Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S.,
and Hopkins, A. L. Quantifying the chemical beauty of
drugs. Nature chemistry, 4(2):90–98, 2012.
Dai, H., Tian, Y., Dai, B., Skiena, S., and Song, L. Syntax-
directed variational autoencoder for structured data. In
7th International Conference on Learning Representa-
tions, 2018.
De Cao, N. and Kipf, T. MolGAN: An implicit generative
model for small molecular graphs. ICML 2018 workshop
on Theoretical Foundations and Applications of Deep
Generative Models, 2018.
Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.
Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using real NVP. In 4th International Conference on
Learning Representations, 2016.
Gao, H. and Ji, S. Graph U-Nets. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2083–
2092. PMLR, 09–15 Jun 2019.
Gao, H., Wang, Z., and Ji, S. Large-scale learnable graph
convolutional networks. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD ’18, pp. 1416–1424, New York,
NY, USA, 2018. Association for Computing Machinery.
Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 27, pp. 2672–2680. Curran Associates, Inc.,
2014.
Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723–773, 2012.
Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.
Honda, S., Akita, H., Ishiguro, K., Nakanishi, T., and Oono,
K. Graph residual flow for molecular graph generation.
arXiv preprint arXiv:1909.13521, 2019.
Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S.,
and Coleman, R. G. ZINC: a free tool to discover chem-
istry for biology. Journal of chemical information and
modeling, 52(7):1757–1768, 2012.
Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with Gumbel-Softmax. In 4th International Confer-
ence on Learning Representations, 2016.
Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
Dy, J. and Krause, A. (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 2323–
2332, 2018.
Kajino, H. Molecular hypergraph grammar with its appli-
cation to molecular optimization. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, Long Beach,
California, USA, 2019.
Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceddings of the 3rd international
conference on learning representations, 2015.
Kingma, D. P. and Welling, M. Auto-Encoding variational
bayes. In 2nd International Conference on Learning
Representations, 2013.
Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, 2017.
Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1945–1954, 2017.
Landrum, G. RDKit: Open-source cheminformatics. http: