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Abstract

In recent years several extensions of first-order logic have been investigated in the context of
finite-model theory. Fixpoint logic and the infinitary logic Lω∞ω with a finite number of variables
have turned out to be of particular importance. The study of fixpoint logic generated interactions
with both database theory and complexity theory, while the infinitary logic Lω∞ω proved to be
a useful tool for analyzing the expressive power of fixpoint logic. In addition to being a proper
extension of fixpoint logic, Lω∞ω enjoys a game-theoretic characterization and possesses interesting
structural properties, such as the 0-1 law.

In this paper we pursue further the study of the relationship between Lω∞ω and fixpoint logic.
We observe that equivalence of two finite structures with respect to Lω∞ω is expressible in fixpoint
logic. As a first application of this, we obtain a normal-form theorem for Lω∞ω on finite structures.
We then focus on the relative expressive power of first-order logic, fixpoint logic, and Lω∞ω on
arbitrary classes of finite structures. Our second main result characterizes when Lω∞ω collapses to
first-order logic on an arbitrary class of finite structures. This resolves affirmatively a conjecture
of G.L. McColm.

1 Introduction

In recent years the model theory of finite structures has been a meeting point for research in
computer science, combinatorics, and mathematical logic. Results and techniques from finite-
model theory have found interesting applications to several other areas, including database theory
[CH82, Var82] and complexity theory [Ajt83, Gur84, Imm86].

One of the distinguishing features of finite-model theory is the fact that first-order logic has
severely limited expressive power on finite structures (cf. [Fag75, AU79, Gai82]). In view of that
fact, there is an emphasis in finite-model theory on logics that go beyond first-order logic. One
way to increase the limited expressive power of first-order logic is by adding fixpoint constructs.
Such extensions of first-order logic have been the subject of extensive study – focusing on their
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expressive power, their relationship to complexity classes, in particular to P and PSPACE, and
their asymptotic probability properties (cf. [AV89, AV91, Cha88, CH82, Imm86, KV87, Var82]).
Of particular importance among these extensions is fixpoint logic, which is obtained from first-
order logic by adding least fixpoints of positive first-order formulas.

Since first-order logic has a finitary syntax, a different way to increase its expressive power is
to allow for infinitary formation rules. One of the most powerful logics resulting this way is the
infinitary logic L∞ω which allows for arbitrary disjunctions and conjunctions. This logic has been
studied extensively on infinite structure (cf. [BF85]), but it is too powerful to be of interest or use
in finite-model theory, because every class of finite structures that is closed under isomorphisms
is definable in L∞ω.

A more interesting extension from the perspective of finite-model theory is the infinitary logic
Lω∞ω, which consists of all formulas of L∞ω with a finite number of distinct variables. More
formally, Lω∞ω is the union

⋃
∞
k=1 L

k
∞ω, where Lk∞ω is the collection of all formulas of L∞ω with

k variables. The infinitary logic Lω∞ω was studied originally on infinite structures [Bar77], but
it turned out to have numerous uses in finite-model theory. Indeed, Lω∞ω could be viewed as
underlying much of the work on lower bounds for expressibility on finite structures in [Imm82,
dR87, LM89, CFI89], although its use there is rather implicit. Moreover, in [KV90a, KV90b], the
infinitary logic Lω∞ω was studied systematically in its own right and the importance of it on finite
structures became evident.

One of the reasons for the importance of Lω∞ω in finite-model theory is the fact that from
the expressive power standpoint Lω∞ω constitutes a proper extension of fixpoint logic [KV90b].
Thus, Lω∞ω can be used to derive both positive and negative results about fixpoint logic. On
the positive side, structural results about Lω∞ω transfer to similar results for fixpoint logic, while,
on the negative side, lower-bound results for expressibility in Lω∞ω yield, a fortiori, lower bounds
for expressibility in fixpoint logic (but not vice-versa). The main advantage of Lω∞ω is that the
expressive power of the infinitary logics Lk∞ω with k variables, k ≥ 1, has a clean and precise
characterization in terms of certain k-pebble games between two players on a pair of structures
(cf. [Bar77, Imm82, KV90b]). In contrast, fixpoint logic is not known to possess a similar
property. This game-theoretic characterization of Lω∞ω can be used to establish the 0-1 law
for the asymptotic probabilities of properties expressible in Lω∞ω [KV90b]. Moreover, the pebble
games for Lω∞ω have been the most fruitful technique developed so far in establishing lower-bound
results for expressibility in fixpoint logic (cf. [Imm82, dR87, LM89, CFI89, KV90a]).

In this paper we continue the systematic investigation of the infinitary logic Lω∞ω on finite
structures. Our goal is to obtain a better insight into the expressive power of Lω∞ω on arbitrary
classes of finite structures and to illuminate the relationship and interaction between Lω∞ω and
fixpoint logic.

We begin by bringing into center stage a basic fact about Lω∞ω and fixpoint logic, which has
been implicit in [IL90, KV90b, AV91]. In a nutshell, this fact asserts that fixpoint logic can
capture equivalence in the infinitary logics Lk∞ω with k variables, k ≥ 1. More precisely, for each
k ≥ 1 the query “given two finite structures A and B, do they satisfy the same sentences of
Lk∞ω?” is expressible in fixpoint logic. At first sight this appears to be rather counter-intuitive,
since fixpoint logic is only a very small fragment of Lω∞ω, but it becomes more plausible when
one thinks of the game-theoretic characterization of Lk∞ω and realizes that the above query is
equivalent to asking who of the two players wins the k-pebble game on A and B.
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In this paper we turn the above fact into a technical tool for studying Lω∞ω and we obtain
two main results. The first result is a normal-form theorem for Lω∞ω that sheds light into the
difference between fixpoint logic and Lω∞ω. In general, formulas of Lω∞ω are constructed from
atomic formulas by applying repeatedly negation, quantification, and infinitary conjunction and
disjunction (subject to the restriction on the number of variables). Thus, at the level of the syntax
a formula of Lω∞ω may involve any finite number of alternations between infinitary disjunctions
and infinitary conjunctions. We prove here, however, that every formula of Lω∞ω is semantically
equivalent to a countable disjunction of first-order formulas with a uniform bound on the number
of variables, i.e., the infinitary connective has to be used only once. Since it is known that
fixpoint formulas are semantically equivalent to “syntactically regular” countable disjunctions of
first-order formulas, our result indicates that the extra power of Lω∞ω is derived solely from the
ability to form an arbitrary countable disjunction of first-order formulas.

Our second main result has to do with the comparison between the expressive power of Lω∞ω,
fixpoint logic, and first-order logic over arbitrary classes of finite structures. Typically, most
expressiveness results in finite-model theory are with respect to the class of all finite structures.
In practice, however, one is often concerned with a restricted class of finite structures, such as the
class of trees, the class of planar graphs, or the class of databases satisfying a certain constraint.
Thus, there is a solid motivation in attempting to understand the relationship between Lω∞ω,
fixpoint logic, and first-order logic on specific classes of finite structures. It should be pointed out
that, while these three logics have distinct expressive power over the class of all finite structures,
they may have identical expressive power over restricted classes of finite structures. This is, for
example, the case with the class of finite equivalence relations, where both fixpoint logic and Lω∞ω

collapse to first-order logic (cf. [Kol85]).

Under what conditions does fixpoint logic or Lω∞ω collapse to first-order logic over a given class
of finite structures? This problem was raised and studied by McColm [McC90] who formulated
two conjectures asserting that the collapse of fixpoint logic or of Lω∞ω down to first-order logic is
equivalent to a certain boundedness condition on fixpoint logic.

Let C be a class of finite structures and let ϕ∞ be the least fixpoint of a positive first-order
formula ϕ(x, S). We say that the formula ϕ(x, S) is bounded on C if the least fixpoint ϕ∞ is
reached after a bounded number of iterations, i.e., there is a positive integer N such that on every
structure in C the least fixpoint ϕ∞ is reached by iterating ϕ(x, S) at most N times. This concept
occupies a central place in the theory of database queries, where it has been studied in the context
of Datalog, a database query language which can be viewed as the existential and negation-free
fragment of fixpoint logic (cf. [Ioa86, GMSV87, CGKV88, Nau89, KA89]). Observe that if ϕ is
bounded on C, then its least fixpoint ϕ∞ is first-order definable on C, since it is equivalent to
the N -th iterant of ϕ. The converse, however, is not always true. In particular, over the class of
total orders there are natural examples of unbounded first-order formulas whose least fixpoints
are first-order definable. Ajtai and Gurevich [AG89] have investigated the precise relationship
between boundedness and first-order definability for Datalog programs.

If every positive first-order formula ϕ(x, S) is bounded on a class C of finite structures, then
we say that fixpoint logic is bounded on C. The preceding remarks imply that boundedness of
fixpoint logic on C is a sufficient condition for collapsing fixpoint logic to first-order logic on C.
McColm’s [McC90] first conjecture asserts that this is the only way that fixpoint can collapse to
first-order logic on a class C of finite structures, i.e., fixpoint logic has the same expressive power
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as first-order logic on C if and only if fixpoint logic is bounded on C. McColm’s [McC90] second
conjecture states that boundedness of fixpoint logic is also the key to the collapse of Lω∞ω down to
first-order logic. More precisely, the second conjecture asserts that Lω∞ω has the same expressive
power as first-order logic on C if and only if fixpoint logic is bounded on C. Notice that the two
conjectures combined together assert that fixpoint logic collapses to first-order logic on a class C
of finite structures if and only if Lω∞ω collapses to first-order logic on C.

