Chapter 9
The Axiom of Choice in an Elementary Theory
of Operations and Sets

John L. Bell

9.1 Introduction: The Concepts of Operation and Function

The terms “operation” and “function” are fundamental in the vocabulary of math-
ematics, and their meanings are closely related. Nevertheless those meanings are
different. Operations, in the mathematical sense, were recognized and used millen-
nia before the emergence of the idea of function. This can be seen above all from
the fact that, in arithmetic, addition, multiplication, etc. are called operations, rather
than functions. Given that (whole) numbers themselves arise from the fundamental
operation of (intransitive) counting, the idea of an operation on numbers emerges
almost automatically from the idea of number itself: it has the same kind of imme-
diacy. Of significance also is the fact that numerical operations are homogeneous
in that they transform numbers into numbers—Ilike into like. Algebra arose through
the recognition that the rules governing arithmetic operations could be extended
to wider domains of entities presented as symbols, yet at the same time retain-
ing the homogeneity of the arithmetic operations: for example, fractions by the
Babylonians, quadratic expressions by the Hindus, and cubic expressions by the
pre-Renaissance Italian mathematicians. Since algebraic operations act on symbols
they are intensional in the sense that the result of applying such an operation to a
symbol produces another symbol whose identity depends entirely on the identity
of the first symbol, rather than on what that symbol may happen to denote—its
“value”. (By contrast, a procedure whose outputs depend only on the denotations
or values of the inputs we shall deem extensional: see below.) For example, 22 and
4 both denote the same number; but while +/22 and +/4 both denote the number 2,
as symbols they are entirely distinct. Of course, in a simple situation such as this
the intensionality is easily “eliminated” by the application of rules of reduction, so
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allowing the derived symbols to be recognized as having the same value. But this is
by no means always the case. A profound instance of the irreducible intensionality
of algebraic operations in this sense—and a source of great puzzlement to the math-
ematicians of pre-Renaissance Italy—arose with the effort to solve irreducible cubic
equations. As Cardano recognized, if Tartaglia’s method is applied to the equation

¥ —15x—4=0, ©.1)

one obtains the solution
3 3 ‘
x=\/2+«/—121+\/2—«/—121. 9.2

But it is immediately clear that (9.1) is algebraically equivalent to the equation

x—4) <x2+4x+ 1) =0, 93)
which has the obvious solution
x=4 94)

If we denote by S the operation of solving a cubic equation, then S applied directly to
equation (9.1) yields solution (9.2), while S applied to the equivalent equation (9.3)
yields the solution (9.4), which is formally quite different from (9.2). In this (an
algebraically “irreducible” case) there are no rules of reduction enabling (9.2) to be
transformed into (9.4). Thus S is an example of an operation whose intensionality is
essentially ineliminable—a truly “irreducible” case of intensionality.

Turning now to the concept of function, the idea can be traced to the analysis of
motion undertaken by the mathematicians of the 17th century, specifically, to the
study of curves arising as paths of moving points. The term “function” in its mathe-
matical sense was first introduced by Leibniz in 1673 to mean any quantity varying
from point to point on a given curve (e.g. the length of the tangent), the curve itself
being given by an equation. Leibniz later came to use “function” to signify a quan-
tity, or quantities, whose values depend on a variable. The form or expression of, or
the law governing such a dependence was, for a long time, taken to be an essen-
tial element in the idea of a function: for example, in 1667 James Gregory defined
(what later become known as) a function to be any quantity obtained from other
quantities by algebraic operations, or by “any other operation imaginable”. Later
John Bernoulli speaks of functions as quantities formed of variables and constants
in an arbitrary manner: this last phrase was intended to allow for the inclusion of
transcendental functions such as the trigonometric and exponential functions as well
as algebraic. For Euler, who in 1734 introduced the standard notation f{(x) and whose
Introductio of 1748 was the first work in which the function concept played a central
role, the principal difference among functions arose from the mode of combination
of the variables and constants comprising them. So for instance the transcendental
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functions, arising as infinite series, are distinguished from the algebraic functions
by the fact that in the former the operations of the latter are iterated to infinity. Up to
the end of the 18th century the function concept may be said to have been conceived
in a way similar to that of operation, that is, intensionally.

