
Logic, Automata, Games, and
Algorithms

Moshe Y. Vardi

Rice University

Two Separate Paradigms in
Mathematical Logic

• Paradigm I : Logic – declarative formalism

– Specify properties of mathematical objects,
e.g., (∀x, y, x)(mult(x, y, z) ↔ mult(y, x, z)) –
commutativity.

• Paradigm II : Machines – imperative formalism

– Specify computations, e.g., Turing machines,
finite-state machines, etc.

Surprising Phenomenon : Intimate connection
between logic and machines – automata-
theoretic approach.

1

Nondeterministic Finite Automata

A = (Σ, S, S0, ρ, F)

• Alphabet: Σ

• States: S

• Initial states: S0 ⊆ S

• Nondeterministic transition function:
ρ : S × Σ → 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . . , an−1

Run : s0, s1, . . . , sn
• s0 ∈ S0

• si+1 ∈ ρ(si, ai) for i ≥ 0
Acceptance : sn ∈ F
Recognition : L(A) – words accepted by A.

Example : - •
6

� �
0

1-
�

0
•����

6

� �
1

– ends with 1’s

Fact : NFAs define the class Reg of regular
languages.

2

Logic of Finite Words

View finite word w = a0, . . . , an−1 over alphabet
Σ as a mathematical structure:
• Domain: 0, . . . , n− 1
• Binary relations: <,≤
• Unary relations: {Pa : a ∈ Σ}

First-Order Logic (FO) :

• Unary atomic formulas: Pa(x) (a ∈ Σ)

• Binary atomic formulas: x < y, x ≤ y

Example : (∃x)((∀y)(¬(x < y)) ∧ Pa(x)) – last letter
is a.

Monadic Second-Order Logic (MSO) :

• Monadic second-order quantifier: ∃Q

• New unary atomic formulas: Q(x)

3

NFA vs. MSO

Theorem [Büchi, Elgot, Trakhtenbrot, 1957-8
(independently)]: MSO ≡ NFA
• Both MSO and NFA define the class Reg.

Proof : Effective

• From NFA to MSO (A 7→ ϕA)

– Existence of run – existential monadic quantification

– Proper transitions and acceptance - first-order
formula

• From MSO to NFA (ϕ 7→ Aϕ): closure of NFAs
under

– Union – disjunction

– Projection – existential quantification

– Complementation – negation

4

NFA Complementation

Run Forest of A on w:

• Roots: elements of S0.

• Children of s at level i: elements of ρ(s, ai).

• Rejection: no leaf is accepting.

Key Observation : collapse forest into a DAG – at
most one copy of a state at a level; width of DAG is
|S|.

Subset Construction Rabin-Scott, 1959:

• Ac = (Σ, 2S, {S0}, ρ
c, F c)

• F c = {T : T ∩ F = ∅}

• ρc(T, a) =
⋃
t∈T ρ(t, a)

• L(Ac) = Σ∗ − L(A)

5

Complementation Blow-Up

A = (Σ, S, S0, ρ, F), |S| = n
Ac = (Σ, 2S, {S0}, ρ

c, F c)

Blow-Up : 2n upper bound

Can we do better?

Lower Bound : 2n

Sakoda-Sipser 1978, Birget 1993

Ln = (0 + 1)∗1(0 + 1)n−10(0 + 1)∗

• Ln is easy for NFA
• Ln is hard for NFA

6

NFA Nonemptiness

Nonemptiness : L(A) 6= ∅

Nonemptiness Problem : Decide if given A is
nonempty.

Directed Graph GA = (S,E) of NFA A =
(Σ, S, S0, ρ, F):
• Nodes: S
• Edges: E = {(s, t) : t ∈ ρ(s, a) for some a ∈
Σ}

Lemma : A is nonempty iff there is a path inGA from
S0 to F .

• Decidable in time linear in size of A, using
breadth-first search or depth-first search (space
complexity: NLOGSPACE-complete).

7

MSO Satisfiability – Finite Words

Satisfiability : models(ψ) 6= ∅

Satisfiability Problem : Decide if given ψ is
satisfiable.

Lemma : ψ is satisfiable iff Aψ is nonnempty.

Corollary : MSO satisfiability is decidable.

• Translate ψ to Aψ.

• Check nonemptiness of Aψ.

Complexity :

• Upper Bound: Nonelementary Growth

2·
·
·
2n

(tower of height O(n))

• Lower Bound [Stockmeyer, 1974]: Satisfiability of
FO over finite words is nonelementary (no bounded-
height tower).

