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Abstract
Traditionally, Information Extraction (IE) has fo-
cused on satisfying precise, narrow, pre-specified
requests from small homogeneous corpora (e.g.,
extract the location and time of seminars from a
set of announcements). Shifting to a new domain
requires the user to name the target relations and
to manually create new extraction rules or hand-tag
new training examples. This manual labor scales
linearly with the number of target relations.
This paper introducesOpen IE (OIE), a new ex-
traction paradigm where the system makes a single
data-driven pass over its corpus and extracts a large
set of relational tuples without requiringanyhuman
input. The paper also introduces TEXTRUNNER,
a fully implemented, highly scalable OIE system
where the tuples are assigned a probability and
indexed to support efficient extraction and explo-
ration via user queries.
We report on experiments over a 9,000,000 Web
page corpus that compare TEXTRUNNER with
KNOWITALL , a state-of-the-art Web IE system.
TEXTRUNNER achieves an error reduction of 33%
on a comparable set of extractions. Furthermore,
in the amount of time it takes KNOWITALL to per-
form extraction for a handful of pre-specified re-
lations, TEXTRUNNER extracts a far broader set
of facts reflecting orders of magnitude more rela-
tions, discovered on the fly. We report statistics
on TEXTRUNNER’s 11,000,000 highest probability
tuples, and show that they contain over 1,000,000
concrete facts and over 6,500,000 more abstract as-
sertions.

1 Introduction and Motivation
This paper introducesOpen Information Extraction (OIE)—
a novel extraction paradigm that facilitates domain-
independent discovery of relations extracted from text and
readily scales to the diversity and size of the Web corpus.
The sole input to an OIE system is a corpus, and its output
is a set of extracted relations. An OIE system makes a single
pass over its corpus guaranteeing scalability with the sizeof
the corpus.

Information Extraction (IE) has traditionally relied on ex-
tensive human involvement in the form of hand-crafted ex-
traction rules or hand-tagged training examples. Moreover,
the user is required to explicitly pre-specify each relation of
interest. While IE has become increasingly automated over
time, enumerating all potential relations of interest for ex-
traction by an IE system is highly problematic for corpora as
large and varied as the Web. To make it possible for users to
issue diverse queries over heterogeneous corpora, IE systems
must move away from architectures that require relations to
be specified prior to query time in favor of those that aim to
discover all possible relations in the text.

In the past, IE has been used on small, homogeneous cor-
pora such as newswire stories or seminar announcements. As
a result, traditional IE systems are able to rely on “heavy” lin-
guistic technologies tuned to the domain of interest, such as
dependency parsers and Named-Entity Recognizers (NERs).
These systems were not designed to scale relative to the size
of the corpus or the number of relations extracted, as both
parameters were fixed and small.

The problem of extracting information from the Web vio-
lates all of these assumptions. Corpora are massive and het-
erogeneous, the relations of interest are unanticipated, and
their number can be large. Below, we consider these chal-
lenges in more detail.

Automation The first step in automating IE was moving
from knowledge-based IE systems to trainable systems that
took as input hand-tagged instances[Riloff, 1996] or doc-
ument segments[Craven et al., 1999] and automatically
learned domain-specific extraction patterns. DIPRE[Brin,
1998], SNOWBALL [Agichtein and Gravano, 2000], and Web-
based question answering systems[Ravichandran and Hovy,
2002] further reduced manual labor needed for relation-
specific text extraction by requiring only a small set of tagged
seed instances or a few hand-crafted extraction patterns, per
relation, to launch the training process. Still, the creation of
suitable training data required substantial expertise as well as
non-trivial manual effortfor every relation extracted, and the
relations have to be specified in advance.

Corpus Heterogeneity Previous approaches to relation
extraction have employed kernel-based methods[Bunescu



and Mooney, 2005], maximum-entropy models[Kambhatla,
2004], graphical models[Rosario and Hearst, 2004; Culotta
et al., 2006], and co-occurrence statistics[Lin and Pantel,
2001; Ciaramitaet al., 2005] over small, domain-specific cor-
pora and limited sets of relations. The use of NERs as well
as syntactic or dependency parsers is a common thread that
unifies most previous work. But this rather “heavy” linguis-
tic technology runs into problems when applied to the het-
erogeneous text found on the Web. While the parsers work
well when trained and applied to a particular genre of text,
such as financial news data in the Penn Treebank, they make
many more parsing errors when confronted with the diversity
of Web text. Moreover, the number and complexity of en-
tity types on the Web means that existing NER systems are
inapplicable[Downeyet al., 2007].