This state of affairs was to change in the 19th century, during which the concept
of function underwent a vast expansion following the introduction of Fourier anal-
ysis. Even so, initially mathematicians still cleaved, by and large, to the view that a
function must be representable by an analytic expression of some kind, despite the
enlargement of the idea of analytic expression to include Fourier series. In 1837,
however, Dirichlet took the decisive step of freeing the idea of a function from the
mode of its expression, or “law” governing it by enunciating the definition that has
since become standard, namely, that y is a function of x when to each value of x
(in a given interval) there corresponds a unique value of y. He emphasized that it is
immaterial whether y depends upon x according to one law or more or whether that
dependence can be expressed in terms of mathematical operations.

Dirichlet’s definition ultimately led to the identification of functions within set
theory as single-valued relations. Thus a function was conceived, in essence, as indi-
~ cating an arbitrary dependence, or correspondence, between numbers!. This move
enabled functions to be treated purely extensionally, in terms of its “range of val-
ues” or “graph”. The intensionality? associated with the old conception of function
accordingly began to drop away.

Since mathematical operations also satisfied, in a formal sense, the same
“uniqueness” condition as functions, these too were subsumed under the idea of
single-valued relation. In this way an operation became identified as a special type
of function, in fact, a function (and so, in particular, conceived extensionally) sat-
isfying just the “homogeneity” condition that it associate like with like. Thus the
essentially intensional character of operations also became obscured.

9.2 The Axiom of Choice

The extensional treatment of functions is implicit in Zermelo’s 1904 formulation of
what later became known as the Axiom of Choice:

Imagine that with every [nonempty] subset M’ [of a given set M] there is associated an
arbitrary element m;’ that occurs in M’ itself. . . this yields a “covering” of the set M [of
nonempty subsets of M] by certain elements of M. The number of these coverings is equal
to the product [of the cardinalities of] all subsets M’ and is therefore certainly different
from 0.

!In the eleventh edition (1913) of the Encyclopedia Britannica we find the mathematical concept
of function defined as a variable number, the value of which depends upon the values of one or
more other variable numbers. This is essentially Dirichlet’s definition.

2Nevertheless, itis of interest to observe that the old term fungible, itself derived from “function”,
15 defined to mean “capable of mutual substitution” or “interchangeable™; that is, “having the same
function”. This would seem to indicate that the idea of function involved is extensional in the sense
specified above.
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The Axiom of Choice is essentially the assertion that every nonempty set has
one covering in this sense. From the passage above it seems clear that for Z
a “covering”, obtained by associating an arbitrary element to each nonempty
of a set, is essentially a function (a choice function) given extensiona
not only does Zermelo omit to mention how such a function is to be def
the purely “numerical” (or combinatorial) justification he gives for the e
of coverings justifies the existence of the corresponding functions only when
are given in the extensional sense. From the assertion that “the number of |
coverings is certainly different from 07, it does not follow that “there is a coy
which can be described.” And Zermelo was surely aware of this. .
As is well known, Zermelo’s use of the Axiom of Choice to prove the ¥
Ordering Theorem gave rise to a storm of controversy. He was criticized ch
on the grounds that in asserting the existence of a “covering” or choice fun
Zermelo had provided no method of actually defining one. In their insistence
(choice) function could not be considered to exist unless it was definable, Zermel
critics were, unconsciously perhaps, cleaving to the old intensional conception
function. I do not think it would be overstepping the bounds of plausibility
maintain that Zermelo’s critics were implicitly requiring choice functions to be pr
sented as operations of some kind. In his 1908 formulation of the Axiom of C 0iC
Zermelo attempts to circumvent the whole issue of definability by replacing
notion of choice function by that of a transversal for a family of sets, but this m OV
failed to silence his sterner critics.
Zermelo’s 1904 formulation of the Axiom of Choice is equivalent to he
assertion, for an arbitrary relation R between sets A B

(AC) Vx€Adye BR(x,y) — (F:A— BVxe AR(x, fx) .

