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ZORN’S LEMMA AND COMPLETE BOOLEAN ALGEBRAS
IN INTUITIONISTIC TYPE THEORIES

J. L. BELL

Abstract. We analyze Zorn's Lemma and some of its consequences for Boolean algebrasin a constructive
setting. We show that Zorns Lemma is persistent in the sense that, if it holds in the underlying set theory,
in a properly stated form it continues to hold in all intuitionistic type theories of a certain natural kind.
(Observe that the axiom of choice cannot be persistent in this sense since it implies the law of excluded
middle.) We also establish the persistence of some familiar results in the theory of (complete) Boolean
algebras—notably, the proposition that every complete Boolean algebra is an absolute subretract. This
(almost) resolves a question of Banaschewski and Bhutani as to whether the Sikorski extension theorem
for Boolean algebras is persistent.

§1. Introduction. Typically, applications of Zorn’s Lemma (ZL) take the follow-
ing form. Suppose, for example, one wishes to show that a function possessing a
certain property P exists with domain a certain set 4. To do this one proves first
that the collection 7 of functions with property P and domain a subset of A is
closed under unions of chains and then infers from Zorn’s Lemma that & has a
maximal element m. Finally, a “one-step extension” argument is formulated so as
to yield the conclusion that the domain of m is A itself. This “one-step” argument
may be distilled into what I shall call the extension principle for &, viz.

EP(F) ViVx € A[f € ¥ — g € F[f C g A x € domain(g)]].

Applying this to the maximal m immediately yields the desired conclusion 4 —
domain(m).

More specifically, let us examine the standard derivation from ZL of the axiom of
choice (AC) in the form: each relation R contains a Sfunction with the same domain.
Here A is domain(R), & is the set R* of subfunctions of R, and the extended
function g figuring in EP(¥') is obtained from the given function f and the given
element x € 4 by means of a classical definition by cases:

g = fif x € dom(f)
g& = [ U(x, y) for some y such that (x, y) € R if x ¢ domain(f).

Now we shall see (in §3) that ZL is perfectly compatible with constructive rea-
soning (i.e., with reasoning formulable within the intuitionistic type theories to be
introduced presently). Moreover, if we write EP for the statement

VR(R is a relation —s EP(R¥),
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then the implication ZL+ EP — AC is evidently constructively valid. But it is well
known (see, e.g., [6, 4.31]) that AC implies the law of excluded middle. It follows
that EP must be nonconstructive, And indeed, we have

ProOPOSITION 1.1. EP implies excluded middle.

PROOF. Write 2 = {0, 1} and, given any proposition ¢, let U = {x € 2 : x =
OVel V={x€2:x=1Vyp}, and R = ({U} x U)u({V} x V). Then
the function f = {(U;0)} is in R” and so EP yields a function g in R* extending
/o such that domain(g) = {U, V}. Thus g(U) = 0 and g(V) € V. This latter
conjunct means that

) g(V)=1ore.

Butclearly o — V = U — g(V) = g(U) = 0. Thusg(V) # 0 — -, whence
g(V) =1 — —p. We conclude from this and (*) that = or ¢. Since ¢ was
arbitrary, excluded middle follows. —

We are going to show, by contrast, that ZL is consistent with a certain form of
constructive reasoning, namely, that embodied within the intuitionistic type theo-
ries associated with toposes (see, e.g., [6]), and that this is also the case for certain
of its consequences in the theory of Boolean algebras. This will be achieved by es-
tablishing the persistence of these assertions in the sense that, if any of them holds in
the underlying set theory, then it continues to hold in all of the above type theories.
Since each one of these assertions is known to be consistent with classical set theory,
it will then follow, in particular, that each is consistent with constructive reasoning
in the sense we have specified. In other words, unlike the axiom of choice, neither
ZL nor any of the other assertions which we show to be persistent has “noncon-
structive” logical consequences: thus they are what might be called constructively
neutral. ‘We take up the theme of persistence again, briefly, at the end of the next
section.

§2. Intuitionistic type theories. We summarize briefly the system presented in [6].
A language L for intuitionistic type theory, or a language for short, has the following
mgredients:

Basic symbols. 1 (unit type), Q (truth value type), S, T, U, . .. (ground types), f,
g, h, ... {function symbols).

Types. These are members of the smallest class containing 1, Q and the ground
types and closed under the product and power operations: here the product of two
types A, B is denoted by A x B and the power of a type A is denoted by PA.

Signatures. Each function symbol is assigned a pair of types called its signature.
Notation: f: A — B.

Terms and associated types. These are specified as follows:

(1) # is a term of type 1, and for each type A there is a list of variables x, y, -,

. of that type;

(ii) the collection of terms is closed under the following operations (where 7 : A
indicates that the term  has type A):
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(o,7): Ax B foro : Aandz: B,
f(t):B fort:Aand f:A — B
{x:a}:PA forx:Aanda:Q
o=1:Q foroc:Aandz:A
geET:Q foro:Aandz: PA.

