibniz, true mathematical propositions are truths of reason and their 
truth is therefore just logical truth: their denial would be logically 
impossible. Mathematical propositions do not have a special 
“mathematical” content—as they did for Plato and Aristotle—and so 
true mathematical propositions are true in all possible worlds, that is, 
they are necessarily true.1 Leibniz attached particular importance to 
the symbolic aspects of mathematical reasoning. His program of 
developing a characteristica universalis centered around the idea of 
devising a method of representing thoughts by means of arrangements 
of characters and signs in such a way that relations among thoughts 
are reflected by similar relations among their representing signs. 
 Immanuel Kant (1724–1804) introduced a new classification of 
(true) propositions: analytic, and nonanalytic, or synthetic, which he 
further subdivided into empirical, or a posteriori, and nonempirical, or a 
priori. Synthetic a priori propositions are not dependent on sense 
perception, but are necessarily true in the sense that, if any 
propositions about the empirical world are true, they must be true. 
According to Kant, mathematical propositions are synthetic a priori 
because they ultimately involve reference to space and time. Kant 
attached particular importance to the idea of a priori construction of 
mathematical objects. He distinguishes sharply between mathematical 
concepts which, like noneuclidean geometries, are merely internally 
consistent, and mathematical objects whose construction is made 
possible by the fact that perceptual space and time have a certain 
inherent structure. Thus, on this reckoning, 2 + 3 = 5 is to be regarded 
ultimately as an assertion about a certain construction, carried out in 
time and space, involving the succession and collection of units. The 
logical possibility of an arithmetic in which 2 + 3 ≠ 5 is not denied; it is 
only asserted that the correctness of such an arithmetic would be 
incompatible with the structure of perceptual space and time. So for 
Kant the propositions of pure arithmetic and geometry are necessary, 
but synthetic a priori. Synthetic, because they are ultimately about the 
structure of space and time, revealed through the objects that can be 
constructed there. And a priori because the structure of space and time 
provides the universal preconditions rendering possible the perception 

                                                           
1 On the other hand, empirical propositions containing mathematical terms such as 2 cats + 3 cats = 5 cats 
are true because they hold in the actual world, and, according to Leibniz, this is the case only because the 
actual world is the “best possible” one. Thus, despite the fact that 2 + 3 = 5 is true in all possible worlds, 2 
cats + 3 cats = 5 cats  could be false in some world.   
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of such objects. On this reckoning, pure mathematics is the analysis of 
the structure of pure space and time, free from empirical material, and 
applied mathematics is the analysis of the structure of space and time, 
augmented by empirical material. Like Aristotle, Kant distinguishes 
between potential and actual infinity. However, Kant does not regard 
actual infinity as being a logical impossibility, but rather, like 
noneuclidean geometry, as an idea of reason, internally consistent but 
neither perceptible nor constructible.   
 
 
Logicism  
 
The Greeks had developed mathematics as a rigorous demonstrative 
science, in which geometry occupied central stage. But they lacked an 
abstract conception of number: this in fact only began to emerge in the 
Middle Ages under the stimulus of Indian and Arabic mathematicians, 
who brought about the liberation of the number concept from the 
dominion of geometry. The seventeenth century witnessed two decisive 
innovations which mark the birth of modern mathematics. The first of 
these was introduced by Descartes and Fermat, who, through their 
invention of coordinate geometry, succeeded in correlating the then 
essentially separate domains of algebra and geometry, so paving the 
way for the emergence of modern mathematical analysis. The second 
great innovation was, of course, the development of the infinitesimal 
calculus by Leibniz and Newton. 
 However, a price had to be paid for these achievements. In fact, 
they led to a considerable diminution of the deductive rigour on which 
the certainty of Greek mathematics had rested. This was especially true 
in the calculus, where the rapid development of spectacularly 
successful new techniques for solving previously intractable problems 
excited the imagination of mathematicians to such an extent that they 
frequently threw logical caution to the winds and allowed themselves to 
be carried away by the spirit of adventure. A key element in these 
techniques was the concept of infinitesimal quantity which, although of 
immense fertility, was logically somewhat dubious. By the end of the 
eighteenth century a somewhat more circumspect attitude to the 
cavalier use of these techniques had begun to make its appearance, 
and in the nineteenth century serious steps began to be taken to 
restore the tarnished rigour of mathematical demonstration. The 
situation (in 1884) was summed up by Frege in a passage from his 
Foundations of Arithmetic: 
 

After deserting for a time the old Euclidean standards of rigour, 
mathematics is now returning to them, and even making efforts to 
go beyond them. In arithmetic, it has been the tradition to reason 
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less strictly than in geometry. The discovery of higher analysis 
only served to confirm this tendency; for considerable, almost 
insuperable, difficulties stood in the way of any rigorous treatment 
of these subjects, while at the same time small reward seemed 
likely for the efforts expended in overcoming them. Later 
developments, however, have shown more and more clearly that 
in mathematics a mere moral conviction, supported by a mass of 
succesful applications, is not good enough. Proof is now 
demanded of many things that formerly passed as self-evident. 
Again and again the limits to the validity of a proposition have 
been in this way established for the first time. The concepts of 
function, of continuity, of limit and of infinity have been shown to 
stand in need of sharper definition. Negative and irrational 
numbers, which had long since been admitted into science, have 
had to admit to a closer scrutiny of their credentials. In all 
directions these same ideals can be seen at work—rigour of proof, 
precise delimitation of extent of validity, and as a means to this, 
sharp definition of concepts.   