Zermelo’s critics would not accept the consequent of this implication unless an
explicit description of the “choice” function f 1 A — B appearing there could be
provided. So in effect they were insisting that f be definable in some way. Let ug
be specific and construe “definable” as Jfirst-order definable (in the language of set
theory), and write DAC for the version of AC in which the “f” in the consequent is
restricted to first-order definable functions. DAC is intended to provide a reasonable
representation of what Zermelo’s critics understood AC to mean. If that is granted,
then Zermelo’s critics were perfectly justified in questioning (what they understood
by) the Axiom of Choice. For, as was shown in the 1960s, DAC can fail even when
AC holds (in the usual set-theoretic sense), as follows from Feferman’s construction
of a model of ZFC in which the set of real numbers has no definable well-ordering,
This is a striking and subtle instance of the (by now) familiar phenomenon of a
function whose extension is guaranteed but which cannot be defined in a prescribed
manner.

Now there is no reason to suppose that Zermelo’s critics would have relaxed
their insistence on the definability of the choice function Jfeven when the relation R
is single-valued. The Axiom of Choice for single-valued relations is usually called
the Axiom of Unique Choice; it takes the form
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(AUC) Vxe Adlye BR(x,y) > (3f : A — B) Vx € AR (x, fx).

In the usual set theories, functions are simply identified with single-valued relations:
AUC is thereby reduced to a truism. (Indeed, AUC may be seen as a set-theoretic
formulation of Dirichlet’s definition of a function.) But if, in the spirit of Zermelo’s
critics, one requires in the consequent of AUC that the function f be first-order
definable—let us call the result DAUC—then the latter is certainly no truism, and
in fact is no longer generally affirmable. For it is easy to show that DAUC holds
in a model M of set theory if and only if M is pointwise definable, that is, if every
element of M is first-order definable in M. (An example of such a model is provided
by the so-called minimal model.)

A mathematical context in which one would expect a “definable” version of AUC
to hold is provided by recursive, or computable mathematics. For instance, let N
denote the set of natural numbers and write CAUC for the assertion

VxeN3lye NR(x,y) > 3f: N— N) [frecursive/\Vx € NR(x, fx)].

CAUC amounts to what constructivists call the strong version of Church’s thesis,
namely the assertion that every total function N — N is recursive. While CAUC is
compatible with set theory based on intuitionistic logic—it holds, for example, in
the so-called effective topos—it is compatible with the usual set theory based on
intuitionistic logic.

9.3 A Proposal

All this suggests the desirability of distinguishing the concepts of operation, func-
tion, and single-valued relation (i.e. set). Of course, in an important sense this step
was taken some time ago by category theory, in which the ideas of operation and
function are present in the vastly more general form of morphism or arrow, while
the set concept, as such, has disappeared, or at least is present only in a residual
sense as the notion of object, which itself can be defined in terms of morphism.

The theory presented here—an elementary theory of operations and sets,
ETHOS for short—differs from the theory of categories in that sets, on the one
hand, and operations and functions, on the other, are treated on a par: operations
and functions are not “reduced” to sets of ordered pairs (as in set theory), but nei-
ther do sets vanish altogether (as in category theory). It will be formulated as a
constructive theory based on intuitionistic logic.?

In ETHOS the idea of operation will be taken as primitive: it will be liberated
from the “homogeneity” condition in that an operation will be allowed to have
arbitrary, possibly differing, sets as domain and codomain. Most importantly, the
concept of operation will be treated intensionally (as nature intended). The concept
of function will play only a secondary role in our scheme. In fact, the notion will

3 For some related approaches, see (Feferman 1975, 1979).
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only arise in the form of (extensional) choice Junction on an indexed family of sets!
Finally the concept of set will be entirely distinct from the concept of operation and
subject just to rudimentary axioms, similar to those introduced in Bell (2008). We
shall see that ETHOS provides a natural framework for investigating the Axiom of
Choice.