Closed terms are, as usual, terms without free variables, i.e., variables x not appear-
ing in a context of the form {x :a}. A closed term of power type will be called
an Z-set. it is easily seen that each Z-set is of the form {x : a}. For any type A,
we write A4 for the Z-set {x :x=x}, where x : 4. A term of type Q is called
a formula, and a closed formula is called a sentence. We use the letters a, g, y to

shall write 7(x, x’,...) to indicate that the term 7 has at most the free variables x,
x’,...; in this situation we shall usually write 7 (g, o',...) for 7(x/g, x'fa’,. . ).

Axioms and rules of inference. We adopt a sequent notation, writing I'|a for the
sequent composed of a finite set " of formulas and a formula @, and |a for a.
The (basic) axioms in Zare, writing o — £ for a = B, the sequents

|x =# (with x : 1)
x=y,a(z/x)la(z/y)  (with x, y free for z in a)
{6 y) = (x', y)|x = x’
(e y) = (x",y)y =y
x€e{x:a}oa

The rules of inference in & are

Mo o,T|p
g
TNe
B, Tlex
INa
I(x/7)|a(x/7)
MNxeoe—xer
MNo==z
oL B, I
MNaep

(all free variables of « free in conclusion)

(t free for x in o and all members of ")

(x not free in conclusion)

These axioms and rules of inference yield a system of natural deduction in . 1f
S is any collection of sequents in %, we say that the sequent I'|e is S-derivable,
and write I k5 «, provided there is a derivation of I” |a using the basic axioms, the
sequents in S, and the rules of inference. For § ks o we write simply g a. A
theory in % is a collection of sequents closed under derivability. A theory in some
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typed intuitionistic language will be called a type theory (in [6], type theories are
called local set theories).
Logical operators in ¥ are defined as follows:

true =g # = # (Note that Fg Vo (w < w = true).)
a A B =4 {a, f) = (true, true)

a— B =g lanf) e a

Vxa =4 {x:a} = {x:true}

false =4 V. w = true

—a =¢; a — false

aV p =g Volla » oA f — w) — ]

Ixa =4 Yo[Vx(a — w) — o]

Other logical operators such as 3'x (there is a unique x ) and standard set-theoretic
terms such as {x} and f(x) can be introduced into # in the usual way: we shall
use such terms freely. The theory S is said to be well-termed if whenever Fs dxe
there is some term 7 for which ks a(x/7).

It can be shown (see [6, Ch. 3]) that the theorems of (free) higher-order intu-
itionistic logic are S-derivable for any theory S: in particular, it is S-derivable that
(Q, —) is a complete Heyting algebra, and that its associated algebra Q__ =45 {o :
——w = w} of regular elements is a complete Boolean algebra. S is said to be
classical if s Yw. @ V —o, or, equivalently, fFs Q=0Q__.

Let Q(S) be the collection of sentences of .Z, in which we identify two sentences
when their equivalence is S-derivable. Define the relation < on Q(S)bya < fiff
s @ — B. Then (Q(S), <) is a Heyting algebra.

If S is a theory in a language .#, an S-set is an equivalence class of Z-sets under
the equivalence relation of S-derivable equality: we shall often use the symbol for
an .Z-set to denote its associated S-set. By an element of an S-set E we shall mean
a closed term e of & for which g e € E. We write E™ for the set of all elements
of E, where we agree to identify two such elements if their identity is S-derivable.
By a subset of an S-set E we shall mean an S-set U such that -5 U C E; we write
Pow(E ) for the collection of all subsets of E. If we define the relation C on Pow(E)
by UC Viffs U C V, then (Pow(X),C) is a Heyting algebra.

An S-map is an S-set which is in addition an S-derivably functional relation.
The collection #(S) of S-sets and S-maps naturally possesses the structure of a
Cartesian closed category with a subobject classifier; in short, Z(S) is a topos.
Conversely, given a topos &, we can associate with it a language Z (&) called its
internal language having its objects as types and its arrows as function symbols.
There is a natural interpretation of Z(€) in & yielding the notion of validity of
sequents of (&) in &. The theory Th(&) of & is the collection of sequents of
(%) valid under this interpretation. It can be shown that Th(&) is well-termed
and that @ (Th(&)) is equivalent (in the category-theoretic sense) to & .

If S is a theory in a language %, and X is an Z-set, an S- singleton in X is an
-set U such thatFs U C X AVxy € U. x = y. The Z-set X is said to be S-
coverable if, for any formula a(x), x : A, whenever -5 Vx € Ua for all S-singletons
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Uin X, then 5 Vx € Xa. (This means, intuitively, that X is “covered” by its
singletons.) The theory S is itself said to be coverable if every % -set is S-coverable,

The theory S is said to satisfy the axiom of choice (AC) if for any S-sets X , Y
and any formula a(x, y), whenever Fs Vx € X3y ¢ Ya(x, y), there is an S-map
f X — Y for which Fs Vx e Xo(x, f(x)).