8

Automata on Infinite Words

Büchi Automaton, 1962 A = (Σ, S, S0, ρ, F)

• Σ: finite alphabet

• S: finite state set

• S0 ⊆ S: initial state set

• ρ : S × Σ → 2S: transition function

• F ⊆ S: accepting state set

Input: w = a0, a1 . . .
Run: r = s0, s1 . . .
• s0 ∈ S0

• si+1 ∈ ρ(si, ai)
Acceptance: run visits F infinitely often.

Fact : NBAs define the class ω-Reg of ω-regular
languages.

9

Examples

((0 + 1)∗1)ω:

- •
6

� �
0

1-
�

0
•����

6

� �
1

– infinitely many 1’s

(0 + 1)∗1ω:

- •
6

� �
0, 1

1
- •����

6

� �
1

– finitely many 0’s

10

Logic of Infinite Words

View infinite word w = a0, a1, . . . over alphabet
Σ as a mathematical structure:
• Domain: N
• Binary relations: <,≤
• Unary relations: {Pa : a ∈ Σ}

First-Order Logic (FO) :

• Unary atomic formulas: Pa(x) (a ∈ Σ)

• Binary atomic formulas: x < y, x ≤ y

Monadic Second-Order Logic (MSO) :

• Monadic second-order quantifier: ∃Q

• New unary atomic formulas: Q(x)

Example : q holds at every event point.

(∃Q)(∀x)(∀y)((((Q(x) ∧ y = x+ 1) → (¬Q(y)))∧
(((¬Q(x)) ∧ y = x+ 1) → Q(y)))∧
(x = 0 → Q(x)) ∧ (Q(x) → q(x))),

11

NBA vs. MSO

Theorem [Büchi, 1962]: MSO ≡ NBA
• Both MSO and NBA define the class ω-Reg.

Proof : Effective

• From NBA to MSO (A 7→ ϕA)

– Existence of run – existential monadic quantification

– Proper transitions and acceptance - first-order
formula

• From MSO to NBA (ϕ 7→ Aϕ): closure of NBAs
under

– Union – disjunction

– Projection - existential quantification

– Complementation - negation

12

Büchi Complementation

Problem : subset construction fails!

t

0

0
s

0

t
0

s

0

ρ({s}, 0) = {s, t}, ρ({s, t}, 0) = {s, t}

History

• Büchi’62: doubly exponential construction.

• SVW’85: 16n
2

upper bound

• Saf’88: n2n upper bound

• Mic’88: (n/e)n lower bound

• KV’97: (6n)n upper bound

• FKV’04: (0.97n)n upper bound

• Yan’06: (0.76n)n lower bound

• Schewe’09: (0.76n)n upper bound

13

NBA Nonemptiness

Nonemptiness : L(A) 6= ∅

Nonemptiness Problem : Decide if given A is
nonempty.

Directed Graph GA = (S,E) of NBA A =
(Σ, S, S0, ρ, F):
• Nodes: S
• Edges: E = {(s, t) : t ∈ ρ(s, a) for some a ∈
Σ}

Lemma : A is nonempty iff there is a path inGA from
S0 to some t ∈ F and from t to itself – lasso.

• Decidable in time linear in size of A, using depth-
first search – analysis of cycles in graphs (space
complexity: NLOGSPACE-complete).

14

MSO Satisfiability – Infinite Words

Satisfiability : models(ψ) 6= ∅

Satisfiability Problem : Decide if given ψ is
satisfiable.

Lemma : ψ is satisfiable iff Aψ is nonnempty.

Corollary : MSO satisfiability is decidable.

• Translate ψ to Aψ.

• Check nonemptiness of Aψ.

Complexity :

• Upper Bound: Nonelementary Growth

2·
·
·
2O(n log n)

(tower of height O(n))

• Lower Bound [Stockmeyer, 1974]: Satisfiability
of FO over infinite words is nonelementary (no
bounded-height tower).

15

Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

• Religion: Methodist, Presbytarian, atheist,
agnostic

• Ethics: “Logic and The Basis of Ethics”, 1949

• Free Will, Predestination, and Foreknowledge:

– “The future is to some extent, even if it is only
a very small extent, something we can make for
ourselves”.

– “Of what will be, it has now been the case that it
will be.”

– “There is a deity who infallibly knows the entire
future.”

Mary Prior: “I remember his waking me one
night [in 1953], coming and sitting on my bed,
. . ., and saying he thought one could make a
formalised tense logic.”

• 1957: “Time and Modality”

16

Temporal and Classical Logics

Key Theorems :

• Kamp, 1968: Linear temporal logic with past
and binary temporal connectives (“until” and
“since”) has precisely the expressive power
of FO over the integers.