9.4 The Basic Language and Axioms of ETHOS

Language: ETHOS is a theory presented in a two-sorted version L of the system
of (intuitionistic) predicate logic with partial terms as formulated by Beeson (1985).
The equality relation = in L is to be understood as intensional equality. In this
system the rules for the formation of formulas and terms are as usual, but there is an
additional rule:

e ifzis aterm, then 7A is an atomic formula (7 is defined”).

The propositional axioms and rules of inference are the usual intuitionistic ones.
The quantifier axioms and rules are as follows:

A— B B— A

b4 4 >B B VA (x not free in B) -

© VXANIA > Alt/x] Alt/x] AtA > 34

e X=X XxX=y—>y=x

® S=INA(S) > A(t), wheres =tissA VIA > s =t¢
8 Ay aninly) = A N . Nl A (A any atomic formula)
e cA (c any constant symbol)

e xA (x any variable)

L has two sorts: SET and OP. Terms of sort SET will be denoted by italic letters
XY % 6w, v,..., A, B, C, ...and terms of sort OP by Greek letters ¢, 1, ...,
P, W, ... In addition to the equality symbol =, L also has the following constant,
relation and function symbols®, each of which is assigned a signature as specified
below:

® arelation symbol € of signature (SET, SET)

e a function symbols {-, ‘U« x -, (), each of signature ((SET, SET), SET).
We write {r} for {7, 1}.

4 More generally, a function can be conceived of as an operation defined on a set respecting 4
given equivalence relation on that set. Taking the equivalence relation is to represent the idea of
“possessing the same value”, an operation respecting such is then extensional in the sense that ifs
outputs depend only on the “values” of its inputs.

3 Here the term “function symbol” (which, strictly speaking, should be “operation symbol”) i
being used with its usual syntactic sense in formal systems.
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e aconstant symbol 0 of sort SET. We write 1 for {0} and 2 for 1051k

o function symbols dom, cod, grph each of signature (OP, SET) : we write
¢: A — B to indicate that dom(¢) is A and cod(op) is B. In that case, ¢ is
said to be between A and B.

¢ afunction symbol ap of signature ((OP, SET), SET): we write ¢(f) for ap(o, 1).

¢ afunction symbol comp of signature ((OP, OP), OP): we write o ¢ for comp(o,
V).

o function symbols res, cores both of signature ((OP, SET), OP): we write ¢|z for
res(¢, Z) and ¢|? for cores(¢, Z).

¢ a function symbol t of signature ((SET, SET), OP): we write vy for u(X, Y) and
wxfor uyy.

o function symbols 7, 7y of signatures ((SET, SET), OP): when the sets A, B are
clear from the context, we write 7, 1, for mt; (A, B), m> (A, B).

In addition L has certain abstraction terms: if 1(x) is any term, A (x) any quantifier-
free formula, both containing the free variable x, and U any term of sort SET, then
{t(x) : A (x) Ax € U}is aterm of sort SET.

Axioms: ETHOS has two groups of proper axioms

SET axioms.®

* Empty set Vx—(x €0)

¢ Unordered Pair Vx[xe {a,b} & x=aVx= b]

¢ Ordered Pair (a,b) = (c,d) ©a=cAb=d

¢ Binary Union Vx[x€c AUB & xecAVxeB]

+ Cartesian Product Vx[x € A x B < 3y € A3z € B (x = (y, 2))]

* Primitive Replacement Vy[y e {t(x) : x€ UAA (x)}
SI;k[xeUNA@ Ay = 1 (x)]], where A is any quantifier-free formula.

» tA where  is any term of type SET containing only symbols of sort SET

» {{(x) : A(x) Ax € U} A, where A is any quantifier-free formula.

