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But when she got there
The cupboard was bare

In a recent paper,! Jaakko Hintikka and Gabriel Sandu have sought
to redress what they perceive to be the injustice that Frege is today so
highly esteemed as a philosopher of mathematics:2 They argue that to the
extent that Frege lacked the notions of an arbitrary set and an arbitrary
function, he also lacked the concept of an interpretation of the second-order
quantifier which associates with it all properties of the individuals in the
domain of the first-order quantifier. Hintikka and Sandu first present an
analysis of Frege’s notion of the extension of a concept in order to show
that Frege cannot generate, in the usual way, all sets. Next they claim that
this analysis, together with certain other, hitherto unrecognized features
of Frege’s view of real-valued functions, makes it plausible that Frege did
not have the concept of all properties—only so many as are needed to
generate a fragment of the power set of the domain of individuals—so that
Frege effectively worked within a ‘nonstandard’ interpretation of second-
order logic. According to Hintikka and Sandu, Frege never noticed that
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1 “The skeleton in Frege’s cupboard: The standard versus nonstandard distinetion’,
Journal of Philosophy 89 (1992), 290-315.

? Hintikka and Sandu’s summary remarks give the flavor of their paper:

-+ Frege failed to relate his own work to much ...of the foundational work that
really mattered to actual mathematical research and to mathematicians’ own efforts
to cﬂrarify the fundamentals of their own discipline. It seems to us unfortunate that
philosophers habitually go to Frege for their problems and for the concepts that
could help us to cope with them. Frege was far too myopic to be a fruitful source of
concepts, ideas, and problems. (p. 315)
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many of the major accomplishments of logicism—accomplishments like his
own definition of the ancestral and Dedekind’s proof of the categoricity
of the Peano Postulates—require the full power set, what we today call
‘the standard interpretation’ of second-order logic. This is the ‘skeleton in
Frege’s cupboard’ Hintikka and Sandu claim to have uncovered.

We believe that in virtually all matters of importance, Hintikka and
Sandu’s discussion is incomplete or misleading. We have, however, limited
ourselves to three main objectives. Our first objective is to cast doubt on
Hintikka and Sandu’s account of Frege’s theory of concepts and extensions
by showing that it misses one of Frege’s most important contributions to
the subject. This is taken up in Section 1 and elaborated in the Appendix.
Next we show that Hintikka and Sandu have not provided us with any
reason for believing Frege was committed to anything like a nonstandard
interpretation of his second-order quantifiers; the remarks on the develop-
ment of the concept of a real-valued function, which they offer in support
of this contention, are at best misleading. We conclude with a brief dis-
cussion of Hintikka and Sandu’s claim that the standard interpretation is
necessary for the derivation of the Peano Postulates and the proof of their
categoricity.

1. Generating new sets

In the section of their paper entitled ‘Frege lacked the notion of arbitrary
set’, Hintikka and Sandu write:

The inseparable Fregean linkage between sets and their defining properties
prevented [Frege] from generating new sets by operations acting solely on the
members of the already existing sets. (Hintikka and Sandu, p. 302.)

Hintikka and Sandu elaborate with a quote from Hao Wang ® which they
say ‘emphasizes’ the point just made. But Wang is far less committal than
Hintikka and Sandu on the question whether Frege’s theory of extensions
allows for the generation of new sets by operations acting solely on the
members of already existing sets. Wang says only that Frege’s conception
‘has little positive to say about how sets are generated’, while Hintikka
and Sandu claim that Frege’s theory actually prevents him from saying
anything about the generation of sets by such operations. So Wang can
hardly be said to have emphasized Hintikka and Sandu’s point, and as we
shall see, even Wang’s weaker claim is seriously misleading. It is in any case
not entirely clear what point Hintikka and Sandu are making, since they

3 ¢[Frege) identifies sets with their extensions and treats them as individuals (on the
same level with individuals). This suggests immediately the idea of a type hierarchy of
extensions, since extensions of predicates seem to be more closely related to predicates
than to individuals. ...But such a conception has little that is positive to say about
how sets are generated.” (Hao Wang, From mathematics to philosophy (New York:
Routledge, 1974), p. 210. Quoted by Hintikka and Sandu, p. 302.)
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nowhere explicitly specify what operations they have in mind. Presumably
they mean operations like the formation of unordered pairs. Thus in the
standard statement of the Axiom of Infinity for ZF we implicitly appeal to
the free use of such an operation when we pass from a set z to its ‘successor
set’ zU{z}. Evidently, the availability of this set is essential to the definition
of the infinite set whose existence the axiom postulates. In the Appendix we
explain in detail how one of the principal achievements of the Grundlagen,
viz., Frege’s proof of the infinity of the natural number sequence, can be
viewed as a contribution to set theory: Frege in effect discovered an ‘axiom
of infinity’ which, unlike the standard axiom of ZF, does not explicitly
postulate the existence of an infinite set, but allows for its derivation. This
undeservedly neglected achievement is comparable to Zermelo’s proof of the
Well-ordering Theorem: just as Zermelo's formulation of Choice makes no
explicit mention of well-ordering, so Frege's formulation of Infinity—what
George Boolos* has called ‘Hume’s Principle’—makes no explicit mention
of an infinite set. From a contemporary point of view, Zermelo’s proof
of well-ordering and Frege’s proof of the existence of a Dedekind-infinite
set are very closely related: as shown in the Appendix, both follow from
the same fundamental lemma of Bourbaki’s analysis of the Well-ordering
Theorem.

