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Chapter 3

COVER SCHEMES, FRAME-VALUED SETS AND THEIR
POTENTIAL USES IN SPACETIME PHYSICS

John L. Bell
Department of Philosophy, University of Western Ontario, London, Ontario, Canada

ABSTRACT

In the present paper, the concept of a covering is presented and developed. The
relationship between cover schemes, frames (complete Heyting algebras), Kripke models,
and frame-valued set theory is discussed. Finally cover schemes and frame-valued set
theory are applied in the context of Markopoulou’s account of discrete spacetime as sels
“evolving” over 4 causal set. We observe that Markopoulou’s proposal may be
effectively realized by working within an appropriate frame-valued model of set theory.
We go on to show that, within this framework, cover schemes may be used to force
certain conditions to prevail in the associated models; for example, rendering the universe
timeless, obliterating a given event or forcing it to become the universe’s “beginming™.

PREAMBLE

The concept of Grothendieck (prejtopology or covering issued from the efforts of
algebraic geometers to study “sheaf-like” objects defined on categorics more general than the
lattice of open sets of a topological space (see, e.g. [4]). A Grothendieck pretopology on a
category C with pullbacks is defined by specifying, for cach object U of C, a set P(U) of
arrows to U/ called covering families satisfying appropriate category theoretic versions of the
corresponding conditions for a family & of sets to cover a set U, namely: (i) {U} covers U,
(iiyif A covers Uand ¥ U then A| V= {4 ~ ¥: 4 & A} covers V, and (iii) if A covers U
and, for each 4 € A, B4 covers 4, then U B, covers U. In the present paper the covering

AcA,
concept—here called a cover scheme—is presented and developed in the simple case when
the underlying category is a preordered set. The relationship between cover schemes, frames
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(complete Heyting algebras), Kripke models, and frame-valued set theory is discussed.
Finally cover schemes and frame-valued set theory are applied in the context of
Markopoulou’s [5] account of discrete spacetime as sets “evolving” over a causal set.

COVER SCHEMES ON PREORDERED SETS

A preordered set is a set equipped with a reflexive transitive relation <. Let (P, <) be a
fixed but arbitrary preordered set: we shall use letters p, g, 7, 5, { to denote elements of p. We
write p = g for (p < q & g < p). A meet for a subset § of P is an element p of P such
that Vg[V's € S(q < s) > g < p]:if pand p" are both meets for S, then p = p'. Ifthe
empty subset & has a meet, any such meet m is necessarily a largest or top element of P, that
is, satisfies p < m for all p. We use the symbol 1 to denote a top element of P. A meet of a
finite subset {P,,..., P, } of P will be denoted by p; A...A P, . P is a lower semilattice if
each nonempty finite subset of P has a meet. A subset S of P is said to be a sharpening of, or
to sharpen, a subset T of P, writtenS < T', if Vs € St € T(s <t). A sievein Pisa
subset S such that p € S and ¢ < p implies g € S. Each subset § of P generates a sieve
§givenby S= {p:3seS(p<s).

A cover scheme on P is a map C assigning to each p € P a family C(p) of subsets of pd =

{q: ¢ < p}, called (C-)covers of p, such that, if ¢ < p, any cover of p can be sharpened to a
cover of g, i.e.,

SeC(p)&q< p—3ITeC(g)[vteTIse St <s)]. (Cov)

If P is a lower semilattice, a coverage (see [3]) on P is a map C as above, satisfying, in
place of (Cov), the condition

SeC(p)&qg<p—>Srq={srq:seS}eC(p).

A cover scheme C is said to be normal if every member of every C(p) is a sieve and
whenever § € C(p) and T is a sieve such that Sc T ¢ pi, we have T € C(p). Any cover

scheme C on P induces a normal cover scheme o] (called its normalization) defined by
C(p)={X c p ¥: X is a sieve & 3S € C(p). Sc X}.

Notice that a normal cover scheme on a lower semilattice is always a coverage. For if C
is such, then for S € C(p) and g < p, any sharpening of S to a member of C(¢) is easily seen to
be included in S A g, so that the latter is also in C(g).

Write Cov(P) for the set of all cover schemes on P. There is a natural partial ordering
< on Cov(P) defined by



Cover Schemes, Frame-Valued Sets and Their Potential Uses in Spacetime Physics 49

C<D & Vp C(p)c D(p)

With this ordering Cov(P) is a complete lattice in which the join
VC; of any family {C;:ie I} is given by

iel

Ve =Ucip)

1€l

There is also a natural composition * defined on Cov(P). For C, D € Cov(P), D*C is
defined by decreeing that (D% C)(p) is to consist of all subsets of p{ of the form U f I
seS

where § € C(p) and, for each s € S, T. € D(s). That D*C is a cover scheme on P may be
verified (using the axiom of choice) as follows. Given S € C(p), U T. € (D*C)(p) and g <
ses

p, there is U € C(q) with U < S, so for each u e U there is s(u) e S for which u < s(u). Then
Tyw € D(s(w)) and we can choose ¥, € D(u) so that V, < Ty~ Clearly UVu €

uell
(D*C)(q) and, since V,, < T, forall u € U, it follows immediately that U vV, < U .
uel/ seS

It is not hard to verify that % is associative and that with this operation Cov(P) is
actually a quantale (see, e.g., [6]) that is, for any D, {C;: i € I} in Cov(P),

p#V ¢, =Vprc,) (Ve xp-\Vcxp) .

el el el

Also the element 1 € Cov(P) with 1(p) = {p} acts as a quantal unit, since it is readily
verified that 1% C = C%1 = C forall C € Cov(P).

In this connection a Grothendieck pretopology—which we shall abbreviate simply to
pretopology—on P may be identified as a cover scheme C on P satisfying 1< C and C*C<2
C, that is, {p} € C(p) forall p e P and, if § € C(p) and, for each s € S, T, € C(s), then

UT. e co).
seS

We observe that a normal pretopology C has the additional properties: (i) each C(p) is a
filter of sieves in pY, that is, satisfies S, T e Cp)eoSeCp)&TeCp);(i) Se Clp)&q
<p—> SN gl e C(g). For (ii), we observe that S A ql, including as it does any sharpening of
§ to a member of C(g), is itself a member of C(g). As for (i), the “—" direction is obvious;

conversely, if S, T € C(p), then S T=S | J(t ¥) = J (S t ¥). But from (ii) we have
teT teT

S td e C(r) for every t € T, whence U(Sr“l ty)eC(p),andso S T € C(p).
teT
A normal pretopology is also called a Grothendieck topology. A normal cover scheme
satisfying (i) and (ii) is called a regular cover scheme.
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Each cover scheme C generates a pretopology, and a Grothendieck topology in the
following way. First, define C" for n € ® recursively by C’=1and C""' = C*C". Now put

G= V C". Then G is a pretopology, for obviously 1G, and

swa=\Vexer=\VVcmn = Ve -a

new me Ne®m mew neom

Also CJ G, and G is evidently thé - k“t pretopology. G is called the pretopology

generated by M. The normalization G ot G is then a Grothendieck topology called the
Grothendieck topology generated by C.

