
Incompleteness in a General Setting  

John L. Bell 

 

Full proofs of the Gödel incompleteness theorems are highly intricate affairs. 

Much of the intricacy lies in the details of setting up and checking the properties 

of a coding system representing the syntax of an object language (typically, that 

of arithmetic) within that same language. These details are seldom illuminating 

and tend to obscure the core of the argument. For this reason a number of efforts 

have been made to present the essentials of the proofs of Gödel’s theorems 

without getting mired in syntactic or computational details. One of the most 

important of these efforts was made by Löb [8] in connection with his analysis of 

sentences asserting their own provability. Löb formulated three conditions (now 

known as the Hilbert-Bernays-Löb derivability conditions), on the provability 

predicate in a formal system which are jointly sufficient to yield the Gödel’s 

second incompleteness theorem for it. A key role in Löb’s analysis is played by (a 

special case of) what later became known as the diagonalization or fixed point 

property of formal systems, a property which had already, in essence, been 

exploited by Gödel in his original proofs of the incompleteness theorems. The 

fixed point property plays a central role in Lawvere’s [7] category-theoretic 

account of incompleteness phenomena (see also [10]). Incompleteness theorems 

have also been subjected to intensive investigation within the framework of 

modal logic (see, e.g.[4], [5]). In this formulation the modal operator takes up the 

role previously played by the provability predicate, and the derivability 

conditions on the latter are translated into algebraic conditions (the so-called GL, 

i.e., Gödel–Löb, conditions) on the former.  

 My purpose here is to present a framework for incompleteness 

phenomena, fully compatible with intuitionistic or constructive principles, in 

which the idea of a coding system is retained, only in a simple, but very general 



 2 

form, a form wholly free of syntactical notions. As codes we shall take the 

elements of an arbitrary given nonempty set, possibly, but not necessarily, the set 

of natural numbers. As the objects to be encoded we take the elements of a 

second arbitrary nonempty set called the set of sentences: these are the 

counterpart of the sentences of a given formal language. We shall also suppose 

that the set of sentences is equipped with an equivalence relation which 

corresponds to the relation of provable equivalence with respect to a theory. 

Equivalence classes with respect to this equivalence relation will be called 

propositions.1   

 We shall take as our background theory intuitionistic set theory in any of 

its usual formulations (e.g. that presented in [1])2. We assume given two sets: , 

the set of sentences, and C, the set of codes: we also assume that both  and C 

contain at least one element. The elements of the exponential3 C may be 

considered as corresponding to formulas with one free variable ranging over C. 

Constant elements of C may be identified with sentences. For    we write   

for the map  C   with constant value .  

We also assume given:  

                                              
1 We note that for classical theories propositions in the above sense form a Boolean 

algebra, but for the intuitionistic theories which we shall have in mind propositions 

constitute a Heyting algebra, that is, a (distributive) lattice (L, , , ) with top and 

bottom elements 1, 0 equipped with  a binary operation  satisfying x  y  z iff           

x  y  z. We define the operations   and  by x = x  0 and x  y  =                     

(x   y)  (y  x). When the elements of a Heyting algebra are regarded as propositions 

arising from a theory, the relation  represents entailment and the operations , , , 

, , 0, 1 represent conjunction, disjunction, implication, negation, bi-implication, and 
refutable and provable propositions, respectively. For a proposition a, the assertion that 

a = 1 expresses the condition that a is provable. The consistency of the theory is  

expressed by the assertion that 0  1, that is , by the assertion that its corresponding 
algebra of propositions has at least two elements. 
2 For definiteness we could take our background theory to be Zermelo set theory 

formulated within intuitionistic first-order logic. For much of the development in the 
paper, one may take classical set theory as background theory and note that no use of 

the law of excluded middle is made.  
3 The exponential XY  of two sets X, Y is the set of functions from Y to X. 



 3 

 An equivalence relation  on . For    we write [] for the -

equivalence class of  and (), or simply , for the set of all such 

equivalence classes. The members of  are called propositions, and for     

  ,  is called the proposition associated with the sentence . Any -

preserving self-map f on  induces a self map f† on   defined by f† () 

=  ff()  for   .   We sometimes identify a -preserving self-map on 

  with the self-map on  it induces: such maps may thus be thought of 

as acting on . 