Thus while Hintikka and Sandu are correct in claiming that Frege does
not generate new sets by operations like the formation of unordered pairs,
this makes absolutely no difference to the ability of Frege's theory to prove
the existence of sets which must simply be assumed on the standard ac-
count. Moreover, Frege achieves this by a subtle appeal to a consistent
fragment of his theory of concepts and their extensions. This appeal—
contra Wang—depends essentially on the fact that Fregean extensions do
not constitute a hierarchy. If the stratification of predicates was ‘immedi-
ately suggestive’ to others of a stratification of the corresponding exten-
sions, this suggestion was always resisted by Frege. And for good reason:
Without the assumption that extensions are objects on the same ‘level’
as individuals—i.e., the assumption that extensions are arguments to first-
level concepts—Hume’s Principle would not have the remarkable properties
Frege showed it to have. Thus whether or not Frege employs set-forming
operations of the sort we find in the usual, axiomatic, development of the
set concept is irrelevant to the ability of this fragment of his theory of
concepts and their extensions to generate new sets from the members of
existing sets.® To be sure, Frege achieves this only through the mediation

4 ‘The standard of equality of numbers’, in Meaning and method: essays in honor of
Hilary Putnam, George Boolos, ed. (Cambridge: Cambridge University Press, 1990).

5 As Boolos has observed, Frege’s derivation of the existence of a Dedekind-infinite set
anticipates the construction of the finite von Neumann ordinals. Cf. ‘The standard of
equality of numbers’, previously cited.
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of concepts, and in this respect, his approach is certainly different from the
iterative conception. However this should not obscure the fact that Frege
achieved an infinite set by a proof where others had required an axiom.
This achievement deserves to be recognized as a significant contribution to
the subject, and the argument of the Appendix shows how ‘Frege’s The-
orem’ may be naturally incorporated into the conceptual structure of set
theory.

2. Frege on the notion of a real-valued function

Hintikka and Sandu correctly point out that the development of the idea of
an arbitrary set went hand in hand with the elaboration of the notion of an
arbitrary real-valued function. They also correctly observe that both devel-
opments bear on our present understanding of the range of the second-order
variables of quantification, since this is based on the notion of the power
set of the domain over which the first-order variables range. Hintikka and
Sandu recognize that it would be an anachronism to apply the terminology
of standard and nonstandard interpretations directly to Frege, since he did
not possess the model-theoretic framework within which we today draw
this distinction. They therefore set out to transform their observations on
set, function, standard and nonstandard interpretation into a criticism of
Frege by claiming that the chief stumbling block to the development of our
current conception of sets and functions came from their assimilation to
‘intensional’ notions like Fregean concepts and Fregean functions:

What made possible the conception of an arbitrary set was the gradual disen-

tanglement of the notion of set from intensional ingredients such as concepts,
properties, etc., and the definition of sethood in alternative ways. (p. 305)

Now there is an obvious sense in which this remark is correct: In its
full generality, the Fregean notion of the extension of a concept proved
to be paradoxical; it therefore had to be overcome if there was to be a
coherent notion of set. But this is not Hintikka and Sandu’s point. Rather
the objection they raise against Frege is supposed to hold independently of
Russell’s paradox, since they maintain that Frege’s notions of concept and
extension, even if coherent, were not of sufficient generality to represent
the concept of an arbitrary set. They argue that if for Frege sets are
represented by extensions of concepts, and concepts are, in turn, treated as
a special type of function, then the adequacy of Frege’s account ultimately
rests on his notion of a function. Hintikka and Sandu therefore address the
question of the adequacy of Frege’s notion of the extension of a concept
by considering whether his notion of a function was of sufficient generality
to capture the concept of a real-valued function in the form in which it
emerged in nineteenth century analysis. Their claim that Frege did restrict
the notions of concept and extension rests on their analysis of Frege’s notion
of a real-valued function; indeed, this is what is novel about Hintikka and



their generality. This is not how Hintikka and Sandu argue.

Hintikka and Sandy begin their discussion of Frege’s concept of a function
by granting Michael Dummett’s contention that for Frege functions belong
to the realm of reference, so that despite the terminology of, for example,
the Begriffsschrift, Frege’s functions are not to be identified with linguistic

a restricted notion of function, and thys was in this way committed to a
nonstandard interpretation, is a passage from his 1904 paper, ‘What is a
function?’