Now let M be a map assigning to each p € P a subset M(p) of subsets of p. Since
Cov(P) is a complete lattice, there is ag+least cover scheme C such that M(p) < C(p) for all
p. C is called the cover scheme generated by M; the pretopology and Grothendieck topology
generated in turn by C are said to be generated by M. .

There are several naturally defined cover schemes on P which also happen to be
pretopologies. First, each sieve 4 in P determines two cover schemes C,and C* defined by

SeC,(p)e> peAUS Se C*p)o plnNACS:

these are easily shown to be pretopologies. Notice that @ € Cy(p) <> p € A and D € c(p)
oplnA=02.
Next, we have the dense cover scheme Den given by:

SeDen(p)> Vg< piseSIr<s(r<q): (*)

it is a straightforward exercise to show that this is a pretopology. When S is a sieve, the above
condition (*) is easily seen to be equivalent to the familiar condition of density below p: that
is, Vg < p3se S(s<q).

Note that the following are equivalent for any cover scheme C:  (a) C 4 Den, (b) D ¢
C(p) for all p. For since & ¢ Den(p), (a) clearly implies (b). Conversely, assume (b), and let §
€ C(p). Then for each g < p there is T € C(g) for whichVz €T 3seS (¢ <s). Since (by (b)) T
# @, we may choose 7, € T and s € S for which #, < so. Since #, < g, and g < p was arbitrary,
it follows that S satisfies the condition (*) above for membership in Den(p). This gives (a).

Finally, we have the Beth cover scheme Bet. This is defined as follows. First we define a
road from p to be a maximal linearly preordered subset of pd: clearly any road from p
contains p. Let us call a rome over p any subset of pY intersecting every road from p. Now the
Beth coverage has Bet(p) = collection of all romes over p. Let us check first that Bet is a
cover scheme. Suppose that S is a rome over p and g < p. We claim that

T={t<q:3seS(t<s)

is a rome over g¢. For let ¥ be any road from g; then, by Zorn’s lemma, ¥ may be extended to a
road X from p. We note that since X N g4 is linearly preordered and includes Y, it must



Cover Schemes, Frame-Valued Sets and Their Potential Uses in Spacetime Physics 51

coincide with Y. Since § is a rome over p, there must be an element s € § N X. Since also g €
Yc X, wehaves<qorg<s Ifs<g thense Xngl=Yandse I,sothats e YN T. If ¢
<s, then g € T:since ¢ € V, it follows that g € ¥ m T. So in either case ¥ n T # &; therefore
T'is a rome over ¢. Since clearly alsoT < S, we have shown that Bet is a cover scheme.

To show that Bet is a pretopology, we observe first that, for any p, {p} is a rome over p.
Now suppose that we are given: a rome S over p, for each s € S, a rome T, over s, and a road
X from p. Then s € X N S for some s: we claim that X  s{ is a road from s. For suppose f < §
is comparable with every member of X N s4; now since s € X, for each x € X either s < x or x
< s. In the first case r < x; in the second ¢ is comparable with x by assumption. Hence ¢ is
comparable with every member of X, and so ¢ € X. Accordingly X n s{ is, as claimed, a road

from s; as such, it must meet the rome T, so X meets U T, , and the latter is therefore a
55

rome over p. So Bet is indeed a pretopology.
Since clearly @ ¢ Bet(p) for any p, it follows from what we have noted above that Bet ¥
Den, a fact that can also be easily verified directly.

Any preordered set (P, <) generates a free lower semilattice P which may be described

—

as follows. The elements of P are the finite subsets of P; the preordering on P is the

refinement relation C, that is, for F, G e .-15,
FEGe VYVqeGipeF(p<q).

The meet operation A in P is set-theoretic union; the canonical embedding of P into P

is the map p — {p}. Notice also that & is the unique top element of P.

Now, suppose we are given a cover scheme C on P. This induces a cover scheme C on

P defined in the following way. We start by setting c (D) = {{D}}. Now fix a nonempty
finite subset F of P, take any nonempty subset {p,...,p,}of F and any

S] € c(pl)!"-.rsn € c(pn)' Define
S,e...eS, ={s,,...,s,}UF:s €8,...,5,€8S,}.

We decree that é(F) is to consist of all sets of the form S, e...eS , for
S, € €(p,),...,S, € C(p,). and all nonempty finite subsets {p, ..., p, } of F.

Let us check that € is a cover scheme on 1‘5 To begin with, the unique cover {J}

of @ is clearly sharpenable to any cover S, ®...®S of any nonempty member of P.
Now suppose that S, e...eS is a C —cover of a nonempty member F of Pand that

G = {q,---,9,,} T F. Then for each 1 < i < n there is ¢, € G for which

g < py, hence T, eClg)with T, <S, Clearly T,e...eT, € C(G). Also
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Tie...oT <S/e...eS . Forgiven t, € T,...,t, €T, then since T, < S; for each
i, there are S €8S,...,5, €S, for which ¢ <s,..,t <s,, whence

{0t PO G ELS, yuusy S} WP S0 C satisfies the conditions of a cover scheme.

The normalization C of € is then a coverage on P called the coverage on P induced
by C.

We next show how cover schemes give rise to complete Heyting algebras, or frames (see,
e.g. [3]).

A Heyting algebra is a lattice L with top and bottom elements 1, 0 such that, for any
elements x, y € L, there is an element—denoted by  x = y—of L such that, forany z € L,

z<x=yiff z nx<y.

Thus x = y is the largest element z such that z A x < y. So in particular, if we write —x
for x = 0, then —x is the largest element z such that x = z = 0: it is called the
pseudocomplement of x. A Boolean algebra is a Heyting algebra in which ——x = x for all x,
or equivalently, in which x v —x =1 for all x. '

If we think of the elements of a (complete) Heyting algebra as “truth values”, then 0, 1, A,
v, =, =, 1, I represent “true”, “false”, “and”, “or”, “not” and “implies”, “there exists™ and
“for all”, respectively. The laws satisfied by these operations in a general Heyting algebra
correspond to those of intuitionistic logic. In Boolean algebras the counterpart of the law of
excluded middle also holds.

A basic fact about complete Heyting algebras is that the following identity holds in them:

xAl{yf =V}m Y,) *)

And conversely, in any complete lattice satisfying (*), defining the operation = byx =
y=1{z:zAx <y} turns it into a Heyting algebra.

In view of this result a complete Heyting algebra is frequently defined to be a complete
lattice satisfying (*). A complete Heyting algebra is briefly called a frame.

