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Abstract

Traditionally, Information Extraction (IE) has fo-
cused on satisfying precise, narrow, pre-specified
requests from small homogeneous corpora (e.g.,
extract the location and time of seminars from a
set of announcements). Shifting to a new domain
requires the user to name the target relations and
to manually create new extraction rules or hand-tag
new training examples. This manual labor scales
linearly with the number of target relations.

This paper introduce®pen IE(OIE), a new ex-
traction paradigm where the system makes a single
data-driven pass over its corpus and extracts a large
set of relational tuples without requirirgmyhuman
input. The paper also introduceEXTRUNNER,

a fully implemented, highly scalable OIE system
where the tuples are assigned a probability and
indexed to support efficient extraction and explo-
ration via user queries.

We report on experiments over a 9,000,000 Web
page corpus that compareEXTRUNNER with
KNOWITALL, a state-of-the-art Web IE system.
TEXTRUNNER achieves an error reduction of 33%
on a comparable set of extractions. Furthermore,
in the amount of time it takes KOWITALL to per-
form extraction for a handful of pre-specified re-
lations, TEXTRUNNER extracts a far broader set
of facts reflecting orders of magnitude more rela-
tions, discovered on the fly. We report statistics
on TEXTRUNNER’s 11,000,000 highest probability
tuples, and show that they contain over 1,000,000
concrete facts and over 6,500,000 more abstract as-
sertions.

Introduction and Motivation

This paper introduce®pen Information Extraction (OIE)-

Information Extraction (IE) has traditionally relied on-ex
tensive human involvement in the form of hand-crafted ex-
traction rules or hand-tagged training examples. Moreover
the user is required to explicitly pre-specify each relatid
interest. While IE has become increasingly automated over
time, enumerating all potential relations of interest far e
traction by an IE system is highly problematic for corpora as
large and varied as the Web. To make it possible for users to
issue diverse queries over heterogeneous corpora, |IEsyste
must move away from architectures that require relations to
be specified prior to query time in favor of those that aim to
discover all possible relations in the text.

In the past, IE has been used on small, homogeneous cor-
pora such as newswire stories or seminar announcements. As
aresult, traditional IE systems are able to rely on “heairy”’ |
guistic technologies tuned to the domain of interest, sich a
dependency parsers and Named-Entity Recognizers (NERS).
These systems were not designed to scale relative to the size
of the corpus or the number of relations extracted, as both
parameters were fixed and small.

The problem of extracting information from the Web vio-
lates all of these assumptions. Corpora are massive and het-
erogeneous, the relations of interest are unanticipated, a
their number can be large. Below, we consider these chal-
lenges in more detail.

Automation The first step in automating IE was moving
from knowledge-based IE systems to trainable systems that
took as input hand-tagged instand&sloff, 1996] or doc-
ument segment§Cravenet al, 1999 and automatically
learned domain-specific extraction patterns. DIPFEnN,
1999, SNowBALL [Agichtein and Gravano, 2000and Web-
based question answering systeiRavichandran and Hovy,
2004 further reduced manual labor needed for relation-
specific text extraction by requiring only a small set of tadg
seed instances or a few hand-crafted extraction patteats, p
relation, to launch the training process. Still, the creatbf

a novel extraction paradigm that facilitates domain-gitaple training data required substantial expertiseelbas
independent discovery of relations extracted from text a”(ion-trivial manual efforfor every relation extractedand the
readily scales to the diversity and size of the Web corpus,g|ations have to be specified in advance.

The sole input to an OIE system is a corpus, and its output

is a set of extracted relations. An OIE system makes a single

pass over its corpus guaranteeing scalability with the sfze Corpus Heterogeneity Previous approaches to relation
the corpus. extraction have employed kernel-based methfiisnescu



and Mooney, 2006 maximum-entropy modelKambhatla, 2 Open IE in TEXTRUNNER

2004, graphical model$Rosario and Hearst, 2004; Culotta 115 section describes EKTRUNNER'S architecture focus-

et al, 2006, and co-occurrence statisti¢sin and Pantel, j o on its novel components, and then considers how
2001; Ciaramitat al, 2009 over small, domain-specific cor- ey rRyNNER addresses each of the challenges outlined in
pora and limited sets of relations. The use of NERs as welkgction 1. EXTRUNNER'S sole input is a corpus and its out-

as syntactic or dependency parsers is a common thread thgl; js 5 set of extractions that are efficiently indexed to-sup
unifies most previous work. But this rather “heavy” linguis- port exploration via user queries.