In recent times this concept has been found too narrow. However, this difficulty
could easily be avoided by introducing new signs into the symbolic language

It is not immediately clear what Frege means by ‘new signs’. Of the vari-
ous possible options, Hintikka and Sandy characteristically choose the al-

6 Grundlagen, §72. The quotation s from the translation by J. L. Austin: The foun-
dations of arithmetic, (Evanston: Northwestern University Press, 1980).

7 While this observation of Hintikka and Sandu’s is correct, it hardly justifies their
rather ungenerous attribution that Dummett is assuming that the ‘only.. . possible non-
standard interpretation [is] the one Henkin. . . considered’. (Hintikka angd Sandu, p. 304.)
It seems more likely that Dummett js assuming that this is the only non-standard inter-
Pretation which there js any textual reason, however slight, to attribute to Frege. This
is a not unnatural assumption given the intellectual context of Dummett’s discussion,
and considering the fact that this interpretation of the Begriffsschrift continues to be
advanced even today.

8 Gottlob Frege: Collected Papers on mathematics, logic, and philosophy, Brian Mc-
Guinness, ed. (Oxford: Basil Blackweli, 1984), pp. 289f. The translation is by Peter
Geach. Quoted by Hintikka and Sandu, pp. 312f,
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ternative that is the least favorable to Frege when they remark that this
quotation

... boggles the mind in that it demonstrates Frege’s alienation from the actual

working problems in the foundations of mathematics of his time. Frege is in

effect telling Dirichlet, Weierstrass, Dedekind,. .. that the problems they have
been agonizing about could easily be solved by introducing new signs into the

notation of arithmetic. (p. 313)

Evidently, by ‘the introduction of new signs’, Hintikka and Sandu take
Frege to mean the introduction of new function names, since they write:

... there is no niche in [Frege’s] world for...an arbitrary function in the sense

in which Euler, Czuber, and others were thinking of this notion. For to think

that the range of such arbitrary functions could be covered by introducing new

signs into the notation of arithmetic is not to understand this notion. (p. 313)
So while Hintikka and Sandu grant that Frege is committed to the ‘reality’
or non-linguistic character of functions, they present him as having held
that only those functions exist for which there are names in the ‘symbolic
language of arithmetic’—and this falls far short of the totality of all func-
tions.

To claim, on this basis, that Frege so restricted the class of real-valued
functions, places a rather heavy interpretive burden on a somewhat offhand
remark, considerably more than the passage can reasonably be expected to
bear. First of all, the context of Frege’s remark—an explicit reference to
the limitations that arise when the means for representing real-valued func-
tions are restricted to finite polynomials—suggests that by the addition of
new signs, Frege is referring to the admission of new algebraic expressions
in the account of ‘analytically representable.’ This is a wholly different
matter from the introduction of new function names when it includes the
use of expressions for infinitary operations and the manipulation of series.
But the briefest familiarity with what was occurring in mathematical anal-
ysis during the fourth quarter of the nineteenth century makes it highly
implausible that Frege would have meant anything else by ‘new signs’. So
understood, Frege’s remark about avoiding too narrow a specification of
the class of functions would be an allusion to results of the form, ‘If the
notion of an algebraic expression is extended (say by allowing expressions
for limiting processes, infinite sums of various types of series, or whatever),
then the class of “analytically representable” functions can be expanded to
include all functions of a particular class’. The names of many prominent
mathematicians, including Dirichlet and Weierstrass, and later, Baire and
Lebesgue, were associated with sometimes quite striking theorems of this
kind.? Neither Frege, nor any other mathematician working in Germany
at the time, would have been unaware of this research. Modulo the casual-

% For some examples, see Section 12 (“The analytical representation of functions’) of
the paper by A. P. Youschekvitch, ‘The concept of function up to the middle of the 19th
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plasticity of the concept of an ‘analytically representable function’, so that
there is simply no Jjustification for supposing that in this passage Frege is
proposing any restriction on the class of real-valued functions.

3. The concept of a function in nineteenth century analysis

The development of the function concept in nineteenth-century analysis
is of considerable importance for the history and philosophy of logic and
mathematics, and Hintikka and Sandu’s paper is one of only a small number
of recent discussions which attempt to place this development in its proper
philosophical context. It may therefore be worthwhile to remark briefly
on their suggestion that the real conceptual innovation lay in achieving
the definition of a real-valued function as simply a many-one correspon-
dence between real numbers, Hintikka and Sandu point out that this defi-
nition may have been known to Euler as early as 1755. Now in fact, Euler
gave many characterizations of the function concept, went back and forth
among his various characterizations, and seems not to have been partic-
ularly committed to this one.!® [n any case, the real innovation did not
consist in perceiving this simple definition. The achievement of the nine-
teenth century development of the function concept consisted in recognizing
the utility, and more importantly, the necessity, of such a general defini-
tion. This was something arrived at only very gradually, and it certainly
was not accomplished by the mere formulation of the idea that a function
is a many-one correspondence. It is generally agreed that while Dirichlet
and Lobachevski’s contributions to this development were of unquestion-
able importance, the acceptance of the general definition of a function was
due to Riemann. Thus Bottazzini'! remarks that

if for Dirichlet.. . the generality of the definition [of a real-valued function]
did not go along with a consistent practice in the study of equally ‘general’
functions, the Opposite is true for Riemann. In his . .. Habilitationsschrift of
1854, ... he revealed to the mathematical world a universe extraordinarily rich

in ‘pathological’ functions.

century’, Archive for the history of exact science 16 (1975/76), 37-85. (Hintikka and
Sandu’s reference to this paper is incorrect.)

