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What is the source of the commutativity of the basic arithmetical 

operations? 

 

Our recognition of the commutativity of the basic arithmetical operations of addition 

and multiplication can be seen as arising from the mind's grasp of the invariance of the 

content, or size, of discrete assemblages under simple combinatorial and geometric 

procedures.  

In the case of addition, there is in the first instance a straightforward linear account of 

what seems to be going on.  Fundamentally, addition is juxtaaposition. In adding two 

natural numbers m and n  one  first represents them in as sequences of dots  m, n and 

then juxtaposes the results in the given order to obtain a sequence m  n of m + n dots. 

Thus, for example, in calculating 2 + 3 = 5 one starts with   2 =   objects ("dots") and 

then juxtaposes    3 =    dots; this yields the assemblage  

    

in which the "gap" between the two components   ,    reflects the order in which 

the operation of juxtaposition has been performed.  This assemblage is a perfect iconic 

representation of  2 + 3, in which the `gap`` is, so to speak, waiting to be closed (through 

addition). Closing the gap naturally yields the homogeneous assemblage of dots 

 

which can then be counted smoothly as 5 independently of how it was assembled to 

begin with: its combinatorial origins have, so to speak, been effaced.   

Now in particular, one could have started with 3 dots and then juxtaposed 2 dots, so 

obtaining 

   

Closing the gap in this case yields what on inspection is seen to be precisely the same 

result as before, namely 

 
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Another way of drawing the same conclusion is to note that if the assemblage 

    

is reflected in a mirror (i.e., rotated through 180) it is transformed into the assemblage  

   

When the gap is closed in the "real" world, and so also in the "mirror" world, the  

"gapless" result  

 

is the same in both, since homogeneous sequences of dots are invariant under 

reflections. In the "real" world, the result, 5, has been obtained by adding 2 and 3, while 

in the "mirror" world, the same result, again 5, has been obtained by adding 3 and 2.  

The invariance of the result    = 5 under reflections then leads to the conclusion 

that 2 + 3 =  3 + 2. 

Presented in this way, by "closing the gap" the commutative law of addition for small  

numbers presentable in the forms of discrete dots becomes clear. The extension of the 

commutative law of addition to arbitrary numbers is then made on the basis of 

generalization, namely, that what holds for small numbers holds for all of them.  

The analysis of the commutative law using reflections has the advantage of being 

completely independent of the size of the numbers (of dots) involved, and so is not based 

on generalization from special cases.   If one were presented with the sum 1233495 + 

23956, say, and claimed, without calculating, that the result was the same as 23956 + 

1233495, one would simply argue that, if the sums involved are represented as "gapped" 

dot sequences, then the mirror image of the first sum is the second sum, which are then, 

because of reflection invariance, the same.  

In this way we are led to accept the commutative law of addition:  m + n = n + m for any 

natural numbers m, n.   

The associative law of addition (m + n) + p = m + (n + p) can be seen to arise from an even 

more rudimentary use of the idea of " gap closing" of juxtaposed dot sequences.  It  can  

be immediately seen that , once the gaps are closed, (m  n)  p  is identical with        

m  (n  p).   
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The commutative law for multiplication can be justified  by similar considerations of 

invariance. Multiplication arises from repeated addition:  2 × 3 , for example, 

corresponds to the combination of 2 sets of 3  dots:      

 

     

     

 

This contains altogether 6 dots, so 2 × 3 = 6.  Regrouping the above arrangement  gives 

   

 

 

   

and by rotating this through 90 we obtain 

 

 

 

 

 

that is, 3 sets of 2 dots  corresponding to 3 × 2 dots. Since throughout the regrouping 

and rotation the assemblage of dots remains unchanged, the  number of dots must be 

the same in both cases, so that 2 × 3  = 3 × 2  =6. Thus we are led to adopt the general 

rule known as the commutative law of multiplication: m × n = n × m for any natural 

numbers m, n.  

Similar combinatorial-geometric arguments lead to the intuitive justification of the 

associative law of multiplication and the distributive law for multiplication over 

addition. 

 

 

 

 

 

 

   

   

   
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It is remarkable that, while our intuitive grasp of the commutative laws of arithmetic (as 

well as the others) must surely have been the result of basic combinatorial-geometrical  

considerations like the above , all of these laws can be formally derived from the simple idea of 

immediate succession, rules for of adding and multiplying by an immediate successor, and the 

law of mathematical induction. 

To see how this can be done we set up a formal language for arithmetic (with  0) . This will 

have a unary operation symbol s, corresponding to (immediate) succession: thus, if n is a 

sequence of dots  

 

 

sn  can be pictured as the result of by adding one new dot (on the right) to the given 

sequence of dots n  

   

and then closing the gap to obtain 

 

The successor operation accordingly corresponds to the operation of juxtaposing a single 

new dot.  