 
Both Frege and Dedekind were concerned to supply mathematics with 
rigorous definitions. They believed that the central concepts of 
mathematics were ultimately logical in nature, and, like Leibniz, that 
truths about these concepts should be established by purely logical 
means. For instance, Dedekind asserts (in the Preface to his The Nature 
and Meaning of Numbers, 1888) that  
 

I consider the number concept [to be] entirely independent of the 
notions or intuitions of space and time ... an immediate result from 
the laws of thought. 

 
Thus, if we make the traditional identification of logic with the laws of 
thought, Dedekind is what we would now call a logicist in his attitude 
toward the nature of mathematics. Dedekind’s “logicism” embraced all 
mathematical concepts: the concepts of number—natural, rational, 
real, complex—and geometric concepts such as continuity2. As a 
practicing mathematician Dedekind brought a certain latitude to the 
conception of what was to count as a “logical” notion—a law of 
thought—as is witnessed by his remark that 
 

                                                           
2In fact, it was the imprecision surrounding the concept of continuity that impelled him to embark on the 
program of critical analysis of mathematical concepts. 
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... we are led to consider the ability of the mind to relate things to 
things, to let a thing correspond to a thing, or to represent a thing 
by a thing, an ability without which no thinking is possible.3 

 
Thus Dedekind was not particularly concerned with providing precise 
formulation of the logical principles supporting his reasoning, believing 
that reference to self-evident “laws of thinking” would suffice. 
Dedekind’s logicism was accordingly of a less thoroughgoing and 
painstaking nature than that of his contemporary Frege, whose name, 
together with Bertrand Russell’s, is virtually synonymous with logicism. 
In his logical analysis of the concept of number, Frege undertook to 
fashion in exacting detail the symbolic language within which his 
analysis was to be presented.   
 Frege’s analysis is presented in three works: 
  
 Begriffsschrift (1879): Concept-Script, a symbolic language of 
pure thought modelled on the language of arithmetic. 
 Grundlagen (1884): The Foundation of Arithmetic, a logico-
mathematical investigation into the concept of number.  
 Grundgesetze (1893, 1903): Fundamental Laws of Arithmetic, 
derived by means of concept-script. 
 
  In the Grundgesetze Frege refines and enlarges the symbolic 
language first introduced in the Begriffsschrift so as to undertake, in 
full formal detail, the analysis of the concept of number, and the 
derivation of the fundamental laws of arithmetic. The logical universe of 
Grundgesetze comprises two sorts of entity: functions, and objects. Any 
function f associates with each value ξ of its argument an object f(ξ): if 
this object is always one of the two truth values 0 (false) or 1 (true), 
then f is called a concept or propositional function, and when f(ξ) = 1 we 
say that ξ  falls under the concept f. If two functions f and g assign the 
same objects to all possible values of their arguments, we should 
naturally say that they have the same course of values; if f and g are 
concepts, we would say that they both have the same extension. Frege’s 
decisive step in the Grundgesetze was to introduce a new kind of object 
expression—which we shall write as f ^—to symbolize the course of 
values of f and to lay down as a basic principle the assertion 
                      
                      f g=  ↔  ∀ξ  [f(ξ) = g(ξ)].4                        (1) 

                                                           
3This idea of correspondence or functionality, taken by Dedekind as fundamental, is in fact the central 
concept of category theory. 
4Here and in the sequel we employ the usual logical operators. Thus “∀” stands for “for every”, “∃” stands 
for “there exists”, “¬” for "not”,” ∧” for ‘and”, “∨” for “or”, “→” for “implies” and “↔” for “is equivalent 
to”. 
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Confining attention to concepts, this may be taken as asserting that 
two concepts have the same extension exactly when the same entities fall 
under them. 
 The notion of the extension of a concept underpins Frege’s 
definition of number, which in the Grundlagen he had argued 
persuasively should be taken as a measure of the size of a concept’s 
extension5. As already mentioned in Chapter 3, he introduced the term 
equinumerous for the relation between two concepts that obtains when 
the fields of entities falling under each can be put in biunique 
correspondence. He then defined cardinal number by stipulating that 
the cardinal number of a concept F is the extension of the concept 
equinumerous with the concept F. In this way a number is associated 
with a second-order concept—a concept about concepts. Thus, if we 
write ν(F) for the cardinal number of F so defined, and F ≈ G for  the 
concept F is equinumerous with the concept G, then it follows from (1) 
that 
 
                         ν(F) = ν(G) ↔   F ≈  G.                                  (2) 
 
And then the natural numbers can be defined as the cardinal numbers 
of the following concepts:  
 

 N0: x ≠  x                         0 = ν(N0) 
 

 N1: x = 0                         1 =  ν(N1) 
 

 N2: x = 0 ∨  x = 1            2 =  ν(N2)               
 
                                                                      etc. 
 
In a technical tour-de-force Frege established that the natural numbers 
so defined satisfy the usual principles expected of them. 
 Unfortunately, in 1902 Frege learned of Russell's paradox, 
which can be derived from his principle (1) and shows it to be 
inconsistent. Russell’s paradox, as formulated for sets or classes in the 
previous chapter, can be seen to be attendant upon the usual 
supposition that any property determines a unique class, to wit, the 
class of all objects possessing that property (its “extension”). To derive 

                                                           
5It is helpful to think of the extension of a concept as the class of all entities that fall under it, so that, for 
example, the extension of the concept red is the class of all red objects. However, it is by no means necessary 
to identify extensions with classes; all that needs to be known about extensions is that they are objects 
satisfying (1). 
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the paradox in Frege’s system, classes are replaced by Frege’s 
extensions: we define the concept R by  
 

R(x) ↔   ∃F[x = F  ∧  ¬F(x)] 
 
(in words: x falls under the concept R exactly when x is the extension of 
some concept under which it does not fall). Now write r for the extension 
of R, i.e.,  
 

 r = R . 
 