tic technology runs into problems When_applied to the het- Ty TRUNNER consists of three key modules:

erogeneous text found on the Web. While the parsers work ) i

well when trained and applied to a particular genre of text, 1+ Self-Supervised Learmner:Given a small corpus sample

such as financial news data in the Penn Treebank, they make S input, the Learner outputs a classifier that labels can-

many more parsing errors when confronted with the diversity ~ didate extractions as “trustworthy” or not. The Learner

of Web text. Moreover, the number and complexity of en-  réquires no hand-tagged data.

tity types on the Web means that existing NER systems are 2. Single-Pass Extractor: The Extractor makes a single

inapplicablg Downeyet al., 2007. pass over the entire corpus to extract tuples for all possi-
ble relations. The Extractor doastutilize a parser. The
Extractor generates one or more candidate tuples from

Efficiency KNowlTALL [Etzioniet al, 2009 is a state-of- each sentence, sends each candidate to the classifier, and

the-art Web extraction system that addresses the autamatio  retains the ones labeled as trustworthy.

challenge by learning to label its own training examples us- .
ing a small set of domain-independent extraction patterns. 3. Redun(_j_ancy—Based As_sessorThe Assessor assigns a
probability to each retained tuple based on a probabilis-

KNOWITALL also addresses corpus heterogeneity by rely- ; ; ;
ing on a part-of-speech tagger instead of a parser, and by g?;?oggéé)f redundancy in text introduced iBowney

not requiring a NER. However, KOwITALL requires large
numbers of search engine queries and Web page downloads.Below, we describe each module in more detail, discuss
As a result, experiments usingdOWITALL can take weeks TEXTRUNNER's ability to efficiently process queries over its
to complete. Finally, KiowITALL takesrelation names as ~€xtraction set, and analyze the system’s time complexity an
input Thus, the extraction process has to be run, and respeed.

run, each time a relation of interest is identified. The OIE .
paradigm retains KOWITALL's benefits but eliminates its 2.1 Self-Supervised Learner

inefficiencies. The Learner operates in two steps. First, it automatically |

The paper reports on EXTRUNNER, the first scalable, bels its own training data as positive or negative. Secdnd, i
domain-independent OIE systemEXTRUNNER is a fully ~ Uses this labeled data to train a Naive Bayes classifier,twhic
implemented system that extracts relational tuples froth te is then used by the Extractor module.

The tuples are assigned a probability and indexed to support While deploying a deep linguistic parser to extract rela-
efficient extraction and exploration via user queries. tionships between objects is not practical at Web scale, we

The main contributions of this paper are to: hypothe_sized that a parser can helptmin an Extractor.
Thus, prior to full-scale relation extraction, the Learnees

e Introduce Open Information Extraction (OIE)—a new a parsefKlein and Manning, 20030 automatically identify
extraction paradigm that obviates relation specificity byand label a set of trustworthy (and untrustworthy) extisi
automatically discovering possible relations of interestThese extractions are are used as positive (or negative) tra
while making only a single pass over its corpus. ing examples to a Naive Bayes classifi@ur use of a noise-

tolerant learning algorithm helps the system recover froen t

errors made by the parser when applied to heterogeneous Web

ext.
Extractions take the form of a tuple= (e;, r; ;, ¢;), where

e; ande; are strings meant to denote entities, ang is

a string meant to denote a relationship between them. The

trainer parses several thousand sentences to obtain their d

pendency graph representations. For each parsed sentence,

e Report on statistics over EXTRUNNER'S 11,000,000 the system finds all base noun phrase constituemtsFor
highest probability extractions, which demonstrates itseach pair of noun phrasés;, ¢;),i < j , the system traverses
scalability, helps to assess the quality of its extractionsthe parse structure connecting them to locate a sequence of
and suggests directions for future work. words that becomes a potential relatign in the tuplet. The