We also equip our formal language with two binary operation symbols + and × of 

addition and multiplication, corresponding to the operations on assemblages of dots we 

have analyzed above. Our language will also be equipped with a symbol 0, which will 

correspond to the "dotless", or empty assemblage 

 

Now in the language we have set up, using standard logical symbols, we can write 

down the postulates of  Basic Arithmetic. These are the following: 
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B1     xy(sx = sy →  x = y) 

B2     x    0  sx 

B3     x    x + 0 = x      

B4                                        xy   x + sy = s(x + y) 

B5     x    x × 0 = 0 

B6     xy    x × sy = (x × y) + x. 

 

The first two  of these express familiar facts about the successor operation: 

B1 Natural numbers with identical successors are themselves identical. 

B2 Zero is the successor of no natural number. 

 

The next two postulates tell us how to add in this notation (where we have introduced 

the symbol 1 for s0) 

 

B3 Adding 0 has no effect. 

B4 (m + n) + 1 = m + (n + 1). 

 

Finally, the two remaining postulates reduce multiplication to repeated addition: 

B5 Multiplying by 0 yields 0. 

B6 x × (y + 1) = (x × y)  +  x.  

 

It is easy to justify B1 - B6 using dot assemblages.  
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Full arithmetic is now obtained by adding to B1 - B6 the following  

Principle of Mathematical Induction.  Suppose given any property P of natural 

numbers. Suppose also that 

• 0 has P 

• for any natural number n, if n has P, so does sn. 

Then every natural number has P. 

 

This principle is usually justified by the following argument. Suppose that  P(0) and 

that , for any number n, P(sn) follows from P(n). Then since we have P(0), it follows that 

P(1); from this follows P(2), hence P(3), etc. ad infinitum. Another way of justifying 

mathematical induction is the domino argument. Let us suppose we represent the 

sequence of natural numbers by a series of dominoes, initially all standing upright: 

 

                                                 0   1     2    .............        ........ 

Let us suppose that, if any domino falls forward, it strikes the following one, causing it 

to fall. Now let us represent the assertion P(n) by the nth domino falling forward. Then 

P(0) means that domino  0 falls forward. This causes  domino 1 and hence all the 

remaining dominoes to do the same. Since all the dominoes (eventually) fall, it follows  

                                                              .............            ............. 

 that P(n) for all natural numbers n. 

 

In full arithmetic, using the principle of mathematical induction, the commutative laws 

for addition and multiplication are derivable.  

We derive the commutative law for addition. This is most easily done in 5 stages.  

 (1) Prove the associative law (m + n) + p = m + (n + p). 

 (2) Show that, for any n, 0 + n = n. 

  (3) Show that, for any n,  sn = n + 1. 
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 (4) Show that, for any n, n + 1 = 1 + n. 

 (5) Prove the commutaive law of addition: for all m, n, m + n = n + m. 

 

Proof of (1). Fix arbitrary natural numbers m, n. Let P be the property of natural 

numbers  p that  (m + n) + p = m + (n + p). Then 0 has P since  

(m + n) + 0 = m + n = m + (n + 0) 

Now supposing that p has P, i.e. (m + n) + p = m + (n + p), we deduce that sp has P as 

follows: 

(m + n) + sp = s((m + n) + p) = s(m + (n + p)) = m + s(n + p) = m + (n + sp). 

So (m + n) + p = m + (n + p) holds for any p by the Induction Principle. Since m and n 

were arbitrary, the equation holds for all m, n, p. 

Proof of (2). Let P be the property 0 + n = n . Then 0 has P by B3. Supposing that n has P, 

we deduce that sn has P: 

0 + sn = s(0 + n) = sn. 

So (2) follows by the Induction Principle. 

Proof of (3).  sn = s(n + 0) = n + s0  = n + 1. 

Proof of (4). Let P be the property n + 1 = 1 + n.  Then 0 has P since 0 + 1 = 1 (by (2))  

= 1 + 0. Now suppose that n has P.  Then we deduce that sn has P: 

sn + 1  = sn + s0 = s(sn + 0) = ssn = s(n + 1) (by (3)) = s(1 + n) = 1 + sn. 

(4) now follows by the Induction Principle.  

 

Proof 0f (5). Fix m and let P be the property of n  m + n = n + m. Then 0 has P since m + 0 

= m  = 0 + m by (2). Now suppose that n has P. Then we deduce, using associativity, (3) 

and (4) that sn has P: 

m + sn = m +(n + 1) = (m + n) + 1= (n + m) + 1 = n + (m + 1) = n +(1 + m) = (n + 1) + m = 

sn + m. 
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(5) now follows by the Induction Principle.  

It will be observed that in this derivation of the commutative law of addition, the 

associative law is derived first (and much more easily),  thus providing further evidence 

that associativity is a more fundamental property of operations than commutativity. Of 

course, this is already clear in the case of composition of operations or functions, which is  

associative but not usually commutative.  

 

 