Then   
                             R(r)  ↔  ∃F[r = F  ∧  ¬F(r)].                      (3) 
 
Now suppose that R(r) holds. Then, for some concept F, 
 
                                                 r = F  ∧  ¬F(r). 
 
But then 
 
                                                  F  = r = R ,  
 
and so we deduce from (1) that 
 
                                                 ∀x[F(x) ↔  R(x)]. 
 
Since ¬F(r), it follows that ¬R(r). We conclude that 
 
                                                   R(r) →   ¬R(r). 
 
Conversely, assume ¬R(r). Then 
 
                                                  r = R ∧  ¬R(r),  
 
and so a fortiori 
 
                                                ∃F[r = F  ∧  ¬F(r)]. 
 
It now follows from the definition of R that ¬R(r). Thus we have shown 
that 
 
                                    ¬R(r)   →  R(r). 
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We conclude that Frege’s principle (1) yields the contradiction 
 
                                       R(r) ↔ ¬R(r). 
  

Thus Frege's system in the Grundgesetze is, as it stands, 
inconsistent. Later investigations, however, have established that the 
definition of the natural numbers and the derivation of the basic laws 
of arithmetic can be salvaged by suitably restricting (1) so that it 
becomes consistent, leaving the remainder of the system intact. In fact 
it is only necessary to make the (consistent) assumption that the 
extensions of a certain special type of concept—the numerical 
concepts6—satisfy (1). Alternatively, one can abandon extensions 
altogether and instead take the cardinal number  ν(F) as a primitive 
notion, governed by equivalence (2). In either case the whole of Frege’s 
derivation of the basic laws of arithmetic can be recovered. 
 Where does all this leave Frege’s (and Dedekind’s) claim that 
arithmetic can be derived from logic? Both established beyond dispute 
that arithmetic can be formally or logically derived from principles 
which involve no explicit reference to spatiotemporal intuitions. In 
Frege’s case the key principle involved is that certain concepts have 
extensions satisfying (1). But although this principle involves no 
reference to spatiotemporal intuition, it can hardly be claimed to be of a 
purely logical nature. For it is an existential assertion and one can 
presumably conceive of a world devoid of the objects (“extensions”) 
whose existence is asserted. It thus seems fair to say that, while Frege 
(and Dedekind) did succeed in showing that the concept and properties 
of number are “logical” in the sense of being independent of 
spatiotemporal intuition, they did not (and it would appear could not) 
succeed in showing that these are “logical” in the stronger Leibnizian 
sense of holding in  every possible world. 
 
 The logicism of Bertrand Russell was in certain respects even 
more radical than that of Frege, and closer to the views of Leibniz. In 
The Principles of Mathematics (1903) he asserts that mathematics and 
logic are identical. To be precise, he proclaims at the beginning of this 
remarkable work that 
 

Pure mathematics is the class of all propositions of the form “p 
implies q” where p and q are propositions ... and neither p nor q 
contains any constants except logical constants.7 

 

                                                           
6 A numerical concept is one expressing equinumerosity with some given concept. 
7 Thus at the time this was asserted Russell was what could be described as an “implicational logicist”.  
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 The monumental, and formidably recondite8 Principia 
Mathematica, written during 1910–1913 in collaboration with Alfred 
North Whitehead (1861–1947), contains  a  complete  system  of  pure 
mathematics, based on what were intended to be purely logical 
principles, and formulated within a precise symbolic language. A 
central concern of Principia Mathematica was to avoid the so-called 
vicious circle paradoxes, such as those of Russell and Grelling-Nelson—
mentioned in the previous chapter—which had come to trouble 
mathematicians concerned with the ultimate soundness of their 
discipline. Another is Berry's paradox, in one form of which we consider 
the phrase the least integer not definable in less than eleven words. This 
phrase defines, in less than eleven words (ten, actually), an integer 
which satisfies the condition stated, that is, of not being definable in 
less than eleven words. This is plainly self-contradictory.     
 If we examine these paradoxes closely, we find that in each case 
a term is defined by means of an implicit reference to a certain class or 
domain which contains the term in question, thereby generating a 
vicious circle. Thus, in Russell’s paradox, the defined entity, that is, the 
class R of all classes not members of themselves is obtained by singling 
out, from the class V of all classes simpliciter, those that are not 
members of themselves. That is, R is defined in terms of V, but since R 
is a member of V, V cannot be obtained without being given R in 
advance. Similarly, in the Grelling-Nelson paradox, the definition of the 
adjective heterological involves considering the concept adjective under 
which heterological itself falls. And in the Berry paradox, the term the 
least integer not definable in less than eleven words involves reference to 
the class of all English phrases, including the phrase defining the term 
in question.   
   Russell’s solution to these problems was to adopt what he called 
the vicious circle principle which he formulated succinctly as: whatever 
involves all of a collection must not be one of a collection. This injunction 
has the effect of excluding, not just self-contradictory entities of the 
above sort, but all entities whose definition is in some way circular, 
even those, such as the class of all classes which are members of 
themselves, the adjective “autological”, or the least integer definable in 

                                                           
8 One may get an idea of just how difficult this work is by quoting the following extract from a review of it in 
a 1911 number of the London magazine The Spectator: 