Efficiency KNOWITALL [Etzioniet al., 2005] is a state-of-
the-art Web extraction system that addresses the automation
challenge by learning to label its own training examples us-
ing a small set of domain-independent extraction patterns.
KNOWITALL also addresses corpus heterogeneity by rely-
ing on a part-of-speech tagger instead of a parser, and by
not requiring a NER. However, KNOWITALL requires large
numbers of search engine queries and Web page downloads.
As a result, experiments using KNOWITALL can take weeks
to complete. Finally, KNOWITALL takesrelation names as
input. Thus, the extraction process has to be run, and re-
run, each time a relation of interest is identified. The OIE
paradigm retains KNOWITALL ’s benefits but eliminates its
inefficiencies.

The paper reports on TEXTRUNNER, the first scalable,
domain-independent OIE system. TEXTRUNNER is a fully
implemented system that extracts relational tuples from text.
The tuples are assigned a probability and indexed to support
efficient extraction and exploration via user queries.

The main contributions of this paper are to:

• Introduce Open Information Extraction (OIE)—a new
extraction paradigm that obviates relation specificity by
automatically discovering possible relations of interest
while making only a single pass over its corpus.

• Introduce TEXTRUNNER, a fully implemented OIE sys-
tem, and highlight the key elements of its novel archi-
tecture. The paper compares TEXTRUNNER experimen-
tally with the state-of-the-art Web IE system, KNOW-
ITALL , and show that TEXTRUNNER achieves a 33%
relative error reduction for a comparable number of ex-
tractions.

• Report on statistics over TEXTRUNNER’s 11,000,000
highest probability extractions, which demonstrates its
scalability, helps to assess the quality of its extractions,
and suggests directions for future work.

The remainder of the paper is organized as follows. Section
2 introduces TEXTRUNNER, focusing on the novel elements
of its architecture. Section 3 reports on our experimental re-
sults. Section 4 considers related work, and the paper con-
cludes with a discussion of future work.

2 Open IE in TEXT RUNNER

This section describes TEXTRUNNER’s architecture focus-
ing on its novel components, and then considers how
TEXTRUNNER addresses each of the challenges outlined in
Section 1. TEXTRUNNER’s sole input is a corpus and its out-
put is a set of extractions that are efficiently indexed to sup-
port exploration via user queries.

TEXTRUNNER consists of three key modules:

1. Self-Supervised Learner:Given a small corpus sample
as input, the Learner outputs a classifier that labels can-
didate extractions as “trustworthy” or not. The Learner
requires no hand-tagged data.

2. Single-Pass Extractor: The Extractor makes a single
pass over the entire corpus to extract tuples for all possi-
ble relations. The Extractor doesnotutilize a parser. The
Extractor generates one or more candidate tuples from
each sentence, sends each candidate to the classifier, and
retains the ones labeled as trustworthy.

3. Redundancy-Based Assessor:The Assessor assigns a
probability to each retained tuple based on a probabilis-
tic model of redundancy in text introduced in[Downey
et al., 2005].

Below, we describe each module in more detail, discuss
TEXTRUNNER’s ability to efficiently process queries over its
extraction set, and analyze the system’s time complexity and
speed.

2.1 Self-Supervised Learner
The Learner operates in two steps. First, it automatically la-
bels its own training data as positive or negative. Second, it
uses this labeled data to train a Naive Bayes classifier, which
is then used by the Extractor module.

While deploying a deep linguistic parser to extract rela-
tionships between objects is not practical at Web scale, we
hypothesized that a parser can help totrain an Extractor.
Thus, prior to full-scale relation extraction, the Learneruses
a parser[Klein and Manning, 2003] to automatically identify
and label a set of trustworthy (and untrustworthy) extractions.
These extractions are are used as positive (or negative) train-
ing examples to a Naive Bayes classifier.1 Our use of a noise-
tolerant learning algorithm helps the system recover from the
errors made by the parser when applied to heterogeneous Web
text.

