Reflections on the Axiomatic Approach to Continuity

John L. Bell

In Hilbert's paper "Axiomatic Thinking" - the published version! of his 1917 Ziirich talk which the present
meeting commemorates - he touches on the axiomatic treatment of continuity and, as he puts it, "the

dependence of the propositions of a field of knowledge on the axiom of continuity."

By the "axiom of continuity" Hilbert seems to mean a number of things. He first assimilates it to the
Archimedean axiom (which he also calls the "axiom of measurement") and observes its independence of
the other axioms of the theory of real numbers. Presumably he means the other axioms of the first-order
theory of real numbers, since the Archimedean axiom is derivable in the second-order theory in which

order-completeness is assumed.

Hilbert goes on to observe that the Archimedean axiom plays - implicitly at least - a role in physics.

It seems to me that it has principal interest in physics as well; for it leads us to the following outcome. That is, the
fact that we can come up with the dimensions and ranges of celestial bodies by putting together terrestrial ranges,
namely measuring celestial lengths by terrestrial measure, as well as the fact that the distances inside atoms can be
expressed in terms of metric measure, is by no means a merely logical

consequence of propositions on the triangular congruence and the geometric configuration, but rather an
investigative result of experience. The validity of the Archimedean axiom in nature, in the sense indicated above,
needs experimental confirmation just as much as does the proposition of the angle sums in triangle in the ordinary

sense.

Hilbert asserts that the validity of the Archimedean axiom is "an investigative result of "experience."
What he may mean here is that in comparing astronomical, terrestrial and subatomic distances, none is
infinitesimal, or infinitely large, with respect to the others. Thus, in principle, the radius of an electron

could be used as a unit to measure terrestrial or astronomical distances.

What has this to do with continuity? Hilbert seems to imply that, so far as measurement is concerned, the

empirical validity of the Archimedean axiom means that there is a kind of continuity - a smooth

! Hilbert (1918).



transition - between microcosm, mesocosm and macrocosm. None of these realms is cut off from the

others.

While the Arcimedean axiom is exact, the notion of "continuity" associated with it, although suggestive, is
essentially qualitative (and akin to Leibniz's principle of continuity, see below). In order to formulate an

exact principle of continuity Hilbert turns to physics:

In general, I should like to formulate the axiom of continuity in physics as follows: "If a certain arbitrary degree

of exactitude is prescribed for the validity of a physical assertion, a small range shall then be specified, within which
the presuppositions prepared for the assertion may freely vary so that the deviation from the assertion does not
overstep the prescribed degree of exactitude." This axiom in the main brings only that into expression which directly
lies in the essence of experiments; it has always been assumed by physicists who, however, have never specifically

formulated it.

(Note the little dig at physicists with which Hilbert concludes this passage - is this a foretaste of the
famous, but perhaps apocryphal remark later attributed to Hilbert that ““Physics is obviously much too

difficult for the physicists.™)

Hilbert's formulation of the principle of continuity in physics - what I shall call the physical continuity
axiom (PCA) is evidently an empirical version of the familiar (g, 8) definition of a continuous function.
More precisely, the axiom asserts that any function from real numbers to real numbers associated with a
physical assertion is (g, 8) - continuous. This is an updated version of Leibniz™*s Principle of Continuity:

Natura non facit saltus.
Before the 19th century PCA would have been formulated in terms of infinitesimals, perhaps as follows:

"If the degree of exactitude is prescribed for the validity of a physical assertion, is prescribed to be within
infinitesimal limits, then also within infinitesimal limits the presuppositions prepared for the assertion may freely

vary so that the deviation from the assertion does not overstep the prescribed infinitesimal limits ."

This may be termed the Principle of Infinitesimal Continuity (PIC): any real function sends infinitesimally

close points to infinitesimally close points.

These are all very strong “global” axioms which are to be contrasted with the “local” continuity axioms
imposed on the system of real numbers such as the Archimedean principle or the order-completeness

principle.



Hilbert’s continuity axiom was formulated for the physical realm, but it can be extended to mathematics

where it takes the form of Brouwer’s continuity principle:

BCP All functions from real numbers to real numbers are continuous.

Of course, Brouwer did not regard this principle as an axiom - indeed he seems to have had a low
opinion of the axiomatic method in mathematics. Rather he regarded it as a fact (albeit requiring

demonstration) about the real numbers arising from the nature of the continuum as he conceived it.

The question of the consistency of this strengthened principle of continuity arises immediately. It might
seem at first glance that BCP is inconsistent since the “blip” function b: R — R defined by b(0) =1, b(x) =0
for x # 0 is obviously discontinuous. But the condition that b is defined on the whole of R rests on the
unquestioned assumption that, for any real number x , either x = 0 or x # 0. This in turn rests on the Law
of Excluded Middle (LEM)- the logical principle, going back to Aristotle, that, for any proposition, either it
or its negation must be true. While LEM is a core principle of classical logic, it is not affirmed in
intuitionistic logic, the system of logic implicit in Brouwer’s conception of mathematics and later made

explicit by his student Heyting.

Thus, while BCP is inconsistent with classical mathematics, that is, mathematics based on classical logic,
it can be, and in fact is, consistent with intuitionistic mathematics, that is, mathematics based on
intuitionistic logic. It is easily seen that, within intuitionistic mathematics, LEM is refutable from BCP in

the sense that

BCP = —VxeR(x =0v x#0).