 A submonoid4 L of , each member of which preserves . The members 

of L are called logical maps (on ). The self-maps on  induced by logical 

self-maps on  are called logical maps on . 

 A subset K of C containing each constant function  . The members of K 

are called coded functions. We suppose that L acts on K, that is, K is closed 

under composition with members of L on the left.  

 A coding map k: K  C . We shall usually write  for k(). By abuse of 

notation we shall, for   , write simply  for  . The elements , 

 are called the codes of  and  respectively. 

 

We shall call a sextuple A  = (, C, , K, L, k,) subject to the above data a 

coding assemblage. If () has at least two elements, A  is said to be consistent. 

We now assume a fixed coding assemblage A   to be given. 

A self-map f on  is codable if, for some map   K, we have f()  () 

for all   .  In this sense f can be represented, up to -equivalence, as a (coded) 

function of codes. Such a map  is called a coding representation for f. Given   K, 

the map †:   ( )  :    is called the self-map on  induced by ; if 

                                              
4 That is, a subset of  containing the identity map on  and closed under composition. 



 4 

†preserves , we shall say that  is equable. Clearly, if  is equable, † is then 

codable.  

Self-maps on  induced by codable -preserving self-maps on  are called 

codable self-maps on . 

 We can now prove  

Proposition 1. The following conditions are equivalent: 

 

(i) every logical map on  is codable; 

(ii) the identity map 1 on  is codable.  

 

Proof. (i)  (ii) is obvious. For the converse, the assumption gives a map   K 

for which   () for all   . Clearly, for any logical map f, the map f   is 

a coding representation for f.  

 

A coding representation  for 1 is called a Tarski map: it satisfies  

  (). 

This is the counterpart in our framework of what is called in the literature 

Tarski’s T-scheme. A Tarski map therefore corresponds to a truth definition.  From 

the equation above we see that a Tarski map, or truth definition, is just a left 

inverse, up to -equivalence, for the coding map   :   C. 

 

Our next task is to prove a fixed point lemma. 

Let us call a self-map f on  diagonalizable if, for some   K, we have  

f(()) () 

 

for all   K.   is called a diagonal representation for f.   Notice that if  f  is 

diagonalizable, and p  logical, then p  f  is  diagonalizable.  

  A -fixed point for a self map f  on  is an element    such that f()   σ. 



 5 

 

Lemma 1.    

 (i) Any diagonalizable self-map on   has a -fixed point.  

 (ii) The composite of a diagonalizable -preserving map with a logical 

map has a -fixed point. 

Proof.  (i) If f is a diagonalizable self-map on  with diagonal representation : C 

 , then () is easily seen to be a -fixed point for f. 

(ii) Let f be a diagonalizable -preserving self-map on  and p a logical 

map. Then, as observed above, p  f  is diagonalizable and so, by (i), has a  -fixed 

point . Then f (p(f()))  f(), so that f() is a - fixed point for f  p.      

                                                                                                                                  

 A diagonal map for A  is a map d: C  C such that  

 (i)  d() = ()  for   K; 

 (ii)  K is closed under composition with d on the right: if   K,  then  

 d  K. 

 

Lemma 2. If A  has a diagonal map, then every codable self-map on  is 

diagonalizable.  

Proof.  Given a codable self -map f on  with coding representation           K, let 

* =    d  K. Then for   K, we have 

f(())  (())  (d())  *(). 

So * is a diagonal representation for f, and the latter is accordingly 

diagonalizable.   

  

 Lemmas 1 and 2 immediately yield the  

 

Fixed Point Lemma. Suppose that the coding assemblage A has a diagonal map. 

Then: 



 6 

 (i) Any codable self-map on  has a -fixed point.   

 (ii) The composite of a -preserving self-map on  with a logical map has a 

-fixed point.   

 (iii) Any codable self-map on , as well as its composite with a logical 

map, has a fixed point.   