The theory S is said to be Jull if for each (intuitive) set 7 there s a type symbol
I™of & and foreach i € J a closed term i~ : I~ such that the following universal
condition is satisfied.

e For any /-indexed family {r; : i ¢ 1 } of closed terms of common type A there
isatermt(x): A, x : I™, such that kg 7; = (i) forall i € I, and, for any term
o(x): A kg1 = o(i”)foralli e J implies g 7 = ¢,

The following basic facts concerning full type theories can now be established
(see [6, Ch. 4]). Let S be a full type theory. Then we have:

GENERALIZATION PRINCIPLE, Leta(x,... » X») be a formula with xi:ID, o x,
L Ifbs a(ip,. .. si)foralliy e py, ... »in € I,, then k5 Vx;, c-Vx,a.

IsoMORPHISM PRINCIPLE, Suppose that S is well-termed. Then for any sets I, J
there is a term p(v) ; IxI)v: 1" x I such that -5 p((i™, ™) = (4, /)~ for any

iel, jeJandkrs pisa bijection I™ x J~ —, (I x J)". In view of this we shall
identify (i, j~) and (i, /)™, thus also identifying /™~ x J™~and I xJ)

COMPLETENESS PRINCIPLE, Q(S) and Pow(E), for any S-set £ , are complete
Heyting algebras. In Q(S), the supremum of a subset 4 = {q; : i ¢ I} is the
sentence Jxa(x), where a(x) satisfies Fs o =a(i™foralli € I. In Pow(E), the
Supremum of a subset {4, : ; ¢ I} is the S-set {y : 3. ¥ € 7(x)}, where 7(x)
satisfies -5 (i) = 4, for all ; el

Some noteworthy facts concerning coverability and fullness are the following.
Let & be a topos. Then Th(¥) is full if and only if & is defined over the topos
Sez of sets, i.e., iff & admits arbitrary copowers of its terminal object. Also, the
following are equivalent: (i) Th(2) is coverable and full, (i) for some complete
Heyting algebra H, & is (equivalent to) the topos S£(H ) of sheaves on #. If either
of these conditions hold, & is called localic, and if in addition Th(&) is classical, &
is called Boolean localic.

underlying set theory, it holds in any full well-termed type theory (resp. full cover-
able well-termed type theory, full coverable classical well-termed type theory). In
topos-theoretic terms, the meaning of strong persistence (resp. persistence, classical
persistence) of a given property is that, whenever it holds in Ses, it continues to hold
in any topos defined over o,z (resp. localic topos, Boolean localic topos).

Finally, a few remarks on the concept of persistence, By abuse of language,
let us call a proposition P persistent when the property “P holds” is persistent.
Apart from the trivial cases of the absurd proposition and the theorems of in-
tuitionistic type theory, persistent propositions seem to be rare: indeed the only



1270 J. L. BELL

is nonpersistent by noting that it follows from the axiom of choice and also has
a nonconstructive logical consequence (or is clearly of a nonconstructive nature
itself). In that event, it is usually quite easy to construct a sheaf model (i.e., of
the form §£(H ) for some complete Heyting algebra H) in which the logical conse-
quence, and hence also the proposition itself, fails, even when the axiom of choice
is assumed in the underlying set theory: nonpersistence follows immediately. Such
is the case, for example, for the axiom of choice itself, the Stone Representation
Theorem for Boolean algebras, the completeness of the 2 element Boolean algebra,
and, at a purely logical level, Markov’s principle. (In [3] it is shown that the Stone
Representation Theorem implies the law of excluded middle in sheaf models and in
[8] that the completeness of the 2 element Boolean algebra implies the nonconstruc-
tive instance of De Morgan’s law.) However, this technique will not work for such
statements as the Boolean Ultrafilter Theorem which, as a constructive corollary of
the persistent ZL, cannot have nonconstructive logical consequences. To demon-
strate the nonpersistence of propositions of this sort more complex arguments are
required, such as those to be found in [9], by means of which one establishes the
stronger property of classical nonpersistence using a generic extension of a model
of set theory in which the statement in question, but not the axiom of choice,
holds.

§3. Maximal principles in type theories. Let S be a well-termed type theory in a
language #. A partially ordered S-set is a pair (E, <) of S-sets such that Fs<is
a partial ordering of E. (In accordance with the customary abuse of notation, we
shall frequently identify (E, <) with E.) A chain in E is a subset C of E such that
FsVxy € C. x < yVy <x. A supremum of a subset 4 of E is an element a of
E such that &5 a is the least upper bound of A in (E, <). Note that, as usual, 4 has
at most one supremum, which, if it exists, we shall denote by V 4. (In introducing
V 4 asaclosed term of &, we are implicitly appealing to the well-termedness of S.)
An element m of E is called maximal if, for any element e of E, we have Fsm<e
implies Fs m = e. E is inductive if any chain in E has a supremum in E (not merely
an upper bound: more on this below). Zorn’s Lemma (ZL) is said to hold in S if
any inductive partially ordered S-set has a maximal element. Finally ZL is said to
hold in a topos & if it holds in Th(&).