What is the intuition behind these two conjectures? Underlying these conjecture is the belief
that the ability to go beyond first-order logic has to do with the ability to form nontrivial countable
disjunctions of first-order formulas. Moreover, the empirical evidence for these conjectures appears
to be strong, since none of the classes C of finite structures studied so far is known to violate them
(cf. [McC90]). For example, on the class of finite equivalence relations fixpoint logic is bounded
and Lω∞ω collapses to first-order logic, while on the class of total orders fixpoint logic is unbounded
and has strictly higher expressive power than first-order logic.

In this paper, we confirm McColm’s second conjecture, i.e., we show that Lω∞ω collapses to
first-order logic on an arbitrary class C of finite structures if and only if fixpoint logic is bounded
on C. This result turns out to have an unexpected application to 0-1 laws, namely, we derive a
necessary and sufficient condition for the existence of 0-1 laws for Lω∞ω under variable probability
measures on an arbitrary class C of finite structures.

We also examine McColm’s first conjecture and give evidence that a special case of this con-
jecture might have complexity-theoretic implications. In particular, the first conjecture appears
to have a different flavor than the second one and to require the development of new tools.

2 Infinitary Logics and Fixpoint Logics

A vocabulary σ is a finite set of relation symbols Ri, 1 ≤ i ≤ s, and constant symbols cj , 1 ≤ j ≤ t.
A structure A = (A,RA

1 , . . . , R
A
s , c

A
1 , . . . , c

A
t ) over the vocabulary σ consists of a set A, called the

universe of A, relations RA
i ⊆ Ari , where ri is the arity of the relation symbol Ri, 1 ≤ i ≤ s, and

distinguished elements cAj , 1 ≤ j ≤ t, from the universe A of A. We say that a structure A is
finite if its universe is a finite set.

If k is a positive integer, then a k-ary query Q on σ is a mapping that associates a k-ary relation
Q(A) on A with each finite structure A over σ such that Q(A) is preserved under isomorphisms.
In other words, if A and B are finite structures over σ and f is an isomorphism from A to B, then
f is also an isomorphism from (A,Q(A)) to (B,Q(B)). A Boolean query on σ is a mapping Q
from finite structures over σ to {0, 1} such that if A and B are isomorphic, then Q(A) = Q(B).
Equivalently, a Boolean query can be identified with a class of finite structures over σ that is
closed under isomorphisms.

The complement of a k-ary query Q over σ is the k-ary query Q∗ such that Q∗(A) = Ak−Q(A)
for every finite structure A over σ. Similary, the complement of a Boolean query Q is the Boolean
query Q∗ such that Q∗(A) = 1 −Q(A) for every finite structure A over σ.

Let L be a logic, k a positive integer, Q a k-ary query over the vocabulary σ, and ϕ(x1, . . . , xk)
a formula of L with free variables among x1, . . . , xk. We say that the formula ϕ(x1, . . . , xk) defines
the query Q if for every finite structure A over σ and every sequence (a1, . . . , ak) from the universe
A of A we have that

(a1, . . . ak) ∈ Q(A) ⇐⇒ A |= ϕ(x1/a1, . . . , xk/ak),
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where A |= ϕ(x1/a1, . . . , xk/ak) means that the structure A satisfies the formula ϕ(x1, . . . , xk)
when the variable xi is interpreted by the element ai, 1 ≤ i ≤ k. We say that the query Q is
L-definable (or, equivalently, Q is an L-query) if there is a formula of L that defines Q.

The above definitions can be relativized to a class C of finite structures that is closed under
isomorphisms, so that we have the concepts of a query on C and and an L-definable query on C.
¿From now on, we make the blanket assumption that the term class C of finite structures over the
vocabulary σ means that C is a class of finite structures over σ that is closed under isomorphisms.

2.1 Infinitary Logics with a Fixed Number of Variables

The infinitary logic L∞ω is the extension of first-order logic that results by allowing infinite
disjunctions and conjunctions in the syntax, while keeping the quantifier strings finite (cf. [BF85]).
More formally, the syntax of L∞ω is obtained by augmenting the syntax of first-order logic with
the following rule: If Ψ is a set of formulas of L∞ω, then the expressions

∨
Ψ and

∧
Ψ are also

formulas of L∞ω. The semantics of infinitary formulas is a direct extension of the semantics
of first-order logic, where

∨
Ψ is interpreted as a disjunction over all formulas in Ψ and

∧
Ψ is

interpreted as a conjunction. In general, formulas of L∞ω may have an infinite number of distinct
variables. We now focus attention on fragments of L∞ω in which the total number of variables is
required to be finite. Variables, however, may have an unbounded number of occurrences in such
formulas.

Definition 2.1: Let k be a positive integer.

• The infinitary logic Lk∞ω with k variables consists of all formulas of L∞ω with at most k
distinct variables.

• The infinitary logic Lω∞ω with finitely many variables consists of all formulas of L∞ω with a
finite number of distinct variables, i.e., Lω∞ω =

⋃
∞
k=1 L

k
∞ω.

• Lkωω is the collection of all first-order formulas with at most k distinct variables.

The expressive power of the logics Lk∞ω, k ≥ 1, is usually illustrated by the fact that for any
n ≥ 1 the property pn(x, y) asserting that “there is a path of length n from x to y” is expressible by
a formula of L3

ωω. Indeed, put p1(x, y) ≡ E(x, y) and assume, by induction on n, that pn−1(x, y)
is equivalent to a formula of L3

ωω. Then the desired formula pn(x, y) is

pn(x, y) ≡ (∃z)[E(x, z) ∧ (∃x)(x = z ∧ pn−1(x, y))].

As a result, the formula (∀x)(∀y)(
∨

∞
n=1 pn(x, y)) of L3

∞ω defines the transitive closure query on
graphs. More generally, if P is any set of positive integers, then the property “x and y are
connected by a path whose length is a number in P” is expressible in L3

∞ω via the formula∨
n∈P pn(x, y). It follows that Lω∞ω can express non-recursive queries on finite graphs. For addi-

tional background information on infinitary logics with a fixed number of variables we refer the
reader to [KV92b].
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2.2 Fixpoint Logic and Partial Fixpoint Logic

Let ϕ(x1, . . . , xn, S) be a first-order formula in which S is a new n-ary relation symbol (not
included in σ), and let A be a structure over the vocabulary σ. The formula ϕ gives rise to an
operator Φ from n-ary relations on the universe A of A to n-ary relations on A, where for every
n-ary relation R on A

Φ(R) = {(a1, . . . , an) : A |= ϕ(x1/a1, . . . , xn/an, S/R)}.

Every such operator Φ can be iterated and, thus, it gives rise to the sequence of stages Φm, m ≥ 1,
defined by the induction:

Φ1 = Φ(∅), Φm+1 = Φ(Φm).

If the formula ϕ(x1, . . . , xn, S) is positive in S (which means that every occurrence of S in
ϕ is within an even number of negations), then the associated operator Φ is monotone, i.e.,
Φ(R1) ⊆ Φ(R2), whenever R1 ⊆ R2. Thus, for positive formulas the sequence Φm, m ≥ 1, of
stages is increasing. It follows that if A is a finite structure and ϕ(x1, . . . , xn, S) is a positive in
S formula, then there is an integer m0 ≤ |A|n, where |A| is the cardinality of the universe A of
A, such that Φm0 = Φm for every m ≥ m0. Moreover, it is easy to verify that Φm0 is the least
fixpoint of the operator Φ on the finite structure A, i.e., it is the smallest n-ary relation S on A
such that Φ(S) = S. We write ϕ∞(x1, . . . , xn) to denote the least fixpoint of Φ and we refer to it
as the least fixpoint of the formula ϕ(x1, . . . , xn, S).

Remark 2.2: Although here we are mainly interested in finite structures, we should point out
that the stages of a formula can also be defined on infinite structures. This is done by transfinite
induction on the ordinals, where at limit stages the operator Φ is applied to the union of the
previously defined stages. A positive formula has a least fixpoint on every infinite structure,
which is equal to some transfinite stage of the formula (cf. [Mos74]).

Definition 2.3: Fixpoint logic FP is the extension of first-order logic that contains all first-order
formulas and is closed under the positive operations of first-order logic (i.e., finitary disjunctions
and conjunctions, existential and universal quantification) and the following least fixpoint rule: If
ϕ(x1, . . . , xn, S) is a positive first-order formula, then ϕ∞(x1, . . . , xn) is also a formula of FP.

Notice that at the level of the syntax fixpoint logic FP is not closed under negation. On the other
hand, Immerman [Imm86] showed that on finite structures the queries expressible by formulas of
FP are closed under complements (cf. also [Imm86, GS86]).