Here we have an example of a mathematical axiom actually refuting a logical axiom. It is of interest to note
here that Cantor, in introducing his transfinite numbers, had to repudiate Euclid’s 5% axiom that the
whole is always greater than the part, and Bolyai and Lobachevsky (as well as Gauss) in their formulation
of non-Euclidean geometry, were compelled to repudiate Euclid’s 5t postulate. In both of these earlier
cases the question of consistency was central, and it is equally important in the case of BCP. In fact, just
as models of non-Euclidean geometry were later constructed to establish its consistency, so models of
mathematics have been constructed based on imtuitionistic logic and realizing BCP, so establishing the

consistency of the latter.



An even stronger version of the continuity principle (implicitly adhered to in differential geometry) is:

SP All functions from reals to reals are smooth, i.e. arbitrarily many times differentiable. (More generally, all

functions between manifolds are smooth).

Axiom SP can be realized by adopting what amounts to a synthetic approach to differential geometry.

Traditionally, there have been two methods of deriving the theorems of (classical) geometry: the analytic
and the synthetic or axiomatic. While the analytic method is based on the introduction of numerical
coordinates, and so on the theory of real numbers, the idea behind the synthetic approach is to furnish the
subject of geometry with a purely geometric foundation in which the theorems are then deduced by

purely logical means from an initial body of axioms.

The most familiar examples of synthetic geometry are classical Euclidean geometry and the synthetic
projective geometry introduced by Desargues in the 17th century and revived and developed by Carnot,

Poncelet, Steiner and others during the 19t century.

The power of analytic geometry derives very largely from the fact that it permits the methods of the
calculus, and, more generally, of mathematical analysis, to be introduced into geometry, leading in
particular to differential geometry (a term, by the way, introduced in 1894 by the Italian geometer Luigi
Bianchi). That being the case, the idea of a “synthetic” differential geometry seems elusive: how can
differential geometry be placed on a “purely geometric” or “axiomatic” foundation when the apparatus

of the calculus seems inextricably involved?

To my knowledge there have been two attempts to develop a synthetic differential geometry. The first
was initiated by Herbert Busemann in the 1940s, building on earlier work of Paul Finsler. Here the idea
was to build a differential geometry that, in its author’s words, “requires no derivatives”: the basic objects
in Busemann’s approach are not differentiable manifolds, but metric spaces of a certain type in which the

notion of a geodesic can be defined in an intrinsic manner.

The second approach, that with which I shall be concerned here, was originally proposed in the 1960s by
F. W. Lawvere, who was in fact striving to fashion a decisive axiomatic framework for continuum
mechanics. His ideas have led to what I shall simply call synthetic differential geometry (SDG - often
referred to as smooth infinitesimal analysis SIA)2. SDG is formulated within category theory, the branch of

mathematics created in 1945 by Eilenberg and Mac Lane which deals with mathematical form and

2 For accounts of SDG/SIA see Bell (2008) and Kock (2006).



structure in its most general manifestations. As in biology, the viewpoint of category theory is that
mathematical structures fall naturally into species or categories. But a category is specified not just by
identifying the species of mathematical structure which constitute its objects; one must also specify the
transformations or maps linking these objects. Thus one has, for example, the category Set with objects all
sets and maps all functions between sets; the category Grp with objects all groups and maps all group
homomorphisms; the category Top with objects all topological spaces and maps all continuous functions;
and Man, with objects all (Hausdorff, second countable) smooth manifolds and maps all smooth
functions. Since differential geometry “lives” in Man, it might be supposed that in formulating a
“synthetic differential geometry” the category-theorist’s goal would be to find an axiomatic description of

Man itself.

But in fact the category Man has a couple of “deficiencies” which make it unsuitable as an object of

axiomatic description:

1. It lacks exponentials: that is, the “space of all smooth maps” from one manifold to another in general
fails to be a manifold. And even if it did —

2. Tt also lacks “infinitesimal objects”; in particular, there is no “infinitesimal” or incredible shrinking
manifold A for which the tangent bundle TM of an arbitrary manifold M can be identified as the
exponential “manifold” M* of all “infinitesimal paths” in M. (It may be remarked parenthetically that
it is this deficiency that makes the construction of the tangent bundle in Man something of a

headache.)

Lawvere’s idea was to enlarge Man to a category S—a category of so-called smooth spaces or a smooth
category —which avoids these two deficiencies, admits a simple axiomatic description, and at the same
time is sufficiently similar to Set for mathematical construction and calculation to take place in the

familiar way.

The essential features of a smooth category S are these:

e In enlarging Man to S no “new” maps between manifolds are added, that is, all maps in S between
objects of Man are smooth. (Notice that this is not the case when Man is enlarged to Set.)

e  Sis Cartesian closed, that is, contains products and exponentials of its objects in the appropriate sense.



e S satisfies the principle of microstraightness. Let R be the real line considered as a object of Man, and
hence also of S. Then there is a nondegenerate segment A of R around 0 which remains straight and

unbroken under any map in S. In other words, A is subject in S to Euclidean motions only.