The remainder of the paper is organized as follows. SectiorITeamer labelg as a positive example if certain constraints

2 introduces EXTRUNNER, focusing on the novel elements  igince the Learner labels its own training data, we refer tsit

of its architecture. Section 3 reports on our experimergal r self supervised

sults. Section 4 considers related work, and the paper con- ?Base noun phrases do not contain nested noun phrases, or op-
cludes with a discussion of future work. tional phrase modifiers, such as prepositional phrases.

e Introduce TEXTRUNNER, a fully implemented OIE sys-
tem, and highlight the key elements of its novel archi-
tecture. The paper comparesXTRUNNER experimen-
tally with the state-of-the-art Web IE systemNEw-
ITALL, and show that EXTRUNNER achieves a 33%
relative error reduction for a comparable number of ex-
tractions.



on the syntactic structure shared dyande; are met. These the noun phrases and heuristically eliminating non-egsent
constraints seek to extract relationships that are likelp¢  phrases, such as prepositional phrases that overspeafy-an
correct even when the parse tree contains some local eifrors;tity (e.g: Scientists from many universities are studyings..
any constraint failst is labeled as a negative instance. Someanalyzed asScientists are studying’), or individual tokens,
of the heuristics the system uses are: such as adverbg(g: definitely developéds reduced to tle-

: : , : veloped).

) I)rr]g:r ?ﬁsrﬁsaalcgﬁgier]ng?\gt:#ham betwegande; that s no For each noun phrase it finds, the chunker also provides the
probability with which each word is believed to be part of the
entity. These probabilities are subsequently used to disca
tuples containing entities found with low levels of confiden
e Neithere; nore; consist solely of a pronoun. Finally, each candidate tuplgs presented to the classifier. If

the classifier labels as trustworthy, it is extracted and stored
Once the Learner has found and labeled a set of tuples qfy TExTRUNNER.

the form¢ = (e;, r; j, €;), it maps each tuple to a feature vec-

tor representation. All features are domain independent, a 2.3 Redundancy-based Assessor

can be evaluated at extraction time without the use of a parseDuring the extraction process EKTRUNNER creates a nor-
Examples of features include the presence of part-of-$peeanalized form of the relation that omits non-essential modi-
tag sequences in the relatioyy;, the number of tokensin ;,  fiers to verbs and nouns, e.gas developed bgs a normal-
the number of stopwords in, ;, whether or not an objeetis  zed form ofwas originally developed byAfter extraction
found to be a proper noun, the part-of-speech tag to thefleft chas been performed over the entire corpusx TRUNNER

e;, the part-of-speech tag to the rightgt Following feature  automatically merges tuples where both entities and nermal
extraction, the Learner uses this set of automaticallyl&be ized relation are identical and counts the number of distinc
feature vectors as input to a Naive Bayes classifier. sentences from which each extraction was found.

The classifier output by the Learner is language-specific Following extraction, the Assessor uses these counts to as-
but contains no relation-specific or lexical features. Thus sign a probability to each tuple using the probabilistic iod
can be used in a domain-independent manner. previously applied to unsupervised IE in thev&wITALL

Prior to using a learning approach, one of the authors insystem. Without hand-tagged data, the model efficiently est
vested several weeks in manually constructing a relationmates the probability that a tuple= (ei 744, ¢4) is acorrect
independent extraction classifier. A first attempt at refati instance of the relatior} ; betweere; ande; given that it was
extraction took the entire string between two entitiesce®  extracted from% different sentences. The model was shown
to be of interest. Not surprisingly, this permissive apgiva to estimate far more accurate probabilities for IE than yois

captured an excess of extraneous and incoherent informar and pointwise mutual information based methi@swney
tion. At the other extreme, a strict approach that simphkko et al, 2005.