 

It now follows from Proposition 1 and the Fixed Point Lemma that if a 

coding assemblage has  both a diagonal map and a Tarski map, then every 

logical map on  has a -fixed point. This immediately yields  

 

Tarski’s Theorem.  Suppose that A has a diagonal map and a logical map with 

no -fixed points (equivalently, if  has a logical map with no fixed points), then 

A  has no Tarski map.  

 

Tarski’s theorem in this formulation applies in particular when  is a 

Heyting algebra with at least two elements, and the negation map  on —

which then has no fixed points—is included among the logical maps. This in turn 

enables us to recapture the usual formulation of Tarski’s theorem on the 

undefinability of truth. For the algebra of propositions of a consistent theory T 

has at least two elements, so, provided the language of T meets the modest 

requirements for generating a coding assemblage (along the lines of example 1 

immediately below), it follows that the associated coding assemblage has no 

Tarski map. This means that the language for T  contains no truth definition for 

T; in a word, truth for T is undefinable in T.  

 

 

 

 



 7 

Examples 

 

1. Peano arithmetic. In this case the ingredients of the coding assemblage P  —

the Peano assemblage —are as follows:  is the set of sentences of the language L  

of first-order intuitionistic arithmetic P, C is the set N of natural numbers,  is the 

relation of provable equivalence from P5 K is the set of maps of the form : n  

(n) where (x) is a formula of L  with at most one free variable and n is the 

term of L  representing n. The coding map k is given by k() = # where # is any 

standard Gödel numbering of the formulas of L . Finally L consists of the maps  

 ,    ,   .  P  has a diagonal map d: N   N  given by setting  d(m)  

= s(m,m), where s:  N    N  N    is a recursive substitution function on Gödel 

numbers6. 

     Assuming that P is consistent, it follows, as observed above, that P  has no 

Tarski map, and so truth in P is undefinable in P. 

  

2. Intuitionistic set theory. Just as in classical set theory the power set PA of any 

set A is a Boolean algebra under the usual set-theoretic operations, so in 

intuitionistic set theory the power set is, under the same operations, a Heyting 

algebra. In particular, writing 1 for the one-element set {0}, P1 is a Heyting 

algebra which we shall denote by . If  is a sentence of the language of set 

theory, we write {0|} for the element {x: x = 0  } of . From the axiom of 

extensionality it follows that {0|} = {0|} iff   . Thus the elements of  

correspond naturally to what we have termed propositions, in this case, to 

sentences identified under provable equivalence from the axioms of intuitionistic 

                                              
5 Thus  may be regarded as the set of sentences of L identified up to provable equivalence from P. 
6 See, e.g. [3], Example 7.4.5. 



 8 

set theory. Under this correspondence each element    is correlated with the 

proposition     0  , and each proposition  with the element {0|} of . 

 also plays the role of a subset classifier. That is, for each set A, subsets of 

A are correlated bijectively with maps A  : each subset      X  A is correlated 

with the map x  {0|x  X} : A  , and each map            f : A   with the 

subset f –1(1) of A. The top element 1 (bottom element ) 1 of  is identified with 

the true (false) proposition(s). In this way A is seen to be naturally isomorphic 

to PA.  

Now let us attempt to build a coding assemblage using   as the 

underlying set of sentences and the identity relation as the underlying 

equivalence relation. Here it is natural to take C, the set of codes, to be any set 

containing at least one element, and to take L =  and K = C. Using the 

observation immediately above, we may then identify K with PC. Take the 

coding map k to be an arbitrary map  PC  C; for X  PC, write X for k(X).  

For   , the constant map :C  is correlated with the element * 

= {xC: 0  } of PC; it will be convenient to write  for *. The map   :   

  C is the coding map on .  

The sextuple Q = (, C, =, PC, , k) is accordingly a coding assemblage.  

Does Q  have a diagonal map? As we shall see, this cannot be done when the 

coding map on  satisfies the modest requirement of being injective7. 

In fact, if  is injective, a diagonal map d would then have to satisfy 

 

(*)                                      d(X) = {0|X  X} 

 

for X  PC.  Now define 

 
                                              
7 The modesty of this requirement is more easily seen when the background theory is 

classical (i.e. the law of excluded middle holds). For then  = {, 1} and injectivity of  
boils down simply to   1: that is, the true and the false receive different codes. 