A may be thought of as a generic tangent vector. For consider any curve C in a space M — that is, the image
of a segment of R (containing A) under a map f into M. Then the image of A under f may considered as a
short straight line segment lying along C around the point p = £f0) of C
By considering the curve in R x R given by f(x) = x2, we see that A may be identified with the intersection

of the curve y =x? with the x-axis. That is,

A={x:x e RAax2=0},

Thus A consists of nilsquare infinitesimals, or micronumbers. We use the letter ¢ to denote an arbitrary

micronumbers.

Now classically A coincides with {0}, but a precise version of the principle of microstraightness—the
Principle of Microtaffineness (or Kock-Lawvere axiom)—ensures that this is not the case in S. The principle

states that

e in S, any map f: A — Ris (uniquely) affine, that is, for some unique b € R, we have, for all ¢,

fte) = A0) + be.

In essence, this asserts that that the action of any real function f on A is a Euclidean transformation: a

translation by f(0) and a rotation b.

The principle of microaffineness asserts also that the map R* — R x R which assigns to each f € R* the

pair (f(0), slope of f) is an isomorphism:

R*=RxR.



Since R x R is the tangent bundle of R, so is R*.

For any space M in S, we take the tangent bundle TM of M to be the exponential M*. Elements of M* are
called tangent vectors to M. Thus a tangent vector to M at a point p € M is just a map t: A > M with #(0) = x
That is, a tangent vector at p is a micropath in M with base point p. The base point map n: TM — M is defined
by #(t) = t(0). For p € M, the fibre n-1(p) = T,M is the tangent space to M at p.

Observe that, if we identify each tangent vector with its image in M, then each tangent space to M may be

regarded as lying in M. In this sense each space in S is “infinitesimally flat”.

We check the compatibility of this definition of TM with the usual one in the case of Euclidean spaces:

T(R") = (Rny* = (R%) = (R x R)"= R x R,

The assignment M — TM = M* can be turned into a functor in the natural way — the tangent bundle functor.

(For £ M — N, Tf: TM — TN is defined by (Tf)t =fo t for t € TM.)

The whole point of synthetic differential geometry is to render the tangent bundle functor representable: TM
becomes identified with the space of all maps from some fixed object—in this case A)—to M. (Classically,

this is impossible.) This in turn simplifies a number of fundamental definitions in differential geometry.

For instance, a vector field on a space M is an assignment of a tangent vector to M at each point in it, that
is, a map & M — TM = M* such that &(x)(0) = x for all x € M. This means that 7 o & is the identity on M, so

that a vector field is a section of the base point map.
A differential k- form ((0, k) tensor field) on M may be considered as a map M*» — R.

The notions of affine connection, geodesic, and the whole apparatus of Riemannian geometry can also be

developed within SDG3.

3 See Kock (2009)



As an axiomatic system, SIA may be set up as a system of axioms for the (smooth) real line R involving
micronumbers as already iintroduced The core axiom in SIA is the aforementioned principle of

microaffineness. Writing A for the set of (nilsquafre) infinitesimals or micronumbers, i.e.

A={x:x e Rax2=0},
the principle can be stated:

Forany f. A > R, there is a unique b € R such that

fte) =A0) + de

holds for all €. (We use € as a variable ranging over A.)

This in turn gives rise to a simple definition of the derivative f of f: given r € R, f(r) is the unique b € R
such that, for all ¢, f{r + €) = f(r) + be (apply microaffineness to the function ¢ ~ r +¢). Then we get the

equation
fir+¢) = fir) + ¢f (n).

Similarly we obtain higher derivatives f”, f”’, so that SP holds. This being the case, the postulates of SIA

are incompatible with the law of excluded middle of classical logic.

From the principle of microaffineness we deduce the important principle of microcancellation, viz.

If ea=¢€b forall g, then a=b.

For the premise asserts that the graph of the function g: A — R defined by g(¢) = ae has both slope a and
slope b: the uniqueness condition in the principle of microaffineness then gives a = b. The principle of
microcancellation supplies the exact sense in which there are “enough” infinitesimals in smooth

infinitesimal analysis.

In SIA there is a sense in which everything is generated by the domain of infinitesmals. For consider the set A*

of all maps A — A. It follows from the principle of microaffineness that R can be identified as the subset of



A? consisting of all maps vanishing at 0. In this sense R is “generated” by A. Explicitly, A% is a monoid
under composition which may be regarded as acting on A by composition: for f € A%, f- € = f(g). The subset
V consisting of all maps vanishing at 0 is a submonoid naturally identified as the set of ratios of
infinitesimals. The identification of R and V made possible by the principle of microaffineness thus leads
to the characterization of R itself as the set of ratios of infinitesimals. This was essentially the view of

Euler, who regarded infinitesimals as formal zeros and real numbers as representing the possible values

of 0/0. For this reason Lawvere? has suggested that R in SIA should be called the space of Euler reals.

Once one has R, Euclidean spaces of all dimensions may be obtained as powers of R, and arbitrary

manifolds may be obtained by patching together subspaces of these.

From the principle of microaffineness the following are easily deduced:

e Aisnondegenerate, i.e. A+ {0}>
e Callx, y € Rindiscriminable (resp., indistinguishable) and write x &y (resp. x = y) if x -y € A (resp.
—x # 1). Then x #y implies x = y (but not vice-versa).

e If | is a closed interval in R, any f. ] = R is indiscriminably continuous in the sense that, for

x, y € J, x #y implies fx #fy, and hence also fx = fy. (Note that it follows trivially from x ~ y that

fx=fy.)