for verbs in relation to a pair of nouns resulted in a loss of )

other links of importance, such as those that specify noun o2.4 Query Processing

attribute-centric properties, for exampl@gpenheimer, pro- TEXTRUNNER is capable of responding to queries over mil-
fessor of, theoretical physigand trade schools, similar to, lions of tuples at interactive speeds due to a inverted index
colleges. A purely verb-centric method was prone to extract- distributed over a pool of machines. Each relation found dur
ing incomplete relationships, for examplBgkeley, located, ing tuple extraction is assigned to a single machine in the
Bay Areg instead of Berkeley, located in, Bay ArgaThe  pool. Every machine then computes an inverted index over
heuristic-based approaches that were attempted exposed tthe text of the locally-stored tuples, ensuring that each ma
difficulties involved in anticipating the form of a relati@md  chine is guaranteed to store all of the tuples containind-a re
its arguments in a general manner. At best, a final handerence to any relation assigned to that machine.

e The path frome; to e; along the syntax tree does not cross a
sentence-like boundary (e.g. relative clauses).

built classifier, which is a natural baseline for the learoed, The efficient indexing of tuples in BXTRUNNER means
achieved a mere one third of the accuracy of that obtained bghat when a user (or application) wants to access a subset of
the Learner. tuples by naming one or more of its elements, the relevant
. subset can be retrieved in a manner of seconds, and irrele-
2.2 Single-Pass Extractor vant extractions remain unrevealed to the user. Since the re

The Extractor makes a single pass over its corpus, automatiion names in EXTRUNNER are drawn directly form the text,
cally tagging each word in each sentence with its most probthe intuitions that they implicitly use in formulating a sela
able part-of-speech. Using these tags, entities are foynd kquery are effective. Querying relational triples will besea
identifying noun phrases using a lightweight noun phrasger once TEXTRUNNER is able to know which relations are
chunker® Relations are found by examining the text betweensynonymous with others. However, asking the user to “guess
the right word” is a problem that is shared by search engines,

*TEXTRUNNER performs this analysis using maximum-entropy which suggests that it is manageable for naive users.
models for part-of-speech tagging and noun-phrase chgriRat-

naparkhi, 1998 as implemented in the OpenNLP toolkit. Both nhiques enables EXTRUNNER to be more robust to the highly di-
part-of-speech tags and noun phrases can be modeled with higzerse corpus of text on the Web.

accuracy across domains and languaf@sll and Ngai, 1999; “The inverted index itself is built using the Lucene open seur
Ngai and Florian, 2001 This use of relatively “light” NLP tech-  search engine.



Finally, TEXTRUNNER's relation-centric index enables (<proper nour-, acquired <proper noun-)

complex relational queries that are not currently posgiiste (<proper noun-, graduated from proper noun-)
ing a standard inverted index used by today’s search engines (<proper noun, is author of,<proper noun-)
These include relationship queries, unnamed-item queries (<proper noun, is based in<proper noun-)
and multiple-attribute queries, each of which is descrilmed (<proper noun-, studied,<noun phrasg)
detail in[Cafarellaet al., 2004. (<proper nour», studied at<proper noun-)

' (<proper noun-, was developed by proper noun-)
2.5 Analysis (<proper noun-, was formed in<year>)

(<proper noun-, was founded by< proper noun-)

Tuple extraction in EXTRUNNER happens inO(D) time, (<proper nouts. worked with, <proper nou-)