Now we associate a frame with each cover scheme on P. First, we define P to be the set

of sieves in P partially ordered by inclusion: Pis then a frame—the complelfon2 of P—in
which joins and meets are just set-theoretic unions and intersections, and in which the

operations = and — are given by

I=Jd={p:InplcJ} ~I={p:Inpi=0}.

Given a cover scheme C on P, a sieve [ in P is said to be C-closed if

3 Writing Lat for the category of complete lattices and join preserving homomorphisms, Pis in fact the object in
Lat freely generated by P. P
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dSeC(p)(ScI)—> pel.

We write C for the set of all C-closed sieves in P, partially ordered by inclusion.
Lemma. If/ e ﬁ,.}e C.,theni=>Je C.

Proof. Suppose that / }_’, Je é, and Sc I = Jwith § € C(p). Define U= {g e I
dseS.g<s}. Then UcJ.If g € I n pl, then there is T € C(q) for which T' < S. Then for
any 1 € T, there is s € § for which ¢ <5, whence 7 € U. Accordingly 7'c U c J. Since J is a
C-closed, it follows that ¢ € J. We conclude that / n pV < J, whence p € pb c I = J.
Therefore I = .J is C-closed. O

It follows from the lemma that € is a frame. For clearly an arbitrary intersection of C-
closed sieves is C-closed. So C is a complete lattice. In view of the lemma the implication
operation in P restricts to one in C , making Ca Heyting algebra, and so a frame.

Propesition 1. Suppose that C is a pretopology. Then (i) the bottom element of c is0=
{p: @ € C(p)}, (ii) the C-closed sieve generated by a sieve A4 (that is, the smallest C-closed

sieve containing 4) is {p: 3§ € C(p). S < A}, (iii) the join operation in Cis
given by VJ = (U J;)* . If C is a Grothendieck topology, then (iv) for any sieve S c
iel iel

phpeS*toSe C(p).
Proof. Suppose that C is a pretopology. Then 0 is a C-closed sieve. For it is easily seen
to be a sieve; and it is C-closed because if § € C(p) and S < 0, then @ ¢ C(s) foreach s € §,

whence @ = U & € C(p), and so p € 0. Finally, 0 < 7 for any C-closed sieve /, for if & e
se8

C(p), then from @ c I we infer p € 1 This gives (i). As for (ii), suppose given a sieve A.
Then 4 c A* follows from {p} € C(p). A* is a sieve, since if p €4* and ¢ < p, then there is §
€ C(p) for which S 4, and T € C(g) sharpening S; clearly T c 4 also, whence ¢ € 4*. And
A* is C-closed, since if S  4* with § € C(p), then for each s € S thereis 7, € C(s) with 7, c

A; it follows that U T,c 4 and U T, € C(p), whence p € A*. Part (iii) is an immediate
se8 seS

consequence of (iii). Finally, if C is a Grothendieck topology and S < p\ is a sieve, then pPE
§* 3dTeC(p).Tc S SeCp),ie. (iv). O

We observe parenthetically that Den is a Boolean algebra. To establish this it suffices

to show that, for any / € Den, ——/ c 1. Now since @ & Den(p), it follows from (i) of the

proposition above that the bottom element of Den is &, so that, for any / € Den, -/ =
{p: 1 pb = @}, whence ——I= {p:Vq < par < q. r € I}. But it easily checked that

the defining condition for / to be a member of Den is precisely that, if
Vg< pidr<q.rel, thenp el Thatis, ~——/c I

Cover schemes on P correspond to certain self-maps on ﬁ called (weak) nuclei. A weak
nucleus on a frame H is a finite-meet-preserving map j: H — H such that j(l)=landa<



54 John L. Bell

j(a) for any a € H. If in addition j(j(a)) < j(a) (so that j(j(a)) = j(a)) foralla € H, j is called a
nucleus on H.
Proposition 2. Let C be a cover scheme on P. For each /] € P let I* be the least C-

closed sieve containing /. Then the map kc: / — I* is a nucleus on P.

Proof. Clearly /  I* and /** = I*. It remains to be shown that, forl, J e P yJANnD*=
I* A J* Since * is obviously inclusion-preserving, (I N J)* < I* N J* For the reverse

inclusion, note first that [ € C <> I*=1 Given 1, Je P, define K=1=>(InJ)*. By the

Lemma above, K € 6 , so that K* = K. Now J* c K since
Jnlc(Ind)*>Jdc[I=>(InJ)]=K,
whence J* < K* c K. Similarly, if we define L=K = (I J)*, then /* L. Tt follows that

I*nJ*cKnL=Kn[K=>{InJ)*clInJd)*. O

Inversely, any weak nucleus j on P determines a regular cover scheme D; on P, given by

SeD,(p)«> pe j(S).

Let us check that D; is indeed a regular cover scheme. To do this it suffices to show that
each D;(p) is a filter of sieves and that, if S € D;(p), and g <p, then § gV € D;(q). The first
of these properties follows immediately from the fact that j preserves finite intersections, and
the second from the observation that, if S € D;(p), and ¢ < p, then p € j(S), so that g € J(S),
and g € g4 cj(gl), whence g € j(S) N j(g¥) =i(S Ngt)ie. SN q¥ € D;(q).

When j is a nucleus, D; is a Grothendieck topology. For under this assumption, if § € D;
(p) and T, € D;(s) foreachs € S, thens € J(T,) for each s € S, and it follows that

scJim)cilJT)
seS seS

so that

pe jS)c j(j(ys T.) =il JT.)

ie, |JT. e Dy(p).
se8

The correspondences C +— k¢ and j — D; between Grothendieck topologies on P and

nuclei on P are mutually inverse. For if C is a Grothendieck topology on P, then, by
Proposition [ (iv) we have

SeD, (p)© pekc(S)=5* < SeC(p),
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whence ch = C. And, for a nucleus j on P , we have, using Proposition 1(ii),

kl,J (I)= least D; —closed sieve oI
={p:3SeD(p).Sc I}
={p:3S c I.p e j(S)}
=Jji),

whence k,,.j = J,

COVER SCHEMES AND FRAMES

The relationship between cover schemes on a preordered set and (weak) nuclei on its
completion can be extended to cover schemes on partially ordered sets and general frames.
Accordingly let H be a frame: we writev A)—» for the join, meet and implication operations,
respectively, in H. The partially ordered set (P, <) is said to be dense in H if P is a subset of
H, the partial ordering on P is the restriction to P of that of H, and either of the two following
equivalent conditions is satisfied: (i) for any a € H, a =V{p:P‘Q (ii) forany a, be H, a<bh
<> Vp[p <a— p <b]. The canonical example of a frame in which P is dense is the frame
P described in section I: here each p € P is identified with the pd ¢ P. Pis easily seen to
have the property thatinit, forany SCc P, p<iS iff pe S.