It follows that PIC (principle of infinitesimal continuity) holds in SIA

A stationary point of a function f: ] - R is defined to be one in whose vicinity “infinitesimal variations”

fail to change the value of f that is, a point a such that f(a + €) = f(a) for all € Equivalently, a is a

stationary point of fif fis locally constant around a in the sense that, for all x € ], x & a implies fx = fa. An

important axiom concerning stationary points adopted in SIA is the

4 Lawvere (2011).

5 1t should be noted that, while A does not reduce to {0}, nevertheless 0 is the sole element of A in the (weak) sense
that the assertion “there exists an element of A which is # 0” is refutable. Figuratively speaking, A is the “atom” 0
encased in an infinitesimal carapace.
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Constancy Principle. If f. | — R is locally constant on | in the sense that x £y implies fx = fy for

all x, y € J, then fis constant.

It follows easily from this that (as usual) two functions with identical derivatives differ by at most a

constant.
Now call a subset D = R discrete if it satisfies

VxeDVyeDlx=yvx#y].

Notice that if D is discrete, then, for x, y € D, x = y implies x = y.

It follows quickly from the Constancy Principle that any map on R (or one of its closed intervals) to a discrete
subset of R is constant. To see this, let f be a map of R to a discrete set D. Then from x £y we deduce fx = fy,

and hence fx =fy, in D. So f is locally constant, and hence constant.

In ordinary analysis R and each of its intervals is connected in the sense that they cannot be split into two
nonempty subsets neither of which contains a limit point of the other. In SIA these have the vastly
stronger property of cohesiveness: they cannot be split in any way whatsoever into two disjoint nonempty
subsets¢. This follows quickly from the Constancy Principle: if R=U UV with U n V=, let 2 be the
discrete subset {0, 1} of R, and define f: R > 2 by f(x) =1if x € U, f(x) =0if x € V. Then fis constant, that

is, constantly 1 or 0. In the first case V= &, and in the second U = .

One of the most widely discussed axioms in mathematics is the Axiom of Choice. Surprisingly, perhaps,
this is incompatible with the various continuity axioms we have discussed. This is because, as discovered
in the 1970s, it implies LEM? . We shall show that it is refutable in SIA by showing that it implies

VxeR(x =0 v x #0), and hence that the discontinuous blip function is defined on the whole of R.

We take the Axiom of Choice in the particular form

AC forany family A of nonempty subsets of R, there is a function f: A — R such that f(X) e X for every X € A.

¢ For more on cohesiveness see Bell (2009).
7 Diaconescu (1975), Goodman and Myhill (1978).
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For each x € R define
Ar={yeR y=0vx=0}
B:={yeR:y=1vx=0}

Clearly 0 €A:and 1 e B, so these sets are both nonempty. By AC, we obtain a map f.: {Ax, Bx} - R such
that, for any x € R, fy(A:) € Arand fi(B:) € B.. Thus

[r(Ax)=0vx=0]A [fx(Bx)=1vx=0].

Applying the distributive law for v over A (valid in intuitionistic logic), we

obtain

[((Ax)=0A fi(Bx)=1]vx=0
whence
(*) f‘C(A‘c) * fr(Br) v x=0.

Now clearly Ao = Bo =R, so that fo(Ao) = fo(Bo) . Thus
fu(Ax) # fi(Bx) — x#0.
So from (*) it follows that
x#0vx=0

whence

VxeR(x=0vx=0).

I conclude with some historical observations.While SIA was not developed until the 1960s, the idea of
treating infinitesimals as nilpotent quantities was first put forward in works of 1694-6 by the Dutch
physician Bernard Nieuwentijdt (1654-1718). Nieuwentijdt developed his account of infinitesimals - a

striking example of axiomatic thinking - in conscious opposition to Leibniz’s well-known theory of
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differentials. Nieuwentijdt postulates a domain of quantities, or numbers, subject to an ordering relation
of greater or less. This domain includes the ordinary finite quantities, but it is also presumed to contain
infinitesimal and infinite quantities—a quantity being infinitesimal, or infinite, when it is smaller, or,
respectively, greater, than any arbitrarily given finite quantity. The whole domain is governed by a
version of the Archimedean principle to the effect that zero is the only quantity incapable of being
multiplied sufficiently many times to equal any given quantity. Infinitesimal quantities may be
characterized as quotients b/m of a finite quantity b by an infinite quantity m. In contrast with Leibniz’s
differentials, Nieuwentijdt's infinitesimals have the property that the product of any pair of them
vanishes®; in particular squares and all higher powers of infinitesimals are zero. This fact enables
Nieuwentijdt to show that, for any curve given by an algebraic equation, the hypotenuse of the
differential triangle generated by an infinitesimal abscissal increment e coincides with the segment of the

curve between x and x + e. That is, a curve is locally straight, or, in 17th century parlance, an “infinilateral

polygon”.

In responding to Nieuwentijdt’s assertion that squares and higher powers of infinitesimals vanish,
Leibniz remarked that “it is rather strange to posit that a segment dx is different from zero and at the

”

same time that the area of a square with side dx is equal to zero.” Yet this oddity may be regarded as a
consequence —apparently unremarked by Leibniz himself — of one of his own key principles, namely that
curves may be considered as infinilateral polygons. For consider the curve y = x2 below. Given that the
curve is an infinilateral polygon, the infinitesimal straight portion of the curve between the abscissae 0
and dx must coincide with the tangent to the curve at the origin—in this case, the axis of abscissae —
between those two points. But then the point (dx, dx?) must lie on the axis of abscissae, which means

that dx2 =0.

8 Here Nieuwentijdt’s theory conflicts with SIA, for in the latter it is not hard to refute the assertion that the product
of any pair of infinitesimals vanishes. For more on this see Bell (forthcoming).
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Now Leibniz could retort that this argument depends crucially on the assumption that the portion of the
curve between abscissae 0 and dx, while undoubtedly infinitesimal, is indeed straight. If this be denied,
then of course it does not follow that dx2 = 0. But still, if one grants, as Leibniz does, that there is an
infinitesimal portion of the curve between abscissae 0 and e (say) which is straight and does not reduce to
a single point (so that e cannot be equated to 0), then the above argument does show that ¢2 = 0. It follows
that, if curves are infinilateral polygons, then the “lengths” of the sides of these latter must be nilsquare
infinititesimals.® Accordingly, to do full justice to Leibniz’s conception, two sorts of infinitesimals are
required: first, “differentials” obeying —as laid down by Leibniz—the same algebraic laws as finite
quantities; and second, the (necessarily smaller) nilsquare infinitesimals which measure the lengths of the
sides of infinilateral polygons. It may be said that Leibniz recognized the need for the first, but not the
second type of infinitesimal and Nieuwentijdt, vice-versa. It is of interest to note that Leibnizian
infinitesimals (differentials) are realized in nonstandard analysis,’® the other major modern account of
mathematical analysis built on a theory of infinitesimals. In fact it has been shown to be possible to
construct models of SIA which at the same time embody enough of the theory of nonstandard analysis'!