THEOREM 3.1. ZL is strongly persistent.

PRrOOE. Let (E, <) be an inductive partially ordered S-set in a full well-termed
type theory S. Since @} is a chainin E,\/ 0 € E~ and so E™~ is nonempty. Partially
order E~ by stipulating that ¢ <* b iff Fg « < b. We claim that (E~, <*) is
inductive. To thisend, let C = {¢; :i € [ } beachainin E~. Since S is full, there
is a term 7(x) such that b5 7(i™) = ¢, forall i € . Since Fs i <¢jVe <
so that bg 7(i7) < () v (j7) < (i) for every i, j € I, it follows that, by the
Generalization Principle, g Vxy[z(x) < z( »)V1(p) < 7(x)]. Therefore the S-set
{z :3x. z = 7(x)} is a chain in E and accordingly has a supremum c. We claim
that ¢ is the supremum of C in E~. First, ¢ is obviously an upper bound for C.
And itis the least upper bound since, if ¢ € £~ satisfies Fsc; <eforalli € I, then
Fs (i) <eforalli € I,so that - Vx. 7(x) < e by the Generalization Principle.
Therefore -5 ¢ < e and so ¢ <* e. Thus E™ is inductive and 0, applying ZL in
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the underlying set theory, has a maximal element, which is automatically a maximal
element of E. -

REMARKS. (1) In Theorem 3.1 we cannot infer that the maximal element—call
it m—is internally maximal, Le., satisfies the stronger condition m <eklFsm=e¢
for any e € E~. However, if S is classical (and well-termed), it is easy to show
that maximality implies internal maximality. In this case, for any e € E~ there is
e’ € E~ for whichks (m < e Ao = e)VimgLene =m). Clearly -5 m < ¢/,
whence b5 m = ¢’, and m < ets m = e easily follows.

(2) The term “inductive” in the statement of Zorn’s Lemma is often construed
in the weaker sense of chains merely possessing upper bounds rather than suprema.
The resulting ostensibly stronger form ZL* of ZL is, as is well known, classically
equivalent to ZL. However, the proof of Theorem 3.1 (appropriately modified)
shows only that ZL* persists in type theories S which, in addition to being full and
well-termed, are also witnessed in the sense that, for any formula a(x), if - s Ixa,
then 5 «(z) for some (closed) term 7. In topos-theoretic terms, ZL* persists in
any topos which, in addition to being defined over .z, has the property that its
terminal object is projective,

Although, as we now see, AC, not being persistent, cannot be a constructive
consequence of ZL, there is a weaker version which is, This weaker version may
be stated as follows. The theory S is said to satisfy weak AC (WAC) if whenever
Fs Vx3ya(x,p), x : A, y : B, there is an S-set M of type P(A x B) such that,
writing Fun(X) for the formula expressing “X is a function”,

Fs Fun(M) AVxy((x,y) € M — alx,y))Ad— domain(M) = ¢.

An S-set satisfying this condition is “almost” a choice function for « in that its
domain is ——-dense in A: cf. [6, Ch. 5].

THEOREM 3.2. If' S is coverable and ZLL, holds in S, then S satisfies WAC.
PROOF. Assume the hypotheses and

(*) Fs Vx3palx, y) x: Ay:B.

Let E be the S-set {X : X C R A Fun(X)}. Then (E,C)is a partially ordered
S-set; if C is a chain in E it is easily shown in the usual way that its union is the
supremumof C in E. So (E, Q) is inductive and accordingly has, by ZL, a maximal
element M. Clearly,

Fs Fun(M) AVxy((x,y) € M — a(x, y)).
To complete the proof we need to show that
(**) ks A — domain(M) = 0.

To this end define D = RN [(4 — domain(M)) x B]. Let U be any S- singleton
indxBandlet V = UND. Evidently the S-set M U V is an element of E, so since
M is maximal in E it follows that Fs V' C M. Obviously, however, s V N M = ¢,
whencels V = . ThuskgVu e U. 4 & D, so, since S is coverable, b5 Vu. u & D,
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i, Fs D = 0. Therefore s domain(R) N [4 — domain(M)] = ©. This, together
with (¥), immediately yields () 4

This result and Theorem 3.1 quickly give the
COROLLARY 3.3. WAC is persistent. -

It is interesting to note that, if we attempt to apply WAC in the same manner as
AC is applied to derive the law of excluded middle (cf. [6, 4.31]), we find that, for a
given formula o, we can only infer =—{a vV —a) which is of course already derivable
constructively.