The canonical example illustrating the expressive power of fixpoint logic is provided by the
least fixpoint ϕ∞(x, y) of the first-order formula E(x, y) ∨ (∃z)(S(x, z) ∧ S(z, y)). In this case,
ϕ∞(x, y) is a formula of fixpoint logic that defines the transitive closure of the edge relation E.

If the operator Φ is not monotone, then on a given finite structure A either there is a positive
integer m such that Φm = Φm+1 or the sequence Φm, m ≥ 1, of stages cycles without ever
yielding a fixpoint of Φ, which means that there is an integer r > 1 such that Φm+r = Φm, but
Φm+r′ 6= Φm for all positive integers r′ < r. If ϕ(x1, . . . , xn, S) is an arbitrary first-order formula,
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we define the partial fixpoint ϕ∞(x1, . . . , xn) of ϕ on a finite structure A to be a stage Φm such
that Φm = Φm+1, if such a stage exists, or the empty set ∅, otherwise. It should be pointed out
that the partial fixpoint need not be the least fixpoint, even if the sequence of stages converges
to a fixpoint, since, after all, the least fixpoint may not exist.

Definition 2.4: Partial Fixpoint Logic PFP is the extension of first-order logic that contains
all first-order formulas and is closed under the operations of first-order logic and the following
partial fixpoint rule: if ϕ(x1, . . . , xn, S) is an arbitrary first-order formula, then the partial fixpoint
ϕ∞(x1, . . . , xn) of ϕ is also a formula of PFP.

Definition 2.5: If C is a class of finite structures over the vocabulary σ, then we write FP(C)
and PFP(C) to denote the classes of queries on C that are definable in fixpoint logic and partial
fixpoint logic, respectively. We refer to these queries as fixpoint queries on C and partial fixpoint
queries on C.

If C is the class of all finite structures over the vocabulary σ, then we write simply FP and
PFP to denote the classes of fixpoint queries and partial fixpoint queries on all finite structures,
respectively. We trust that the reader will be able to tell from the context if the notation FP
and PFP refers to formulas of fixpoint logic and partial fixpoint logic or to queries definable by
formulas of these logics.

The interested reader can find in [KV92b] several remarks about the history and evolution of
fixpoint logic and partial fixpoint logic. On the technical side, we now state certain important
facts about these logics that will be of interest and use to us here.

Both fixpoint logic and partial fixpoint logic embody recursion through the iteration of single
formulas. One can also consider a seemingly more powerful recursion mechanism that allows for
the simultaneous iteration of a finite sequence of first-order formulas. A system of first-order
formulas is a finite sequence

ϕ1(x1, . . . , xn1
, S1, . . . , Sl), . . . , ϕl(x1, . . . , xnl

, S1, . . . , Sl)

of first-order formulas such that each Si is a relation symbol of arity ni, 1 ≤ i ≤ l, not in the
vocabulary σ. If A is a structure over the vocabulary σ, then every such system gives rise to an
operator Φ from sequences (R1, . . . , Rl) of relations Ri of arity ni, 1 ≤ i ≤ l, on the universe A of
A to sequences of relations on A of the same arities. More precisely,

Φ(R1, . . . , Rl) = (Φ1(R1, . . . , Rl), . . . ,Φl(R1, . . . , Rl)),

where for every i ≤ l

Φi(R1, . . . , Rl) = {(a1, . . . , ani
) : A |= ϕi(x1/a1, . . . , xni

/ani
, S1/R1, . . . , Sl/Rl)}.

The stages Φm = (Φm
1 , . . . ,Φ

m
l ), m ≥ 1, of Φ on a structure A are defined by the induction:

Φ1 = Φ(∅, . . . , ∅), Φm+1 = Φ(Φm
1 , . . . ,Φ

m
l ), m ≥ 1.
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If each formula ϕi(x1, . . . , xni
, S1, . . . , Sl), 1 ≤ i ≤ l, of a system is positive in every relation symbol

S1, . . . , Sl, then the associated operator Φ is monotone in each of its arguments and, as a result,
the sequence of its stages is increasing in each component. Thus, for every finite structure A the
sequence of stages of Φ converges after finitely many iterations, i.e., there is a positive integer m0

such that Φm = Φm0 for every m ≥ m0. Moreover, the sequence Φm0 = (Φm0

1 , . . . ,Φm0

l ) is the least
fixpoint of the operator Φ on A, i.e., the smallest sequence (R1, . . . , Rl) of relations on A such that
Φ(R1, . . . , Rl) = (R1, . . . , Rl). We call this sequence the least fixpoint of the system ϕ1, . . . , ϕl and
denote it by (ϕ∞

1 , . . . , ϕ
∞
l ). Usually, one is interested not in the entire sequence (ϕ∞

1 , . . . , ϕ
∞
l ), but

in only one of its components, for example, in the last component ϕ∞
l . We say that ϕ∞

l (x1, . . . , xnl
)

is the goal of the system ϕ1(x1, . . . , xn1
, S1, . . . , Sl), . . . , ϕl(x1, . . . , xnl

, S1, . . . , Sl).

To illustrate the above concepts, consider the system

ϕ1(x, y, S1, S2) ≡ E(x, y) ∨ (∃z)(S1(x, z) ∧ S1(z, y))

ϕ2(x, S1, S2) ≡ S1(x, x)

On every graph G = (V,E), the first component ϕ∞
1 (x, y) of the least fixpoint of this system

defines the transitive closure query, while the goal ϕ∞
2 (x) defines the cycle query, i.e., the query

that computes all nodes a ∈ V such that there is a path from a to a.

Consider now first-order logic augmented with the following least fixpoint rule for systems: if
ϕ1, . . . , ϕl is a system of positive first-order formulas, then the goal ϕ∞

l (x1, . . . , xnl
) of the system

is also a formula. It is well known that this extension of first-order logic coincides with fixpoint
logic FP. This is established by showing that a system of first-order formulas can be simulated by
a single formula ϕ(x1, . . . , xq, S) in which S is a relation symbol of sufficiently large arity q, so that
the goal ϕ∞

l (x1, . . . , xnl
) of the system can be defined from the least fixpoint ϕ∞(x1, . . . , xq) using

first-order operations (cf. [Mos74]). Moreover, systems of positive first-order formulas provide
a normal form for fixpoint logic, i.e., every fixpoint query is definable by the goal ϕ∞

l of some
system ϕ1, . . . , ϕm of positive first-order formulas.

By the same token, one can also consider extending partial fixpoint logic with systems of
arbitrary (not necessarily positive) first-order formulas. If ϕ1, . . . , ϕl is a system of first-order
formulas, then on every finite structure either there is a stage Φm of the operator Φ such that
Φm = Φm+1 or the sequence of stages cycles without ever yielding a fixpoint of Φ. We write
(ϕ∞

1 , . . . , ϕ
∞
l ) to denote a stage Φm = (Φm

1 , . . . ,Φ
m
l ) such that Φm = Φm+1, if such a stage exists,

or the sequence (∅, . . . , ∅), otherwise. We say that (ϕ∞
1 , . . . , ϕ

∞
l ) is the partial fixpoint of the

system ϕ1, . . . , ϕl and call ϕ∞
l the goal of this system. Using the same simulation as for fixpoint

logic, it can be shown that the partial fixpoint rule for systems of first-order formulas does not
increase the expressive power of partial fixpoint logic. In addition, every partial fixpoint query is
definable by the goal ϕ∞

l of some system of first-order formulas ϕ1, . . . , ϕm.

In view of the above facts, from now on we extend the syntax of fixpoint logic and partial
fixpoint logic by allowing systems of positive first-order formulas and arbitrary first-order formulas,
respectively. Using this extended syntax, we can ramify fixpoint logic and partial fixpoint logic
into a hierarchy of levels that takes into account the number of variables occurring in systems.

Definition 2.6: Let σ be a vocabulary and k a positive integer.

• FPk is the fragment of fixpoint logic having as formulas the components ϕ∞
i , 1 ≤ i ≤ l, of
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the least fixpoints of systems ϕ1, . . . , ϕl of positive first-order formulas over σ such that the
total number of variables occuring in the systems is at most k.

• PFPk is the fragment of partial fixpoint logic having as formulas the components ϕ∞
i ,

1 ≤ i ≤ l, of the partial fixpoints of systems ϕ1, . . . , ϕl of first-order formulas over σ such
that the total number of variables occuring in the systems is at most k.

• If C is a class of finite structures over the vocabulary σ, then we write FPk(C) and PFPk(C) to
denote the class of queries on C that are definable by formulas of FPk and PFPk, respectively.

If C is the class of all finite structures over σ, then we write simply FPk and PFPk to
denote the queries on all finite structures that are definable by formulas of FPk and PFPk,
respectively.

According to the above definition, the cycle query is in FP3, since, as seen earlier, it is definable
by the component ϕ∞

2 of a system of positive first-order formulas with three variables.

In terms of the relationship of fixpoint logic and partial fixpoint logic to complexity classes,
it is not hard to verify that

FP ⊆ PTIME and PFP ⊆ PSPACE.