• Thomas, 1979: FO over naturals has
the expressive power of star-free ω-regular
expressions (MSO=ω-regular).

Precursors :

• Büchi, 1962: On infinite words, MSO=RE

• McNaughton & Papert, 1971: On finite words,
FO=star-free-RE

17

The Temporal Logic of Programs

Precursors :

• Prior: “There are practical gains to be had from
this study too, for example in the representation of
time-delay in computer circuits”

• Rescher & Urquhart, 1971: applications to
processes (“a programmed sequence of states,
deterministic or stochastic”)

Pnueli, 1977:
• Future linear temporal logic (LTL) as a
logic for the specification of non-terminating
programs
• Temporal logic with “next” and “until”.

18

Programs as Labeled Graphs

Key Idea : Programs can be represented as
transition systems (state machines)

Transition System : M = (W, I,E, F, π)

• W : states

• I ⊆W : initial states

• E ⊆W ×W : transition relation

• F ⊆W : fair states

• π : W → Powerset(Prop): Observation
function

Fairness : An assumption of “reasonableness”
– restrict attention to computations that visit F
infinitely often, e.g., “the channel will be up infinitely
often”.

19

Runs and Computations

Run : w0, w1, w2, . . .

• w0 ∈ I

• (wi, wi+1) ∈ E for i = 0, 1, . . .

Computation : π(w0), π(w1), π(w2), . . .

• L(M): set of computations of M

Verification : System M satisfies specification ϕ –

• all computations in L(M) satisfy ϕ.

. . .

. . .

. . .

20

Specifications

Specification : properties of computations.

Examples :

• “No two processes can be in the critical section
at the same time.” – safety

• “Every request is eventually granted.” – liveness

• “Every continuous request is eventually
granted.” – liveness

• “Every repeated request is eventually granted.” –
liveness

21

Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli, 1977)

Main feature: time is implicit

• next ϕ: ϕ holds in the next state.

• eventually ϕ: ϕ holds eventually

• always ϕ: ϕ holds from now on

• ϕ until ψ: ϕ holds until ψ holds.

• π,w |= next ϕ if w • -•
ϕ

- • -• -•. . .

• π,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .

22

Examples

• always not (CS1 and CS2): mutual exclusion
(safety)

• always (Request implies eventually Grant):
liveness

• always (Request implies (Request until Grant)):
liveness

• always (always eventually Request) implies
eventually Grant: liveness

23

Expressive Power

Gabbay, Pnueli, Shelah & Stavi, 1980:
Propositional LTL has precisely the expressive
power of FO over the naturals ((builds on
[Kamp, 1968]).

LTL=FO=star-free ω-RE < MSO=ω-RE

Meyer on LTL, 1980, in “Ten Thousand and One
Logics of Programming”:

“The corollary due to Meyer – I have
to get in my controversial remark – is
that that [GPSS’80] makes it theoretically
uninteresting.”

24

Computational Complexity

Easy Direction : LTL 7→FO

Example : ϕ = θ until ψ
FO(ϕ)(x) :

(∃y)(y > x∧FO(ψ)(y)∧(∀z)((x ≤ z < y) → FO(θ)(z))

Corollary : There is a translation of LTL to NBA via
FO.

• But: Translation is nonelementary.

25

Elementary Translation

Theorem [V.&Wolper, 1983]: There is an
exponential translation of LTL to NBA.
Corollary : There is an exponential algorithm for
satisfiability in LTL (PSPACE-complete).

Industrial Impact :

• Practical verification tools based on LTL.

• Widespread usage in industry.

Question : What is the key to efficient translation?
Answer : Games!

Digression : Games, complexity, and algorithms.

26

Complexity Theory

Key CS Question , 1930s:
What can be mechanized?

Next Question , 1960s:
How hard it is to mechanize it?

Hardness : Usage of computational resources

• Time

• Space

Complexity Hierarchy :

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ . . .

27

Nondeterminism

Intuition : “It is easier to criticize than to do.”

P vs NP :

PTIME: Can be solved in polynomial time

NPTIME: Can be checked in polynomial time

Complexity Hierarchy :

LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ NPTIME
⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ . . .

28

Co-Nondeterminism

Intuition :

• Nondeterminism: check solutions – e.g., satisfiability

• Co-nondeterminism: check counterexamples –
e.g., unsatisfiablity

Complexity Hierarchy :

LOGSPACE

⊆

NLOGSPACE = co-NLOGSPACE

⊆

PTIME

⊆

NPTIME co-NPTIME

=

PSPACE
NPSPACE = co-NPSPACE

⊆

EXPTIME

..
.