to allow for the presence of Leibnizian infinitesimals in addition to the nilsquare variety.
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	"If the degree of exactitude is prescribed for the validity of a physical assertion, is prescribed to be within  infinitesimal  limits, then also within infinitesimal limits the presuppositions prepared for the assertion may freely
	vary so that the deviation from the assertion does not overstep the prescribed infinitesimal limits ."
	This may be termed the Principle of Infinitesimal Continuity (PIC): any real function sends infinitesimally close points to infinitesimally close points.
	These are all very strong “global” axioms which are to be contrasted with the “local” continuity axioms imposed on the system of real numbers such as the Archimedean principle or the order-completeness principle.
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	Hilbert’s continuity axiom was formulated for the physical realm, but it can be extended to mathematics where it takes the form of Brouwer’s continuity principle:
	BCP  All functions from real numbers  to real numbers  are continuous.
	Of course, Brouwer did not regard this principle as an axiom – indeed he seems to have had a low opinion of the axiomatic method in mathematics. Rather he regarded it as a fact (albeit requiring demonstration) about the real numbers arising from the nature of the continuum as he conceived it.
	The question of the consistency of this strengthened principle of continuity arises immediately. It might seem at first glance that BCP is inconsistent since the “blip” function b: ( ( ( defined by b(0) = 1, b(x) = 0 for x ( 0 is obviously discontinuous. But the condition that  b is defined on the whole of ( rests on the unquestioned assumption that, for any real number x , either x = 0 or x ( 0. This in turn rests on the  Law of Excluded Middle (LEM)– the logical principle, going back to Aristotle, that, for any proposition, either it or its negation must be true. While LEM is a core principle of classical logic, it is not affirmed in intuitionistic logic, the system of logic implicit in Brouwer’s conception of mathematics and later made explicit by his student Heyting.
	Thus, while BCP is inconsistent with classical mathematics, that is, mathematics based on classical logic, it can be, and in fact is, consistent with intuitionistic mathematics, that is, mathematics based on intuitionistic logic.  It is easily seen that, within intuitionistic mathematics,  LEM is refutable from BCP in the sense that
	BCP  ( ((x(((x = 0 ( x ( 0).
	Here we have an example of a mathematical axiom actually refuting a logical axiom. It is of interest to note here that Cantor, in introducing his transfinite numbers, had to repudiate Euclid’s 5th axiom that the whole is always greater than the part, and Bolyai and Lobachevsky (as well as Gauss) in their formulation of non-Euclidean geometry, were compelled to repudiate Euclid’s 5th postulate. In both of these earlier cases the question of consistency was central,  and it is equally important in the case of BCP. In fact, just as models of non-Euclidean geometry were later constructed to establish its consistency, so models of mathematics have been constructed based on imtuitionistic logic and realizing BCP, so establishing the consistency of the latter.
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	An even stronger version of the continuity principle (implicitly adhered to in differential geometry) is:
	SP  All functions from reals to reals are smooth, i.e. arbitrarily many times differentiable. (More generally, all functions between manifolds are smooth).
	Axiom SP can be realized by adopting what amounts to a synthetic approach to differential geometry.
	Traditionally, there have been two methods of deriving the theorems of (classical) geometry: the analytic and the synthetic or axiomatic. While the analytic method is based on the introduction of numerical coordinates, and so on the theory of real numbers, the idea behind the synthetic approach is to furnish the subject of geometry with a purely geometric foundation in which the theorems are then deduced by purely logical means from an initial body of axioms.
	The most familiar examples of synthetic geometry are classical Euclidean geometry and the synthetic projective geometry introduced by Desargues in the 17th century and revived and developed by Carnot, Poncelet, Steiner and others during the 19th century.
	The power of analytic geometry derives very largely from the fact that it permits the methods of the calculus, and, more generally, of mathematical analysis, to be introduced into geometry, leading in particular to differential geometry (a term, by the way, introduced in 1894 by the Italian geometer Luigi Bianchi). That being the case, the idea of a “synthetic” differential geometry seems elusive: how can differential geometry be placed on a “purely geometric” or “axiomatic” foundation when the apparatus of the calculus seems inextricably involved?
	To my knowledge there have been two attempts to develop a synthetic differential geometry. The first was initiated by Herbert Busemann in the 1940s, building on earlier work of Paul Finsler. Here the idea was to build a differential geometry that, in its author’s words, “requires no derivatives”: the basic objects in Busemann’s approach are not differentiable manifolds, but metric spaces of a certain type in which the notion of a geodesic can be defined in an intrinsic manner.
	The second approach, that with which I shall be concerned here, was originally proposed in the 1960s by F. W. Lawvere, who was in fact striving to fashion a decisive axiomatic framework for continuum mechanics. His ideas have led to what I shall simply call synthetic differential geometry (SDG – often referred to as smooth infinitesimal analysis SIA)
	. SDG is formulated within category theory, the branch of mathematics created in 1945 by Eilenberg and Mac Lane which deals with mathematical form and structure in its most general manifestations. As in biology, the viewpoint of category theory is that mathematical structures fall naturally into species or categories. But a category is specified not just by identifying the species of mathematical structure which constitute its objects; one must also specify the transformations or maps linking these objects. Thus one has, for example, the category Set with objects all sets and maps all functions between sets; the category Grp with objects all groups and maps all group homomorphisms; the category Top with objects all topological spaces and maps all continuous functions; and Man, with objects all (Hausdorff, second countable) smooth manifolds and maps all smooth functions. Since differential geometry “lives” in Man, it might be supposed that in formulating a “synthetic differential geometry” the category-theori
	But in fact the category Man has a couple of “deficiencies” which make it unsuitable as an object of axiomatic description:
	1.  It lacks exponentials: that is, the “space of all smooth maps” from one manifold to another in general fails to be a manifold. And even if it did—