Extractions take the form of a tuplet = (ei, ri,j , ej), where
ei and ej are strings meant to denote entities, andri,j is
a string meant to denote a relationship between them. The
trainer parses several thousand sentences to obtain their de-
pendency graph representations. For each parsed sentence,
the system finds all base noun phrase constituentsei.2 For
each pair of noun phrases(ei, ej), i < j , the system traverses
the parse structure connecting them to locate a sequence of
words that becomes a potential relationri,j in the tuplet. The
Learner labelst as a positive example if certain constraints

1Since the Learner labels its own training data, we refer to itas
self supervised.

2Base noun phrases do not contain nested noun phrases, or op-
tional phrase modifiers, such as prepositional phrases.



on the syntactic structure shared byei andej are met. These
constraints seek to extract relationships that are likely to be
correct even when the parse tree contains some local errors;if
any constraint fails,t is labeled as a negative instance. Some
of the heuristics the system uses are:

• There exists a dependency chain betweenei andej that is no
longer than a certain length.

• The path fromei to ej along the syntax tree does not cross a
sentence-like boundary (e.g. relative clauses).

• Neitherei nor ej consist solely of a pronoun.

Once the Learner has found and labeled a set of tuples of
the formt = (ei, ri,j , ej), it maps each tuple to a feature vec-
tor representation. All features are domain independent, and
can be evaluated at extraction time without the use of a parser.
Examples of features include the presence of part-of-speech
tag sequences in the relationri,j , the number of tokens inri,j ,
the number of stopwords inri,j , whether or not an objecte is
found to be a proper noun, the part-of-speech tag to the left of
ei, the part-of-speech tag to the right ofej . Following feature
extraction, the Learner uses this set of automatically labeled
feature vectors as input to a Naive Bayes classifier.

The classifier output by the Learner is language-specific
but contains no relation-specific or lexical features. Thus, it
can be used in a domain-independent manner.

Prior to using a learning approach, one of the authors in-
vested several weeks in manually constructing a relation-
independent extraction classifier. A first attempt at relation
extraction took the entire string between two entities detected
to be of interest. Not surprisingly, this permissive approach
captured an excess of extraneous and incoherent informa-
tion. At the other extreme, a strict approach that simply looks
for verbs in relation to a pair of nouns resulted in a loss of
other links of importance, such as those that specify noun or
attribute-centric properties, for example, (Oppenheimer, pro-
fessor of, theoretical physics) and (trade schools, similar to,
colleges). A purely verb-centric method was prone to extract-
ing incomplete relationships, for example, (Berkeley, located,
Bay Area) instead of (Berkeley, located in, Bay Area). The
heuristic-based approaches that were attempted exposed the
difficulties involved in anticipating the form of a relationand
its arguments in a general manner. At best, a final hand-
built classifier, which is a natural baseline for the learnedone,
achieved a mere one third of the accuracy of that obtained by
the Learner.

2.2 Single-Pass Extractor
The Extractor makes a single pass over its corpus, automati-
cally tagging each word in each sentence with its most prob-
able part-of-speech. Using these tags, entities are found by
identifying noun phrases using a lightweight noun phrase
chunker.3 Relations are found by examining the text between

3TEXTRUNNER performs this analysis using maximum-entropy
models for part-of-speech tagging and noun-phrase chunking [Rat-
naparkhi, 1998], as implemented in the OpenNLP toolkit. Both
part-of-speech tags and noun phrases can be modeled with high
accuracy across domains and languages[Brill and Ngai, 1999;
Ngai and Florian, 2001]. This use of relatively “light” NLP tech-

the noun phrases and heuristically eliminating non-essential
phrases, such as prepositional phrases that overspecify anen-
tity (e.g.“Scientists from many universities are studying ...” is
analyzed as “Scientists are studying...”), or individual tokens,
such as adverbs (e.g.“definitely developed” is reduced to “de-
veloped”).

For each noun phrase it finds, the chunker also provides the
probability with which each word is believed to be part of the
entity. These probabilities are subsequently used to discard
tuples containing entities found with low levels of confidence.
Finally, each candidate tuplet is presented to the classifier. If
the classifier labelst as trustworthy, it is extracted and stored
by TEXTRUNNER.