29

Alternation

(Co)-Nondeterminism–Perspective Change :

• Old: Checking (solutions or counterexamples)

• New: Guessing moves

– Nondeterminism: existential choice
– Co-Nondeterminism: universal choice

Alternation : Chandra-Kozen-Stockmeyer, 1981
Combine ∃-choice and ∀-choice

– ∃-state: ∃-choice
– ∀-state: ∀-choice

Easy Observations :

• NPTIME ⊆ APTIME ⊇ co-NPTIME

• APTIME = co-APTIME

30

Example: Boolean Satisfiability

ϕ: Boolean formula over x1, . . . , xn

Decision Problems :

1. SAT: Is ϕ satisfiable? – NPTIME

Guess a truth assignment τ and check that
τ |= ϕ.

2. UNSAT: Is ϕ unsatisfiable? – co-NPTIME

Guess a truth assignment τ and check that
τ |= ϕ.

3. QBF: Is ∃x1∀x2∃x3 . . . ϕ true? – APTIME

Check that for some x1 for all x2 for some x3 . . .
ϕ holds.

31

Alternation = Games

Players : ∃-player, ∀-player

• ∃-state: ∃-player chooses move

• ∀-state: ∀-player chooses move

Acceptance : ∃-player has a winning strategy

Run : Strategy tree for ∃-player

∃

∀
@

@
@

@

�
�

�
� ∃∃

32

Alternation and Unbounded Parallelism

“Be fruitful, and multiply ”:

• ∃-move: fork disjunctively

• ∀-move: fork conjunctively

Note :

• Minimum communication between child processes

• Unbounded number of child processes

33

Alternation and Complexity

CKS’81:

Upper Bounds :

• ATIME[f(n)] ⊆ SPACE[f2(n)]

Intuition: Search for strategy tree recursively

• ASPACE[f(n)] ⊆ TIME[2f(n)]

Intuition: Compute set of winning configurations
bottom up.

Lower Bounds :

• SPACE[f(n)] ⊆ ATIME[f(n)]

• TIME[2f(n)] ⊆ ASPACE[f(n)]

34

Consequences

Upward Collapse :

• ALOGSPACE=PTIME

• APTIME=PSPACE

• APSPACE=EXPTIME

Applications :

• “In APTIME” → “in PSPACE”

• “APTIME-hard” → “PSPACE-hard”.

QBF:

• Natural algorithm is in APTIME → “in PSPACE”

• Prove APTIME-hardness à la Cook → “PSPACE-
hard”.

Corollary: QBF is PSPACE-complete.

35

Modal Logic K

Syntax :

• Propositional logic

• 3ϕ (possibly ϕ), 2ϕ (necessarily ϕ)

Proviso: Positive normal form

Kripke structure : M = (W,R, π)

• W : worlds

• R ⊆W 2: Possibility relation

R(u) = {v : (u, v) ∈ R}

• π : W → 2Prop: Truth assignments

Semantics

• M,w |= p if p ∈ π(w)

• M,w |= 3ϕ if M,u |= ϕ for some u ∈ R(w)

• M,w |= 2ϕ if M,u |= ϕ for all u ∈ R(w)

36

Modal Model Checking

Input :

• ϕ: modal formula

• M = (W,R, π): Kripke structure

• w ∈W : world

Problem: M,w |= ϕ?

Algorithm : K-MC(ϕ,M,w)

case
ϕ propositional: return π(w) |= ϕ
ϕ = θ1 ∨ θ2: (∃-branch) return K-MC(θi,M,w)
ϕ = θ1 ∧ θ2: (∀-branch) return K-MC(θi,M,w)
ϕ = 3ψ: (∃-branch) return K-MC(ψ,M, u)
for u ∈ R(w)
ϕ = 2ψ: (∀-branch) return K-MC(ψ,M, u)
for u ∈ R(w)
esac.

Correctness : Immediate!

37

Complexity Analysis

Algorithm’s state : (θ,M, u)

• θ: O(log |ϕ|) bits

• M : fixed

• u: O(log |M |) bits

Conclusion : ASPACE[log |M | + log |ϕ|]

Therefore: K-MC ∈ ALOGSPACE=PTIME
(originally by Clarke&Emerson, 1981).