where D is the number of documents in the corpus. It sub-
sequently take® (T log T') time to sort, count and assess the Table 1 shows the average error rate over the ten relations
set of 7" tuples found by the system. In contrast, each time aand the total number of correct extractions for each of thee tw
traditional IE system is asked to find instances of a new sesystems. EXTRUNNER'S average error rate is 33% lower
of relationsR it may be forced to examine a substantial frac-than KNOWITALL's, but it finds an almost identical number
tion of the documents in the corpus, making system run-timef correct extractions. #XTRUNNER'S improvement over
O(R - D). Thus, whenD and R are large, as is typically KNoOwITALL can be largely attributed to its ability to better
the case on the Web EKTRUNNER’s ability to extract infor-  identify appropriate arguments to relations.
mation forall relations at onceyithouthaving them named Still, a large proportion of the errors of both systems were
explicitly in its input, results in a significant scalabjliad-  from noun phrase analysis, where arguments were truncated
vantage over previous IE systems (includingdWwITALL). or stray words added. It is difficult to find extraction bound-
TEXTRUNNER extracts facts at an average speed of 0.03@ries accurately when the intended type of arguments such as
CPU seconds per sentence. Compared to dependency parsessnpany names, person names, or book titles is not specified
which take an average of 3 seconds to process a single setothe system. This was particularly the case forabéhorOf
tence, EXTRUNNER runs more than 80 times faster on our relation, where many arguments reflecting book titles were
corpus. On average, a Web page in our corpus contains liBuncated and the error rate was was 32% faxTRUNNER
sentences, makingEKTRUNNER's average processing speed and 47% for KNowl TALL. With this outlier excluded, the
per document 0.65 CPU seconds and the total CPU time taverage error rate is 10% forEKTRUNNER and 16% for
extract tuples from our 9 million Web page corpus less tharK NOWITALL.
68 CPU hours. Because the corpus is easily divided into sep- Even when extracting information for only ten relations,
arate chunks, the total time for the process on our 20 maTExTRUNNER's efficiency advantage is apparent. Even
chine cluster was less than 4 hours. It takes an additional though they were run over the same 9 million page corpus,
hours for TEXTRUNNER to merge and sort the extracted tu- TEXTRUNNER's distributed extraction process took a total
ples. We compare the performance &XTRUNNER relative  of 85 CPU hours, to perform extraction for all relations in
to a state-of-the-art Web IE system in Section 3.1. the corpus at once, whereasvn&BwITALL, which analyzed
The key to TEXTRUNNER's scalability is processing time all sentences in the corpus that potentially matched itsstul
that is linear inD (and constant ink). But, as the above took an average of 6.3 houper relation In the amount of
measurements show,EXTRUNNER is not only scalable in time that KN\OwlTALL can extract data for 14 pre-specified

theory, but also fast in practice. relations, EXTRUNNER discovers orders of magnitude more
) relations from the same corpus.
3 Experimental Results Beyond the ten relations sampled, there is a fundamental

We first compare recall and error rate of TTRUNNER with difference between the two systems. Standard |IE systems can

that of a closed IE system on a set of relations in Sectiof?ny operate on relations given todtpriori by the user, and
3.1. We then turn to the fascinating challenge of characterd'® only practical for a relatively small number of relaon

izing the far broader set of facts and relations extracted byn contrast, Open IE operates without knowing the relations
TEXTRUNNER in Section 3.2. a priori, and extracts information from all relations at once.

We consider statistics onEXTRUNNER's extractions next.

3.1 Comparison with Traditional IE o
One means of evaluating Open IE is to compare its perfors-2 Global Statistics on Facts Learned

mance with a state-of-the-art Web IE system. For this comGiven a corpus of 9 million Web pages, containing 133 mil-
parison we used KowlTALL [Etzioni et al, 2003, a un-  lion sentences, EXTRUNNER automatically extracted a set
supervised |IE system capable of performing large-scale exaf 60.5 million tuples at an extraction rate of 2.2 tuples per
traction from the Web. To control the experiments, bothsentence.
TEXTRUNNER and KNOWITALL were tested on the task of  When analyzing the output of open IE system such as
extracting facts from our 9 million Web page corpus. TEXTRUNNER, several question naturally arise: How many
Since KNOWITALL is a closed IE system, we needed to of the tuples found represent actual relationships withigila
select a set of relations in advance. We randomly seleceed ttble arguments? What subset of these tuples is correct? How
following 10 relations that could be found in at least 1,000many of these tuples are distinct, as opposed to identical or
sentences in the corpus, manually filtering out relatiom$ th synonymous? Answering these questions is challenging due
were overly vagued.g-includes”): to both the size and diversity of the tuple set. As explained



Average Correct Tuples

Error rate | Extractions 11.3 million
TEXTRUNNER 12% 11,476
KNOWITALL 18% 11,631

With Well-Formed Relation
9.3 million

Table 1: Over a set of ten relations, TEXT RUNNER achieved a
33% lower error rate than K NOowI TALL , while finding approx-
imately as many correct extractions.

With Well-Formed Entities
7.8 million

below, we made a series of estimates and approximations in
order to address the questions.