§4. Complete Boolean algebras in type theories. A well-known consequence of
ZL in the theory of Boolean algebras is the Sikorski Extension Theorem [10] which
states that, for any Boolean algebra B and any complete Boolean algebra C, any
homomorphism of a subalgebra of B to C can be extended to the whole of B. That
is, in classical set theory, ZL implies

(INJ) Any complete Boolean algebra is injective in the category Bool of
Boolean algebras.

(It is, incidentally, still unknown whether INJ is classically equivalent to ZL: see
(4] and [5].) In [3]it is shown that, if ZL holds in Sz, then INJ holds in any localic
topos. Our next task will be to show that this is the case because INJ can in fact be
constructively derived from ZL.

We shall employ the standard notation and terminology for Boolean algebras,
both in the underlying set theory and, analogously, in type theories. If (B, Ag, VB,
g, <g5,0p, 1p) is a Boolean algebra (we shall usually, but not invariably, omit the
subscript “B”), we write a = b for a* V b, and a <= b for (a = b) A (b = a).
We write 2 for the initial Boolean algebra {0,1}.

If S is a type theory in a language &, we say that INJ holds in S if, whenever A,
B, C, h are Z-sets such that

) s A, B, C are Boolean algebras, A is a subalgebra of B, C is complete,
and h is a homomorphism A — C,

then there is an .Z-set f such that
s f is a homomorphism B —— C extending h.

Tueorem 4.1. Let S be a well-termed coverable type theory in which ZL holds.
Then INJ also holds in S.

PROOF. Suppose that the premise (1) of INJ is satisfied by 4, B, C,h. Let H be
the #-set {f : fisa homomorphism of a subalgebra of B to C extending h}. A
standard argument shows that (H, C) is inductive and so by ZL H has a maximal
element m. Writing M = domain(m), to derive the conclusion of INJ it clearly
suffices to show that -s M = B. And since S is coverable, for this it is enough to
show that, for any S-singleton U in B,

) Fs UC M
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To this end let Alg(X) be the term defining the subalgebra of B generated by X,
for X C B. Then the standard argument (cf. [7, Proof of Lemma 2, p. 142]) enables
a term m*(x) to be constructed in % in such a way that ks Vx € B. m*(x) isa
homomorphism Alg(M U {x}) — C extending m for which

mt(x)(x) = \/{m(y): y e M Ay < x}.

If U is an S-singleton in B let my, be the term {m*(x) : x € U}. Clearly my
is an element of H and s m C my. Since m is maximal, g m = my, and (*)
instantly follows. R

From Theorem 4.1 and Theorem 3.1 we immediately obtain the

COROLLARY 4.2. If'S is coverable, well-termed and full, and ZL holds in the under-
lying set theory, then INJ holds in S. =

Applying this corollary to Th(& ) for a localic topos & yields (the hard implication
of) Proposition 1.9 of [3], viz. that a Boolean algebra in a localic topos is injective
if it is complete.

Observe that the instance of EP needed for the proof of Theorem 4.1 to go
through was obtainable constructively via the term m™* (x), whose definition was
made possible by the completeness of C. Now classically, the initial Boolean algebra
2 is complete, so, again classically, the assertion INJ(2) that 2 is injective is a special
case of INJ. Moreover, since—classically—homomorphisms to 2 correspond to
ultrafilters, INJ(2) is equivalent to the Boolean Ultrafilter Theorem (BUT) that
every Boolean algebra contains an ultrafilter. That is, the implications INJ —
INJ(2) < BUT are classically provable. Also, it is observed in [3] that, if INJ(2)
holds in a localic topos S£(H ), then H must be a Stone algebra, i.e., satisfies the
identity x* vV x** = 1. In fact it is easy to establish an analogous assertion for
arbitrary type theories: for, arguing within a given type theory S, if 2 is injective
in Bsof, then there is a homomorphism Q__ — 2; since Q- is complete, the
existence of such a homomorphism implies that 2 is complete, and the completeness
of 2in S is known [8] to be equivalent to the assertion that, in S, Qis a Stone algebra.

It follows that, because 2 is not necessarily complete in a constructive sense,
INJ(2) is not a constructive consequence of INJ. Nevertheless, BUT is a construc-
tive consequence of INJ in view of the following

PROPOSITION 4.3. Suppose that F, B are Z-sets satisfying Fs B is a Boolean
algebra and F is a filter in B. Then the following statements are derivably equivalent
inS:

(i) F is an ultrafilter;
(i) forallb € B,b ¢ F — b* € F;
(iil) there is a homomorphism ¢ : B — Q__, such that F = ¢~ (true).

PROOF. We argue in S throughout.

(i) — (ii). Clearly b* € F — b ¢ F since 0 ¢ F. Conversely, assume (i) and
b ¢ F. Forany x € F, x Ab* = 0 implies x < b, so that b € F. It follows that
x Ab* # Oforany x € F. Therefore the filter {y : 3x € F. x Ab* < y} generated
by F U {b*} is proper; since F is an ultrafilter, b* € F.
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(i) — (ji). Define ¢ : B — Qby ¢(x) = (x € F). Assuming (ii), we have
p(x) = ~p(x*), so that p(x) € Q.. Itis easy to see, using (i), that f is a
homomorphism B — Q..