38

Modal Satisfiability

• sub(ϕ): all subformulas of ϕ

• Valuation for ϕ – α: sub(ϕ) → {0, 1}

Propositional consistency:

– α(ϕ) = 1
– Not: α(p) = 1 and α(¬p) = 1
– Not: α(p) = 0 and α(¬p) = 0
– α(θ1 ∧ θ2) = 1 implies α(θ1) = 1 and α(θ2) = 1
– α(θ1 ∧ θ2) = 0 implies α(θ1) = 0 or α(θ2) = 0
– α(θ1 ∨ θ2) = 1 implies α(θ1) = 1 or α(θ2) = 1
– α(θ1 ∨ θ2) = 0 implies α(θ1) = 0 and α(θ2) = 0

Definition: 2(α) = {θ : α(2θ) = 1}.

Lemma : ϕ is satisfiable iff there is a valuation α
for ϕ such that if α(3ψ) = 1, then ψ ∧

∧
2(α) is

satisfiable.

39

Intuition

Lemma : ϕ is satisfiable iff there is a valuation α
for ϕ such that if α(3ψ) = 1, then ψ ∧

∧
2(α) is

satisfiable.

Only if : M,w |= ϕ
Take: α(θ) = 1 ↔M,w |= θ

If: Satisfy each 3 separately

2β,2γ,3δ,3η
@

@
@

@
@

@R

�
�

�
�

�
�	

β, γ, δ β, γ, η

40

Algorithm

Algorithm : K-SAT (ϕ)

(∃-branch): Select valuation α for ϕ
(∀-branch): Select ψ such that α(3ψ) = 1, and
return K-SAT (ψ ∧

∧
2(α))

Correctness : Immediate!

Complexity Analysis :

• Each step is in PTIME.

• Number of steps is polynomial.

Therefore: K-SAT ∈ APTIME=PSPACE
(originally by Ladner, 1977).

In practice: Basis for practical algorithm – valuations
selected using a SAT solver.

41

Lower Bound

Easy reduction from APTIME :

• Each TM configuration is expressed by a
propositional formula.

• ∃-moves are expressed using 3-formulas (á la
Cook).

• ∀-moves are expressed using 2-formulas (á la
Cook).

• Polynomially many moves → formulas of
polynomial size.

Therefore: K-SAT is PSPACE-complete
(originally by Ladner, 1977).

42

LTL Refresher

Syntax :

• Propositional logic

• next ϕ, ϕ until ψ

Temporal structure : M = (W,R, π)

• W : worlds

• R : W →W : successor function

• π : W → 2Prop: truth assignments

Semantics

• M,w |= p if p ∈ π(w)

• M,w |= next ϕ if M,R(w) |= ϕ

• M,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .

Fact : (ϕ until ψ) ≡ (ψ ∨ (ϕ ∧ next(ϕ until ψ))).

43

Temporal Model Checking

Input :

• ϕ: temporal formula

• M = (W,R, π): temporal structure

• w ∈W : world

Problem: M,w |= ϕ?

Algorithm : LTL-MC(ϕ,M,w) – game semantics

case
ϕ propositional: return π(w) |= ϕ
ϕ = θ1 ∨ θ2: (∃-branch) return LTL-MC(θi,M,w)
ϕ = θ1 ∧ θ2: (∀-branch) return LTL-MC(θi,M,w)
ϕ = next ψ: return LTL-MC(ψ,M,R(w))
ϕ = θ until ψ: return LTL-MC(ψ,M,w) or return
(LTL-MC(θ,M,w) and LTL-MC(θ until ψ,M,R(w))
)
esac.

But : When does the game end?

44

From Finite to Infinite Games

Problem : Algorithm may not terminate!!!

Solution : Redefine games

• Standard alternation is a finite game between ∃
and ∀.

• Here we need an infinite game.

• In an infinite play ∃ needs to visit non-until
formulas infinitely often – “not get stuck in one
until formula”.

Büchi Alternation Muller&Schupp, 1985:

• Infinite computations allowed

• On infinite computations ∃ needs to visit
accepting states ∞ often.

Lemma : Büchi-ASPACE[f(n)] ⊆ TIME[2f(n)]

Corollary : LTL-MC ∈ Büchi-ALOGSPACE=PTIME

45

LTL Satisfiability

Hope : Use Büchi alternation to adapt K-SAT
to LTL-SAT.

Problems :

• What is time bounded Büchi alternation
Büchi-ATIME[f(n)]?

• Successors cannot be split!

next δ, next η@
@

@
@

@
@R

�
�

�
�

�
�	

δ η

46

Alternating Automata

Alternating automata : 2-player games

Nondeterministic transition: ρ(s, a) = t1 ∨ t2 ∨ t3

Alternating transition: ρ(s, a) = (t1 ∧ t2) ∨ t3
“either both t1 and t2 accept or t3 accepts”.

• (s, a) 7→ {t1, t2} or (s, a) 7→ {t3}

• {t1, t2} |= ρ(s, a) and {t3} |= ρ(s, a)

Alternating transition function : ρ : S×Σ → B+(S)
(positive Boolean formulas over S)

• P |= ρ(s, a) – P satisfies ρ(s, a)

– P |= true

– P 6|= false

– P |= (θ ∨ ψ) if P |= θ or P |= ψ

– P |= (θ ∧ ψ) if P |= θ and P |= ψ

47

Alternating Automata on Finite Words

Brzozowski&Leiss, 1980: Boolean automata

A = (Σ, S, s0, ρ, F)

• Σ, S, F ⊆ S: as before

• s0 ∈ S: initial state

• ρ : S ×Σ → B+(S): alternating transition function

Game:

• Board: a0, . . . , an−1

• Positions: S × {0, . . . , n− 1}

• Initial position: (s0, 0)

• Automaton move at (s, i):
choose T ⊆ S such that T |= ρ(s, ai)

• Opponent’s response:
move to (t, i+ 1) for some t ∈ T

• Automaton wins at (s′, n) if s′ ∈ F

Acceptance: Automaton has a winning strategy.

48

Expressiveness

Expressiveness : ability to recognize sets of
“boards”, i.e., languages.

BL’80,CKS’81:

• Nondeterministic automata: regular languages

• Alternating automata: regular languages

What is the point?: Succinctness

Exponential gap :

• Exponential translation from alternating automata
to nondeterministic automata

• In the worst case this is the best possible

Crux : 2-player games 7→ 1-player games

49

Eliminating Alternation

Alternating automaton: A = (Σ, S, s0, ρ, F)

Subset Construction [BL’80, CKS’81]

• An = (Σ, 2S, {s0}, ρ
n, Fn)

• ρn(P, a) = {T : T |=
∧
t∈P ρ(t, a)}

• Fn = {P : P ⊆ F}

Lemma : L(A) = L(An)

50

Alternating Büchi Automata

A = (Σ, S, s0, ρ, F)

Game:

• Infinite board: a0, a1 . . .

• Positions: S × {0, 1, . . .}

• Initial position: (s0, 0)

• Automaton move at (s, i):
choose T ⊆ S such that T |= ρ(s, ai)

• Opponent’s response:
move to (t, i+ 1) for some t ∈ T

• Automaton wins if play goes through infinitely
many positions (s′, i) with s′ ∈ F

Acceptance: Automaton has a winning strategy.

51

Example

A = ({0, 1}, {m, s},m, ρ, {m})

• ρ(m, 1) = m

• ρ(m, 0) = m ∧ s

• ρ(s, 1) = true

• ρ(s, 0) = s

Intuition:

• m is a master process. It launches s when it sees
0.

• s is a slave process. It wait for 1, and then
terminates successfully.

L(A) = infinitely many 1’s.

52

Expressiveness

Miyano&Hayashi, 1984:

• Nondeterministic Büchi automata: ω-regular
languages

• Alternating automata: ω-regular languages

What is the point?: Succinctness

Exponential gap :

• Exponential translation from alternating Büchi
automata to nondeterministic Büchi automata

• In the worst case this is the best possible

53

Eliminating Büchi Alternation

Alternating automaton: A = (Σ, S, s0, ρ, F)

Subset Construction with Breakpoints
[MH’84]:
• An = (Σ, 2S × 2S, ({s0}, ∅), ρ

n, Fn)
• ρn((P, ∅), a) = {(T, T−F) : T |=

∧
t∈P ρ(s, a)}

• ρn((P,Q), a) = {(T, T ′−F) : T |=
∧
t∈P ρ(t, a)

and T ′ |=
∧
t∈Q ρ(t, a)}

• Fn = 2S × {∅}

Lemma : L(A) = L(An)

Intuition : Double subset construction

• First component: standard subset construction

• Second component: keeps track of obligations to
visit F

54

Back to LTL

Old temporal structure : M = (W,R, π)

• W : worlds

• R : W →W : successor function

• π : W → 2Prop: truth assignments

New temporal structure : σ ∈ (2Prop)ω (unwind the
function R)

Temporal Semantics : models(ϕ) ⊆ (2Prop)ω

Theorem [V., 1994] : For each LTL formula ϕ
there is an alternating Büchi automaton Aϕ with
||ϕ|| states such that models(ϕ) = L(Aϕ).