Moreover, the above containments are proper, since, as shown in [CH82], the even cardinality
query, which asks “ is there an even number of elements?”, is not expressible in PFP. On the
other hand, FP and PFP contain queries that are complete respectively for PTIME and PSPACE
under logspace reductions and polynomial-time reductions (cf. [CH82, Var82]). In addition,
on classes of linearly ordered finite structures fixpoint logic captures PTIME [Imm86, Var82]
and partial fixpoint logic captures PSPACE [Var82, AV89]. More formally, if σ is a vocabulary
containing a binary relation symbol < and C is a class of finite structures over σ such that for
every structure A in C the relation <A is a linear order on the universe A of A, then

FP(C) = PTIME on C and PFP(C) = PSPACE on C.

It is clear that FP ⊆ PFP, since the partial fixpoint of a positive formula coincides with its least
fixpoint. Chandra and Harel [CH82] raised the problem of showing that FP is properly contained
in PFP on the class of all finite structures over σ. Abiteboul and Vianu [AV91] established that
this separation amounts to separating PTIME from PSPACE, i.e.,

FP = PFP ⇐⇒ PTIME = PSPACE.

The infinitary logic Lω∞ω subsumes both fixpoint logic FP and partial fixpoint logic PFP
on finite structures, i.e., FP ⊆ PFP ⊆ Lω∞ω. In fact, as shown in [KV92b, Theorem 2.8], if
ϕ(x1, . . . , xl, S) is a formula of first-order logic with at most k distinct variables, then the partial
fixpoint ϕ∞(x1, . . . , xl) is definable by a formula of L2k

∞ω. Our first result in the present paper
extends this theorem to systems with k variables and at the same time sharpens it to an optimum
level by establishing that k variables suffice in transforming formulas of FPk and PFPk to formulas
of the infinitary logic Lω∞ω. More precisely, we will show that FPk ⊆ PFPk ⊆ Lk∞ω for every
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k ≥ 1. In order to prove this theorem, we need to introduce first an auxiliary concept and obtain
an intermediate result. For the remainder of this section we assume that for every k ≥ 1 the
variables x1, . . . , xk are the k distinct variables of the logics Lkωω and Lk∞ω.

Definition 2.7: Let k be a positive integer and π : {1, . . . , k} 7→ {1, . . . , k} a function. If Q is a
k-ary query on σ, then Qπ is the k-ary query on σ such that for every finite structure A over σ
and every sequence (a1, . . . , ak) of elements from the universe A of A

(a1, . . . , ak) ∈ Qπ(A) ⇐⇒ (aπ(1), . . . , aπ(k)) ∈ Q(A).

Lemma 2.8: Let k be a positive integer and π : {1, . . . , k} 7→ {1, . . . , k} be a function. If a k-ary
query Q on σ is Lkωω-definable, then the query Qπ is also Lkωω-definable.

Proof: We will show that for every function π : {1, . . . , k} 7→ {1, . . . , k} and for every formula
ϕ(x1, . . . , xk) of Lkωω there is a formula ϕπ(x1, . . . , xk) of Lkωω such that for every structure A over
σ and every sequence (a1, . . . , ak) of elements from the universe of A

A |= ϕπ(x1/a1, . . . , xk/ak) ⇐⇒ A |= ϕ(x1/aπ(1), . . . , xk/aπ(k)).

The proof is by induction on the construction of Lkωω-formulas simultaneously for all functions π.

• If ϕ(x1, . . . , xk) is the formula xi = xj for some i, j with 1 ≤ i ≤ j ≤ k, then ϕπ(x1, . . . , xk)
is the formula xπ(i) = xπ(j).

• If R is a relation symbol of arity r in the vocabulary σ, q : {1, . . . , r} 7→ {1, . . . , k} is a
function, and ϕ(x1, . . . , xk) is the atomic formula R(xq(1), . . . , xq(r)), then ϕπ(x1, . . . , xk) is
the formula R(xπ(q(1)), . . . , xπ(q(r))).

• If ϕ(x1, . . . , xk) is a formula of the form ¬ψ(x1, . . . , xk), then ϕπ(x1, . . . , xk) is the formula
¬ψπ(x1, . . . , xk). Similarly, if ϕπ(x1, . . . , xk) is of the form ψ(x1, . . . , xk) ∧ χ(x1, . . . , xk),
then ϕπ(x1, . . . , xk) is the formula ψπ(x1, . . . , xk) ∧ χπ(x1, . . . , xk).

• Finally, assume that ϕ(x1, . . . , xk) is a formula of the form (∃xj)ψ(x1, . . . , xk) for some
j ≤ k. Let π′ : {1, . . . , k} 7→ {1, . . . , k} be the function such that π′(i) = π(i), if i 6= j,
and π′(j) = j. By applying the induction hypothesis to the function π′ and to the formula
ψ(x1, . . . , xk), we obtain a formula ψπ′ of Lkωω such that for all structures A over σ and all
sequences of elements (a1, . . . , ak) from the universe of A

A |= ψπ′(x1/a1, . . . , xk/ak) ⇐⇒ A |= ψ(x1/aπ′(1), . . . , xk/aπ′(k)).

Then the desired formula ϕπ(x1, . . . , xk) is the formula (∃xj)ψπ′(x1, . . . , xk).

Corollary 2.9: Let k be a positive integer and π : {1, . . . , k} 7→ {1, . . . , k} be a function. If a
k-ary query Q on σ is Lk∞ω-definable, then the query Qπ is also Lk∞ω-definable.
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We are now ready to show that PFPk ⊆ Lk∞ω, for every k ≥ 1, which means that if ϕ1, . . . , ϕl
is a system of first-order formulas with at most k distinct variables, then each component ϕ∞

i

1 ≤ i ≤ l, of the partial fixpoint of the system is definable by a formula of Lk∞ω on all finite
structures.

Theorem 2.10: Let k, n1, . . . , nl be positive integers such that ni ≤ k for every i ≤ l, let S1, . . . Sl
be relation symbols not in the vocabulary σ and having arities n1, . . . , nl, and let

ϕ1(x1, . . . , xn1
, S1, . . . , Sl), . . . , ϕl(x1, . . . , xnl

, S1, . . . , Sl)

be a system of formulas of Lkωω over the vocabulary σ ∪ {S1, . . . , Sl}. Then the following are true
for the above system and for the operator Φ associated with it.

• For every m ≥ 1, each component Φm
i , 1 ≤ i ≤ l, of the stage Φm = (Φm

1 , . . . ,Φ
m
l ) is

definable by a formula of Lkωω on all structures (finite or infinite) over σ.

• Each component ϕ∞
i , 1 ≤ i ≤ l, of the partial fixpoint (ϕ∞

1 , . . . , ϕ
∞
l ) of the system is

definable by a formula of Lk∞ω on all finite structures.

Proof: Assume first that ni = k for all i ≤ l, which means that each Si is a k-ary relation
symbol not in σ and each ϕi(x1, . . . , xk, S1, . . . , Sl), 1 ≤ i ≤ k, is a formula of Lkωω over the
vocabulary σ ∪ {S1, . . . , Sl}. By induction on m simultaneously for all i ≤ l, we will show that
each component Φm

i of every stage Φm is definable by a formula ϕmi (x1, . . . , xk) of Lkωω. The claim
is obvious for m = 1, since each component Φ1

i of the stage Φ1 is definable by the Lkωω formula
ϕi(x1, . . . , xk, S1/∅, . . . , Sl/∅), 1 ≤ i ≤ l. Assume now that there are formulas ϕmi (x1, . . . , xk) of
Lkωω that define the components Φm

i , 1 ≤ i ≤ m of the stage Φm, which means that for every
structure A and every sequence (a1, . . . , ak) of elements from the universe A of A

(a1, . . . , ak) ∈ Φm
i ⇐⇒ A |= ϕmi (x1/a1, . . . , xk/ak), 1 ≤ i ≤ l.

Let us consider the components Φm+1
i of the stage Φm+1, which are defined by

(a1, . . . , ak) ∈ Φm+1
i ⇐⇒ A |= ϕi(x1/a1, . . . , xk/ak, S1/Φ

m
1 , . . . , Sl/Φ

m
l ).

Every occurrence of each relation symbol Sj, 1 ≤ j ≤ l, in the formulas of the system is in a
subformula of the form Sj(xπ(1), . . . , xπ(k)) for some function π : {1, . . . , k} 7→ {1, . . . , k}. Using
the induction hypothesis and applying repeatedly Lemma 2.8, for each j ≤ l and each such
function π we obtain a formula ϕj,π(x1, . . . , xk) of Lkωω such that

(aπ(1), . . . , aπ(k)) ∈ Φm
j ⇐⇒ A |= ϕj,π(x1/a1, . . . , xk/ak).

For every i ≤ l, let ϕm+1
i (x1, . . . , xk) be the formula obtained from ϕi(x1, . . . , xk, S1, . . . , Sl)

by replacing each subformula Sj(xπ(1), . . . , xπ(k)) by the corresponding formula ϕj,π(x1, . . . , xk).
These replacements can be carried out without renaming variables or introducing new variables.
Thus, for every i ≤ m the formula ϕm+1

i (x1, . . . , xk) is a formula of Lkωω that defines the component
Φm
i of the stage Φm+1.