Now fix a frame # in which P is dense and a cover scheme C on P. An element ¢ € H is
said to cover an element p € P if there exists a cover S of p for which 15 < a. A C-element of
H is one which dominates every element of P that it covers—that is, an element @ € H
satisfying

Vpe P[ASeC(p)VS<a— p<al.

We write Hc for the set of all C-elements of H, It is evident that H is closed under the

meet operation of A. Notice that C-elements and C -clements coincide (recalling that Cis

the normalization of C.)
The canonical H-cover scheme ci'i on P is given by

5 e Culp) o\ =p.

Clearly Cy is a pretopology, and every element of H is a Cy-element.
Corresponding to the Lemma of §1I, we have: 5

Lemma. If ae H,be H;, then a= be H.
Proof. Suppose a€ H,be H,, S € C(p) and VS < (@ = b). Writing U for
{g:q <a&3s e S(q < s)},we have

V[IsMSAq:seS,an}=VSA.\Aq:qSa}=VSAasb.
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Now if ¢ <p A a, there is T € C(q) sharpening S. Then

teT>t<a&3IseSt<s),

so that T cU, and therefore VT SX/U < b. Since b €Hpg, it follows that g < b. Hence
gspra—>q<b, sothatpra<band p<(a=b). We conclude that
(@=b)e H,. O

It follows from the lemma that H is itself a frame.

The nucleus on H associated with the cover scheme C on P is the map j = ket H — H
defined by

j(a)=A{xe H.:a<x}.

That j is a nucleus results from the following observations. Evidently j is order
preserving, maps H onto He, is the identity on He,
and satisfies j(1)=1 and a < j(a) for all @ € A. Also it is easily shown that

Jj(i(@) = j(a). Finally, j preserves finite meets. For clearly j(a A b) < j(a) A j(b) since j is
order preserving. For the reverse inequality, consider first the element u =
(a=> jla A b)) :this is, by the Lemma above, an element of H, so that j(u) = u. Also j(b) <

u. For from b Aa < j(a A b)we deduce b < (a = j(a A b)) = u, whence j(b) < j(u) = u.
Similarly, v=((a = j(a A b)) = j(a A b)) is an element of Hc and j(a) < v. Therefore

jl@)a jb)<vAau< jlanb),
as required.

Notice that the nucleus associated with a cover scheme coincides with that associated
with its normalization.

Accordingly we have shown that each cover scheme on P determines a nucleus on H.
Conversely, we can show that any weak nucleus on H determines a cover scheme on P. For,
starting with a weak nucleus j on H, define the map D, on P by

D,(p)={Sc p¥: p<ji\/s).

Then D; is a cover scheme on P. For suppose g < p and S e D (p). Then
gqsp<j MS); since ¢ < j(¢) and j preserves finite meets, it follows that

a<jl@)~ jl/S)= jla\S)=il/isnq:ses). @
Now define T g{ by

T={t:t<q&3se S(t<s)}.
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We claim that T is a (D;-) cover of ¢ sharpening S. That 7 sharpens S is evident from its
definition. To see that it is a cover of ¢ we observe that, if s € S, then

sx\q=V{t :t<sAqg} =V{t:t$s&t5q} sVT.
Therefore V{s AQ:SeS} S.\/‘T, so that, by (*),
a< j\isna:sesy<ji/n),
that is, T covers q.

When j is a nucleus, the associated cover scheme D; is actually a pretopology. For in any
case {p} € D; (p). Moreover, ifj is anucleus, S € D, (p) and 7, € D, (s) foreachs € S, then

p<il/s)< iV /T < GV V)= i/ UT).

Therefore U T. € D; (p), and D; is a pretopology.

se8

Starting with a weak nucleus j, we obtain the corresponding cover scheme D; . The latter
in turn determines a nucleus j * given by
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j* is called the nucleus’ generated by the weak nucleus j: it is easily deduced from (*)
that when j is a nucleus, j* and j coincide.

The generation of nuclei by weak nuclei can itself be seen as an instance of a nuclear
operation. For consider the set W(H) of all weak nuclei on /. When W(H) is partially ordered
pointwise in the obvious way, it becomes a frame with implications, joins, and meets given by

the following specifications: (j => k)(a)= A{:}(b)ﬁ k(b)) and for S < W(H),

(Va)[a] VS(G) (Ab][a]-»/\ s(a). The subset N(H) of W(H) consisting of all

SeS
nuclei can be shown to be a sublocale (see [3]) of N(H), that is, it is closed under arbitrary
meets in W(H) and is such that (j = k) € N(H) whenever j € W(H), k € N(H). That being
the case, the map ¢: W(H) — N(H) defined by

o) =[\tk e N(H): j <k}

is a nucleus on W(H), and it is easily shown that @(/) = j*. So the generation of nuclei by
weak nuclei is precisely the action of the nucleus ¢.
Now start with a cover scheme C on P, obtain the associated nucleus k¢ on H, and

consider its associated cover scheme D, = C *on P. By definition we have, for Sc pi,

sec*(p)o p=<jcl/s)
o p<l{xeH, VS<x}
(—)VerchSSx—»psx)

Recalling the definition of He, we see immediately that this last assertion is implied by §
€ C(p), so that always C(p) < C*(p). The reverse inclusion will hold, and so C will coincide
with C*, precisely when the cover scheme C is saturated, that is, coincides with its saturate,
which we next proceed to define.

The (H-) saturate C of a cover scheme C on P is defined by
C(p)={Sc p¢:VercNS$x—>p$ x)}.

Then Cis a cover scheme. For if § € c (p) and ¢ < p, consider the subset T of P
defined by
T={t<q:3seS(t<s).

It is easily shown thatVT US) A q.Now ifx € Hc and 1T < x, then VSA gsx
whenceVS < (¢ = x). But since x is an element of H, so, by the lemma, is ¢ = x, and since
seC (»), it follows that p < (g = x). Thus ¢ = p A ¢ <x. Accordingly 7' € C (q),and T

obviously sharpens S. This shows that C is indeed a cover scheme.

* It can be verified directly that /* is a nucleus.
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It is readily shown that any cover scheme associated with a nucleus (as opposed to a
weak nucleus) is saturated. Observe that, when H is P, every coverage on P is saturated,

since in that case He is C and so we have, using Proposition 1.1 (iv),
SeC(p)oVIeC[ScI—> pel]lo peS* o SeC(p).

To sum up, each weak nucleus on H gives rise to a cover scheme on P and the cover
scheme associated with a nucleus is saturated. Conversely, each cover scheme gives rise to a
nucleus. This establishes mutually inverse correspondences between nuclei and saturated
cover schemes.

Given a € H, we define the nuclei j, j* on H by

js(x)=avx fX)=a=x.
The associated cover schemes (easily seen to be pretopologies) on P are given by:

SeC,(p)< p<avVs
SeC%p) e pra<yS.

Notice that

psa>2eC,(p)
p<-a+ e Cp).