Intuition: Consider LTL-MC as an alternating Büchi
automaton.

55

From LTL-MC to Alternating Büchi
Automata

Algorithm : LTL-MC(ϕ,M,w)

case
ϕ propositional: return π(w) |= ϕ
ϕ = θ1 ∨ θ2: (∃-branch) return LTL-MC(θi,M,w)
ϕ = θ1 ∧ θ2: (∀-branch) return LTL-MC(θi,M,w)
ϕ = next ψ: return LTL-MC(ψ,M,R(w))
ϕ = θ until ψ: return LTL-MC(ψ,M,w) or return
(LTL-MC(θ,M,w) and LTL-MC(θ until ψ,M,R(w))
)
esac.

Aϕ = {2Prop, sub(ϕ), ϕ, ρ, nonU(ϕ}:

• ρ(p, a) = true if p ∈ a,

• ρ(p, a) = false if p 6∈ a,

• ρ(ξ ∨ ψ, a) = ρ(ξ, a) ∨ ρ(ψ, a),

• ρ(ξ ∧ ψ, a) = ρ(ξ, a) ∧ ρ(ψ, a),

• ρ(next ψ, a) = ψ,

• ρ(ξ until ψ, a) = ρ(ψ, a) ∨ (ρ(ξ, a) ∧ ξ until ψ).

56

Alternating Automata Nonemptiness

Given : Alternating Büchi automaton A

Two-step algorithm :

• Construct nondeterministic Büchi automaton An

such that L(An) = L(A) (exponential blow-up)

• Test L(An) 6= ∅ (NLOGSPACE)

Problem : An is exponentially large.

Solution : Construct An on-the-fly.

Corollary 1 : Alternating Büchi automata nonemptiness
is in PSPACE.

Corollary 2 : LTL satisfiability is in PSPACE
(originally by Sistla&Clarke, 1985).

57

Alternation

Two perspectives :

• Two-player games

• Control mechanism for parallel processing

Two Applications :

• Model checking

• Satisfiability checking

Bottom line : Alternation is a key algorithmic
construct in automated reasoning — used in
industrial tools.

• Gastin-Oddoux – LTL2BA (2001)

• Intel IDC – ForSpec Compiler (2001)

58

Designs are Labeled Graphs

Key Idea : Designs can be represented as transition
systems (finite-state machines)

Transition System : M = (W, I,E, F, π)

• W : states

• I ⊆W : initial states

• E ⊆W ×W : transition relation

• F ⊆W : fair states

• π : W → Powerset(Prop): Observation function

Fairness : An assumption of “reasonableness”
– restrict attention to computations that visit F
infinitely often, e.g., “the channel will be up infinitely
often”.

59

Runs and Computations

Run : w0, w1, w2, . . .

• w0 ∈ I

• (wi, wi+1) ∈ E for i = 0, 1, . . .

Computation : π(w0), π(w1), π(w2), . . .

• L(M): set of computations of M

Verification : System M satisfies specification ϕ –

• all computations in L(M) satisfy ϕ.

. . .

. . .

. . .

60

Algorithmic Foundations

Basic Graph-Theoretic Problems :

• Reachability: Is there a finite path from I to F?

I t t F

• Fair Reachability: Is there an infinite path from I
that goes through F infinitely often.

I t t
F

'
&

$
%

Note : These paths may correspond to error traces.

• Deadlock: A finite path from I to a state in which
both write1 and write2 holds.

• Livelock: An infinite path from I along which snd
holds infinitely often, but rcv never holds.

61

Computational Complexity

Complexity : Linear time

• Reachability: breadth-first search or depth-first
search

• Fair Reachability: depth-first search

The fundamental problem of model checking :
the state-explosion problem – from 1020 states and
beyond.

The critical breakthrough : symbolic model
checking

62

Model Checking

The following are equivalent (V.-Wolper, 1985):

• M satisfies ϕ

• all computations in L(M) satisfy ϕ

• L(M) ⊆ L(Aϕ)

• L(M) ∩ L(Aϕ) = ∅

• L(M) ∩ L(A¬ϕ) = ∅

• L(M ×A¬ϕ) = ∅

In practice : To check that M satisfies ϕ, compose
M with A¬ϕ and check whether the composite
system has a reachable (fair) path.

Intuition : A¬ϕ is a “watchdog” for “bad” behaviors.
A reachable (fair) path means a bad behavior.

63

Computational Complexity

Worst case : linear in the size of the design space
and exponential in the size of the specification.

Real life : Specification is given in the form of a list
of properties ϕ1, · · · , ϕn. It suffices to check that M
satisfies ϕi for 1 ≤ i ≤ n.