2.3 Redundancy-based Assessor
During the extraction process, TEXTRUNNER creates a nor-
malized form of the relation that omits non-essential modi-
fiers to verbs and nouns, e.g.was developed byas a normal-
ized form of was originally developed by. After extraction
has been performed over the entire corpus, TEXTRUNNER
automatically merges tuples where both entities and normal-
ized relation are identical and counts the number of distinct
sentences from which each extraction was found.

Following extraction, the Assessor uses these counts to as-
sign a probability to each tuple using the probabilistic model
previously applied to unsupervised IE in the KNOWITALL
system. Without hand-tagged data, the model efficiently esti-
mates the probability that a tuplet = (ei, ri,j , ej) is a correct
instance of the relationri,j betweenei andej given that it was
extracted fromk different sentences. The model was shown
to estimate far more accurate probabilities for IE than noisy-
or and pointwise mutual information based methods[Downey
et al., 2005].

2.4 Query Processing
TEXTRUNNER is capable of responding to queries over mil-
lions of tuples at interactive speeds due to a inverted index
distributed over a pool of machines. Each relation found dur-
ing tuple extraction is assigned to a single machine in the
pool. Every machine then computes an inverted index over
the text of the locally-stored tuples, ensuring that each ma-
chine is guaranteed to store all of the tuples containing a ref-
erence to any relation assigned to that machine.4

The efficient indexing of tuples in TEXTRUNNER means
that when a user (or application) wants to access a subset of
tuples by naming one or more of its elements, the relevant
subset can be retrieved in a manner of seconds, and irrele-
vant extractions remain unrevealed to the user. Since the rela-
tion names in TEXTRUNNERare drawn directly form the text,
the intuitions that they implicitly use in formulating a search
query are effective. Querying relational triples will be eas-
ier once TEXTRUNNER is able to know which relations are
synonymous with others. However, asking the user to “guess
the right word” is a problem that is shared by search engines,
which suggests that it is manageable for naı̈ve users.

niques enables TEXTRUNNER to be more robust to the highly di-
verse corpus of text on the Web.

4The inverted index itself is built using the Lucene open source
search engine.



Finally, TEXTRUNNER’s relation-centric index enables
complex relational queries that are not currently possibleus-
ing a standard inverted index used by today’s search engines.
These include relationship queries, unnamed-item queries,
and multiple-attribute queries, each of which is describedin
detail in[Cafarellaet al., 2006].

2.5 Analysis
Tuple extraction in TEXTRUNNER happens inO(D) time,
whereD is the number of documents in the corpus. It sub-
sequently takesO(T log T ) time to sort, count and assess the
set ofT tuples found by the system. In contrast, each time a
traditional IE system is asked to find instances of a new set
of relationsR it may be forced to examine a substantial frac-
tion of the documents in the corpus, making system run-time
O(R · D). Thus, whenD andR are large, as is typically
the case on the Web, TEXTRUNNER’s ability to extract infor-
mation forall relations at once,withouthaving them named
explicitly in its input, results in a significant scalability ad-
vantage over previous IE systems (including KNOWITALL ).

TEXTRUNNER extracts facts at an average speed of 0.036
CPU seconds per sentence. Compared to dependency parsers
which take an average of 3 seconds to process a single sen-
tence, TEXTRUNNER runs more than 80 times faster on our
corpus. On average, a Web page in our corpus contains 18
sentences, making TEXTRUNNER’s average processing speed
per document 0.65 CPU seconds and the total CPU time to
extract tuples from our 9 million Web page corpus less than
68 CPU hours. Because the corpus is easily divided into sep-
arate chunks, the total time for the process on our 20 ma-
chine cluster was less than 4 hours. It takes an additional 5
hours for TEXTRUNNER to merge and sort the extracted tu-
ples. We compare the performance of TEXTRUNNER relative
to a state-of-the-art Web IE system in Section 3.1.

The key to TEXTRUNNER’s scalability is processing time
that is linear inD (and constant inR). But, as the above
measurements show, TEXTRUNNER is not only scalable in
theory, but also fast in practice.

3 Experimental Results
We first compare recall and error rate of TEXTRUNNER with
that of a closed IE system on a set of relations in Section
3.1. We then turn to the fascinating challenge of character-
izing the far broader set of facts and relations extracted by
TEXTRUNNER in Section 3.2.