The double negation operation —— is a nucleus on H, whose associated cover scheme is
precisely the dense cover scheme Den (which accordingly is also known as the double

—

negation cover scheme). An argument similar to the one above showing that Den is a
Boolean algebra establishes that Hp,, is a Boolean algebra: it is in fact the complete Boolean
algebra of ——-closed elements of H.

Proposition. Let j be a weak nucleus on A. Then the following are equivalent: (a) j(0) =
0 (b) j < —— (in the pointwise ordering of W(H)) (c) D ¢ Dy(p) for all p.

Proof. If j < —— then jO0 < ——0 = 0. Conversely if j0 = 0 then, for any a € H,
jla)r—a < jla)a jl-a)= jlan—a)= jO=0. So jla)< ——a. Finally, we

have
jO=0<—aOeHDJ < Vp[ESeD(p)y5=0—- p=0]
© Vp-ESeD,(p)\/s=0]
© Vp[d & D;(p)]. o
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COVER SCHEMES AND KRIPKE MODELS

We revert to the assumption that (P, <) is a preordered set. Recall that a presheaf on P is
an assignment, to each p € P, of a set F'(p) and to each pair (p, ¢) with g <p of amap F,;; F
(p) = F(g) in such a way that F',,, is the identity on F(p) and, forr<g<p, F,,=F, F,.

The set V(F) = U F (p) is called the universe of F. A Kripke model based on P is a
peP

presheaf K  for which K(p) ¢ K(g) whenever ¢ < p and each K,, is the corresponding
insertion map. Put more simply, a Kripke model based on P is a map K from P to a family of
sets satisfying K(p) < K(g) whenever ¢ < p. A Kripke model K based on P may be
regarded as a set “evolving” or “growing” over P: each K(p) may be thought of as the “state”
of the evolving set K at “stage” p.

Now suppose that we are given a cover scheme C on P. A Kripke model K based on P
satisfying

K@) =[] K@

58

for any p €P, § € C(p) is said to be compatible with C. (When P is directed downward, that
is, whenever each pair of elements of P has a lower bound, and C is a pretopology on P, a
Kripke model compatible with C is nothing other than a C-sheaf.)

Each Kripke model K based on P induces a Kripke model K based on the free lower
semilattice P generated by P by setting

K@=z  Kp,...p,)=K(p)u...uK(p,)

If, further, K is compatible with the cover scheme C on P, then K is compatible
with the cover scheme on P induced by P (and hence also with the associated coverage on
1'3 .) For suppose that K is in fact compatible with the cover scheme C on P. Given F & }.5 A
a nonempty subset {p,,..., p, }of F, and S, € C(p,),...,S, € C(p,), we have
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N Kx)= N Kdsy.,s,}UF)

XeSje..s8, SI€S;05, €5,
= N (Kis)u...uK(s)ulJK(p)
€S, ..,5, 5, peF
=N Ks)u..u [ K(s,)uJK (p)
565 S €5, peF

=K (p)uv...uK (p,)u U K (p)
= K (F).

Now suppose that the cover scheme C is in fact a pretopology. Then any Kripke model K
based on P induces a Kripke model K¢ also based on P but in addition compatible with C

given by
Kelp)= UJ NK(s),

SeC(p) seS

that is,
aecKy(p)«<>3ISeC(p)vseS. ae K (s).

We note that K(p) < Kc(p) for every p. It is easily checked that this defines a Kripke
model over P; let us confirm its compatibility with C. It suffices to show that, given § € C(p),

we have n Ke(s) € Ke(p). Indeed, if a € ﬂ K¢(s),. then for each s € S there is T, €
seS seS

C(s) with a € () K (t). Writing T = [ J T, , we then have T < C(p) and a € [\ K (t).
teT, seS teT
It follows thata € K (p), as required.
Let us now examine some special cases. Let U be a subset of the universe ¥ of X, and let
U* be the sieve {p: U c K(p)}. Now consider the Kripke model KY compatible with C*
induced by K. For arbitrary p € P, we have S = pi NU* e Cw(p). and U c K(s) c

KYs) for every s € S. Hence Uc ﬂ K U(S) = KYp). Thus, under these conditions, U is a

seS
subset of every KY(p). In other words, the passage from K to KY forces U to be included
in the state of KY at each stage. (Note that if U* = & then KY assumes the constant value
V.)
Again let U be a subset of V; this time define U" to be the sieve  ‘{p: U N K(p) = D}.
Now consider the Kripke model K compatible with Cy; induced by K.  Then for any p
we have

UnK(p)#@—peU'—>DBeCup)->Klp)= [ Kyls) =7.

se@
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That is, the passage from K to Ky forces each state of Ky, apart from those already
maximal, to be disjoint from U. (Notice that if U" = P, then Ky assumes the constant value

V)
We next turn to logic in Kripke models. Each Kripke model K based on P, with universe

V, determines a map K :V —> Pgiven by
K@)={p:veK(p)

This extends naturally to a homomorphism—also denoted by K —of the free Heyting

algebra F(V) generated by V into P. Think of the members of F(V) as the formulas of
intuitionistic propositional logic generated by the members of ¥ regarded as propositional

atoms. Introduce the familiar forcing relation |-x between P and F(¥) by defining

—_—

plrxe © pe K (¢). *

Then the fact that K : F(V) » 13 is a homomorphism of Heyting algebras translates into
the usual rules for “Kripke semantics”, namely

° plkxe Ay © plrx @ & plbxy
N plkke vy © plFg@ or plrgy
e plxo =y © Vgsplglrke — glrx W]
e plx—9 © Vgsp gk o
Equally, the map K :V — P extends to a frame homomorphism (i.e., a map

preserving top elements, A, and 1)—again denoted by K —of the [free frame ®(V) generated
by V. Think of the members of ®(¥) as the formulas of infinitary intuitionistic propositional
logic generated by the members of ¥ regarded as propositional atoms. Such a formula @ is
said to be geometric if it is generated from propositional atoms by applying just A and 1.
Introducing the forcing relation |Fx between P and ®(V) as in (*) above, the fact that
K : V) - P is a frame homomorphism translates into the semantical rules for geometric
formulas:

. pltx @ Ay © pltxo &plxy

. p"-RV(PI > HEEI p"‘a (P,'
el
Now suppose that C is a pretopology on P. It is then easily seen that K is compatible
with C iff each K (v) is a C-closed sieve. So if K is compatible with C, the resulting map
? Vo C can be extended to a homomorphism, which we shall denote by K ¢, of F(V)
into C . Introducing the forcing relation I ¢ between P and F(¥) by
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p cPe>pPE R:(‘P), ™)

we find that the fact that Ec FV) > Cisa homomorphism translates into the rules of
“Beth-Kripke-Joyal™ semantics for I c(see,eg., [4]),viz,

. P ”_K.C(P AY © P”"K,c ¢ &p ”_K,c v
e plkeo vy © 35eCp)VseS [slhg oo or sl cy]
e plgee =2y © Vgplglhco - gl oyl

o rhee © Vi [gle 9 - D € CE)
We verify the second and fourth of these. We have, using Proposition [ 1. (iii),

Plhce ovy o peKelovy) = Kelo)v Kely) (n ©)

o 35 Cp). sc Kelo)u Ko(y)

o 35 e C(p)vseS. se K, (9)v s e Ke(y)
© 3SeC(p)VseS [shy ¢ o or slhe o vl
Also, using Proposition I 1. (ii) we have
Pl c ~¢ © p e Kel-¢) =K (o) = (K (o) = 0)

o Vaplge Ke() > @ e Cg)

© VYg<plg I ¢ 9 = @ € C(g)].

p—

Since Den is a Boolean algebra it follows that, when K is compatible with Den,
P |k pea @V @ for every p, i.e., classical logic prevails in the Kripke model associated

with Emn.