As a first step, we restricted our analysis to the subset of
tuples that EXTRUNNER extracted with high probability.
Specifically, the tuples we evaluated met the following cri-
teria: 1) TEXTRUNNER assigned a probability of at least 0.8
to the tuple; 2) The tuple’s relation is supported by at least
10 distinct sentences in the corpus; 3) The tuple’s relaon
not found to be in the top 0.1% of relations by number of
supporting sentences. (These relations were so geneml as t
be nearly vacuous, such as (NRBs NP2)). This filtered
set consists of 11.3 million tuples containing 278,085 ¢t
relation strings. This filtered set is the one used in all theFigure 1: Overview of the tuples extracted from 9 million Web
measurements described in this section. page corpus. 7.8 million well-formed tuples are found havig
. . probability > 0.8. Of those, TEXT RUNNER finds 1 million con-
Estimating the Correctness of Facts crete tuples with arguments grounded in particular real-wald
We randomly selected four hundred tuples from the filteredentities, 88.1% of which are correct, and 6.8 million tuplesre-
set as our sample. The measurements below are extrapolatiéetting abstract assertions, 79.2% of which are correct.
based on hand tagging the sample. Three authors of this paper
inspected the tuples in order to characterize the datactztia
by TEXTRUNNER. Each evaluator first judged whether the ontology learning and other applications. Of course, only a
relation waswell-formed A relationr is considered to be small subset of the universe of tuples would be of interest in
well-formed if there is some pair of entitie¥ andY such  any particular applicatione(g, the tuples corresponding to
that (X, r,Y) is a relation betweelX andY. For example, the relations in the experiment in Section 3.1).

(FCI, specializes in, software developmecdntains a well- o o

formed relation, butdemands, of securing, bordedoes not. ~ Estimating the Number of Distinct Facts

If a tuple was found to possess a well-formed relation, it wagOf the millions of tuples extracted byEXTRUNNER, how

then judged to see if the arguments were reasonable for thaany reflect distinct statements as opposed to reformulgitio
relation. X andY” arewell-formed argument®r the relation  of existing extractions? In order to answer this questiorg o
rif X andY are of a "type” of entity that can form a relation needs to be able to detect when one relation is synonymous
(X,r,Y). An example of a tuple whose arguments are notwith another, as well as when an entity is referred to by mul-
well-formed is @9, dropped, instruments tiple names. Both problems are very difficult in an unsuper-

We further classified the tuples that met these criteria-as eivised, domain-independent context with a very large number
ther concrete or abstragt.oncretemeans that the truth of the of relations and entities of widely varying types. In our mea
tuple is grounded in particular entities, for examplgeqla, surements, we were only able to address relation synonymy,
invented, coil transformér Abstracttuples are underspeci- which means that the measurements reported below should
fied, such asKinstein, derived, theo}y or refer to entities be viewed as rough approximations.
specified elsewhere, but imply properties of general clgsse In order to assess the number of distinct relations found by
such aséxecutive, hired by, company TEXTRUNNER, we further merged relations differing only in

Finally, we judged each concrete or abstract tuple as truéeading or trailing punctuation, auxiliary verbs, or in ¢iag
or false, based on whether it was consistent with the trutlstopwords such athat, who andwhich For example;are
value of the sentence from which it was extracted. Figure konsistent with"is merged with', which is consistent with”
summarizes this analysis of the extracted tuples. We also merged relations differing only by their use of astiv

TEXTRUNNER finds 7.8 million facts having both a well- and passive voices(g, inventeds merged withwas invented
formed relation and arguments and probability at least 0.8by). This procedure reduced the number of distinct relations
Of those facts, 80.4% were deemed to be correct according i@ 91% of the number before merging.
human reviewers. Within a given relation, an average of 14% Even after the above merge, the question remains: how
of the tuples are concrete facts of which 88.1% are correctmany of the relation strings are synonymous? This is exceed-
and 86% are abstract facts of which 77.2% are correct. Coningly difficult to answer because many of the relations that
crete facts are potentially useful for information extrastor ~ TEXTRUNNER finds have multiple senses. The relatibe-
guestion answering, while abstract assertions are useful f velopedfor example, may be a relation between a person and