3.1 Comparison with Traditional IE
One means of evaluating Open IE is to compare its perfor-
mance with a state-of-the-art Web IE system. For this com-
parison we used KNOWITALL [Etzioni et al., 2005], a un-
supervised IE system capable of performing large-scale ex-
traction from the Web. To control the experiments, both
TEXTRUNNER and KNOWITALL were tested on the task of
extracting facts from our 9 million Web page corpus.

Since KNOWITALL is a closed IE system, we needed to
select a set of relations in advance. We randomly selected the
following 10 relations that could be found in at least 1,000
sentences in the corpus, manually filtering out relations that
were overly vague (e.g.“includes”):

(<proper noun>, acquired,<proper noun>)
(<proper noun>, graduated from,<proper noun>)
(<proper noun>, is author of,<proper noun>)
(<proper noun>, is based in,<proper noun>)
(<proper noun>, studied,<noun phrase>)
(<proper noun>, studied at,<proper noun>)
(<proper noun>, was developed by,<proper noun>)
(<proper noun>, was formed in,<year>)
(<proper noun>, was founded by,<proper noun>)
(<proper noun>, worked with,<proper noun>)

Table 1 shows the average error rate over the ten relations
and the total number of correct extractions for each of the two
systems. TEXTRUNNER’s average error rate is 33% lower
than KNOWITALL ’s, but it finds an almost identical number
of correct extractions. TEXTRUNNER’s improvement over
KNOWITALL can be largely attributed to its ability to better
identify appropriate arguments to relations.

Still, a large proportion of the errors of both systems were
from noun phrase analysis, where arguments were truncated
or stray words added. It is difficult to find extraction bound-
aries accurately when the intended type of arguments such as
company names, person names, or book titles is not specified
to the system. This was particularly the case for theauthorOf
relation, where many arguments reflecting book titles were
truncated and the error rate was was 32% for TEXTRUNNER
and 47% for KNOWITALL . With this outlier excluded, the
average error rate is 10% for TEXTRUNNER and 16% for
KNOWITALL .

Even when extracting information for only ten relations,
TEXTRUNNER’s efficiency advantage is apparent. Even
though they were run over the same 9 million page corpus,
TEXTRUNNER’s distributed extraction process took a total
of 85 CPU hours, to perform extraction for all relations in
the corpus at once, whereas KNOWITALL , which analyzed
all sentences in the corpus that potentially matched its rules,
took an average of 6.3 hoursper relation. In the amount of
time that KNOWITALL can extract data for 14 pre-specified
relations, TEXTRUNNER discovers orders of magnitude more
relations from the same corpus.

Beyond the ten relations sampled, there is a fundamental
difference between the two systems. Standard IE systems can
only operate on relations given to ita priori by the user, and
are only practical for a relatively small number of relations.
In contrast, Open IE operates without knowing the relations
a priori, and extracts information from all relations at once.
We consider statistics on TEXTRUNNER’s extractions next.

3.2 Global Statistics on Facts Learned
Given a corpus of 9 million Web pages, containing 133 mil-
lion sentences, TEXTRUNNER automatically extracted a set
of 60.5 million tuples at an extraction rate of 2.2 tuples per
sentence.

When analyzing the output of open IE system such as
TEXTRUNNER, several question naturally arise: How many
of the tuples found represent actual relationships with plausi-
ble arguments? What subset of these tuples is correct? How
many of these tuples are distinct, as opposed to identical or
synonymous? Answering these questions is challenging due
to both the size and diversity of the tuple set. As explained



Average Correct
Error rate Extractions

TEXTRUNNER 12% 11,476
KNOWITALL 18% 11,631

Table 1: Over a set of ten relations, TEXT RUNNER achieved a
33% lower error rate than K NOW I TALL , while finding approx-
imately as many correct extractions.

below, we made a series of estimates and approximations in
order to address the questions.

As a first step, we restricted our analysis to the subset of
tuples that TEXTRUNNER extracted with high probability.
Specifically, the tuples we evaluated met the following cri-
teria: 1) TEXTRUNNER assigned a probability of at least 0.8
to the tuple; 2) The tuple’s relation is supported by at least
10 distinct sentences in the corpus; 3) The tuple’s relationis
not found to be in the top 0.1% of relations by number of
supporting sentences. (These relations were so general as to
be nearly vacuous, such as (NP1,has, NP2)). This filtered
set consists of 11.3 million tuples containing 278,085 distinct
relation strings. This filtered set is the one used in all the
measurements described in this section.