When K is compatible with C, the map R V- 6 can be extended to a frame
homomorphism, which we shall again denote by Ec , of ®(V) into C . Introduce the forcing
relation |l o, now between P and ®(¥), by the same equivalence (**) syabove. When C is

a Grothendieck topology, a straightforward inductive argument shows that, for any geometric
formula ¢, :
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Pl ¢ @ < 3SeC(p) VseS.slhk 9. &)

This may be applied to “force” any given set X of geometric formulas to become true ina
Kripke model. For, starting with a Kripke model X, let 4 be the sieve {p: Voek.plrko}. Let

G be the Grothendieck topology generated by the coverage C*: it is easily verified that a
sieve § C p¥ satisfies the same condition for membership in G(p) as in CA{p), viz, p¥n4
< S. Now by () we have, for each o € Z,

p Ik o O © 38eG(p) vseS . sk o. (69)

If we take S to be pd N 4, then evidently S € G(p) and VseS . s Ibx ©. It now follows
from (f) that p Il ¢ © foreveryo € X and every p € P. In this sense G “forces™ all the

members of T to be true in the Kripke model associated with Ke.

COVER SCHEMES AND FRAME-VALUED SET THEORY

We now set about relating what has been done so far to frame-valued set theory.
Associated with each frame H is an H-valued model P of (intuitionistic) set theory (see, e.g.
[1] or [2]): we recall some of its principal features.
= Each of the members of V*'—the H-valued sets—is a map from a subset of W to H.

. Corresponding to each sentence & of the language of set theory (with names for all

elements of ™) is an clement [o] = [c]" € H called its truth value in M These
“truth values” satisfy the following conditions. Fora, b € i,

[beal= V [b=clnaalc)

cedom|a)

[b=al= (lc € b] < [c € a])

cedom(aysdom|(b)
[oatl=[c]Alx], etc.
BExe() = / [o(@]

asV

Ivxe(xl = /), T9la)]

A sentence o is valid, or holds, in V', written ¥ E o, if [6] =1, the top element of
H. The truth value [o] “measures” the degree or extent to which & holds: the larger [o] is,
the “truer” & is. In particular, when [c] = 1, o is ‘universally” or “absolutely” true, and when

[o] =0, o is “universally” or “absolutely” false.
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. The axioms of intuitionistic Zermelo-Fraenkel set theory are valid in ¥ Accordingly
the category set™ of sets constructed within N is a topos: in fact Se £ can be
shown to be equivalent to the topos of canonical sheaves on A.

e  There is a canonical embedding x — X of the universe ¥ of sets into A satisfying
[[ue;c]]= Vi[u=§]] for xe V,ueV#
yex
xeyo VP Exey, x=yoVv® x=y forx,yeV
@(X,50000 X,) © VH EQ(X,,..., X,) fOT X,,..., X, €V and restricted ¢

(Here a formula @ is restricted if all its quantifiers are restricted, i.e. can be put in the form
Vxey or 3xey.)

It follows from the last of these assertions that the canonical representative H ofHisa

Heyting algebra in V™. The canonical prime filter in ﬁr is the H-set Oy defined by
dom(®,)={a:aec H}, m,,(&) =a forae H.
Clearly ¥ &= ®,; c H , and it is easily verified that

VM &= @ is a (proper) prime filter* in ?I L
It can also be shown that @y is V-generic in the sense that, for any subset 4 c H,

V‘”"::\?Eetbh, oD, NAzD.

Moreover, for any a € H we have [a € @, ] =a, and in particular, for any sentence

o, [c] = ﬂm € ®,]. Thus Ve g o M E m € M, —in this sense @y is the filter

of “true” sentences in /.
This suggests that we define a truth set in M 10 be an H-set F for which

VW & F is a filter in f"}such that F © Oy

There is a natural bijective correspondence between truth sets in W and weak nuclei on
H. With each weak nucleus j on H we associate the H-set T defined by dom(7)) = dom(®y)

and T(@) = j(a) for @ € H. It is easily verified that T is a truth set—the requirement that 7}
be a filter corresponds exactly to the condition that j preserve finite meets and that it contain

* We recall that a filter F in a lattice is prime ifx vy € Fimpliesx € Fory € F.
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®y to the condition that j satisfy @ < j(a). Inversely, given a truth set F in ¥, we define the

map jr: H—> H by jr(a)= [[& € T']. Again, it is readily verified that j is a weak nucleus
on H. These correspondences are evidently mutually inverse and in fact establish an
isomorphism between the frame W(H) of weak nuclei on H and the internal frame of filters in

H containing @y Under this isomorphism nuclei correspond precisely to reflexive truth
sets, that is, truth sets satisfying the additional condition (evidently met by @)

V¥ =[aeFleF>ackF.

It is of interest to examine the familiar case in which H is a complete Boolean algebra B.
In this case the canonical prime filter @ is an witrafilter in B, so that, in VB the only filters

in § containing ®z—the only truth sets—are @ itself and E It follows that, for truth sets
Fand G in V¥

VEF=G«[0eF & 0eG].

In other words, the truth value I[ﬁ € F']l, which can be an arbitrary member of B,

determines the identity of /. This means that truth sets in ¥®_ and so equally weak nuclei on
B, are in bijective correspondence with the members of B. In fact it is readily shown directly
that any weak nucleus on a Boolean algebra B is of the form j, for some a € B. For given a
weak nucleus j on B, observe: —X < j(—x), whence —j(-x) < ——x = x. Also

J(x) A j(=x)= jlx A —=x)= j(0), whence j(x) = j(=x)= j(0)=—j(=x) v j(0) <
x v j(0). But clearly x v j(0) < j(x), so that j(x) = x v j(0).