OP axioms

' 9X)A & xedom(g)

» x € dom () = ¢ (x) € cod (¢)

¢ (Uo9) A & dom () = cod (¢)

+ (Wo¢p) A= dom (Y o ¢) =dom (¢) A cod ( o ¢) = cod (o)
¢ dom () = cod (¢) A x € dom (¢) = (Y 0 @) (x) = (Y (¢ (x)))
¢ Yulu € grph (¢)] < 3x € dom (). u = (x, ¢ (x))]

D uyrA e Xcr’

These axioms are related to those of the system RST—rudimentary set theory — introduced in
Bell (2009). See also Bell (2008).

Here and in the sequel we employ standard set-theoretical terms such as “equivalence relation”
and symbols and terms such as C for inclusion.
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° XgT=>d0m(txr)=X/\c0d(txr)=_’)"/\Vxethr x):=x

e dom (7 (A, B)) = dom (12(A,B)) = A x B A cod (m1(A,B) = A Acod (m2(4,
= B AVx € AVy € B [m1(A, B)({x, y)) = x A T2(A4, B)((x, » =yl ‘

e ¢, A < Z C dom (¢)

® ZC dom () = dom(¢|z)=Z A cod(¢|z) =cod(9) AVx e Zplz(x) =
¢ (x)

. (pIZA<=>Z§c0d((p)/\Vx€d0m((p).(p(x) eZ

* ¢[“A % dom (¢|%) = dom (¢) Aceod (¢ [?) = Z AVx € dom (¢)
efF® =9

We shall writte A ~ B for Vx(x € A < x B) and ¢ ~ 1 for dom (¢) =
dom (¢) A cod (¢) = cod (Y) A Vx € dom (¢) (¢(x) = Y(x). In both cases the
relation = represents extensional equality. i

From the OP axioms it is easily deduced that the collection C of sets and oper-
ations between them is a quasicategory, that is, satisfies the category axioms with-
o as composition, the 1x’s as identity arrows and & as the identity relation between
operations. In the quasicategorical sense, C has the terminal object 0 and the initial
object {0}. '

Let ¢ : A — B and let ~ be an equivalence relation on A. ¢ is said to be ~ -
extensional if Vx e AVy e A.x ~y = ¢ (x) = ¢ ).

An operation ¢ : A — B is epi if VyeBixeA.y = ¢ (x).

An I-indexed family of subsets of a set A is an operation ¢ such that dom (¢) =/
and Vi = I¢ (i) € A We shall usually write X; for (i) and (X;: ieI ) for ¢.

9.5 The Axiom of Choice in ETHOSS

ETHOS admits a number of natural formulations of the Axiom of Choice.
Let us call a binary relation (i.e. a set of ordered pairs) R adequate on a set X
and write Arel(X, R) if Vx [x eX<& Iy ny]; and operational on X, written Orel(X,

R), if Vx [x eX & 3y ny]. Then in ETHOS the usual Axiom of Choice takes the
form

AC Arel (X, R) = 3¢ [dom (¢) = X A grph (¢) C R],
and the Axiom of Unique Choice the form
AUC  Orel (X, R) = 3¢ [dom (¢) = X A grph (¢) ~ R].

It is easy to see that AC implies AUC.

AUC enables operational relations to be replaced by authentic operations. This
facility will be used principally to define indexed families of subsets. Thus, suppose
given sets I, A and a term 1(x) such that, for i € I, t(i) € A. Then the relation

8 A number of the ideas in this section were inspired by a reading of Martin-Lo6f (2006).
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R={(i,t(): iel}is operational on / and so AUC yields an operation ¢ with
domain 7 for which grph (¢) ~ R. It follows from this that, if we write X; for (i),
then X; = ¢ (i) and so (X;:i €1) is an I-indexed family of subsets of A. Whenever
AUC is assumed, we shall introduce indexed families of subsets in this way without
further comment.

The Axiom of Choice can also be formulated in terms of indexed families
of subsets. Let us define a choice operation on an I-indexed family of subsets
(Xi : i el)ofagiven set A to be an operation ¢: I — A for which

(1) Viel. ¢(i) € X;.

Now write E for the equivalence relation on J givenby i Ej & X; ~ X;. An
-extensional choice operation on (Xi : i €l)is called a choice Sfunction.
These definitions give rise to two further versions of the Axiom of Choice,
namely:

ACO  Any indexed Jamily of nonempty® subsets of a set admits a choice
operation.