10 For example, of his controversy with D’Alembert over the correct analysis of the
motion of vibrating strings, Clifford Truesdell writes:
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Bottazzini goes on to say that when one looks at the historical development,
the modern concept of a function of a real variable, in its full generality,
began to emerge in mathematical practice only towards the end of the 1860s
as Riemann's writings became more widely known.

In this connection, it should be noted, if only because the account given
by Hintikka and Sandu might suggest a different impression, that proofs
of the existence of pathologies often proceeded by showing how they arise
from the manipulation of non-pathological objects, in accordance with thor-
oughly canonical (although, possibly infinitary) operations—in other words,
by showing how some notion of analytically representable yields a patho-
logical function.!?

The historical situation in the nineteenth century seems therefore to
have been roughly this: since the physical analysis of motion provided the
principal source of examples of real-valued functions, it seemed implausi-
ble that anything so general as the notion of an arbitrary correspondence
could exhaust what might usefully be said in a definition of the notion.
The eighteenth-century controversy over the analysis of the motion of vi-
brating strings, though a problem of applied mathematics, was of pivotal
importance for the development of pure mathematics because it brought to
the forefront the problem of characterizing what was to be included in the
notion of a real-valued function: A question arose concerning the admissi-
ble restrictions on the initial shapes and initial velocities of plucked strings,
and this led naturally to the problem of characterizing what might count
as an ‘arbitrary’ curve. The existence of an intension, or even a descrip-
tion in the language of analysis, was not in question. But the availability
of techniques which would permit the effective and rigorous treatment of
general solutions was.'3

The pathological functions of later developments were pathological be-
cause they ran counter to exp ectations that were based on what was thought
to be geometrically and kinematically obvious. All the paradigm exam-
ples of pathologies traded on the presentation of functions and curves with
geometrically ‘unimaginable’ properties: continuous but nowhere differen-

12 For example, from their correct remark (on p. 297) that

[t]he innocent looking Eulerian definition of an arbitrary function turned out to admit
of surprisingly unruly denizens of the world of mathematics. .. {and] many of the
results that had been taken more or less for granted turned out to hold only for
functions with speciﬁable properties

a reader, unfamiliar with the history, would naturally miss the fact that the pathologies
arose within characterizations of the concept of 2 real-valued function that were far more
restrictive than the notion of a many-one correspondence.

13 For a thorough discussion of the methodological issues surrounding the controversy
over the analysis of the vibratory motion of strings, together with applications to the
theory of universals, see Mark Wilson, ‘Honorable intensions,’ in S. Wagner and R.
Warner, eds, Naturalism (South Bend: Notre Dame University Press, forthcoming).
The historical situation is well summarized by Bottazzini, Chapter 1, Section 3.
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tiable, everywhere discontinuous, etc. The stumbling block which the nine-
teenth century ‘extensionalists’ had to overcome was not some general inten-
sionalist doctrine, but an over-reliance on ‘intuitions’, largely geometrical
in nature, that gave rise to expectations concerning the notion of function-
ality which turned out not to be fulfilled. The entire nineteenth-century
trend toward ‘rigor’ was an attempt to free analysis of any dependence on
such geometrical and kinematical constraints, and Frege's contributions to
the foundational discussion fall squarely within this tradition.!4 Again, the
difficulty was not with the acceptability of the definition of a real-valued
function as an arbitrary many-one correspondence, but with the fact that
this notion proved intractable to any simple theory. The idea that there
should be such a simple theory motivated the search for alternative, more
substantial, definitions of the concept. In some sense, the problems faced
by Frege’s Basic Law V form the final chapter in the search for a such a
theory.

4. The necessity of the standard interpretation

By way of motivating their discussion of Frege’s sensitivity to the issues
raised by the standard/nonstandard distinction, Hintikka and Sandu claim
that

... only the standard interpretation of second-order logic enables us to use it for
the most important purposes it can serve in the foundations of mathematics. If
we assume the standard interpretation, we can easily formulate. . . categorical
axiomatizations for. .. number theory and the theory of real numbers. Like-
wise, the principle of mathematical induction is easily formulated in a second-
order logic with standard interpretation, but cannot be formulated in an ax-
iomatizable nonstandard higher-order logic.!® Thus, for most foundational
purposes we have to assume the standard interpretation of second-order logic.
(p. 295)