Consider next the case that ni < k for at least one i ≤ l. For every i ≤ l, let Ti be a k-ary
relation symbol not in the vocabulary σ and let ψi(x1, . . . , xni

, xni+1, . . . , xk, T1, . . . , Tl) be the
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formula of Lkωω over the vocabulary σ ∪ {T1, . . . , Tl} obtained from ϕi(x1, . . . , xni
, S1, . . . , Sl) as

follows: if nj < k, then we replace each subformula Sj(xπ(1), . . . , xπ(nj)) by the formula

(∃xnj+1) . . . (∃xk)Tj(xπ(1), . . . , xπ(nj ), xnj+1, . . . , xk),

while if nj = k, then we replace Sj(xπ(1), . . . , xπ(nj)) by Tj(xπ(1), . . . , xπ(nj)). A straightforward
induction on m simultaneously for all i ≤ m shows that if ni = k, then Φm

i = Ψm
i , while if ni < k,

then for every structure A and every sequence (a1, . . . , ak) of elements from the universe of the
structure

(a1, . . . , ani
) ∈ Φm

i ⇐⇒ A |= (∃ani+1 . . . ∃ak)((a1, . . . , ani
, ani+1, . . . , ak) ∈ Ψm

i ).

For every m ≥ 1 and i ≤ l, let ψmi (x1, . . . , xk) be the formula of Lkωω that defines the component
Ψm
i of the stage Ψm. If ni < k, then we let ϕmi (x1, . . . , xni

) be the formula

(∃xni+1 . . . ∃xk)ψ
m
i (x1, . . . , xni

, xni+1, . . . , xk),

while if ni = k, then we let ϕmi (x1, . . . , xk) be the formula ψmi (x1, . . . , xk). It follows that
ϕmi (x1, . . . , xni

) is a formula of Lkωω that defines the component Φm
i of the stage Φm, 1 ≤ i ≤ l.

Finally, each component ϕ∞
i (x1, . . . , xni

) of the partial fixpoint of the system ϕ1, . . . , ϕl is
definable on all finite structures by the Lk∞ω-formula

∞∨

m=1

(
l∧

i=i

[(∀x1 . . . ∀xni
)(ϕmi (x1, . . . , xni

) ↔ ϕm+1
i (x1, . . . , xni

))] ∧ ϕmi (x1, . . . , xni
)).

Corollary 2.11: For each k ≥ 1, FPk ⊆ PFPk ⊆ Lk∞ω. As a result, FP ⊆ PFP ⊆ Lω∞ω.

As mentioned earlier, Lω∞ω on finite graphs can express non-recursive properties. Since every
PFP query is in PSPACE, it follows that the inclusion PFP ⊆ Lω∞ω is proper.

3 Descriptive Complexity of L
k
∞ω-Equivalence

Two structures are L-equivalent in some logic L if they satisfy the same sentences of L. This is
a fundamental concept in the study of every logic, in fact it is as fundamental as the concept of
isomorphism in algera. Our goal in this section is to study equivalence in the infinitary logics Lk∞ω,
k ≥ 1. We begin by reviewing the definitions and stating the known facts about the combinatorial
properties of Lk∞ω-equivalence, k ≥ 1.

Definition 3.1: Let A and B be two structures over the vocabulary σ and let k be a positive
integer.

• We say that A is Lk∞ωequivalent to B, and write A ≡k
∞ω B, if A and B satisfy the same

sentences of Lk∞ω.
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• Let a1, . . . , am and b1, . . . , bm be two sequences of elements from the universes of A and
B respectively, where 1 ≤ m ≤ k. We say that (A, a1, . . . , am) is Lk∞ω-equivalent to
(B, b1, . . . , bm), and we write (A, a1, . . . , am) ≡k

∞ω (B, b1, . . . , bm), if for every formula
ϕ(x1, . . . , xm) of Lk∞ω with free variables among x1, . . . , xm we have that

A |= ϕ(x1/a1, . . . , xm/am) if and only if B |= ϕ(x1/b1, . . . , xm/bm).

It is known that the relation A ≡k
∞ω B can be characterized in terms of an infinitary k-

pebble game ([Bar77, Imm82]). We define next a variant of this game that captures the relation
(A, a1, . . . , ak) ≡

k
∞ω (B, b1, . . . , bk).

Let k be a positive integer, let A and B be two structures over the vocabulary σ, let a1, . . . , ak
and b1, . . . , bk be two sequences of elements from the universes of A and B, respectively, and let
cA1 , . . . , c

A
t and cB1 , . . . , c

B
t be the interpretations of the constant symbols c1, . . . , ct of σ on A and

B, respectively. The k-pebble game between Players I and II on the structures A and B and the
sequences a1, . . . , ak and b1, . . . , bk has the following rules:

There are k white pebbles W1, . . . ,Wk and k black pebbles B1, . . . , Bk. Throughout the game,
the white pebbles are placed on elements of A and the black pebbles on elements of B. Initially,
the white pebble Wj is placed on the element aj of A and the black pebble Bj is placed on the
element bj of B, 1 ≤ j ≤ k. In each round of the game, Player I chooses one of the two colors and
moves a pebble of that color. Player II responds by moving the pebble of the other color that has
the same index as the pebble moved by Player I.

Let ej and fj, 1 ≤ j ≤ k, be the elements of A and B pebbled by Wj and Bj, respectively, at
the end of some round of the game. If the mapping h with

h(ej) = fj and h(cAj ) = dBj , 1 ≤ j ≤ t,

is not an isomorphism between the substructures of A and B with universes {e1, . . . , ek} ∪
{cA1 , . . . , c

A

l } and {f1, . . . , fk} ∪ {cB1 , . . . , c
B

l }, respectively, then Player I wins the game. Oth-
erwise, the game continues. Player II wins the game if he can continue playing “forever”, i.e. if
Player I can never win a round of the game. The k-pebble game makes also sense when the two
structures A and B coincide. In this case, we take two copies of A and require that the white
pebbles are always placed on elements of one copy, while the black pebbles are placed on elements
of the other copy. We refer to this game as the k-pebble game between Players I and II on the
structure A and the sequences a1, . . . , ak and b1, . . . , bk.

The crucial connection between k-pebble games and Lk∞ω-bequivalence is provided by the
following result, which is due to Barwise [Bar77] (cf. also [Imm82]). A detailed proof of this
result can be found in [KV90a].

Theorem 3.2: Let A and B be two structures over the vocabulary σ and let k be a positive
integer. If a1, . . . , ak and b1, . . . , bk are sequences of elements from the universes of A and B,
respectively, then the following are equivalent:

1. (A, a1, . . . , ak) ≡
k
∞ω (B, b1, . . . , bk).
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2. Player II has a winning strategy for the k-pebble game on the structures A and B and the
sequences a1, . . . , ak and b1, . . . , bk.

In what follows we shall investigate the descriptive complexity of the query: “given two finite
structures A and B, are they Lk∞ω-equivalent?”, where k is a fixed positive integer. Before stating
the main results, however, we need to make the concepts precise.

Let σ be a vocabulary and let σ1 and σ2 be two disjoint copies of σ, i.e., for each (relation or
constant) symbol α in the vocabulary σ we put in σi a symbol αi of the same arity as α, i = 1, 2
(constant symbols are of arity 0). We write σ1 + σ2 to denote the vocabulary obtained by taking
the union of σ1 and σ2 and adding two new unary predicate symbols D1 and D2.

The vocabulary σ1 + σ2 is used in order to view pairs of structures over σ as single structures
over σ1 + σ2. Indeed, every pair (A,B) of structures over σ gives rise to a structure A + B over
σ1 + σ2 such that its universe is the union A ∪B of the universes of A and B, the interpretation
of D1 (respectively, D2) is A (respectively, B), and the interpretation of α1 (respectively, α2) is
the interpetation of the symbol α on A (respectively, B). Conversely, we say that a structure C

over σ1 + σ2 is proper if its universe is the union of the interpretations of D1 and D2 and the
interpretation of each symbol αi is a relation (or a constant) over the interpretation of Di, i = 1, 2.
Thus, out of every proper structure C we can extract two structures C|σi

, i = 1, 2, called the
restrictions of C, such that C = C|σ1

+ C|σ2
. It is easy to see that the query “given a structure

C over σ1 + σ2, is it a proper structure?” is definable by a first-order sentence over σ1 + σ2.

Definition 3.3: Let L and L′ be two logics over the vocabulary σ.

• We say that L-equivalence of structures is expressible in L′ if the following Boolean query is
definable by a sentence of L′ over σ1 + σ2: “Given a proper finite structure C over σ1 + σ2,
is C|σ1

L-equivalent to C|σ2
?”

We refer to this query as the L-equivalence of structures query and to its complement as
the L-inequivalence of structures query.