 
It is easy to picture the dismay of the innocent person who out of curiosity looks into the later part 
of the book. He would come upon whole pages without a single word of English below the 
headline; he would see, instead, scattered in wild profusion, disconnected Greek and Roman 
letters of every size interspersed with brackets and dots and inverted commas, with arrows and 
exclamation marks standing on their heads, and with even more fantastic signs for which he would 
with difficulty so much as find names.  
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less than eleven words, the supposition of whose existence does not 
appear to lead to contradiction.9 
 The vicious circle principle suggests the idea of arranging 
classes or concepts (propositional functions) into distinct types or 
levels, so that, for instance, any class may only contain classes (or 
individuals) of lower level as members10, and a propositional function 
can have only (objects or) functions of lower level as possible 
arguments. Under the constraints imposed by this theory, one can no 
longer form the class of all possible classes as such, but only the class 
of all classes of a given level. The resulting class must then be of a 
higher type than each of its members, and so cannot be a member of 
itself. Thus Russell's paradox cannot arise. The Grelling-Nelson 
paradox is blocked because the property of heterologicality, which 
involves self-application, is inadmissible. 
 Unfortunately, however, this simple theory of types does not 
circumvent paradoxes such as Berry’s, because in these cases the 
defined entity is clearly of the same level as the entities involved in its 
definition. To avoid paradoxes of this kind Russell was therefore 
compelled to introduce a further “horizontal” subdivision of the totality 
of entities at each level, into what he called orders, and in which the 
mode of definition of these entities is taken into account. The whole 
apparatus of types and orders is called the ramified theory of types and 
forms the backbone of the formal system of Principia Mathematica. 
 To convey a rough idea of how Russell conceived of orders, let 
us confine attention to propositional functions taking only individuals 
(type 0) as arguments. Any such function which can be defined without 
application of quantifiers11 to any variables other than individual 
variables is said to be of first order. For example, the propositional 
function everybody loves x is of first order. Then second order functions 
are those whose definition involves application of quantifiers to nothing 
more than individual and first order variables, and similarly for third, 
fourth,..., nth order functions. Thus x has all the first-order qualities that 
make a great philosopher represents a function of second order and first 
type. 
 Distinguishing the order of functions enables paradoxes such as 
Berry’s to be dealt with. There the word definable is incorrectly taken to 

                                                           
9 The self-contradictory nature of the “paradoxical” entities we have described derives as much from the 
occurrence of negation in their definitions as it does from the circularity of those definitions.  
10  The idea of stratifying classes into types had also occurred to Russell in connection with his analysis of 
classes as genuine pluralities, as opposed to unities. On this reckoning, one starts with individual objects 
(lowest type), pluralities of these comprise the entities of next highest type, pluralities of these pluralities the 
entities of next highest type, etc. Thus the evident distinction between individuals and pluralities is “projected 
upwards” to produce a hierarchy of types.  
11Here by a quantifier we mean a an expression of the form “for every” (∀) or “there exists” (∃). 
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cover not only definitions in the usual sense, that is, those in which no 
functions occur, but also definitions involving functions of all orders. 
We must instead insist on specifying the orders of all functions figuring 
in these definitions. Thus, in place of the now illegitimate the least 
integer not definable in less than eleven words we consider the least 
integer not definable in terms of functions of order n in less than eighteen 
words. This integer is then indeed not definable in terms of functions of 
order n in less than eighteen words, but is definable in terms of 
functions of order n+1 in less than eighteen words. There is no conflict 
here. 
 While the ramified theory of types circumvents all known 
paradoxes (and can in fact be proved consistent from some modest 
assumptions), it turns out to be too weak a system to support unaided 
the development of mathematics. To begin with, one cannot prove 
within it that there is an infinity of natural numbers, or indeed that 
each natural number has a distinct successor. To overcome this 
deficiency Russell was compelled to introduce an axiom of infinity, to 
wit, that there exists a level containing infinitely many entities. As 
Russell admitted, however, this can hardly be considered a principle of 
logic, since it is certainly possible to conceive of circumstances in which 
it might be false. In any case, even augmented by the axiom of infinity, 
the ramified theory of types proves inadequate for the development of 
the basic theory of the real numbers. For instance, the theorem that 
every bounded set of real numbers has a least upper bound, upon 
which the whole of mathematical analysis rests, is not derivable 
without further ad hoc strengthening of the theory, this time by the 
assumption of the so-called axiom of reducibility. This asserts that any 
propositional function of any order is equivalent to one of first order in 
the sense that the same entities fall under them. Again, this principle 
can hardly be claimed to be a fact of logic. 
 Various attempts have been made to dispense with the axiom of 
reducibility, notably that of Frank Ramsey (1903–1930). His idea was to 
render the whole apparatus of orders superfluous by eliminating 
quantifiers in definitions. Thus he proposed that a universal quantifier 
be regarded as indicating a conjunction, and an existential quantifier a 
disjunction12, even though it may be impossible in practice to write out 
the resulting expressions in full. On this reckoning, then, the statement 
Citizen Kane has all the qualities that make a great film would be taken 
as an abbreviation for something like Citizen Kane is a film, brilliantly 
directed, superbly photographed, outstandingly performed, excellently 
scripted, etc. For Ramsey, the distinction of orders of functions is just a 
complication imposed by the structure of our language and not, unlike 