(i) — (i). Assume (iii) and suppose that G is a proper filter in B such that
F C G. Suppose now that b € G but b ¢ F. Then (b) # true, ie., ~p(b)
whence ¢ (b*) since f is a homomorphism. Thus b* € F, so that b* € G. Then
0 = b Ab* € G, a contradiction. We conclude that, if b € G, then ~(b & F).
But ~(b & F) « ——p(b) « @(b) < b € F since @(b) € Q. Therefore,
be G —bcF,sothat G = F and F is an ultrafilter. -

COROLLARY 4.4. If INJ holds in S, then so does BUT.

Prook. If INJ holds in S, then, arguing in S, since Q. is a complete Boolean
algebra, itis injective. Soif, for any Boolean algebra B, we identify 2 with the unique
two element subalgebra of B, then the canonical homomorphism 2 — Q.. can
be extended to a homomorphism B — Q_—, which, by Theorem 4.3, gives rise to
an ultrafilter in B. B

ReMARK. Itis (essentially) shown in [9] that BUT fails to be classically persistent.

In [3] the question is raised as to whether INJ is persistent. In [2] it is shown
that INJ is classically persistent: a related result was earlier established in [4]. We
will now show that the answer to the original question is “almost” affirmative. To
be precise, we formulate a proposition RET—a special case of INJ known to be
classically equivalent to it—and show that RET is persistent.

A Boolean algebra B is said to be an absolute subretract if, for any monomorphism
m : B—— A to a Boolean algebra 4, there is a homomorphism h : A — B such
that # o m = idp . The principle RET is said to hold in a type theory S if, for any
-sets A, B, m such that

ks A, B are Boolean algebras, B is complete,and m : B— Aisa monomorphism,
there is an .%-set A such that
ks h: A — B is a homomorphism and h om = idp.

REMARK. It is easy to see that, if INJ holdsin S, so does RET. Observe that this
implication can be reversed when S is classical. For in this case 2 is complete and so,
assuming RET, injective. Therefore BUT holds in S, and so, since S is classical, we
have available in S the (nonconstructive) machinery of Stone duality for Boolean
algebras: that is, an equivalence St between Boor°P and the category Seore of Stone
(or Boolean) spaces. Now suppose that C is an absolute subretract and that we are
given a diagram

B—2 . 4

/|

C
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in Boos/. Form the pushout

B—" 4

7| e

c —t*.bp
in Bso/. Then the corresponding dual diagram

St(B) «>")_ g1(4)

St(f)T TSt(g)

st(c) S sy(p)

in Szsae is a pullback and the map St(m) is epic. It is easily shown that, in $tore,
pullbacks of epics are epic, and so St(k) is epic. It follows that its dual k is monic.
Assuming RET, C is an absolute subretract, so there is / : D — C such that
lok =id¢. Thenlog: A — Candlogom=Iloko f =idcof = f. Hence
C is injective, and INJ follows. Thus, if it could be constructively demonstrated
that, in @ss/, pushouts of monics are monic, then INJ would be constructively
equivalent to RET, and so persistent. I have not, however, been able to formulate a
constructive proof of this former assertion.

We will now prove
THEOREM 4.5. RET is persistent.

PROOF. Let S be a coverable full type theory in a language #. Suppose that B
is an Z-set for which g B is a Boolean algebra. We endow B™ with the partial
ordering < inherited from B in the natural way: i.e., for b, b’ € B~ we define b < b’
to mean s b <pg b’. Using the fullness of S, it is easy to to show (along the lines
of the Completeness Principle) that with this ordering B~ is a complete Boolean
algebra. To simplify notation write B® for B~ We again employ the fullness of S
to yield a term 73(x), x : B® such that g 7(b™) = b for all b € B~. We now claim
that

(A) ks (B® <") is a Boolean algebra and g is an epimorphism B® — B.

To prove (A) we argue in S. Deriving the first conjunct of (A) and the fact that 75
is a homomorphism B® — B is a straightforward matter using the Generalization
and Isomorphism Principles for full type theories: we omit the details. The crucial
thing is to show that 75 is S-derivably epic. To do this we need to prove ks Vy €
B3x. rz(x) = y. Since S is coverable, this will follow if it can be shown that, for
each S-singleton U in B,

*) FsVy € Udx. tp(x) = y.

To this end let u be the supremum of U in B. Thenclearly s Vy € U. u = y so
that Fg Vy € U. t5(«™) = y, and (*) follows.
Thus (A) is proved. Now suppose that 4, B, m are #-sets such that

s A, B are Boolean algebras, B is complete, and m : B —— A is a monomorphism.
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It is easily checked that the usual argument establishing the existence of the normal
completion of an arbitrary Boolean algebra can be carried out constructively (this
fact is mentioned in [3, 1.6]). Thus the assertion any Boolean algebra can be
embedded in a complete Boolean algebra is S-derivable. Solet C, n be &-sets for

which
s C is a complete Boolean algebraandn : A— C is a monomorphism.