Consider now the special case in which H is the completion Pofa preordered set P. We
have already established a bijective correspondence between Grothendieck topologies on P

and nuclei on P. This leads in tum to a bijective correspondence between Grothendieck
topologies on P and reflexive truth sets in V") Explicitly, this correspondence assigns to
each Grothendieck topology C on P the reflexive truth set 7¢ in V¥ given by T(S) = §* for

S € P, and to each reflexive truth set F in VP the Grothendieck topology Cr on P defined
by SeC,(p)<> pelSeT]
The toposSEl"B' of sets in 74l is, as we have observed, equivalent to the topos of

canonical sheaves on P, which is itself, as is well known, equivalent to the topos Set P of
presheaves on P. Moreover, Grothendieck topologies on P are known (see [4]) to correspond
bijectively to internal Lawvere-Tiemey topologies—that is, internal nuclei—on the truth-

value object Q in Set P” How this fact related to the representation of Grothendieck
topologies as reflexive truth sets in V12 1t turns out that in a general F*” there is a natural

bijection between truth sets/reflexive truth sets and weak nuclei/nuclei on Q = {u: u < 1}.
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The representation of Grothendieck topologies as truth sets in D while equivalent to that
through Lawvere-Tierney topologies, seems especially perspicuous.

The forcing relation I-p in V'P) between sentences and elements of P is defined by

plkpcepe][c]l’n’.

Note that we then have

[c]° ={p:plt o}.

- satisfies the usual rules governing Kripke semantics for predicate sentences, viz.,
o plpoay © plpe & plrpy
o plpo vy © plpg or pltpy
o plrpo o>y © VYasplqlbre — glFpy]
e plkp—g < Vg<p q¥x9
o plpVxe o plkpo(a) foreverya € v
e plrp3xg o pltpola) for some a € v,

We note also that |Fp is persistent in the sense that, if p I-p ¢ and ¢ < p, then g I @.

If C be a pretopology on P, the forcing relation I-c in the model V‘é] is similarly defined
by

pl o pelos];.

As for Kripke models, this relation can be shown to satisfy the rules of Beth-Kripke-Joyal
semantics, Viz.,

e plorverlcoe &pley

o plteo vy © 3SeCp) VseS [slco or slkey]
e plpo =y & Yq<plqlbco — gl vl

o ple—o © Yqp gl 0 > D e Cp)]

o plVxp & plico(a) forevery a € v©

o plkg3xp &3S € C(p) VseS slkcp(a) for some a € Ve,

POTENTIAL APPLICATIONS OF COVER SCHEMES, KRIPKE MODELS,
AND FRAME-VALUED SET THEORY IN SPACETIME PHYSICS

In spacetime physics any set C of events—a causal set—is taken to be partially ordered
by the relation < of possible causation: for p, g € C, p < g means that g is in p’s future light
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cone. In her groundbreaking paper [5] Fotini Markopoulou proposes that the causal structure
of spacetime itself be represented by “sets evolving over C” —that is, in essence, by the topos
Set® of presheaves on C™ To enable what she has done to be the more easily expressed
within the framework presented here, we will reverse the causal ordering, that is, C will be
replaced by C*, and the latter written as P—which will, moreover, be required to be no more
than a preordered set. Thus P is a set of events preordered by the relation <, where p < g is
intended to mean that p is in ¢ ’s future light cone—that g could be the cause of p. In requiring
that < be no more than a preordering—in dropping, that is, the antisymmetry of <—we are, in
physical terms, allowing for the possibility that the universe is of Goédelian type, containing
closed timelike lines.

Specifically, then, we fix a preordered set (P, <), which we shall call the universal causal

set; its members will be called events and p < ¢ understood to mean that p is in g s causal

future, or ¢’s future light cone, in short, that p is a possible effect of g. (Thus, for each event
p, the set pl is p’s future light cone.) Markopoulou, in essence, suggests that viewing the
universe “from the inside” amounts to placing oneself within the topos of presheaves or

“evolving universe” Set P” _ Since, as we have already observed, Set P is equivalent to the
topos of sets in V") Markopoulou’s proposal may be effectively realized by working within

V') Let us do so, writing for simplicity H for P : we think of ¥*” as an evolving universe,
and describing what the universe looks like “from the inside” will then amount to reporting
the view from " . Each sentence o of the language of set theory will be construed as an
assertion concerning the evolving universe 7,

The fact that each truth value [6]” (which we shall normally abbreviate to [o]) is a
sieve in P— that is, satisfics p € [c] and g <p - ¢ € [o] may be understood as asserting
that truth values in the evolving universe are “closed under potential effects”, or “causally
closed”.

The forcing relation |p (which we will usually write simply as i) defined in the previous
section now links events p and assertions o: p I+ o will be taken to mean that ¢ holds as a

result of (the occurrence of) event p, or that p induces the assertion ¢ to hold. The persistence
of |- —i.e. the fact that, if p I 6 and ¢ < p, then ¢ |- c—amounts to the observation that,

once an event p deduces an assertion to hold, that assertion continues to hold throughout p’s
causal future’.

Define the set K € V™) by dom(K)= {p: p € P}and K(p)= p L. Then,in V),

K is a subset of Pand forp € P, [pe K] = p {. K is the counterpart in V" of the
“evolving” set Past Markopoulou defines by Past(p) = p¥, with insertions as transition maps.

(f" incidentally, is the v counterpart of the constant presheaf on P with value P which

% 1t follows that assertions must be taken as being implicitly in the past tense: “such and such was
the case”.
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Markopoulou calls World.) Accordingly the “causal past” of any “event” p is represented by
the truth value in V") of the statement p € K . The fact that, for any p, ¢ € P we have

q“‘p};EK(—) g<p

may be construed as asserting that the events in the causal future of an event p are precisely
those forcing (the canonical representative of) p to be a member of K. For this reason we shall

call K the causal set in V7,

If we identify each p € P with pl € H, P may then be regarded as a subset of H so that,
inV"¥ Pis a subset of H . It is not hard to show that, in V%) g generates the canonical
prime filter ® in H . Using the V-genericity of @y, and the density of P in H, one can show

that [c] =[3pe K.p < m]] , so that, with moderate abuse of notation,
AR [ce3pek plo]

That is, in V‘H}, a sentence holds precisely when it is forced to do so at some “causal
past stage” in K. This establishes the centrality of the causal set K—and, correspondingly,
that of the “evolving” set Past— in determining the truth of sentences “from the inside”, that

is, inside the universe V'),
Markopoulou also considers the complement of Past. In the present setting, this is the

V) _set —K—the complement of the causal set K—for which

[pe-Kl=lpe K]=-p & Markopoulou calls (mutatis mutandis) the events in
—p those beyond p's causal horizon, in that no observer at p can ever receive “information”

from any event in —p{. Since clearly we have
gl pe-K & ge—pl, (%)

it follows that the events beyond the causal horizon of an event p are precisely those forcing
(the canonical representative of) p to be a member of —K. In this sense —K reflecis, or
“measures” the causal structure of P.