 9 

      U = {xC: d(x) = }. 

 

Then, using (*) and the injectivity of ,  

 

                          U  U    d(U) =  

 {0|U  U} =  

 {0|U  U} =  

 U  U 

 

and we have a contradiction. 

 

We now turn to Gödel’s theorems. Henceforth we shall assume that  the 

coding assemblage A has a diagonal map d. 

 We have seen that every codable self-map f on  has a -fixed  point. Let 

us call an element    a strong  -fixed point for f if, for all       , we have  

(*)                                     f()       .  

 

We next prove another version of the Fixed Point Lemma, namely, the 

 

Strong Fixed Point Lemma. Suppose that  has a codable -preserving self-map f 

with a strong -fixed point . Then, for any logical map p on  there is     

such that  

 p()       . 

 

Proof.  By the Fixed Point Lemma, f  p has a -fixed point . We then have, using 

(*),   

                        p()    f (p(())         .                             

                                                                                                               



 10 

Now we can formulate Gödel’s First Incompleteness Theorem in the 

present setting. Here we require  to have a distinguished element : we think of 

 as representing the provable sentences in the sense that  the provable sentences 

are taken to be precisely those --equivalent to . We suppose given an equable 

map   K which we shall term a provability map, in the sense that, for each   

, the element () of  shall be construed as the sentence  is provable. The self-

map g on  induced by  is then necessarily codable (as well as -preserving).   

We shall call g a Gödel map if it has  as a strong -fixed point. If g is a Gödel map, 

then the provability map  satisfies  

     ()   . 

This may be construed as asserting that a sentence  is provable iff the sentence 

() asserting the provability of  is itself provable. Notice that the self-map on 

 induced by a Tarski map is a Gödel map.   

 Now call a coding assemblage Gödelian if it is consistent, has a Gödel map, 

and there is an element  of   such that    together with a logical map  on  

such that ()     and ()    . 

 We think of  as the negation operation on sentences and  as representing 

the refutable sentences. 

We can now prove 

 

Gödel’s First Incompleteness Theorem. The set of propositions of any Gödelian 

coding assemblage has at least three elements. 

Proof. Given a Gödelian coding assemblage there is, by the Strong Fixed Point 

Lemma, an element    for which ()         . In that case      ,  and 

thus  has the  three distinct elements  , , .    

 



 11 

An element    such that       evidently represents an undecidable 

sentence, so the theorem just proved may be taken to assert that any Gödelian 

coding assemblage contains undecidable sentences.   

 

All this applies in particular to the Peano coding assemblage P.  Let  be 

the sentence 0 = 0, and  the sentence 0 = 1. Also let Prov be a provability 

predicate for P. Then, by standard arguments8, we have, for any arithmetical 

sentences , , 

 

(Prov1)       P   P Prov(#) 

(Prov2)       P Prov(#(  ))  [Prov(#)   Prov(#)]) 

(Prov3)       P Prov(#)  Prov(Prov(#)). 

 

Now let : N   be the map n  Prov(n). It follows from (Prov2) that  is 

equable, and from (Prov1) that the map g:    induced by  has  as a strong -

fixed point. Accordingly g is is a Gödel map for P.   Assuming that P is 

consistent, P is then Gödelian, and accordingly contains undecidable 

propositions.   

 

Finally let us set about formulating Gödel’s Second Incompleteness 

Theorem in the present setting. To do this we need to introduce the concept of a 

Hilbert-Bernays-Löb, or HBL-operator. Let us assume that A is a coding 

assemblage in which  is a Heyting algebra9.  An HBL-operator in A  is a codable 

self-map  on  satisfying the conditions: 

                                              
8 See, e.g. [6], Ch. 16. 

9 We think  of  `s top element 1, and bottom element 0 as representing, respectively,  

the provable and refutable  sentences. 



 12 

 

(a) 1 = 1 

(b) (x  y)  (x  y) 

(c) x  x. 

 

An HBL-operator may be considered a modal operator satisfying the K4 

axioms10. It follows quite easily from (a) and (b) that  preserves  , and hence is 

also order-preserving.   