• Let k be a positive integer. We say that L-equivalence of k-tuples on two structures is
expressible in L′ if the following query is definable by a formula of L′ over σ1 + σ2: “Given
a proper finite structure C over σ1 + σ2 and two sequences of elements (a1, . . . , ak) and
(b1, . . . , bk) from the universes of C|σ1

and C|σ2
respectively, does (a1, . . . , ak) satisfy on

C|σ1
the same formulas of L with at most k free variables as (b1, . . . , bk) does on C|σ2

?”

We refer to this query as the L-equivalence of k-tuples on two structure query and to its
complement as the the L-inequivalence of k-tuples on two structures query.

• Let k be a positive integer. We say that L-equivalence of k-tuples on a structure is expressible
in L′ if the following query is definable by a formula of L′ over σ: “Given a finite structure
A over σ and two sequences (a1, . . . , ak) and (b1, . . . , bk) of elements from A, do they satisfy
on A the same formulas of L with at most k free variables?”

We refer to this query as the L-equivalence of k-tuples on a structure query and to its
complement as the the L-inequivalence of k-tuples on a structure query.

• In the sequel, we will refer to either one of the previous two queries as the L-equivalence of
k-tuples query and to its complement as the L-inequivalence of k-tuples query.
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For a given logic L, there is no a priori reason for L-equivalence of structures or tuples to be
expressible in L itself. As a matter of fact, one can easily verify that this fails for both first-order
logic and the infinitary logic Lω∞ω with a finite number of variables. To see this, notice that,
since every finite structure can be described by a first-order sentence up to isomorphism, two
finite structures are first-order equivalent if and only if they are isomorphic if and only if they
are Lω∞ω-equivalent. Towards a contradiction, assume now that there is a sentence ψ of Lω∞ω

that defines Lω∞ω-equivalence of graphs and let k be the number of distinct variables of ψ. It
is quite obvious that Player II has a winning strategy for the k-pebble game on the complete
graphs Kk and Kk+1 with k and k + 1 nodes, respectively. Thus, by Theorem 3.2, the structure
Kk +Kk+1 must satisfy the above sentence ψ and, hence, Kk and Kk+1 must be Lω∞ω-equivalent.
This, however, is a contradiction, since clearly Kk and Kk+1 can be distinguished by a sentence
of first-order logic with k + 1 variables.

We consider next the infinitary logics Lk∞ω, k ≥ 1, and establish lower and upper bounds for
the expressibility of Lk∞ω-equivalence.

Proposition 3.4: Let σ be a vocabulary containing a binary relation symbol E and let k be a
positive integer greater than or equal to 2.

• The Lk∞ω-equivalence of structures query is not expressible in first-order logic.

• The Lk∞ω-equivalence of k-tuples query is not expressible in first-order logic.

Proof: Both parts are proved using Ehrenfeucht-Fräıssé games. It is well known (cf. [Fag75])
that for every positive integer m there is an (exponentially bigger) positive integer M such that
if C1 = (V1, E1) and C2 = (V2, E2) are two directed cycles each with at least M nodes, then C1

and C2 satisfy the same first-order sentences of quantifier depth at most m. On the other hand,
it is easy to see that any two directed cycles of different cardinalities can be distinguished by
a sentence of L2

∞ω. Suppose now that the L2
∞ω-equivalence of structures query was expressible

by a first-order sentence ψ of quantifier depth m. If C1, C2 are two directed cycles such that
|V1| 6= |V2| and |Vi| ≥M , i = 1, 2, then the structure C1 + C2 must satisfy ψ, although C1 is not
Lk∞ω-equivalent to C2, which is a contradiction.

A variant of this argument can be used to show that the L2
∞ω-equivalence of 2-tuples on two

structures query is not expressible in first-order logic. Let A be a a directed cycle and let a1, a2

be two nodes on this cycle such that the distance from a1 to a2 is at least M . Let B be a graph
that is the disjoint union of two directed cycles C1 and C2 each with at least M nodes and let
b1, b2 be two nodes on the cycles C1 and C2, respectively. It follows that (A, a1, a2) and (B, b1, b2)
satisfy the same first-order formulas of quantifier depth at most m, although (A, a1, a2) is not
L2
∞ω-equivalent to (B, b1, b2).

Using the fact that each of the logics Lk∞ω, k ≥ 1, is closed under arbitrary conjunctions, it is
not hard to show that they can express their own equivalence.

Proposition 3.5: Let σ be a vocabulary and k a positive integer.
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• The Lk∞ω-equivalence of structures query is expressible in Lk∞ω.

• The Lk∞ω-equivalence of k-tuples query is expressible in L2k
∞ω.

Proof: If ψ is a sentence of Lk∞ω over the vocabulary σ, then let ψ|σi
be the sentence of Lk∞ω

obtained from ψ by replacing each symbol α of σ by the symbol αi and relativizing all quantifiers
of ψ to the predicates Di, i = 1, 2. The Lk∞ω-equivalence of structures query is expressible by the
sentence

∧
ψ(ψ|σ1

→ ψ|σ2
) of Lk∞ω over the vocabulary σ1 + σ2, where the infinitary conjunction

is taken over all sentences ψ of Lk∞ω over the vocabulary σ.

The Lk∞ω-equivalence of k-tuples on a structure query is expressible by the following formula
of L2k

∞ω over the vocabulary σ
∧

ϕ

(ϕ(x1, . . . , xk) → (∃x1 . . . ∃xk)(xk+1 = x1 ∧ . . . ∧ x2k = xk ∧ ϕ(x1, . . . , xk))),

where the infinitary conjunction is taken over all formulas ϕ(x1, . . . , xk) of Lk∞ω over the vocab-
ulary σ. In a similar manner, one can find a formula of L2k

∞ω over the vocabulary σ1 + σ2 that
expresses the Lk∞ω-equivalence of k-tuples on two structures query.

Since each of the infinitary logics Lk∞ω, k ≥ 1, is closed under negations, the preceding
Proposition 3.5 implies that the Lk∞ω-inequivalence of structures query is expressible in Lk∞ω and
that the Lk∞ω-inequivalence of k-tuples query is expressible in L2k

∞ω.

In what follows, we establish that both Lk∞ω-equivalence of structures and Lk∞ω-equivalence of
k-tuples are also expressible in fixpoint logic. This result depends heavily on the game-theoretic
characterization of Lk∞ω-equivalence given in Theorem 3.2.

Theorem 3.6: Let σ be a vocabulary and k a positive integer.

• The Lk∞ω-inequivalence of structures query and the Lk∞ω-inequivalence of k-tuples query are
expressible in FP2k.

• There is a positive integer l ≥ 2k such that the Lk∞ω-equivalence of structures query and the
Lk∞ω-equivalence of k-tuples query are expressible in FPl.

Proof: Let us consider first the Lk∞ω-inequivalence of k-tuples on a structure query. This query
asks: “Given a finite structure A over σ and two sequences (a1, . . . , ak) and (b1, . . . , bk) of elements
from A, is (A, a1, . . . , ak) 6≡

k
∞ω (A, b1 . . . , bk)?”. From Theorem 3.2, it follows that this query is

equivalent to asking: “Does Player I win the k-pebble game on A and the sequences a1, . . . , ak
and b1, . . . , bk?”. The latter query is definable by the least fixpoint ϕ∞(x1, . . . , xk, xk+1, . . . , x2k)
of a positive first-order formula ϕ(x1, . . . , xk, xk+1, . . . , x2k, S) with a total of 2k distinct variables,
which, intuitively, states that Player I wins in the initial configuration or he wins in the “next”
move of the game. More precisely, ϕ(x1, . . . , xk, xk+1, . . . , x2k, S) is the formula

χ(x1, . . . , xk, xk+1, . . . , x2k) ∨ (
∨k
i=1 ψi(x1, . . . , xk, xk+1, . . . , x2k, S)),

where χ is a quantifier-free formula stating that the mapping xi 7→ xk+i, 1 ≤ i ≤ k, is not an
isomorphism between the substructures generated by the two tuples x1, . . . , xk and xk+1, . . . , x2k,
and ψi is the formula

(∃xi)(∀xk+i)S(x1, . . . , xk, xk+1, . . . , x2k) ∨ (∃xk+i)(∀xi)S(x1, . . . , xk, xk+1, . . . , x2k).
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Using the same reasoning, we can show that the k-inequivalence of k-tuples query on two structures
is expressible in FP2k, in fact it is definable by the least fixpoint θ∞(x1, . . . , xk, xk+1, . . . , x2k) of
a positive first-order formula θ(x1, . . . , xk, xk+1, . . . , x2k, S) with 2k distinct variables over the
vocabulary σ1 + σ2. The only difference is that the formula χ must be modified appropriately to
a formula over the vocabulary σ1 +σ2, the quantifiers ∃xi and ∀xi, 1 ≤ i ≤ k, must be relativized
to the predicate D1, while the quantifiers ∃xk+i and ∀xk+i, 1 ≤ i ≤ k, must be relativized to the
predicate D2.