                                                           
12Thus, if a domain of discourse D comprises entities a,b,c,..., then for every x in D, P(x) is construed to mean 
P(a) and P(b) and P(c) and..., and there exists x in D such that P(x) to mean P(a) or P(b) or P(c) or ... 
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the hierarchy of types, something inherent in the way things are. For 
these reasons he believed that the simple theory of types would provide 
an adequate foundation for mathematics. 
 What is the upshot of all this for Russell’s logicism? There is no 
doubt that Russell and Whitehead succeeded in showing that 
mathematics can be derived within the ramified theory of types from 
the axioms of infinity and reducibility. This is indeed no mean 
achievement, but, as Russell admitted, the axioms of infinity and 
reducibility seem to be at best contingent truths. In any case it seems 
strange to have to base the truth of mathematical assertions on the 
proviso that there are infinitely many individuals in the world. Thus, 
like Frege’s, Russell’s attempted reduction of mathematics to logic 
contains an irreducible mathematical residue. 
 
 
Formalism  
 
In 1899 David Hilbert published his epoch-making work Grundlagen 
der Geometrie (“Foundations of Geometry”). Without introducing any 
special symbolism, in this work Hilbert formulates an absolutely 
rigorous axiomatic treatment of Euclidean geometry, revealing the 
hidden assumptions, and bridging the logical gaps, in traditional 
accounts of the subject. He also establishes the consistency of his 
axiomatic system by showing that they can be interpreted (or as we 
say, possess a model) in the system of real numbers. Another important 
property of the axioms he demonstrated is their categoricity, that is, the 
fact that, up to isomorphism they have exactly one model, namely, the 
usual 3-dimensional space of real number triples. Although in this 
work Hilbert was attempting to show that geometry is entirely self-
sufficient as a deductive system13, he nevertheless thought, as did 
Kant, that geometry is ultimately the logical analysis of our intuition of 
space. This can be seen from the fact that as an epigraph for his book 
he quotes Kant’s famous remark from the Critique of Pure Reason: 
 

Human knowledge begins with intuitions, goes from there to 
concepts, and ends with ideas. 

  
The great success of the method Hilbert had developed to 

analyze the deductive system of Euclidean geometry—we might call it 
the rigorized axiomatic method, or the metamathematical method—
emboldened him to attempt later to apply it to pure mathematics as a 
whole, thereby securing what he hoped to be perfect rigour for all of 

                                                           
13In this connection one recalls his famous remark: one must be able to say at all times, instead of points, 
lines and planes—tables, chairs, and beer mugs. 
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mathematics. To this end Hilbert elaborated  a subtle philosophy of 
mathematics, later to become known as formalism, which differs in 
certain important respects from the logicism of Frege and Russell and 
betrays certain Kantian features. Its flavour is well captured by the 
following quotation from an address he made in 1927: 
 

No more than any other science can mathematics be founded on 
logic alone; rather, as a condition for the use of logical inferences 
and the performance of logical operations, something must 
already be given to us in our faculty of representation, certain 
extralogical concrete objects that are intuitively present as 
immediate experience prior to all thought. If logical inference is to 
be reliable, it must be possible to survey these objects completely 
in all their parts, and the fact that they occur, that they differ from 
one another, and that they follow each other, or are concatenated, 
is immediately given intuitively, together with the objects, as 
something that can neither be reduced to anything else, nor 
requires reduction. This is the basic philosophical position that I 
regard as requisite for mathematics and, in general, for all 
scientific thinking, understanding, and communication. And in 
mathematics, in particular, what we consider is the concrete signs 
themselves, whose shape, according to the conception we have 
adopted, is immediately clear and recognizable. This is the very 
least that must be presupposed, no scientific thinker can dispense 
with it, and therefore everyone must maintain it, consciously or 
not. 

 
Thus, at bottom, Hilbert, like Kant, wanted to ground mathematics on 
the description of concrete spatiotemporal configurations, only Hilbert 
restricts these configurations to concrete signs (such as inscriptions on 
paper). No inconsistencies can arise within the realm of concrete signs, 
since precise descriptions of concrete objects are always mutually 
compatible. In particular, within the mathematics of concrete signs, 
actual infinity cannot generate inconsistencies since, as for Kant, this 
concept cannot describe any concrete object. On this reckoning, the 
soundness of mathematics thus issues ultimately, not from a logical 
source, but from a concrete one, in much the same way as the 
consistency of truly reported empirical statements is guaranteed by the 
concreteness of the external world. 
 Yet Hilbert also thought that adopting this position would not 
require the abandonment of the infinitistic mathematics of Cantor and 
others which had emerged in the nineteenth century and which had 
enabled mathematics to make such spectacular strides. He accordingly 
set himself the task of accommodating infinitistic mathematics within a 
mathematics restricted to the deployment of finite concrete objects. 
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Thus Hilbert's program, as it came to be called, had as its aim the 
provision of a new foundation for mathematics not by reducing it to 
logic, but instead by representing its essential form within the realm of 
concrete symbols. As the quotation above indicates, Hilbert considered 
that, in the last analysis, the completely reliable, irreducibly self-
evident constituents of mathematics are finitistic, that is, concerned 
just with finite manipulation of surveyable domains of concrete objects, 
in particular, mathematical symbols presented as marks on paper. 
Mathematical propositions referring only to concrete objects in this 
sense he called real, or concrete, propositions, and all other 
mathematical propositions he considered as possessing an ideal, or 
abstract character. Thus, for example, 2 + 2 = 4 would count as a real 
proposition, while there exists an odd perfect number would count as an 
ideal one.    
 Hilbert viewed ideal propositions as akin to the ideal lines and 
points “at infinity” of projective geometry. Just as the use of these does 
not violate any truths of the “concrete” geometry of the usual Cartesian 
plane, so he hoped to show that the use of ideal propositions—in 
particular, those of Cantor’s set theory—would never lead to falsehoods 
among the real propositions, that, in other words, such use would 
never contradict any self-evident fact about concrete objects. Establishing 
this by strictly concrete, and so unimpeachable means was the central 
aim of Hilbert’s program. In short, its objective was to prove classical 
mathematical reasoning consistent. With the attainment of this goal, 
mathematicians would be free to roam unconstrained within “Cantor's 
Paradise” (in Hilbert’s memorable phrase14). This was to be achieved by 
setting it out as a purely formal system of symbols, devoid of 
meaning15, and then showing that no proof in the system can lead to a 
false assertion, e.g. 0 = 1. This, in turn, was to be done by employing 
the metamathematical technique of replacing each abstract classical 
proof of a real proposition by a concrete, finitistic proof. Since, plainly, 
there can be no concrete proof of the real proposition 0 = 1, there can 
be no classical proof of this proposition either, and so classical 
mathematical reasoning is consistent. 
 In 1931, however, Gödel rocked Hilbert’s program by 
demonstrating, through his celebrated Incompleteness Theorems, that 
there would always be real propositions provable by ideal means which 
cannot be proved by concrete means. He achieved this by means of an 
ingenious modification of the ancient Liar paradox. To obtain the liar 
paradox in its most transparent form, one considers the sentence this 