Moral : There is life after exponential explosion.

The real problem : too many design states –
symbolic methods needed

64

Verification: Good News and Bad News

Model Checking :

• Given: System P , specification ϕ.

• Task: Check that P |= ϕ

Success :

• Algorithmic methods: temporal specifications
and finite-state programs.

• Also: Certain classes of infinite-state programs

• Tools: SMV, SPIN, SLAM, etc.

• Impact on industrial design practices is increasing.

Problems :

• Designing P is hard and expensive.

• Redesigning P when P 6|= ϕ is hard and
expensive.

65

Automated Design

Basic Idea :

• Start from spec ϕ, design P such that P |= ϕ.

Advantage:

– No verification
– No re-design

• Derive P from ϕ algorithmically.

Advantage:

– No design

In essenece: Declarative programming taken to
the limit.

66

Program Synthesis

The Basic Idea : Mechanical translation
of human-understandable task specifications
to a program that is known to meet the
specifications.

Deductive Approach (Green, 1969, Waldinger and
Lee, 1969, Manna and Waldinger, 1980)

• Prove realizability of function,
e.g., (∀x)(∃y)(Pre(x) → Post(x, y))

• Extract program from realizability proof.

Classical vs. Temporal Synthesis :

• Classical: Synthesize transformational programs

• Temporal: Synthesize programs for ongoing
computations (protocols, operating systems,
controllers, etc.)

67

Synthesis of Ongoing Programs

Specs: Temporal logic formulas

Early 1980s : Satisfiability approach
(Wolper, Clarke+Emerson, 1981)

• Given: ϕ

• Satisfiability: Construct M |= ϕ

• Synthesis: Extract P from M .

Example : always (odd→ next ¬odd)∧
always (¬odd→ next odd)

odd -
� odd

�
�

�
�

�
�

�
�

68

Reactive Systems

Reactivity : Ongoing interaction with environment
(Harel+Pnueli, 1985), e.g., hardware, operating
systems, communication protocols, etc. (also, open
systems).

Example : Printer specification –
Ji - job i submitted, Pi - job i printed.

• Safety: two jobs are not printed together
always ¬(P1 ∧ P2)

• Liveness: every jobs is eventually printed
always

∧2
j=1(Ji → eventually Pi)

69

Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M : A single state where J1, J2, P1, and P2

are all false.

Extract program from M? No!

Why? Because M handles only one input
sequence.

• J1, J2: input variables, controlled by environment

• P1, P2: output variables, controlled by system

Desired : a system that handles all input
sequences.

Conclusion : Satisfiability is inadequate for synthesis.

70

Realizability

I: input variables
O: output variables

Game:

• System: choose from 2O

• Env: choose from 2I

Infinite Play :
i0, i1, i2, . . .
00, 01, 02, . . .

Infinite Behavior : i0 ∪ o0, i1 ∪ o1, i2 ∪ o2, . . .

Win : behavior |= spec

Specifications : LTL formula on I ∪O

Strategy : Function f : (2I)∗ → 2O

Realizability :Pnueli+Rosner, 1989
Existence of winning strategy for specification.

71

Church’s Problem

Church, 1963: Realizability problem wrt specification
expressed in MSO (monadic second-order theory of
one successor function)

Büchi+Landweber, 1969:

• Realizability is decidable - nonelementary!

• If a winning strategy exists, then a finite-state
winning strategy exists.

• Realizability algorithm produces finite-state strategy.

Rabin, 1972: Simpler solution via Rabin tree
automata.

Question : LTL is subsumed by MSO, so what
did Pnueli and Rosner do?

Answer : better algorithms - 2EXPTIME-
complete.

72

Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response :

• 2EXPTIME is just worst-case complexity.

• 2EXPTIME lower bound implies a doubly
exponential bound on the size of the smallest
strategy; thus, hand design cannot do better in
the worst case.

73

Real Critique

• Algorithmics not ready for practical implementation.

• Complete specification is difficult.

Response : More research needed!

• Better algorithms

• Incremental algorithms – write spec incrementally

74

Discussion

Question : Can we hope to reduce a 2EXPTIME-
complete approach to practice?

Answer :

• Worst-case analysis is pessimistic.

– Mona solves nonelementary problems.

– SAT-solvers solve huge NP-complete problems.

– Model checkers solve PSPACE-complete problems.

– Doubly exponential lower bound for program
size.

• We need algorithms that blow-up only on hard
instances

• Algorithmic engineering is needed.

• New promising approaches.

75