Write p = n o m. Thus it is S-derivable that p is a monomorphism B — C. Let
p~:B” — C” be the natural map induced by p, i.e., the unique map B~ — c~
satisfying Fs p~(b) = p(b) forallb € B~. It is readily checked that, since p is
S-provably a monomorphism, p”~ is itself a monomorphism. Now, assuming RET
holds in the underlying set theory, there is a homomorphism i : C~ — B~ such
that h o p~ = idp~. Note that, since ks h(1¢) = 1g, we have, force C™~,

(**) C:ICI*‘SL':lcf\h(lc):13}_5;1(6):13.

Using the fullness of S, we get terms 4, K such that ks A(c7) = h(c)” for
c € C~and ks w(b) = p~(b)"for b € B™. It is then readily checked, using
the Universality Principle, that (writing C° for C ~~), the following statement is
S-derivable:

A:C°— B®andk: B® — C° are homomorphisms and Ao K is the
identity on B°.

Now define the & -set
W =g {(y,2) EC xB:3x € Cly=tcx)nz= 75 (A(x)1}-

Since s ¢ is epic by (A), it follows that s vy € C3z. (y,2) € h'. Moreover, for
¢,d € C~, wehave
bgtelc) =tc(d) »ec=d— (c o= d)=1c = hlc = d) = 15(by (**))
— h(c) = h(d)
— 15(h(e)") = wa(h(d)")
— 15(A(e7) = 5(ad"))-

Therefore, by the Universality Principle,

bg Vaylre(x) = te(y) = 15(A(x)) = w8 (AN}

and it follows that Fg h' is a map from C to B. And since, S- derivably, 4, 7¢ and
rp are all homomorphisms, it is easy to verify that ' is also.
We claim finally that - h' o p =idg. For clearly the diagram of maps inS

B°—-K———»C°——;'——>B°
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commutes (S-derivably) and the upper composite is the identity on B°. So -
h'opotg = 1p; since 75 is S-derivably epic it follows that s 4’ o p = idg as
claimed.

Accordingly 4’ on : 4 — B satisfies Fs (W' on) om = idy, which shows that
RET holdsin S. -

In[5]itis shown, in a classical setting, that INJ, and hence also RET, is equivalent
to what I shall call the maximal Silter principle:

For any Boolean algebras 4, B such that B is a subalgebra
(MFP)  of 4, there is a filter F in 4 maximal with respect to the
property F N B = {1}.

(It is mentioned in [2] that this equivalence is also due independently to W, A. J.
Luxemburg.) We conclude by establishing, using means quite different from those
employed in [5], the constructive equivalence of RET with a certain naturally weak-
ened (but classically equivalent) form of MFP, thus producing another example of
a persistent statement.

All of the definitions, proofs, etc. to follow will be constructive.

Let B be a subalgebra of a Boolean algebra A. Afilter F in A is called B-maximal
if it is maximal with respect to the property F N B = {1}. Using the fact that, for
any a € A, the filter generated by F U {a}is{y € 4:3x € F. x A a <y}, itis
easily shown that, writing B, for {r e B:x <y},

Fis B-maximal iff, for alla € 4, FN B = {1} and (vVx € F.

48 B ={1}) macF

We now make the following

ASSUMPTION. B is a subalgebra of 4, and B is complete. We write \/, A for the
join and meet operations in B.

LemMa 4.7. Suppose that F is a B-maximalfilterin A. Leta € 4,b € B, X C B,
and suppose that NX < b. Ifa = x ¢ Fforallx € X, thena = b e F.

PRrOOF. Suppose thata = x € F forall x € X. To showthata = b € F it
suffices, by (4.6), to show that, ifyeF,ceBandyA(a =b) < c,thenc = 1.
Assuming these hypotheses, we have yA(a*vb) <c,sothat

y:[y/\(a*\/b)]v[y/\(a/\b‘)]gcv(a/\b*):(CVa)/\(c\/b*),

whence (¢ Va) A (¢ Vb*) € F. Therefore (I)¢eva e F,and (2) c Vb* € F. From
(1) we get c* = a € F; since a = x € F for all x € X by assumption, we deduce
that ¢* = x € F forall x € X. Since ¢* = x € B, it follows that ¢* = x = 1,
whence c* < x for all x € X. Therefore ¢* < AX < b,sothat b* < ¢. From (2)
we get, since ¢ Vb* € B, ¢ V b* = 1 whence b < c. This, together with b* < ¢,
yields ¢ = 1 as required. B

We shall call a homomorphism f : 4 — B a B-retraction if the restriction of f
to B is the identity.
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TuEOREM 4.8. Let F be a B-maximal filter in A. Then the map f : 4 — B
defined by

f(a):/\{xéB:a#xeF}

is a B-retraction.