                                                           
14Hilbert actually asserted that “no one will ever be able to expel us from the paradise that Cantor has created 
for us.”  
15It should be emphasized that Hilbert was not claiming that (classical) mathematics itself was meaningless, 
only that the formal system representing it was to be so regarded. 
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sentence is false. Calling this sentence A, it is clear that A is true if and 
only if it is false, that is, A asserts its own falsehood. Now Gödel showed 
that, if in A one replaces the word false by the phrase not concretely 
provable, then the resulting statement B is true —i.e., provable by ideal 
means—but not concretely provable. This is so because, as is easily 
seen, B actually asserts its own concrete unprovability in just the same 
way as A asserts its own falsehood. And by extending these arguments 
Gödel also succeeded in showing that the consistency of arithmetic 
cannot be proved by concrete means.  
 Accordingly there seems to be no doubt that Hilbert’s program 
for establishing the consistency of mathematics (and in particular, of 
arithmetic) in its original, strict form was shown by Gödel to be 
unrealizable. However, Gödel himself thought that the program for 
establishing the consistency of arithmetic might be salvageable through 
an enlargement of the domain of objects admitted into finitistic 
metamathematics. That is, by allowing finite manipulations of suitably 
chosen abstract objects in addition to the concrete ones Gödel hoped to 
strengthen finitistic metamathematics sufficiently to enable the 
consistency of arithmetic to be demonstrable within it. In 1958 he 
achieved his goal, constructing a consistency proof for arithmetic 
within a finitistic, but not strictly concrete, metamathematical system 
admitting, in addition to concrete objects (numbers), abstract objects 
such as functions, functions of functions, etc., over finite objects. So, 
although Hilbert’s program cannot be carried out in its original form, 
for arithmetic at least Gödel showed that it can be carried out in a 
weakened form by countenancing the use of suitably chosen abstract 
objects.     
 As for the doctrine of “formalism” itself, this was for Hilbert (who 
did not use the term, incidentally) not the claim that mathematics 
could be identified with formal axiomatic systems. On the contrary, he 
seems to have regarded the role of formal systems as being to provide 
distillations of mathematical practice of a sufficient degree of precision 
to enable their formal features to be brought into sharp focus. The fact 
that Gödel succeeded in showing that certain features (e.g. consistency) 
of these logical distillations could be expressed, but not demonstrated 
by finitistic means does not undermine the essential cogency of 
Hilbert’s program. 
  
 
Intuitionism.  
 
A third tendency in the philosophy of mathematics to emerge in the 
twentieth century, intuitionism, is largely the creation of L.E.J. Brouwer 
(1882-1966). Like Kant, Brouwer believed that mathematical concepts 
are admissible only if they are adequately grounded in intuition, that 
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mathematical theories are significant only if they concern entities 
which are constructed out of something given immediately in intuition, 
that mathematical definitions must always be constructive, and that 
the completed infinite is to be rejected. Thus, like Kant, Brouwer held 
that mathematical theorems are synthetic a priori truths. In Intuitionism 
and Formalism (1912), while admitting that the emergence of 
noneuclidean geometry had discredited Kant’s view of space, he 
maintained, in opposition to the logicists (whom he called “formalists”) 
that arithmetic, and so all mathematics, must derive from the intuition 
of time. In his own words: 
 

Neointuitionism considers the falling apart of moments of life into 
qualitatively different parts, to be reunited only while remaining 
separated by time, as the fundamental phenomenon of the human 
intellect, passing by abstracting from its emotional content into the 
fundamental phenomenon of mathematical thinking, the intuition 
of the bare two-oneness. This intuition of two-oneness, the basal 
intuition of mathematics, creates not only the numbers one and 
two, but also all finite ordinal numbers, inasmuch as one of the 
elements of the two-oneness may be thought of as a new two-
oneness, which process may be repeated indefinitely; this gives 
rise still further to the smallest infinite ordinal ω . Finally this 
basal intuition of mathematics, in which the connected and the 
separate, the continuous and the discrete are united, gives rise 
immediately to the intuition of the linear continuum, i.e., of the 
“between”, which is not exhaustible by the interposition of new 
units and which can therefore never be thought of as a mere 
collection of units. In this way the apriority of time does not only 
qualify the properties of arithmetic as synthetic a priori judgments, 
but it does the same for those of geometry, and not only for 
elementary two- and three-dimensional geometry, but for non-
euclidean and n-dimensional geometries as well. For since 
Descartes we have learned to reduce all these geometries to 
arithmetic by means of coordinates.  