It now follows that the k-inequivalence of structures query is expressible in FP2k, since it is
definable by the sentence

(∃x1 . . . ∃xk∀xk+1 . . . ∀x2k)θ
∞(x1, . . . , xk, xk+1, . . . , x2k) ∨

(∃xk+1 . . . ∃x2k∀x1 . . . ∀xk)θ
∞(x1, . . . , xk, xk+1, . . . , x2k).

Finally, by combining the above with Immerman’s [Imm86] theorem asserting that queries ex-
pressible in fixpoint logic on finite structures are closed under complements, we conclude that the
Lk∞ω-equivalence of structures query and the Lk∞ω-equivalence of k-tuples query are expressible
in FPl, for some l ≥ 2k.

An inspection of Immerman’s [Imm86] proof reveals that if a query is expressible by a formula
of FP2k, then its complement is expressible by a formula of FP8k. In general, an increase in the
number of variables needed to express complements of fixpoint queries appears to be necessary (cf.
[dR87]). It is an interesting problem to determine if this is indeed the case for the Lk∞ω-equivalence
queries.

Question: What is the smallest possible positive integer l such that the query Lk∞ω-equivalence
of structures and Lk∞ω-equivalence of k-tuples are expressible in FPl? In particular, are these
queries expressible in FP2k?

It turns out that not only Lk∞ω-equivalence of structures and k-tuples is expressible in fixpoint
logic, but that the same holds also for each equivalence class of these equivalence relations.

Definition 3.7: Let σ be a vocabulary, k a positive integer, B a finite structure over σ, and
w = (b1, . . . , bk) a sequence of elements from the universe B of B.

• We write Qk
B

to denote the Lk∞ω-equivalence class of B on finite structures, i.e.,

QkB = {A : A is finite and A ≡k
∞ω B}.

Notice that Qk
B

can be viewed as a Boolean query over the vocabulary σ.

• We write Qk
B,w to denote the Lk∞ω-equivalence class of B, w on finite structures. Thus, Qk

B,w

is the k-ary query over σ such that, given a finite structure A over σ, it returns as value
the relation

QkB,w(A) = {(a1, . . . , ak) : (A, a1, . . . , ak) ≡
k
∞ω (B, b1, . . . , bk)}.

In other words, the query Qk
B,w asks: “Given a finite structure A over σ and a sequence

(a1, . . . , ak) of elements from the universe A of A, does (A, a1, . . . , ak) ≡
k
∞ω (B, b1, . . . , bk)?”
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Theorem 3.8: Let σ be a vocabulary, k a positive integer, and B a finite structure over σ.

• There is a positive integer k′ ≥ k such that the Boolean query Qk
B

is expressible in FPk
′

.

• Let wi = (bi1, . . . , b
i
k), 1 ≤ i ≤ l, be an enumeration of all k-tuples of elements from the

universe B of B, where l = |B|k. There is a system ϕB,wi
(x1, . . . , xk, Sw1

, . . . , Swl
), 1 ≤

i ≤ l, of positive formulas of Lkωω, where Sw1
, . . . , Swl

are k-ary relation symbols not in the
vocabulary σ, such that for every i ≤ l the formula ¬ϕ∞

B,wi
(x1, . . . , xk) defines the k-ary

query Qk
B,wi

, i.e., for every finite structure A over the vocabulary σ and every sequence
(a1, . . . , ak) of elements from the universe A of A

(A, a1, . . . , ak) ≡
k
∞ω (B, bi1, . . . , b

i
k) ⇐⇒ A |= ϕ∞

B,wi
(x1/a1, . . . , xk/ak).

Proof: We begin with the second part of this theorem. For every sequence wi = (bi1, . . . , b
i
k),

1 ≤ i ≤ l, of elements from the universe of B, we let χB,wi
(x1, . . . , xk) be the conjunction of all

atomic or negated atomic formulas η(x1, . . . , xk) such that B |= η(x1/b
i
1, . . . , xk/b

i
k). Moreover,

for every integer j ≤ k and every element b from the universe of B, we let wi[j/b] be the k-tuple
obtained from wi = (bi1, . . . , b

i
k) by replacing bij by b. With this notation at hand, for every i ≤ l

we let ϕB,wi
(x1, . . . , xl, Sw1

. . . , Swl
) be the formula

¬χB,wi
(x1, . . . , xk) ∨ [

k∨

j=1

(∃xj)
∧

b∈B

Swi[j/b](x1, . . . , xk)] ∨ [
k∨

j=1

∨

b∈B

(∀xj)Swi[j/b](x1, . . . , xk)].

Note that the above expressions are positive formulas of Lkωω over the vocabulary σ∪{Sw1
, . . . , Swl

}.
Using a straightforward induction on m simultaneously for all i ≤ l, it is not hard to show that for
every m ≥ 1 the components Φm

B,w1
, . . . ,Φm

B,wl
of the m-th stage of the system ϕB,w1

, . . . , ϕB,wl

possess the following property: for every i ≤ l, every structure A over the vocabulary σ and every
sequence (a1, . . . , al) of elements from the universe of A we have that (a1, . . . , ak) ∈ Φm

wi
if and

only if Player I can win within m rounds the k-pebble game on the structures A and B and the
sequences (a1, . . . , ak) and wi = (bi1, . . . , b

i
k). By applying Theorem 3.2 and using the fact that the

k-pebble game is determined, we conclude that for every i ≤ l the component ϕ∞
B,wi

(x1, . . . , xk)

of the least fixpoint of the system ϕB,w1
, . . . , ϕB,wl

defines the complement of the query Qk
B,wi

.

It now follows that the Boolean query Qk
B

is expressible in fixpoint logic, since its complement
is definable by the sentence

[(∃x1 . . . ∃xk)
l∧

i=1

ϕ∞
B,wi

(x1, . . . , xk)] ∨ [
l∨

i=1

(∀x1 . . . ∀xk)ϕ
∞
B,wi

(x1, . . . , xk)].

Dawar, Lindell, and Weinstein [?] established a stronger result than the preceding Theorem
3.8, namely they showed that for every k ≥ 1, every finite structure B over σ, and every sequence
w = (b1, . . . , bk) of elements from the universe of B both the equivalence class Qk

B
and the

equivalence class Qk
B,w are expressible in Lkωω. Dawar et al. [?] proved this result by constructing
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directly Lkωω-formulas that define the Lk∞ω-equivalence classes. Their construction is an adaptation
of the proof of Scott’s theorem [?] to the effect that every countable structure can be described
up to isomorphism by a formula of the infinitary logic Lω1ω. We give next a different proof of
the Dawar, Lindell, and Weinstein result, a proof that has game-theoretic flavor and combines
Theorem 2.10 with Theorem 3.8.

Theorem 3.9: ([?]) Let σ be a vocabulary, k a positive integer, B a finite structure over σ, and
w = (b1, . . . , bk) a sequence of elements from the universe B of B.

• The query Qk
B

is definable by a sentence θB of Lkωω.

• The query QB,w is definable by a formula θB,w(x1, . . . , xk) of Lkωω.

Proof: Let wi = (bi1, . . . , b
i
k), 1 ≤ i ≤ l, be an enumeration of all k-tuples of elements from the uni-

verse B of B, where l = |B|k. By Theorem 3.8, there is a system ϕB,wi
(x1, . . . , xk, Sw1

, . . . , Swl
),

1 ≤ i ≤ l, of positive formulas of Lkωω such that for every i ≤ l the formula ¬ϕ∞
B,wi

(x1, . . . , xk)

defines the k-ary query Qk
B,wi

. Theorem 2.10 implies that for every i ≤ l and every m ≥ 1

there is a formula ϕm
B,wi

(x1, . . . , xk) of Lkωω that defines the component Φm
B,wi

of the m-th stage
of this system. Moreover, the proof of Theorem 3.8 reveals that the system ϕB,wi

(x1, . . . , xk),
1 ≤ i ≤ l, can be constructed in such a way that for every finite structure A over σ and ev-
ery sequence (a1, . . . , ak) of elements from the universe of A the following is true: Player I wins
within m rounds the k-pebble game on the structures A and B and the sequences (a1, . . . , ak) and
wi = (bi1, . . . , b

i
k) if and only if A |= ϕm

B,wi
(x1/a1, . . . , xk/ak). Notice also that for every m ≥ 1

the restriction of the k-pebble game to m rounds constitutes a determined game, which implies
that Player II can win the first m rounds the k-pebble game on the structures A and B and the
sequences (a1, . . . , ak) and wi = (bi1, . . . , b

i
k) if and only if A |= ¬ϕm

B,wi
(x1/a1, . . . , xk/ak).

Since B is a finite structure, there is a positive integer m0 such that on B the least fixpoint
of the system ϕB,wi

(x1, . . . , xk), 1 ≤ i ≤ l, is equal to its m0-th stage, which means that for every
i ≤ l

B |= (∀x1 . . . ∀xk)(ϕ
∞
B,wi

(x1, . . . , xk) ↔ ϕm0

B,wi
(x1, . . . , xk)).

In addition, for every i ≤ l

B |= (∀x1 . . . ∀xk)(ϕ
m0

B,wi
(x1, . . . , xk) ↔ ϕm0+1

B,wi
(x1, . . . , xk)).