The reason why it is correct to say that Frege proceeded without the stan-
dard/nonstandard distinction is not, as Hintikka and Sandu argue, because
he restricted the range of the variables of second-order quantification, but
because he made the assumption, which we today recognize to be false,
that the notion of the extension of a concept, and therefore the semantical

14 This trend toward ‘rigor’ was often expressed (somewhat misleadingly) in anti-Kant-
ian terms when what was really at stake was the autonomy of arithmetic, where ‘arith-
metic’ was always understood in a broad sense which included not only the theory of
the natural numbers, but real and complex analysis, as well. While it evidently bears on
Kant's views, this concern with autonomy is capable of being motivated independently of
the details of Kantian epistemology. See Michael Dummett, Frege: philosophy of mathe-
matics, (Cambridge: Harvard University Press, 1991), and William Demopoulos, ‘Frege
and the rigorization of analysis’, Journal of Philosophical Logic, forthcoming, where this
is argued at some length.

15 Here we understand Hintikka and Sandu to be saying, ‘cannot be formulated with its
intended meaning’.
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framework of his logic, can be developed independently of any particular
mathematical theory. This is what Basic Law V would have permitted had
it turned out to be consistent, and this is what was clearly required by his
understanding of the traditional doctrine of the ‘topic-neutrality’ of logic.
By contrast, we now see that the standard/nonstandard distinction must be
understood relative to ZF or some other mathematical theory, sufficiently
rich to express the underlying semantical interpretation that we associate
with second-order logic. Although it can hardly be said to be uncontrover-
sial, it can certainly be convincingly argued that, had the derivation of the
Peano Postulates and the proof of their categoricity been established within
a framework of the sort Frege envisaged, this would have been a result of
considerable foundational significance. But if, in order to characterize the
natural numbers, we have to assume, for the specification of our logical
framework, the theory of transfinite ordinals (which is, after all, the very
least that ZF gives us), it is unclear what, of foundational interest, has been
accomplished. Certainly Hintikka and Sandu have not told us. That Frege
perceived the difficulty, at least in general terms, is clear, since it was this
that led him to abandon his program.

‘Absolute’ results, such as the categoricity of Peano Arithmetic, are es-
tablished in the strong sense which Hintikka and Sandu evidently intend
only if the notion of an arbitrary subset of NV is taken in a commensu-
rately ‘absolute’ sense. A similar remark, apparently first noted in print by
Skolem,'® applies in the case of the principle of mathematical induction.
The assumption that the power set of N is ‘absolute’ (i.e., the assump-
tion that we perfectly well know the referent of ‘PN’) is strong enough to
justify a healthy skepticism concerning the ‘added value’ of the standard-
model theorems, as compared with their set-theoretic analogues. Finally
we note that when assessing such results, it should be borne in mind that
in the case of all the standard-model theorems, the mathematically fruit-
ful observations, on which the original proofs depend, carry over intact to
their first-order versions; what proved to be of mathematical importance in
the original ‘constructions’, is therefore completely independent of whether
these constructions are understood only ‘internally’ (from within a model
of ZF), or from the ‘outside’.

16 See Wang's ‘Survey of Skolem’s work in logic’, which appears as the introduction to
Jens Erik Fenstad, ed. Thoraf Skolem: selected works in logic (Oslo: Universitetfor-
laget, 1970), p. 41. The relevant paper of Skolem (‘Uber einige Grundlagenfragen der
Mathematik’, cited by Hintikka and Sandu) is reprinted in this volume; see §7.
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Appendix: Frege’s Theorem

The chief purpose of this Appendix is to establish the existence of an
infinite well-ordering as a (hitherto unremarked) consequence of a general
version of Zermelo’s Well-ordering Theorem. We will also show how both
this fact and the existence of the natural number system can be derived
along ‘Fregean’ lines within a certain system F of many-sorted first-order
logic whose sorts correspond to Frege’s domains of objects, relations, and
first and second level concepts. The system of axioms we formulate within
F constitute a consistent fragment of Frege’s original (inconsistent) system
sufficient for the development of arithmetic.

1. The system F
We specify the basic constituents of F.
Sorts (or domains)
O — objects
B — basic (first-level) concepts
R — relations

Sy — second level concepts
S, — second level relational concepts

Variables and Constants

Sort Variable Constant
O Ty Y,2,... a,b,c,...
B XY, 2Z,... A B,C,...
R XY.Z..  ABC.
S XYz.. 4B, C,
s XY.Z. 48,0,

A term is a variable or a constant or one of the concept or relation or
extension terms to be introduced shortly. A variable of sort B or S, will be
called a concept variable for brevity.

We assume the presence of an identity sign = yielding atomic statements
of the form s = ¢ where s and t are terms of the same sort. On all domains
except O, = is to be thought of as intensional equality.

We also assume the presence of a predication sign yielding atomic
statements of the form snt, (s't')nu where s is of sort O, B, B, Sy, Sr
respectively; and &', ¢/ are both of sort O and u is of sort R. We read ‘sn ¢’
as ‘s falls under ¢'.