In this connection it is natural to call ~—p¥ = {q : Vr < q3s <r.s < p] the causal

horizon of p: it consists of those events g for which an observer placed at p could, in its
future, receive information from any event in the future of an observer placed at ¢. Since

qlF pe——K & ge-—pl,

it follows that the events within the causal horizon of an event are precisely those Jforcing
(the canonical representative of) p to be a member of —K.

It is easily shown that —K is empty (ie. V") —K = @) if and Gnly if P is directed

downwards in the sense that for any p, g € P there is » € P for which r <pand r < g; that is,
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if the future light cones of any pair of events have nonemply intersection or “overlap"”. This
holds in the case, considered by Markopoulou, of discrete Newtonian time evolution—in the
present setting, the case in which P is the opposite N of the totally ordered set N of
natural numbers. Here the corresponding complete Heyting algebra H is the family of all
downward-closed sets of natural numbers. Interestingly, in this case, the causal set K is
neither finite nor actually infinite.

To see this, first note that, for any natural number n, we have, [—(2 € =K)]=N. It

follows that ¥ —~Vn € N.. n € K. But, working in V™, if Vn €.N n € K. then K is not

finite, so if X is finite, then -Vne N.neK and so ——Vn e 1’%} .n € K implies the

non-finiteness of K.
But, in ¥™, K is not actually infinite. For (again working in V"), if X were actually

infinite (i.e., if there existed an injection of N into K), then the statement
VxeK JyeK. x>y

would also have to hold in ¥*. But calculating that truth value gives:

IVxe K3yeKx>yl = () [mi= | ninlm > a])

meN? neN%
= imy=Jn

= [imi=m+1)4]

m+1)d
=

So VxeK JyeK. x > y is false in ¥ and therefore K is not actually infinite.

In other words, in evolving Newtonian spacetime, the set K representing past time is
potentially, but not actually infinite: this is, in essence, what Kant asserted of time.

In order to formulate an observable causal quantum theory Markopoulou considers the
possibility of introducing a causally evolving algebra of observables. This amounts to
specifying a presheaf of C*-algebras on P, which, in the present framework, corresponds to
specifying aset A in V" satisfying

V®EA isa C*-algebra.

The “internal” C*-algebra A is then subject to the intuitionistic internal logic of V™ any
theorem concerning C*-algebras—provided only that it be constructively proved—
automatically applies to A. Reasoning with A is more direct and simpler than reasoning with
A,

This same procedure of “internalization” can be performed with any causally evolving
object: each such object of type T corresponds to a set S in ¥ satisfying
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V™ S isoftype T.

Internalization may also be applied in the case of the presheaves Antichains and Graphs
considered by Markopoulou. Here, for each event p, Antichains(p) consists of all sets of
causally unrelated events in Past(p), while Graphs(p) is the set of all graphs supported by
elements of Antichains(p). In the present framework Antichains is represented by the V™ _set

Anti = { Xc_:f’: X is an antichain} and Graphs by the V7 _set Grph = {G:3X € A .Gisa
graph supported by A}. Again, both Anti and Grph can be readily handled using the internal
intuitionistic logic of V.

Finally let us examine the role of cover schemes on causal sets. Suppose we are given a
cover scheme C on the universal causal set P. Each C-cover of an event p may be thought of
as a “sampling” of the events in p's causal future, a “survey” of p's potential effects—in a
word, a survey of p. Using this language the defining condition (Cov) for cover schemes laid
down in section I becomes: for any survey S of a given event p, and any event g which is a
possible effect of p, there exists a survey of q each event in which is the possible effect of some

event in S.
As we have seen, cover schemes may be used to force certain conditions to prevail in the
associated models. Let us consider, for example, the cover scheme Den in P. We know that

the associated frame Demn is a Boolean algebra—let us denote it by B. The corresponding
causal set Kp in ¥? then has the property

[peKyl=——p:

so that,
Q‘H“B ‘E?E KB > q E-“n—lpvjr

<> q is in p’s causal horizon.

Comparing this with (%) above, we see that moving to the universe ¥_“Booleanizing”
it, so to speak—amounts to replacing causal futures by causal horizons. When P is linearly
ordered, as for example in the case of Newtonian time, the causal horizon of any event
coincides with the whole of P, B is the two-element Boolean algebra 2, so that P is just the
universe ¥ of “static” sets. In this case, then, the effect of “Booleanization™ is to render the
universe timeless.

The universes associated with the cover schemes C* and C, seem also to have a rather

natural physical meaning. Consider, for instance the case in which 4 is the sieve py—the

causal future of p. In the associated universe V© the corresponding causal set K satisfies

[[A e K*] = least C*-closed sieve containing q
q

so that, in particular
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[[;J e K"] = least C*-closed sieve containing p
=P.

This means that, for every event g,

= A
qll—;:_‘ peK”.

Comparing this with (%), we see that in A that every event has been “forced” into p's
causal future: in short, that p now marks the “beginning” of the universe as viewed from

pory
inside V€

Similarly, we find that the causal set K in the universe v has the property

q<p->vrri ge—K,.

cA
a comparison with (%) above reveals that, in V¢ every event—including p itself—has
been placed beyond p’s causal horizon. In effect, the event p has been obliterated, effaced
from the universe—like the extraordinary events in H.G. Wells’ The Man Who Could Work
Miracles, the event p never occurred!
As a final possibility consider the universe V" associated with the free lower semilattice
P generated by P. In this case the elements of P are finite sets of events, preordered by the

—~

relation C: for F, G € P, F C G iff every event in G is in the causal past of an event in F.

The empty set of events is the top element of P. The causal set K in V[F‘lhas the property
that its complement ~Kis empty (so that, in this universe, the light cones of any pair of
“events” overlap) and & is an initial event in the sense that F I D e K for every “event”

F. In this case passage to the new universe V") preserves the original causal relations in the
sense that

{q}"}{;}GKHQH-PE)GK-

In other words, in passing to the new universe the initial event @ and the new light cone
overlaps have been “freely adjoined” to the original universe.
REFERENCES

(1] Bell, J. L. Boolean-Valued Models and Independence Proofs in Set Theory. Oxford
University Press, 1977.



Cover Schemes, Frame-Valued Sets and Their Potential Uses in Spacetime Physics 73

(2]
[3]
(4]
(3]

(6]

Grayson, R. J. Heyting-valued models for intuitionistic set theory. In: Applications of
Sheaves. Springer Lecture Notes in Mathematics 753, 1979.

Johnstone, P.T. Stone Spaces. Cambridge University Press, 1982.

Mac Lane, S. and Moerdijk, I. Sheaves in Geometry and Logic. Springer-Verlag, 1992.
Markopoulou, F. The internal description of a causal set: What the universe looks like
from the inside. arXiv:gr-qc/98ii053 v2 18 Nov 1999.

Rosenthal, K. I. Quantales and their Applications. Longman, 1990.