ACF  Any indexed family of nonempty subsets of a set admits a choice Junction.

It is well-known that, in the usual intuitionistic set theory, the Axiom of Choice
implies the Law of Excluded Middle (LEM). In ETHOS the situation is more
involved: there AC only yields LEM if the Axiom of Extensionality (see below)
is assumed for sets, and ACF only yields LEM in the presence of AUC. As for
ACO, it does not yield LEM even given the Axiom of Extensionality, but it does
S0 if one assumes both AUC and the existence of quotients of equivalence relations
(the Axiom of Extensionality is not needed for the derivation).

We shall take the Law of Excluded Middle in the form:

LEM!0 Forany set U, Vx[x e U v x ¢ UJ.

Itis to be observed that in this formulation LEM is asserted just for sets, not
for operations. Notice that, in ETHOS, LEM is easily deducible from its
version which asserts that, for anysets U CA,VxcAlxe Uvx ¢ U].

The Axiom of Extensionality for Sets is the sentence

“local”

Ext YUVV[U~AV = U=V].

~ We now prove

Theorem 1 In ETHOS + Ext, AC implies LEM.
‘oof. (b) Write 2 for {0, 1}. Given a set U, define

A={xe2:x=0vye U},B:{er:x:lVyeU}.

Here a set X is said to be nonempty if Ix. x € X.
This is the principle of detachability introduced in (Bell, 2009).
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ThenA C 2 and B C 2. Since0eAand 1 e B, we have
Vxe {A,B}Ize€2z¢ %

and so AC applied to the relation

R = {(x,z) € {A,B) x2.:57€x}

yields an operation ¢ : {A, B} - 2 for which Vx {A,B} .0 (x) € x. It follows
¢©(A) € AA ¢ (B) € B, so that

[e@=0vyeUlalo®B =1vye U].
Applying the distributive law, we then get
YEUV[e@A)=0r¢®B) = 1]
whence

(6] YEUVoA) #¢B).

Now clearly y € U = A ~ A (both then being 2 2), and 80, assuming Ext,
Y € U = A = B, from which we deduce Y€ U= ¢(A) = ¢ (B), whence

) 9A) #9B)=>y¢U.
(1) and (2) yield

yeUvy¢U,
i.e. LEM. |

Notice that Ext was needed to obtain (2); in its absence the argument does not
go through.

Theorem 2 In ETHOS + AUC, LEM is deducible from ACF.

Proof. We derive LEM in its “local” form. Given sets U C A, define 7 = A X 2 and
foreachi = (a, k) € IletX; ={ne2: n=kvac U}. Then (X; : iel)is
an /-indexed family of nonempty subsets of 2, so ACF yields a choice function on
(Xi: iel),ie. an operation ¢ : I — 2 such that

Vielo() eXiAVijeI[X; ~ X; = ¢ (i) = e(M].
Accordingly for every a € A,

¢ ((a, 0) € Xia0) A @ ((a, 1) € Xa,1y,
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in other terms,

[¢ ((a, 0l=0vaeUlA[y(a, ) =1vaeU].

Therefore
a€UVie(a, 0) =0A¢((a, 1) = 1],
whence
(1) acUV [o((a 0) # ¢ ((a, 1))],

Now clearly g € U = X0y ~ X (a,1) (since both are then A 2), so that, since @isa
choice function,

a€e U= ¢((a, 0) =e¢(a, 1),

whence

¢(a, 0)#¢o(a 1) > ag¢U.

This, together with (1), gives

aeUvag¢U,

- whence LEM. ]

Observe again that the argument requires that ¢ be a choice Junction rather than
merely a choice operation as specified in ACO. The latter is considerably weaker
than ACF and not strong enough on its own to yield LEM. We look finally, then,
into the problem of specifying additional assumptions sufficient to enable ACO to
become equivalent to ACF and hence to yield LEM.