Conversely, if g : A — B is a B-retraction, then g~ '(1) is @ B-maximal filter in
A.

These correspondences establish a bijection between B-maximal filters in A and
B-retractions A — B.

PROOF. Let F be B-maximal in 4. We show first that, fora € B, b € B,
(i) fla)<be——a=beF.

(ii)b< fla) e—b=>acF.

For (i), we need only prove the “—” direction, the reverse being obvious. If
f(a) < b, then, writing X = {x e B:a=>x € F},wehave AX = f(a) <b. It
now follows from Lemma 4.7 thata = b € F.

For (ii) suppose that b = a € F and x € B satisfies « = x € F. Then
b= xecF,sob= x=1(sinceb = x € B), whence b < x. It now follows from
the definition of f(a) that b < f(a).

Conversely, suppose that b < f(a). By (4.6), to deriveb = a € F it suffices to
show that, for, x € F,c € B,if x A(b = a) < ¢, thenc = L Assuming these
hypotheses, we have x A (b* V a) < ¢ so that

x:[x/\(b*\/a)]\/[x/\(b/\a*)]SC\/(b/\a*):(c\/b)/\(c\/a*).

Therefore (1) c Vb € F and (2) ¢ Va* € F. From (1), since ¢ V b € B, it follows
that ¢ Vb = 1, whence b* < ¢. From (2) wegeta = ¢ € F,sothath < f(a) <c.
This and b < ¢ give ¢ = 1 as required.

It is easy to see that f is order preserving and, using F 0 B = {1}, that it is
the identity on B. So to show that it is a B-retraction, it suffices to show that, for
a,a’ € A,

(iii) f(ava') < fla)V f(a')

@(v) fa) A fla*) =0.

For (iii), we observe that, using (i), for b € B,

fla)Vv fla)<b—a=beF&a =becF —(avd)=>beF
—s flava') <b.

For (iv), we observe that, using (i) and (i), for b € B,
bgf(a)—»b=>a€F——‘a*:>b*EF‘—vf(a*)gb*—>b/\f(a*}:O.

We have therefore shown that f is a B-retraction.

Now suppose that we are given a B-retraction g : 4 — B,andlet F = g~ '(1).
Ifb c B, thenb € F — b = g(b) = 1, s0 BNF = {1}. To show that
F is B-maximal we use (4.6). Thus suppose that « € 4 and, for any x € F,
Bons = {1}. We need to conclude that « € F,i.e., gla) =1. Now g(a) = g(g(a))
so that g(a = g(a)) = g(a) = g(g(a)) = 1. Therefore a = g{a) € F. But
(@ = gla)) Aa < gla) so since By, = {1} for any x € F, in particular for
x = a = gl(a), it follows that g(a) = 1, as required. So F is B-maximal.
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Finally, it is easily established that the correspondences between B-maximal filters
and B-retractions thus formulated are mutually inverse. =

Let MFP~ be the weakened (but in fact classically equivalent) form of MFP in
which B is required to be complete. We assume that MFP™ has been provided
with a type-theoretic formulation similar to those for INJ and RET. In view of the
constructive equivalence of MFP~ and RET establshed in Theorem 4.8, and the
persistence of RET established in Theorem 4.5, we may finally state the

COROLLARY 4.9. MFP™ is persistent. 4
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Remark added 2004

Theorem 3.1. can be strengthened. Let S be a (well-termed) local set theory and
(E, <) a partially ordered S-set. An element m of E is internally maximal if it satisfies

Fs VxeE[m < x—> m= x.
We can then prove the

Theorem. Suppose Zorn’s Lemma holds in the underlying set theory, and let S be a full,
well-termed, coverabl§ local set theory. Then, in S, any inductive partially ordered set
has an internally maximal element. In short, Zorn’s Lemma holds internally in S.



Proof. Suppose (E, <) is an inductive partially ordered S-set. Then, by the argument in

the proof of Thm. 3.1. of my JSL paper, the partially ordered set E- of global elements of
E has a maximal element m. We claim that m is internally maximal. Since S is
coverable, to establish this it suffices to show that, for any S-singleton Uin E, we have

(*) Fs VxeUm< x— m= x].
Defining V to be the S-set {xeU: m < i, it is easily seen that (*) is equivalent to
(**) Fs Ve {m.

1. Now consider V= VU {m}. This is a chain in E (recall that Vis a singleton), and

so has a supremum v. Clearly s m < v, so the maximality of m gives s m = v.
It follows that

(***) Fsxe Vox<v->x<m

But since s x € V> m < x, (***) yields

Fs xe Vo> x=m,

ie. (). m

This result can also be stated as follows: if Zorn’s Lemma holds in the base topos et of

sets, it continues to hold internally in any localic lopos defined over et .