 
 For Brouwer, intuition meant essentially what it did to Kant, 
namely, the mind’s apprehension of what it has itself constructed; on 
this view, the only acceptable mathematical proofs are constructive. A 
constructive proof may be thought of as a kind of “thought experiment” 
—the performance, that is, of an experiment in imagination. According 
to Arend Heyting (1898–1980), a leading member of the intuitionist 
school,  
 

Intuitionistic mathematics consists ... in mental constructions; a 
mathematical theorem expresses a purely empirical fact, namely, 
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the success of a certain construction. “2 + 2 = 3 + 1” must be read 
as an abbreviation for the statement “I have effected the mental 
construction indicated by   ‘2 + 2’ and ‘3 + 1’ and I have found 
that they lead to the same result.” 

 
From passages such as these one might infer that for intuitionists 
mathematics is a purely subjective activity, a kind of introspective 
reportage, and that each mathematician has a personal mathematics. 
Certainly they reject the idea that mathematical thought is dependent 
on any special sort of language, even, occasionally, claiming that, at 
bottom, mathematics is a “languageless activity”. Nevertheless, the fact 
that intuitionists evidently regard mathematical theorems as being 
valid for all intelligent beings indicates that for them mathematics has, 
if not an objective character, then at least a transsubjective one. 
 The major impact of the intuitionists’ program of constructive 
proof has been in the realm of logic. Brouwer maintained, in fact, that 
the applicability of traditional logic to mathematics 
 

was caused historically by the fact that, first, classical logic was 
abstracted from the mathematics of the subsets of a definite finite 
set, that, secondly, an a priori existence independent of 
mathematics was ascribed to the logic, and that, finally, on the 
basis of this supposed apriority it was unjustifiably applied to the 
mathematics of infinite sets.  

 
Thus Brouwer held that much of modern mathematics is based, not on 
sound reasoning, but on an illicit extension of procedures valid only in 
the restricted domain of the finite. He therefore embarked on the heroic 
course of setting the whole of existing mathematics aside and starting 
afresh, using only concepts and modes of inference that could be given 
clear intuitive justification. He hoped that, once enough of the program 
had been carried out, one could discern the logical laws that intuitive, 
or constructive, mathematical reasoning actually obeys, and so be able 
to compare the resulting intuitionistic, or constructive, logic16 with 
classical logic.   
 The most important features of constructive mathematical 
reasoning are that an existential statement can be considered affirmed 
only when an instance is produced,17 and—as a consequence—a 
disjunction can be considered affirmed only when an explicit one of the 
disjuncts is demonstrated. A striking consequence of this is that, as far 

                                                           
16This is not to say that Brouwer was primarily interested in logic, far from it: indeed, his distaste for 
formalization led him not to take very seriously subsequent codifications of intuitionistic logic. 
17 Hermann Weyl said of nonconstructive existence proofs that “they inform the world that a treasure exists 
without disclosing its location.” 
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as properties of (potentially) infinite domains are concerned, neither the 
classical law of excluded middle18 nor the law of strong reductio ad 
absurdum19 can be accepted without qualification. To see this, consider 
for example the existential statement there exists an odd perfect number 
(i.e., an odd number equal to the sum of its proper divisors) which we 
shall write as  ∃nP(n). Its contradictory is the statement  ∀n¬P(n). 
Classically, the law of excluded middle then allows us to affirm the 
disjunction 
 
                                 ∃nP(n) ∨  ∀n¬P(n)                                 (1) 
 
Constructively, however, in order to affirm this disjunction we must 
either be in a position to affirm the first disjunct ∃nP(n), i.e., to possess, 
or have the means of obtaining, an odd perfect number, or to affirm the 
second disjunct  ∀n¬P(n), i.e. to possess a demonstration that no odd 
number is perfect. Since at the present time mathematicians have 
neither of these20, the disjunction (1), and a fortiori the law of excluded 
middle is not constructively admissible.   
 It might be thought that, if in fact the second disjunct in (1) is 
false, that is, not every number falsifies P, then we can actually find a 
number satisfying P by the familiar procedure of testing successively 
each number 0, 1, 2, 3,... and breaking off when we find one that does: 
in other words, that from ¬ ∀n¬P(n) we can infer  ∃nP(n). Classically, 
this is perfectly correct, because the classical meaning of ¬∀n¬P(n) is 
“P(n) will not as a matter of fact be found to fail for every number n.” 
But constructively this latter statement has no meaning, because it 
presupposes that every natural number has already been constructed 
(and checked for whether it satisfies P). Constructively, the statement 
must be taken to mean something like “we can derive a contradiction 
from the supposition that we could prove that P(n) failed for every n.” 
From this, however, we clearly cannot extract a guarantee that, by 
testing each number in turn, we shall eventually find one that satisfies 
P. So we see that the law of strong reductio ad absurdum also fails to 
be constructively admissible. 
 As a simple example of a classical existence proof which fails to 
meet constructive standards, consider the assertion 
 
there exists a pair of irrational real numbers a,b such that ab is rational.   