We shall assume the following comprehension scheme for concepts:

Corresponding to any formula ®(z), ®(z,y), ®(X) or ®(X) we are given
a term s of sort B, R, Sy, Sy, respectively, for which we adopt as an axiom
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the formula

I xr 4
X I A
\'4 XL" ()g) ns & & )g
X X X

We write @, (zy)™ 9, X o, Z{ & for s, as the case may be. A term of the
first, third and fourth types is called the concept (term) determined by @,
and a term of the second type the relation (term) determined by &.

We define the relation = of extensional equality on the domains B, R,
Sp, Sy by

X =Yg Ve(znX & znY),

X =Ye=gr VaVy[(zy) n X & (zy) Y],
X=Y=y VX[Xng e XnY]
X=Yeg VX[XnX & XnY]

Clearly concepts are determined uniquely by formulas up to extensional

equality. We assume that F contains

® a term e such that (X) is well-formed and of sort © for any concept
variable X;

¢ a predicate symbol E such that E(X) is well-formed for any concept
variable X, _
We finally assume the axioms

1) VEVD[E(X) A E(D) - [e(X) = e(D) & X =]},
2) VIVY[E(X) A X =D - E(D)},

where in both 1) and 2) X and 9) are concept variables of the same sort.

If we think of e(X) as an object representing X, Axiom 1 above expresses
the idea that extensional equality of any concepts satisfying E is equiva-
lent to identity of their representing objects. That is, for any concept X
satisfying E, e(X) may be regarded as the extension of X. And the predi-
cate E itself represents the property of possessing an extension. For these
reasons Axiom 1 will be called the Axiom of Extensions. As for Axiom 2,
it states the reasonable requirement that any concept extensionally equiv-
alent to a concept possessing an extension itself possesses one (that is, = is
a congruence relation with respect to E).

2. The Zermelo-Bourbaki Lemma and Frege’s Theorem

A straightforward Russell type argument in F enables us to infer ~VEE (%),
that is,'” not every concept possesses an extension. This being the case,

17 To be explicit, define A =df £[VX[e(X) = z A E(X) = -z nX]]. Then -~E(A) is
inferrable in F.
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what concepts do we need to (consistently) assume possess extensions in
order to enable an infinite well-ordering to be constructed? It was Frege's
remarkable discovery that for this it suffices to assume just that extensions
be possessed by the members of a certain class of simple and natural second-
order concepts—those that, following Boolos,'® we shall term numerical.

Numerical concepts are defined as follows. First, we formulate the rela-
tion ~ of equinumerosity or equipollence on B as usual:

XrY =y 3Z[VzVy[(zy)nZ s+ zn X A ynY]
AVZYYWY(zy)nZ A(z2)nZ — y = 4]
AVz{znX = 3y (zy)n 2]
AVYlynY = 3z (zy)n Z).

With any basic concept X we associate the second level concept

IXl| =45 ¥ [X = V]

Concepts of the form [| X|| are called numerical.
If we assume that every numerical concept possesses an extension (i.e.,
VXE(||X])), then the extension

X1 =qr e(llx1)

is called the (cardinal) number of X. Ob jects of the form |X| are called
(cardinal) numbers. Under these assumptions it is easy to derive what
Boolos calls Hume's principle, viz.

VXVY[Xsz IX| = Y]]

We shall call a concept X (Dedekind) infinite if 3Y [Y ZXAX Y],
where Y g X of course stands for Vz(znY — znX)AY # X. Objects of

the form |X| with X infinite are called infinite numbers.

We are going to show how, in F, the existence of an infinite well-ordering
(i.e., an infinite well-ordered concept) may be derived as a special case
of a general set-theoretic result—formulable and provable in F—which is
normally used to derive Zermelo’s Well-ordering Theorem. In its original
form this result is what we shall call the
Zermelo-Bourbaki Lemma.!® Let E be a set, F a family of subsets of

;andp: F = £ a map such that p(X) € X for all X € F. Then there

!® ‘The standard of equality of numbers",

* Lemma3, §2, Ch. 3of N. Bourbaki, Théorie des ensembles, 2nd Ed. (Paris: Hermann,
1963).
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is a subset M of E and a well-ordering < of M such that, writing S, for
{y:y<z},

(1) Ve M[S; € F Ap(S:) = 7]

(i) Mg F.

Bourbaki employs this result to construct an elegant derivation of Zer-
melo’s Well-ordering Theorem from the Axiom of Choice. In the present
context, however, it will be used to produce an equally elegant proof of
what we shall call, following a suggestion of Boolos,

Frege’s Theorem. Suppose given a set E and a map n: PE — E such
that
VXCEVY CE[n(X)=n(Y)e X=xY] (%)

Then E has an infinite well-ordered subset.