 We may think of  as a provability operator acting on propositions: for 

each proposition x, x is the proposition asserting “x is provable”. In that case (a) 

above asserts: if x is a provable proposition, then so is the proposition “x is provable”; 

(b) asserts: the proposition “x implies y is provable” implies the proposition ‘“x is 

provable” implies “y is provable”’; and (c) asserts: the proposition “x is provable” 

implies the proposition “‘x is provable’ is provable”.    

Now let us call a coding assemblage A  suitable11 if (i)  is a Heyting 

algebra with an HBL operator and (ii) for each a    the map     x  (x  a):    

   is codable.  

We can now prove a version of  

 

Löb’s Theorem12. Let A be a suitable coding assemblage with HBL-operator . 

Then, for any a    

 

(i) (a  a)  a. 

(ii) a  a    a = 1. 

 

                                              
10 See [4], p. 5. 
11 I.e., suitable for proving Gödel’s second incompleteness theorem: see below. 
12 Theorem 4.1.1 of [6]. 



 13 

Proof. Given a  , the map x  (x  a):    is codable and so by the Fixed 

Point Lemma has a fixed point b. That is, 

 

 (*)                         b = (b  a). 

 

A fortiori  b  (b  a), whence 

b  (b  a)  (b  b). 

Hence  

          (**)                  b = b  b  a 

It follows that (a  a)  (b  a), whence 

(a  a)  (b  a)  

                                                         = b  (by (*)) 

                                                         a  (by (**)). 

This gives (i). 

For (ii), we assume a  a, so that (a  a) =1. It now follows from (i) that 

1 = 1 = (a  a)  a. 

Therefore a = 1, and since a  a, we conclude that a  = 1.  

 

Corollary 1. Let A be a suitable coding assemblage with HBL-operator . Then 

the following conditions are equivalent (a) x(x  x);  

(b) x(x = 0);  (c) 0 = 0. A  fortiori  x(x  x)  implies 0 = 0. 

Proof.   (a)    (b). Suppose that x(x  x) . Then  

(*)                                 x   x 

and by Löb`s Theorem  x = (x  0)  x. Hence  



 14 

(**)                                    x  x.  

From (*) and (**) we get 

x   x  x  =  0. 

 (b) → (c) is trivial.  

 

(c)  (a). Suppose that 0 = 0. Then, for any x,  1 =  0  x, so that 0 =  

 x  = x.    

 

Corollary 2.  Let A be a suitable coding assemblage with HBL-operator . Then 

0 is the unique fixed point of the map x   x. 

Proof. By Löb's Theorem 0 = (x  0)  0, so that 

(*)                  0   0. 

On the other hand  0  0 so that 

(**)                     0   0. 

(*) and (**) give 0  =  0, and so  is 0 a fixed point of the map  x   

x. 

 To see that 0 is the only fixed point, suppose that a = a. Then  

(***)                                      a  =  a   0. 

Also a  a = a, so that a  a   a, whence 

 

                                  a   a  a = (a   a) = 0. 

Therefore 0  a , so that, by (***), a = a  = 0.  

 



 15 

From (i) of Löb’s Theorem we see that  satisfies the so-called GL (Gödel-Löb) 

axiom13 for a normal modal logic, i.e. the scheme 

(A  A)  A. 

From Löb’s Theorem one derives:  

 

Gödel’s Second Incompleteness Theorem. Given a suitable consistent coding 

assemblage A  with HBL operator . Then, for any x  , x  0; or equivalently, 

x  1. In particular, 0  0; or equivalently 0   1. 

Proof. If x = 0, then 0  x = 0; hence by Löb’s theorem 0 = 1, and it follows 

that A  is inconsistent.  

 

Consider again the Peano assemblage P. There  is a Heyting algebra and 

conditions Prov1-3 on the provability predicate imply that the self-map  on  

induced by the Gödel map g is an HBL-operator.14 It is also easily checked for 

each a    the map  x  (x  a):    is codable. Accordingly P is suitable, 

and so the 2nd incompleteness theorem applies to it. 