Estimating the Correctness of Facts
We randomly selected four hundred tuples from the filtered
set as our sample. The measurements below are extrapolated
based on hand tagging the sample. Three authors of this paper
inspected the tuples in order to characterize the data extracted
by TEXTRUNNER. Each evaluator first judged whether the
relation waswell-formed. A relation r is considered to be
well-formed if there is some pair of entitiesX andY such
that (X, r, Y ) is a relation betweenX andY . For example,
(FCI, specializes in, software development) contains a well-
formed relation, but (demands, of securing, border) does not.
If a tuple was found to possess a well-formed relation, it was
then judged to see if the arguments were reasonable for the
relation.X andY arewell-formed argumentsfor the relation
r if X andY are of a ”type” of entity that can form a relation
(X, r, Y ). An example of a tuple whose arguments are not
well-formed is (29, dropped, instruments).

We further classified the tuples that met these criteria as ei-
ther concrete or abstract.Concretemeans that the truth of the
tuple is grounded in particular entities, for example, (Tesla,
invented, coil transformer). Abstracttuples are underspeci-
fied, such as (Einstein, derived, theory), or refer to entities
specified elsewhere, but imply properties of general classes,
such as (executive, hired by, company).

Finally, we judged each concrete or abstract tuple as true
or false, based on whether it was consistent with the truth
value of the sentence from which it was extracted. Figure 1
summarizes this analysis of the extracted tuples.

TEXTRUNNER finds 7.8 million facts having both a well-
formed relation and arguments and probability at least 0.8.
Of those facts, 80.4% were deemed to be correct according to
human reviewers. Within a given relation, an average of 14%
of the tuples are concrete facts of which 88.1% are correct,
and 86% are abstract facts of which 77.2% are correct. Con-
crete facts are potentially useful for information extraction or
question answering, while abstract assertions are useful for

Figure 1:Overview of the tuples extracted from 9 million Web
page corpus. 7.8 million well-formed tuples are found having
probability ≥ 0.8. Of those, TEXT RUNNER finds 1 million con-
crete tuples with arguments grounded in particular real-world
entities, 88.1% of which are correct, and 6.8 million tuplesre-
flecting abstract assertions, 79.2% of which are correct.

ontology learning and other applications. Of course, only a
small subset of the universe of tuples would be of interest in
any particular application (e.g., the tuples corresponding to
the relations in the experiment in Section 3.1).

Estimating the Number of Distinct Facts
Of the millions of tuples extracted by TEXTRUNNER, how
many reflect distinct statements as opposed to reformulations
of existing extractions? In order to answer this question, one
needs to be able to detect when one relation is synonymous
with another, as well as when an entity is referred to by mul-
tiple names. Both problems are very difficult in an unsuper-
vised, domain-independent context with a very large number
of relations and entities of widely varying types. In our mea-
surements, we were only able to address relation synonymy,
which means that the measurements reported below should
be viewed as rough approximations.

In order to assess the number of distinct relations found by
TEXTRUNNER, we further merged relations differing only in
leading or trailing punctuation, auxiliary verbs, or in leading
stopwords such asthat, who andwhich. For example,“are
consistent with”is merged with“, which is consistent with”.
We also merged relations differing only by their use of active
and passive voice (e.g., inventedis merged withwas invented
by). This procedure reduced the number of distinct relations
to 91% of the number before merging.

Even after the above merge, the question remains: how
many of the relation strings are synonymous? This is exceed-
ingly difficult to answer because many of the relations that
TEXTRUNNER finds have multiple senses. The relationde-
veloped, for example, may be a relation between a person and



an invention but also between a person and a disease. It is rare
to find two distinct relations that are truly synonymous in all
senses of each phrase unless domain-specific type checking
is performed on one or both arguments. If the first argument
is the name of a scientist, thendevelopedis synonymous with
inventedandcreated, and is closely related topatented. With-
out such argument type checking, these relations will pick out
overlapping, but quite distinct sets of tuples.5

It is, however, easier for a human to assess similarity at
the tuple level, where context in the form of entities ground-
ing the relationship is available. In order to estimate the
number of similar facts extracted by TEXTRUNNER, we be-
gan with our filtered set of 11.3 million tuples. For each
tuple, we found clusters of concrete tuples of the form
(e1, r, e2), (e1, q, e2) wherer 6= q, that is tuples where the
entities match but the relation strings are distinct. We found
that only one third of the tuples belonged to such “synonymy
clusters”.