Proof. We apply the Zermelo-Bourbaki Lemma with F the family of
all subsets X of E for which n{(X) ¢ X and p the map n. We obtain
M C E and a well-ordering < of M such that (i) n(S,) = z for all z € M,
(i) n(M) € M. Writing m for n(M) we have m € M by (ii), whence
n(Sm) = m = n(M) by (i). Condition (x) now yields S,, ~ M. Since
m & Sn, Sm is a proper subset of M and it follows that the latter is
infinite. O

Now both of these results can be translated into and proved withinF.
Carrying this out for the Zermelo-Bourbaki Lemma yields the

Zermelo-Bourbaki Lemma in F. Let ,§ be any second-level concept

with respect to which = is a congruence relation and t a term such that
t(X) is an object for all basic concepts X and satisfies

VXYY [X =Y AXnS - 4X)=t(Y)]

VX [qu — -t(X) nX]

Then there is a relation R such that R is a well-ordering and, writing M
for its field, and R, for §[(yz)nR Ay # z],

(3) Yz [znM = Ren S At(R,) = :r]

(ﬁ) -M n ,.‘?, . ‘

In the case of Frege’s Theorem, the same process yields

Frege’s Theorem in F. Suppose that every numerical concept has an
extension. Then there exists an infinite well-ordered concept and hence an
infinite number.

Since, as is well known, Frege’s original system in the Grundgesetze was
inconsistent, we should assure ourselves that the axioms of F, together with
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the hypothesis of Frege’s Theorem—that every numerical concept has an
extension—are consistent. The easiest way to see this is by noting that
the following set-theoretic interpretations yield a model of the axioms of F
in which the hypothesis of Frege’s Theorem holds, To wit, interpret @ as
w+1, Bas P(w+1), R as P({w+1) x (w+1)), S, as PP(w+1), S, as
PP((w+1)x (w+1)), E as the subset of PP(w+1) consisting of all elements
of the form || X|| =g {YEPw+1): X~ Y} with X € P(w + 1), and e
as the map PP((w + DUPw+1)) 5 w41 which sends each I1X|| with
X € P(w+1) toits cardinality | X| (€ w+1) and everything else to 0. Thus
the axioms of F—together with the hypothesis of Frege’s Theorem—may
be regarded as a consistent fragment of Frege's original system.

3. The Natural Number System in F

In the Grundlagen Frege outlines a proof,?® from principles similar to those
laid down in F, of the existence of the usual natural number system. One
may accordingly ask how one would proceed to derive this fact within F from
our version of Frege's Theorem. In fact, it is not hard to show, using the
theory of ordinals, that the infinite well-ordered set (M, <) obtained in (the
set-theoretic version of) Frege’s Theorem has order type w + 1. However,
since the general theory of ordinals is not available in F, the argument there
is more involved and goes as follows. First, one establishes the Schréder-
Bernstein Theorem in F and uses it to show that |M | is the largest element
of (M, <). Next, one defines the immediate successor xt of z to be 7 (y <

with a ‘last element’ |M]|. These steps can all be carried out in F, thus
enabling the existence and essential properties of the natural number system
to be established within it. (Details of this proof will be presented in a
forthcoming paper.)

4. Ordinals and the Axiom of Infinity in F

It is natural to apply the Zermelo-Bourbaki Lemma in the case where
t is the extension term e and S the second-level ‘Russellian’ concept

X [E(X) A -e(X )nX], i.e., the concept of all concepts whose extensions
do not fall under them, This yields a well-ordered concept M, such that
each object z falling under it is the extension of the concept of being a
predecessor of z. Thus, the objects falling under M, are naturally con-
strued as the von Neumann ordinals (and the well-ordering on M, as the

20 £868-83. This proof is reconstructed in detail in Boolos, *The standard of equality of
numbers’, See also Crispin Wright, Frege's conception of numbers as objects (Aberdeen:
Aberdeen University Press, 1983), Pp. 154-69.
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membership relation suitably defined.?!) Under what conditions, it may be
asked, is M, infinite? (There is, after all, nothing so far to prevent M, from
being the empty concept!) A natural way of ensuring this is to postulate
that certain concepts have extensions, specifically: the empty concept has
an extension and, for any ob ject z and any concept X possessing an exten-
sion the concept Hy=zVynX ) also possesses one. (These correspond to
the set-theoretical axioms of empty set and ‘successor’ sets respectively.)
For under these conditions we can define the immediate successor zt of
any object z such that zn M, to be the extension of the concept of being
equal to or a predecessor of z; it is then easily shown that zt # x for any
znM,. Then the correspondence T z+ establishes a bijection of M.
with a proper subconcept, and so M, is indeed infinite.

Now it is an easy consequence of conclusion (i) of Zermelo-Bourbaki
that M, cannot have an extension. (This is essentially the Burali-Forti
‘paradox’—the extension of M. would have to be the largest ordinal.) So
cven the above assumptions are not sufficiently strong, in contrast with
those underlying Frege's Theorem, to enable the existence of an infinite
object to be established. Essentially the only way of strengthening these
assumptions so as to obtain an infinite object is to postulate the Axiom of
Infinity, which in this context would assert that there exists a subconcept
of M, which a) has an extension and b) contains 0 and is closed under
immediate successor.