	2.  It also lacks “infinitesimal objects”; in particular, there is no “infinitesimal” or incredible shrinking manifold ( for which the tangent bundle TM of an arbitrary manifold M can be identified as the exponential “manifold” M( of all “infinitesimal paths” in M. (It may be remarked parenthetically that it is this deficiency that makes the construction of the tangent bundle in Man something of a headache.)
	Lawvere’s idea was to enlarge Man to a category S—a category of so-called smooth spaces or a smooth category—which avoids these two deficiencies, admits a simple axiomatic description, and at the same time is sufficiently similar to Set for mathematical construction and calculation to take place in the familiar way.
	The essential features of a smooth category S are these:
	 In enlarging Man to S no “new” maps between manifolds are added, that is, all maps in S between objects of Man are smooth. (Notice that this is not the case when Man is enlarged to Set.)
	 S is Cartesian closed, that is, contains products and exponentials of its objects in the appropriate sense.
	 S satisfies the principle of microstraightness. Let R be the real line considered as a object of Man, and hence also of S. Then there is a nondegenerate segment ( of R around 0 which remains straight and unbroken under any map in S. In other words, ( is subject in S  to Euclidean motions only.
	( may be thought of as a generic tangent vector. For consider any curve C in a space M—that is, the image of a segment of R (containing () under a map f into M. Then the image of ( under f may considered as a short straight line segment lying along C around the point p = f(0) of C.                                                                                                                  By considering the curve in R ( R given by  f(x) = x2, we see that ( may be identified with the intersection of the curve  y = x2  with the x-axis. That is,
	( = {x: x ( R ( x2 = 0},
	Thus ( consists of nilsquare infinitesimals, or micronumbers. We use the letter ( to denote an arbitrary micronumbers.
	Now classically ( coincides with {0}, but a precise version of the principle of microstraightness—the Principle of Microtaffineness (or Kock-Lawvere axiom)—ensures that this is not the case in S. The principle states that
	 in S, any map f: ( ( R is (uniquely) affine, that is, for some unique   b ( R, we have, for all (,
	f(() = f(0) + b(.
	In essence, this asserts that that the action of any real function f on ( is a Euclidean transformation: a translation by f(0) and a rotation b.
	The principle of microaffineness asserts also that the map    R( ( R ( R which assigns to each f ( R( the pair (f(0), slope of f) is an isomorphism:
	R( ( R ( R.
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	Since R ( R is the tangent bundle of R, so is R(.
	For any space M in S, we take the tangent bundle TM of M to be the exponential  M(. Elements of M( are called tangent vectors to M. Thus a tangent vector to M at a point p ( M is just a map t: ( ( M with t(0) = x That is, a tangent vector at p is a micropath in M with base point p. The base point map (: TM ( M is defined by ((t) = t(0). For p ( M, the fibre (–1(p) = TpM is the tangent space to M at p.
	Observe that, if we identify each tangent vector with its image in M, then each tangent space to M may be regarded as lying in M. In this sense each space in S is “infinitesimally flat”.
	We check the compatibility of this definition of TM with the usual one in the case of Euclidean spaces:
	T(Rn) = (Rn)( ( (R()n ( (R × R)n ( Rn ( Rn.
	The assignment M ( TM = M( can be turned into a functor in the natural way—the tangent bundle functor.  (For f: M ( N, Tf: TM ( TN is defined by (Tf)t = f ( t for t ( TM.)
	The whole point of synthetic differential geometry is to render the tangent bundle functor representable: TM becomes identified with the space of all maps from some fixed object—in this case ()—to M. (Classically, this is impossible.) This in turn simplifies a number of fundamental definitions in differential geometry.
	For instance, a vector field on a space M is an assignment of a tangent vector to M at each point in it, that is, a map (: M ( TM = M( such that ((x)(0) = x for all x ( M. This means that ( ( ( is the identity on M, so that a vector field is a section of the base point map.
	A differential k- form ((0, k) tensor field) on M may be considered as a map M(n  ( R.
	The notions of affine connection, geodesic, and the whole apparatus of Riemannian geometry can also be developed within SDG
	.
	As an axiomatic system,  SIA may be set up as a system of axioms for the (smooth) real line R involving micronumbers  as already iintroduced The core axiom in SIA is the aforementioned principle of microaffineness.  Writing ( for the set of (nilsquafre) infinitesimals or micronumbers, i.e.
	( = {x: x ( R ( x2 = 0},
	the principle can be stated:
	For any f: ( ( R, there is a unique b ( R such that
	f(() = f(0) + d(
	holds for all (. (We use ( as a variable ranging over (.)
	This in turn gives rise to a simple definition of the derivative f’ of f:  given r ( R, f’(r) is the unique b ( R such that, for all (, f(r + () = f(r) + b(  (apply microaffineness to the function ( ( r +().  Then we get the equation
	f(r + () = f(r) + (f’(r).
	Similarly we obtain higher derivatives f’’, f’’’,  so that SP holds. This being the case,  the postulates of SIA are incompatible with the law of excluded middle of classical logic.
	From the principle of microaffineness we deduce the important principle of  microcancellation, viz.
	If  (a = (b for all (, then  a = b.
	For the premise asserts that the graph of the function g: ( (  R defined by  g(() = a(  has both slope a and slope b: the uniqueness condition in the principle of microaffineness then gives a = b. The principle of microcancellation supplies the exact sense in which there are “enough” infinitesimals in smooth infinitesimal analysis.
	In SIA there is a sense in which everything is generated by the domain of infinitesmals. For consider the set (( of all maps ( ( (. It follows from the principle of microaffineness that R can be identified as the subset of (( consisting of all maps vanishing at 0. In this sense R is “generated” by (. Explicitly,  (( is a monoid under composition which may be regarded as acting on ( by composition: for f ( ((, f ( ( = f((). The subset V consisting of all maps vanishing at 0 is a submonoid naturally identified as the set of ratios of infinitesimals. The identification of R and V made possible by the principle of microaffineness thus leads to the characterization of R itself as the set of ratios of infinitesimals. This was essentially the view of Euler, who regarded infinitesimals as formal zeros and real numbers as representing the possible values of 0/0. For this reason  Lawvere
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	has suggested that R in SIA should be called the space of Euler reals.
	Once one has R, Euclidean spaces of all dimensions may be obtained as powers of R, and arbitrary manifolds may be obtained by patching together subspaces of these.
	From the principle of microaffineness the following are easily deduced:
	 ( is nondegenerate, i.e.  ( ( {0}.
	 Call x, y ( R indiscriminable (resp., indistinguishable) and write x ( y (resp.  x ( y)  if  x – y ( ( (resp. (x ( y). Then x ( y implies x ( y (but not vice-versa).