Abstract
6.8 million
79.2%

Concrete
1 million



an invention but also between a person and a disease. leis rafhis work contains the important idea of avoiding relation-
to find two distinct relations that are truly synonymous ih al specificity, but does not scale to the Web as explained below.
senses of each phrase unless domain-specific type checkingGiven a collection of documents, their system first per-
is performed on one or both arguments. If the first argumenforms clustering of the entire set of articles, partitiagife

is the name of a scientist, thelevelopeds synonymous with  corpus into sets of articles believed to discuss similaicsp
inventedandcreated and is closely related foatented With- ~ Within each cluster, named-entity recognition, co-refiee
out such argument type checking, these relations will pigk o resolution and deep linguistic parse structures are coaaput
overlapping, but quite distinct sets of tupfes. and then used to automatically identify relations betwexts s

It is, however, easier for a human to assess similarity adf entities. This use of “heavy” linguistic machinery would
the tuple level, where context in the form of entities ground be problematic if applied to the Web.
ing the relationship is available. In order to estimate the Shinyama and Sekine’s system, which uses pairwise
number of similar facts extracted byeXTRUNNER, we be-  vector-space clustering, initially requires @& D?) effort
gan with our filtered set of 11.3 million tuples. For eachwhereD is the number of documents. Each document as-
tuple, we found clusters of concrete tuples of the formsigned to a cluster is then subject to linguistic processing
(e1,m, e2), (e1,q,e2) Wherer # g, that is tuples where the potentially resulting in another pass through the set ofiinp
entities match but the relation strings are distinct. Wenfbu documents. This is far more expensive for large document
that only one third of the tuples belonged to such “synonymycollections than EXTRUNNER's O(D +T'log T') runtime as
clusters”. presented earlier.

Next, we randomly sampled 100 synonymy clusters and From a collection of 28,000 newswire articles, Shinyama
asked one author of this paper to determine how many distin@nd Sekine were able to discover 101 relations. While it is
facts existed within each cluster. For example, the clusftér  difficult to measure the exact number of relations found by
tuples below describes 2 distinct relatidRsand R, between ~ TEXTRUNNERoON its 9,000,000 Web page corpus, itis at least
Bletchley ParkandStation Xas delineated below: two or three orders of magnitude greater than 101.

R; (Bletchley Park, was location of , Station X) 5 Conclusions

Ry (Bletchley Park, beingcalled ,StationX)  Thjs paper introduces Open IE from the Web, an unsuper-
Ry (Bletchley Park, , known as ,Station X)  yjsed extraction paradigm that eschews relation-specific e
Ry (Bletchley Park, ,codenamed , Station X)  {raction in favor of a single extraction pass over the corpus
during which relations of interest are automatically disco
~ Overall, we found that roughly one quarter of the tuplesgreg and efficiently stored. Unlike traditional IE systeimatt
in our sample were reformulations of other tuples containegepeatedly incur the cost of corpus analysis with the naming

our previous measurement that two thirds of the concrete fagyrgcedure allows a user to name and explore relationships at

tuples do not belong to synonymy clusters, we can computgteractive speeds.

that § + (5 x 3) or roughly 92% of the tuples found by  The paper also introducesskTRUNNER, a fully imple-

TEXTRUNNER express distinct assertions. As pointed outmented Open IE system, and demonstrates its ability to
earlier, this is an overestimate of the number of uniquesfact oxtract massive amounts of high-quality information from
because we have not been able to factor in the impact of muly nine million Web page corpus. We have shown that

tiple entity names, which is a topic for future work. TEXTRUNNERIs able to match the recall of theNOWI TALL
s;ate—of-the—art Web IE system, while achieving highecpre
4 Related Work sion.

- ) ) ] In the future, we plan to integrate scalable methods for de-
Traditional “closed” IE work was discussed in Section 1. Re-tacting synonyms and resolving multiple mentions of esiti
cent efforts|[Pascaet al, 2006 seeking to undertake large- 5 TexTRUNNER. The system would also benefit from the
scale extraction indicate a growing interest in the problem  apijity to learn the types of entities commonly taken by re-

This year, SekingSekine, 200Bproposed a paradigm for |ations. This would enable the system to make a distinction
“on-demand information extraction,” which aims to elimiea  petween different senses of a relation, as well as bettetdoc
customization involved with adapting |IE systems to new top-entity boundaries. Finally we plan to unify tuples output by
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matically creates patterns and performs extraction basexd 0 plex relational queries.
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