Finally, the relationship between ‘Frege’s Theorem’ and Frege's actual
construction of the natural number system as outlined in the Grundlagen
can be stated in the following way. In the Grundlagen the cardinality
function is first used to define the immediate successor relation and then
one obtains from it the well-ordering of the natural numbers as its ancestral
(transitive closure). The whole development involving ‘Frege’s Theorem’
as presented here essentially reverses this procedure: the same cardinality
function is used to obtain first the well-ordering and then the successor
function. In both cases, however, the cardinality function is assumed to
be universally defined and so leads to the same definition of immediate
succession. To this extent, ‘Frege’s Theorem’ is a faithful representation of
the core of Frege's original derivation, which may therefore be regarded as
an unrecognized special case of Zermelo’s later procedure for constructing
well-orderings.

21 Re. bvz€y<s>ar 3Y[eY) =yAzqnY].
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Note added in proof: For a further elaboration of the set and function con-
cepts in the late nineteenth and early twentieth centuries, see the paper of
John Burgess, Hintikka et Sandu versus Frege in re arbitrary functions’,
This journal, 3rd series 1 (1993), 50-65. On the matter of Frege's under-
standing of his second-order quantifiers see Richard Heck and Jason Stanley,
‘Reply to Hintikka and Sandu: Frege and second-order logic’, Journal of
Philosophy, forthcoming. The present paper was written independently of
these two important contributions to our understanding of these issues.

References

BooLos, GEorGE [1990): ‘The standard of equality of numbers,’ in Meaning
and method: essays in honor of Hilary Putnam, George Boolos, ed. Cambridge:
Cambridge University Press.

BoTtazzini, Uco [1986): The higher calculus: a history of real and complex
analysis from Euler to Weierstrass. Berlin and New York: Springer-Verlag.
BourBaki, N. [1963]: Théorie des ensembles (second edition). Paris: Hermann.
DemorouLos, WiLLIAM {forthcoming]: ‘Frege and the rigorization of analysis’,
Journal of Philosophical Logic.

DumMEeTT, MICHAEL [1991]: Frege: philosophy of mathematics. Cambridge: Har-
vard University Press.

FreEcE, GoTTLOB [1904]: ‘What is a function?’, reprinted in B. McGuinness, ed.,
Gottlob Frege: collected papers in mathematics, logic and philosophy. Oxford:
Basil Blackwell, 1984, Peter Geach, tr.

[1879): Begriffsschrift: eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Reprinted in English translation as Begriffsschrift: a
formula language, modelled upon that of arithmetic, for pure thought in Jean van
Heijenoort, ed., From Frege to Gédel: a sourcebook in mathematical logic, 1879-
1931. Cambridge: Harvard University Press, 1967, Stefan Bauer-Mengelberg,
tr.

(1884): Die Gruadlagen der Arithmetik, Berlin: George Olms Verlags-
buchandlung, 1961, reprint of the 1884 edition. Translated as The foundations of
arithmetic: a logico-mathematical enquiry into the concept of number. Evanston:
Northwestern University Press, 1980, J. L. Austin, tr.

HINTIKKA, JAAKKO and GABRIEL SANDU [1992]): ‘The skeleton in Frege's cup-
board: The standard versus monstandard distinction’, Journal of Philosophy
89, pp. 290-315. .

SkoLEM, THORAF [1922]: ‘Uber einige Grundlagenfragen der Mathematik’, in
Jens Erik Fenstad ed., Thoraf Skolem: selected works in logic. Oslo: Universitet-
forlaget. .

Wang, Hao [1970): ‘Survey of Skolem's work in logic’. This appears as the
introduction to Jens Erik Fenstad ed., Thoraf Skolem: selected works in logic.
Oslo: Universitetforlaget.

[1974]): From mathematics to philosophy. New York: Routledge.
WiLson, MaRrk [1993]: ‘Honorable intensions’, in S. Wagner and R. Warner, eds.,
Naturalism. South Bend: Notre Dame University Press.



156 DEMOPOULOS AND BELL

WRiGHT, CRisPIN [1983): Frege’s conception of numbers as objects. Aberdeen:
Aberdeen University Press.

YOUSCHKEVITCH, A. P. [1975/76]: ‘The concept of function up to the middle of
the 19th century’, Archive for the history of exact science 16, pp. 37-85.

ABsTRACT. This paper casts doubt on a recent criticism of Frege's theory of
concepts and extensions by showing that it misses one of Frege's most important
contributions: the derivation of the infinity of the natural sumbers. We show
how this result may be incorporated into the conceptual structure of Zermelo-
Fraenkel Set Theory. The paper clarifies the bearing of the development of the
notion of a real-valued function on Frege's theory of concepts; it concludes with
a brief discussion of the claim that the standard interpretation of second-order
logic is necessary for the derivation of the Peano Postulates and the proof of their
categoricity.