	 If J is a closed interval in R, any  f: J ( R is indiscriminably continuous in the sense that, for              x, y ( J, x ( y implies  fx ( fy, and hence also fx ( fy. (Note that it follows trivially from x ( y that   fx ( fy.)
	It follows that PIC (principle of infinitesimal continuity) holds in SIA
	A stationary point of a function f: J (  R is defined to be one in whose vicinity “infinitesimal variations” fail to change the value of f, that is, a point a such that   f(a + () = f(a) for all (  Equivalently, a is a stationary point of f if f is locally constant around a in the sense that, for all x ( J,  x ( a implies fx = fa. An important axiom concerning stationary points adopted in SIA is the
	Constancy Principle. If  f: J � R is locally constant on J in the sense that  x ( y implies  fx = fy for all x, y ( J, then f is constant.
	It follows easily from this that (as usual) two functions with identical derivatives differ by at most a constant.
	Now call a subset D ( R discrete if it satisfies
	Notice that if D is discrete, then, for x, y ( D, x ( y implies x = y.
	It follows quickly from the Constancy Principle that any map on R (or one of its closed intervals) to a discrete subset of R is constant. To see this, let f be a map of R to a discrete set D. Then from x ( y we deduce  fx ( fy, and hence fx =fy, in D. So f is locally constant, and hence constant.
	In ordinary analysis R and each of its intervals is connected in the sense that they cannot be split into two nonempty subsets neither of which contains a limit point of the other. In SIA these have the vastly stronger property of cohesiveness: they cannot be split in any way whatsoever into two disjoint nonempty subsets
	. This follows quickly from the Constancy Principle: if  R = U  ( V  with  U  ( V = (, let 2 be the discrete subset  {0, 1} of R, and define f: R ( 2 by f(x) = 1 if  x ( U,  f(x) = 0 if x ( V. Then f is constant, that is, constantly 1 or 0. In the first case V =  ( , and in the second U = ( .
	One of the most widely discussed axioms in mathematics is the Axiom of Choice. Surprisingly, perhaps, this is incompatible with the various continuity axioms we have discussed. This is because, as discovered in the 1970s, it implies LEM
	. We shall show that it is refutable in SIA by showing that it implies    (x(R(x = 0 ( x ( 0), and hence that the discontinuous blip function is defined on the whole of R.
	We take the Axiom of Choice  in the particular form
	AC   for any family A of nonempty subsets of R, there is a function f: A  (  R  such that f(X)  ( X for every X ( A.
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	For each x ( R define
	Ax� = {y ( R:  y = 0 ( x = 0 }
	Bx� = {y ( R:  y = 1 ( x = 0 }.
	Clearly  0 (Ax and  1 ( Bx so these sets are both nonempty. By AC, we obtain a map fx: {Ax ,  Bx} (  R  such that, for any x ( R, fx(Ax ) ( Ax and  fx(Bx ) ( Bx. Thus
	[fx(Ax ) = 0 ( x = 0] (  [fx(Bx ) = 1 ( x = 0].
	Applying the distributive law for ( over ( (valid in intuitionistic logic), we
	obtain
	[fx(Ax ) = 0 (  fx(Bx ) = 1] ( x = 0
	whence
	(*)                                          fx(Ax ) (  fx(Bx )   (  x = 0.
	Now clearly A0  = B0  = R, so that f0(A0 ) =  f0(B0 )  . Thus
	fx(Ax ) (  fx(Bx )   (  x ≠ 0.
	So from (*) it follows that
	x ≠ 0 ( x = 0
	whence
	(x(R(x = 0 ( x ( 0).
	I conclude with some historical observations.While SIA was not developed until the 1960s, the idea of treating infinitesimals as nilpotent quantities was first put forward in works of 1694-6 by the Dutch physician Bernard Nieuwentijdt (1654–1718). Nieuwentijdt developed his account of infinitesimals  - a striking example of axiomatic thinking - in conscious opposition to Leibniz’s well-known theory of differentials. Nieuwentijdt postulates a domain of quantities, or numbers, subject to an ordering relation of greater or less. This domain includes the ordinary finite quantities, but it is also presumed to contain infinitesimal and infinite quantities—a quantity being infinitesimal, or infinite, when it is smaller, or, respectively, greater, than any arbitrarily given finite quantity. The whole domain is governed by a version of the Archimedean principle to the effect that zero is the only quantity incapable of being multiplied sufficiently many times to equal any given quantity. Infinitesimal quantities may b
	_Hlk490295591
	_Hlk490295645
	_Hlk490295756
	_Hlk490295831
	_Hlk490296036
	_Hlk490296077
	_Hlk490296319
	_Hlk490296619
	_Hlk490296642
	; in particular squares and all higher powers of infinitesimals are zero. This fact enables Nieuwentijdt to show that, for any curve given by an algebraic equation, the hypotenuse of the differential triangle generated by an infinitesimal abscissal increment e coincides with the segment of the curve between x and x + e. That is, a curve is locally straight, or, in 17th century parlance, an “infinilateral polygon”.
	In responding to Nieuwentijdt’s assertion that squares and higher powers of infinitesimals vanish, Leibniz remarked that “it is rather strange to posit that a segment dx is different from zero and at the same time that the area of a square with side dx is equal to zero.”  Yet this oddity may be regarded as a consequence—apparently unremarked by Leibniz himself—of one of his own key principles, namely that curves may be considered as infinilateral polygons.  For consider the curve y = x2 below. Given that the curve is an infinilateral polygon, the infinitesimal straight portion of the curve between the abscissae 0 and dx must coincide with the tangent to the curve at the origin—in this case, the axis of abscissae—between those two points. But then the point   (dx, dx2) must lie on the axis of abscissae, which means that dx2 = 0.
	Now Leibniz could retort that this argument depends crucially on the assumption that the portion of the curve between abscissae 0 and dx, while undoubtedly infinitesimal, is indeed straight. If this be denied, then of course it does not follow that dx2 = 0. But still, if one grants, as Leibniz does, that there is an infinitesimal portion of the curve between abscissae 0 and e (say) which is straight and does not reduce to a single point (so that e cannot be equated to 0), then the above argument does show that e2 = 0. It follows that, if curves are infinilateral polygons, then  the “lengths” of the sides of these latter must be nilsquare infinititesimals.
	Accordingly, to do full justice to Leibniz’s conception, two sorts of infinitesimals are required: first, “differentials” obeying —as laid down by Leibniz—the same algebraic laws as finite quantities; and second, the (necessarily smaller) nilsquare infinitesimals which measure the lengths of the sides of infinilateral polygons. It may be said that Leibniz recognized the need for the first, but not the second type of infinitesimal and Nieuwentijdt, vice-versa. It is of interest to note that Leibnizian infinitesimals (differentials) are realized in nonstandard analysis,
	the other major modern account of mathematical analysis built on a theory of infinitesimals. In fact it has been shown to be possible to construct models of SIA which at the same time embody enough of the theory of nonstandard analysis
	to allow for the presence of Leibnizian infinitesimals in addition to the nilsquare variety.
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