 

                                                           
18This is the assertion that, for any proposition p, either p or its negation ¬p holds. 
19This is the assertion that, for any proposition p, ¬¬p implies p. 
20And indeed may never have; for little if any progress has been made on the ancient problem of the existence 
of odd perfect numbers. 
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Classically, this can be proved as follows: let b = /2; then b is 
irrational. If bb is rational, let a = b; then we are through. If bb is 
irrational, put a = bb; then ab = 2, which is rational. But in this proof we 
have not explicitly identified a; we do not know, in fact, whether   a =  
/2 or21 a =  /2/2, and it is therefore constructively unacceptable. 
 Thus we see that constructive reasoning differs from its 
classical counterpart in that it attaches a stronger meaning to some of 
the logical operators. It has become customary, following Heyting, to 
explain this stronger meaning in terms of the primitive relation a is a 
proof of p, between mathematical constructions a and mathematical 
assertions p. To assert the truth of p is to assert that one has a 
construction a such that a is a proof of p22. The meaning of the various 
logical operators in this scheme is spelt out by specifying how proofs of 
composite statements depend on proofs of their constituents. Thus, for 
example, 
 

• a is a proof of p ∧  q means: a is a pair (b, c) consisting of 
a proof b of p and c of q;  

• a is a proof of p ∨  q means: a is a pair (b, c) consisting of 
a natural number b and a construction c such that, if b 
= 0, then c is a proof of p, and if b ≠ 0, then c is a proof of 
q;  

• a is a proof of p →  q means: a is a construction that 
converts any proof of p into a proof  of q; 

• a is a proof of ¬p means: a is a construction that shows 
that no proof of p is possible. 

 
It is readily seen that, for example, the law of excluded middle is not 
generally true under this ascription of meaning to the logical operators. 
For a proof of p  ∨ ¬p is a pair (b,c) in which c is either a proof of p or a 
construction showing that no proof of p is possible, and there is 
nothing inherent in the concept of mathematical construction that 
guarantees, for an arbitrary proposition p, that either will ever be 
produced. 
 As shown by Gödel in the 1930s, it is possible to represent the 
strengthened meaning of the constructive logical operators in a 
classical system augmented by the concept of provability. If we write ~p 
for “p is provable”, then the scheme below correlates constructive 
statements with their classical translates. 

                                                           
21In fact a much deeper argument shows that  2/2 is irrational, and is therefore the correct value of a. 
22Here by proof we are to understand a mathematical construction that establishes the assertion in question, 
not a derivation in some formal system. For example, a proof of 2 + 3 = 5 in this sense consists of successive 
constructions of 2, 3 and 5, followed by a construction  that adds 2 and 3, finishing up with a construction that 
compares the result of this addition with 5. 
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                   Constructive                                          Classical 

¬p ~¬~ p 
p ∧  q                    ~p ∧  ~q 
p ∨  q                    ~p ∨  ~q 
p → q ~(~p →  ~q)   

 
The translate of the sentence p ∨ ¬p is then  ~p ∨ ~~¬~p, which is 
(assuming ~~p  ↔  ~p) equivalent to ¬~p →  ~¬~ p, that is, to the 
assertion 
 
 if p is not provable, then it is provable that p is not provable. 
 
The fact that there is no a priori reason to accept this “solubility” 
principle lends further support to the intuitionists’ rejection of the law 
of excluded middle.  
 Another interpretation of constructive reasoning is provided by 
Kolmogorov’s calculus of problems (A. N. Kolmogorov, 1903–1987). If we 
denote problems by letters and a ∧ b, a ∨ b, a →  b, ¬a are construed 
respectively as the problems 
 
 to solve both a and b; 
 to solve at least one of a and b; 
 to solve b, given a solution of a; 
 to deduce a contradiction from the hypothesis that a is solved; 
 
then a formal calculus can be set up which coincides with the 
constructive logic of propositions. 
 Although intuitionism in Brouwer’s original sense has not been 
widely adopted as a philosophy of mathematics, the constructive 
viewpoint associated with it has been very influential. The intuitionistic 
logical calculus has also come under intensive investigation. If we 
compare the law of excluded middle with Euclid’s fifth postulate, then 
intuitionistic logic may be compared with neutral geometry—geometry, 
that is, without the fifth postulate—and classical logic to Euclidean 
geometry. Just as noneuclidean geometry revealed a “strange new 
universe”, so intuitionistic logic has allowed new features of the logico-
mathematical landscape—invisible through the lens of classical logic—
to be discerned. Intuitionistic logic has proved to be a subtle 
instrument, more delicate than classical logic, for investigating the 
mathematical world.23      

                                                           
23 Famously, Hilbert remarked, in opposition to intuitionism, that “to deny the mathematician the use of the 
law of excluded middle would be to deny the astronomer the use of a telescope or the boxer the use of his 
fists.” But with experience in using the refined machinery of intuitionistic logic one comes to regard Hilbert’s 
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 Despite the fact that Logicism, Intuitionism and Formalism 
cannot be held to provide complete accounts of the nature of 
mathematics, each gives expression to an important partial truth about 
that nature: Logicism, that mathematical truth and logical 
demonstration go hand in hand; Intuitionism, that mathematical activity 
proceeds by the performance of mental constructions, and finally 
Formalism, that the results of these constructions are presented 
through the medium of formal symbols.  
       
 

                                                                                                                                             
simile as inappropriate. A better one might be: to deny the mathematician the use of the law of excluded 
middle would be to deny the surgeon the use of a butcher knife, or the general the use of nuclear weapons.  