 If we think of   as a provability operator, x is the proposition “x is 

unprovable”, so that x = 1 may be taken as asserting the provability of “x is 

unprovable”.  In that case the second incompleteness theorem,  may be taken to 

assert that in any suitable consistent coding assemblage, there is no proposition 

whose unprovability is provable. This appies, in particular, to the proposition 0, so 

that it is unprovable  that "0 is unprovable"  Now "0 is unprovable"  means "no 

refutable proposition is also provable", and  it is natural to paraphrase this  as " A is 

internally consistent".  This terminology enables the second incompleteness 

theorem as stated above to assume a more familiar form: in any suitable 

                                              
13 See [5], p. 5. 

14 Prov1  actually asserts the stronger condition x = 1  x = 1, which does not hold 

for HBL-operators in general.  

 



 16 

consistent coding assemblage, its internal consistency is unprovable. This applies in 

particular to the Peano assemblage. 

 The idea of internal consistency can be extended to the following 

concordance:  

 

                   Proposition                                     Paraphrase 

0 A is internally inconsistent 

0 A is internally consistent 

0 A is  weakly internally inconsistent 

   0 A is provably  internally consistent 

0 A is not provably  internally consistent 

 

 In each case, the claim that the proposition is equal to the top element 1 of  

 is correlated with an assertion about A : for example, 0 = 1  with the 

assertion "A is internally inconsistent" and similarly for the others.  

 In this spirit, consider (*) of Corollary 2, namely the inequality  0   

0. This is equivalent to (0   0)  =  1, which may be paraphrased: 

in A, internal consistency implies the unprovability of internal consistency . This 

is an internal version of Gödel’s Second Incompleteness Theorem. 

 In this same spirit, Corollary 2 itself may be translated as:  A is internally 

consistent is the unique proposition equivalent to the assertion of its own 

unprovability. And (he last claim) of Corollary 1 translates as: if, in A, every 

proposition implies its own provability, then A is weakly internally inconsistent. 

 Finally, we observe that consistency and internal inconsistency are compatible. 

This follows from the fact that the by the HBL-operator  can be taken to be 

identically 1 - in other words, every proposition can be taken to satisfy the 

internal condition “__ is provable” . All this shows is that internal consistency 



 17 

need have little to do with consistency, or, more generally, that provability maps 

need have little to do with provability15. 

In conclusion, it should be pointed out that while in stating and proving 

these results we have used ordinary set-theoretic language, they can be 

formulated in toposes (see, e.g. [2]) or more general categories (cf. the discussion 

in [10]). 

 

References 

 

[1]   Bell, John L. Set Theory: Boolean-Valued Models and Independence Proofs. 
Clarendon Press, Oxford, 2005. 
 
[2]  Bell, John L.  Toposes and Local Set Theories. Clarendon Press, Oxford, 1988. 
 
[3]  Bell, John L., and Machover, M. A Course in Mathematical Logic. North-
Holland, 1977. 
 
[4]   Boolos, G. Gödel’s second incompleteness theorem explained in words of one 
syllable. Mind 103 (1994), no. 409, 1-3. 
 
[5]   Boolos, G. The Logic of Provability. Cambridge University Press 1995. 
 
[6]  Boolos, G.  and Jeffrey, R. Computability and Logic. Cambridge University 
Press, 1974. 
 
[7]  Lawvere, F.W. Diagonal arguments and cartesian closed categories. Category 
theory, homology theory and their applications, II (Battelle Institute Conference, 
Seattle, Wash., 1968). Springer, Berlin, 1969, 134-145. 
 
[8]  Löb, M. H. Solution of a problem of Leon Henkin. Journal of Symbolic Logic 20 
(1955), 115-18. 
 
[9] Smorynski, C. The Incompleteness Theorems. Handbook of Mathematical Logic, 
J. Barwise, ed., North-Holland, 1977, pp. 821-866. 
 
[10] Yanofsky, N. A universal approach to self-referential paradoxes, incompleteness 
and fixed points. Bull. Symb. Logic 9(3), 2003, 362-386. 

                                              
15 An observation also made in [6]. 



 18 

 

 

Department of Philosophy, 

University of Western Ontario 

e-mail: jbell@uwo.ca 