We introduce the following principles:

Quotients For any equivalence relation ~ on a set I, there is a set I* and an epi
el —I* such that i ~ j & ¢ (i) =€ (j).

‘Representatives For any equivalence relation ~ on a set 1, there is an operation
9:1— Isuch that ¢ (i) ~ tandi~j= ¢ (i) = ¢(j).

Representatives asserts that representatives can be selected from the equiva-
lence classes of any equivalence relation. In ETHOS, Quotients is deducible from
Representatives. For, given an equivalence relation ~ on a set], let ¢ : I — [ sat-
By (@) ~iandi~j = ¢ (&) = ¢ ()), as provided by Representatives. Defining
F={o@G): ic I}, and & = |, it is easy to verify that e : 1 — J* ig epi and
Sitisfies i ~ j < ¢ (i) = ¢ o).



174 . J.L. Bell
Theorem 3 In ETHOS + AUC,

ACO + Quotients = Representatives.

Proof. Given an equivalence relation ~ on a set /, use Quotients to get an epi
€ I — I*such that i ~ j « €(i) = &(j). For each u € I* define
Xy ={iel: &(i) =u}). Then (Xu : u € I'*) is an I*-indexed family of nonempty
subsets of 7 and so ACO gives s : I* — ] such that Yuel*. {(u) € X,,i.e.,

Yuel*. ¢ (Y (u) = u

Nowdeﬁne(p:1—>1by(p=x[foe.Then

e(e ) =e(P(e(®)) =& (i),
whence ¢ (i) ~ i. And
i~j=e) =e() = o) =Y (@) = V() =9(@).
Representatives follows. |

Theorem 4 In ETHOS + AUC, Representatives and ACF are equivalent.
Proof. Representatives = ACF., Let (X;i: i el)be an indexed family of nonempty
subsets of a set A. Defining X’; = {i} x X;, (X'i: i€ I) is then an indexed family of
subsets of the set U = {(i, x) €I x A: x € X;}. Define the equivalence relation ~
on U by

i, x) ~(j,y) & X; ~ Xj.
Representatives then gives ¢ : U — U satisfying

M @i, x) ~ (i, x)
@ X~ Gy = el ) =0 y).

Writing o1 =109, 92 =150 ¢, (1) and (2) yield respectively

Q) @1 (i, x) € X;
@ XimXiAxeXiAyeX;= o1 ((i, x) = ¢ ((J, )

Now define

R={(m1 W), o1@): uelxArm)e X)) -
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If () = mp(v) with o () € Xn,w and 72(v) € Xx;(v), then Xy, ) = Xn,(v)
and @1 () = @1(v) from (4). It follows that R is operational. Accordingly by AUC
there is an operation ¢ : I — A for which grph () ~ R. From the fact that
i, ¢1 ((i, x))) € R for any x € X;, it follows easily that

G) Vxe X[V @) =1 (i, x))].

We claim that s is a choice function on (X; : i € I). First,  is a choice operation
since, for any x € X;, ¥ (i) = ¢1 ({(i, x)) € X; by (3) and (5). To show that V¥ is a
choice function, suppose that X; =~ Xj, and choose any x € X;. Then x € Xj and so
- by (4) and (5)

V(@) =1 ({i, x) =1 (J, x) =V ().

~ ACF = Representatives Given an equivalence relation ~ on a set I, let X; =
jel: i~j}. Then (X; : i € I)is an [-indexed family of nonempty subsets of
I and so by ACF there is a choice function on (X; : i € I). This is an oper-
ation ¢ : I — I such that (a) Vi € 1. ¢(i) € X ie. (i) ~ i; and (b)
i~j=>XicXi= o) =¢(). Representatives follows. |

Corollary In ETHOS +AUC,

ACO + Quotients < Representatives < ACF. 5]

~ In effect (assuming AUC), Quotients is what is needed to convert choice
operations into choice functions, and so to allow ACO to become equivalent to
ACF.
Remark. In constructive type theories the version ACO of the Axiom of Choice
is actually provable. Since LEM does not hold in these theories, it follows that
neither ACF nor Quotients is provable there.
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