Next, we randomly sampled 100 synonymy clusters and
asked one author of this paper to determine how many distinct
facts existed within each cluster. For example, the clusterof 4
tuples below describes 2 distinct relationsR1 andR2 between
Bletchley ParkandStation Xas delineated below:

R1 (Bletchley Park, was location of , Station X)

R2 (Bletchley Park, being called , Station X)
R2 (Bletchley Park, , known as , Station X)
R2 (Bletchley Park, , codenamed , Station X)

Overall, we found that roughly one quarter of the tuples
in our sample were reformulations of other tuples contained
somewhere in the filtered set of 11.3 million tuples. Given
our previous measurement that two thirds of the concrete fact
tuples do not belong to synonymy clusters, we can compute
that 2

3
+ (1

3
× 3

4
) or roughly 92% of the tuples found by

TEXTRUNNER express distinct assertions. As pointed out
earlier, this is an overestimate of the number of unique facts
because we have not been able to factor in the impact of mul-
tiple entity names, which is a topic for future work.

4 Related Work
Traditional “closed” IE work was discussed in Section 1. Re-
cent efforts[Pascaet al., 2006] seeking to undertake large-
scale extraction indicate a growing interest in the problem.

This year, Sekine[Sekine, 2006] proposed a paradigm for
“on-demand information extraction,” which aims to eliminate
customization involved with adapting IE systems to new top-
ics. Using unsupervised learning methods, the system auto-
matically creates patterns and performs extraction based on a
topic that has been specified by a user.

Also this year, Shinyama and Sekine[Shinyama and
Sekine, 2006] described an approach to “unrestricted re-
lation discovery” that was developed independently of our
work, and tested on a collection of 28,000 newswire articles.

5We carried out several preliminary experiments using a data-
driven approach to synonym discovery based on DIRT[Lin and Pan-
tel, 2001] that confirmed this hypothesis.

This work contains the important idea of avoiding relation-
specificity, but does not scale to the Web as explained below.

Given a collection of documents, their system first per-
forms clustering of the entire set of articles, partitioning the
corpus into sets of articles believed to discuss similar topics.
Within each cluster, named-entity recognition, co-reference
resolution and deep linguistic parse structures are computed
and then used to automatically identify relations between sets
of entities. This use of “heavy” linguistic machinery would
be problematic if applied to the Web.

Shinyama and Sekine’s system, which uses pairwise
vector-space clustering, initially requires anO(D2) effort
whereD is the number of documents. Each document as-
signed to a cluster is then subject to linguistic processing,
potentially resulting in another pass through the set of input
documents. This is far more expensive for large document
collections than TEXTRUNNER’s O(D +T log T ) runtime as
presented earlier.

From a collection of 28,000 newswire articles, Shinyama
and Sekine were able to discover 101 relations. While it is
difficult to measure the exact number of relations found by
TEXTRUNNER on its 9,000,000 Web page corpus, it is at least
two or three orders of magnitude greater than 101.

5 Conclusions
This paper introduces Open IE from the Web, an unsuper-
vised extraction paradigm that eschews relation-specific ex-
traction in favor of a single extraction pass over the corpus
during which relations of interest are automatically discov-
ered and efficiently stored. Unlike traditional IE systems that
repeatedly incur the cost of corpus analysis with the naming
of each new relation, Open IE’s one-time relation discovery
procedure allows a user to name and explore relationships at
interactive speeds.

The paper also introduces TEXTRUNNER, a fully imple-
mented Open IE system, and demonstrates its ability to
extract massive amounts of high-quality information from
a nine million Web page corpus. We have shown that
TEXTRUNNER is able to match the recall of the KNOWITALL
state-of-the-art Web IE system, while achieving higher preci-
sion.

In the future, we plan to integrate scalable methods for de-
tecting synonyms and resolving multiple mentions of entities
in TEXTRUNNER. The system would also benefit from the
ability to learn the types of entities commonly taken by re-
lations. This would enable the system to make a distinction
between different senses of a relation, as well as better locate
entity boundaries. Finally we plan to unify tuples output by
TEXTRUNNER into a graph-based structure, enabling com-
plex relational queries.
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