We now claim that the query Qk
B,w is definable by the following formula θB,w(x1, . . . , xk) of Lkωω

¬ϕm0

B,w(x1, . . . , xk) ∧ [
l∧

i=1

(∀x1 . . . ∀xk)(ϕ
m0

B,wi
(x1, . . . , xk) ↔ ϕm0+1

B,wi
(x1, . . . , xk))].

It is clear that if (A, a1, . . . , ak) ≡k
∞ω (B, b1, . . . , bk), then A |= θB,w(x1/a1, . . . , xk/ak), because

θB,w(x1, . . . , xk) is a formula of Lkωω satisfied by the structure B and the sequence w = (b1, . . . , bk).

Assume now that A is a structure over the vocabulary σ and (a1, . . . , ak) is a sequence of
elements from the universe of A such that A |= θB,w(x1/a1, . . . , xk/ak). We must show that
(A, a1, . . . , ak) ≡k

∞ω (B, b1, . . . , bk), which, by Theorem 2.10, amounts to showing that Player
II has a winning strategy for the k-pebble game on the structures A and B and the sequences
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(a1, . . . , ak) and w = (b1, . . . , bk). We claim that Player II can win the k-pebble game by guar-
anteeing that at any point of time he can win the next m0 rounds of the k-pebble game. This
is certainly true for the starting configuration of the game, since A |= ¬ϕm0

w (x1/a1, . . . , xk/ak)
and, as explained earlier, the formula ¬ϕm0

w (x1/a1, . . . , xk/ak) is satisfied by a structure A and
a sequence (a1, . . . , ak) of elements from the universe of A if and only if Player II can win the
first m0 rounds of the k-pebble game on the structures A and B and the sequences (a1, . . . , ak)
and w = (b1, . . . , bk). Assume that Player II continues to play the k-pebble game in such a
way that at the end of some round the pebbles have been placed on sequences (aj1, . . . , a

j
k)

and (bj1, . . . , b
j
k) having the property that Player II can win the first m0 rounds of the k-pebble

game on the structures A and B and the sequences (aj1, . . . , a
j
k) and wj = (bj1, . . . , b

j
k). Thus,

A |= ¬ϕm0

wj
(x1/a

j
1, . . . , xk/a

j
k). Since A |= (∀x1 . . . ∀xk)(ϕ

m0

wj
(x1, . . . , xk) ↔ ϕm0+1

wj
(x1, . . . , xk)), it

follows that A |= ¬ϕm0+1
wj

(x1/a
j
1, . . . , x1/a

j
k), which, in turn, implies that Player II can win the

first m+1 rounds of the k-pebble game on the structures A and B and the sequences (aj1, . . . , a
j
k)

and wj = (bj1, . . . , b
j
k). This makes it possible for Player II to play one more round of the original

k-pebble game and still guarantee that he can win the subsequent m rounds.

In [KV90a] we proved that every sentence of Lk∞ω is equivalent to an infinitary disjunction of
infinitary conjunctions of Lkωω-sentences (i.e., first-order sentences with at most k variables). This
result was improved in [KV92a], where it was shown that every formula of Lk∞ω is equivalent to
a countable disjunction of first-order formulas with a fixed number of variables, albeit with more
than k variables. Using the preceding Theorem 3.9, Dawar et al. [?] established the following
optimal normal form for Lk∞ω.

Theorem 3.10: Let σ be a vocabulary and k a positive integer. Every Lk∞ω formula is equivalent
on finite structures to an infinitary disjunction of Lkωω-formulas.

Proof: Let ϕ(x1, . . . , xk) be a formula of Lk∞ω over the vocabulary σ and let C be the class of all
pairs (B, w) with the property that B is a finite structure over σ and w = (b1, . . . , bk) is a sequence
of elements from the universe of B such that B |= ϕ(x1/b1), . . . , xk/bk). Then ϕ(x1, . . . , xk) is
equivalent on finite structures to the formula

∨

(B,w)∈C

θB,w(x1, . . . , xk),

where θB,w(x1, . . . , xk) is a formula of Lkωω defining the query QB,w.

4 First-Order Logic vs. L
ω
∞ω and Fixpoint Logic

4.1 McColm’s Conjectures

Over the class of all finite structures, Lω∞ω is strictly more expressive than fixpoint logic, and the
latter is strictly more expressive than first-order logic. As we observed earlier, however, to fully
understand the relative expressive power of these logics, we need to examine their relationship
over arbitrary classes of finite structures. On the basis of empirical evidence, it appears that
either both fixpoint logic and Lω∞ω are more expressive than first-order logic, e.g., over the class
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of total orders, or both collapse to first-order logic, e.g., over the class of equivalence relations
[Kol85].

McColm [McC90] conjectured that the key to the collapse of fixpoint logic and Lω∞ω to first-
order logic is the following boundedness property. Let C be a class of finite structures over a
vocabulary σ and let ϕ(x, S) be a positive first-order formula ϕ(x, S). We say that the formula
ϕ(x, S) is bounded on C if there is some m ≥ 1 such that Φm = Φ∞ over all structures in C. If
every positive first-order formula ϕ(x, S) is bounded on a class C of finite structures, then we say
that fixpoint logic is bounded on C; otherwise, we say that fixpoint logic is unbounded on C.

How is boundedness related to the behavior of fixpoint logic and of Lω∞ω? It is clear from
Theorem 2.10 that if fixpoint logic is bounded on a class C of finite structures, then fixpoint logic
collapses to first-order logic on C. Moreover, McColm [McC90] proved that if fixpoint logic is
unbounded on C, then Lω∞ω does not collapse to first-order logic on C. McColm’s proof actually
shows that if fixpoint logic is unbounded on a class C, then Lω∞ω is strictly more expressive than
fixpoint logic on C. In addition, McColm [McC90] observed that the following dichotomy occurs in
all known examples: on classes where fixpoint logic and Lω∞ω collapse to first-order logic, fixpoint
logic is bounded, while on classes where fixpoint logic and Lω∞ω do not collapse to first-order logic,
fixpoint logic is unbounded. These facts led McColm [McC90] to conjecture that boundedness
holds the secret to the collapse of fixpoint logic and Lω∞ω to first-order logic.

McColm’s First Conjecture: Fixpoint logic collapses to first-order logic on a class C of finite
structures if and only if fixpoint logic is bounded on C.

McColm’s Second Conjecture: Lω∞ω collapses to first-order logic on a class C of finite struc-
tures if and only if fixpoint logic is bounded on C.

As explained earlier, the “if” direction of the first conjecture and the “only if” direction of the
second one are true. Note also that the two conjectures together imply that Lω∞ω collapses to
first-order logic on a class C of finite structures if and only if fixpoint logic collapses to first-order
logic on C.

We now prove McColm’s second conjecture, using the game-theoretic characterization of Lk∞ω-
equivalence.

Theorem 4.1: Lω∞ω collapses to first-order logic on a class C of finite structures if and only if
fixpoint logic is bounded on C.

Proof: (Hint) Let ϕ(x1, . . . , xk, y1, . . . , yk, S) be the first-order formula used in the proof of
Proposition 3.6 to define Lk∞ω-inequivalence for tuples, i.e., ϕ∞(a1, . . . , ak, b1, . . . , bk) holds in a
structure A precisely when (A, a1, . . . , ak) 6≡k

∞ω (A, b1, . . . , bk). We can show that there is a
function f , which depends only on the vocabulary σ, such that each stage ϕi of ϕ defines an
equivalence relation of index f(i) over any finite structure A over σ, i ≥ 1. It follows that if
fixpoint logic is bounded over a class C of finite structures, then the number of Lk∞ω-equivalence
classes of tuples is bounded in all structures in C. Using this, we show that each Lk∞ω-equivalence
class of tuples is first-order definable. The result now follows, since each Lk∞ω-formula defines a
query that is a union of Lk∞ω-equivalence classes.
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4.2 McColm’s First Conjecture: Fixpoint Logic vs. First-order Logic

McColm’s First Conjecture seems to require very different tools than his second conjecture. To
gain insight into the problem, we consider a special case by focusing on unbounded classes of
ordered structures, i.e., we assume that the vocabulary contains a binary predicate symbol <
that is always interpreted as a total order, and, furthermore, we assume that the class contains
structures of arbitrarily large (but finite) cardinalities. Without loss of generality, we can assume
that the domain of these structures is an initial segment {0, . . . , n − 1} of the natural numbers
and that < is the restriction to {0, . . . , n− 1} of the standard ordering on the natural numbers.

What makes unbounded classes of ordered structures interesting is that the following two
important facts hold:

1. Fixpoint logic is unbounded on unbounded classes of ordered structures.

2. Fixpoint logic expresses precisely the polynomial-time properties on unbounded classes of
ordered structures.

The first fact is proved easily by exhibiting a fixpoint formula that simply “counts” the number
of elements. For example, let ψ(x, S) be the first-order formula (∀y)(y < x→ S(y)). On ordered
structures this formula is unbounded, since m-th stage of ψ consists of all numbers in the universe
of the structure that are less than or equal to m − 1. The second fact is a well-known result of
[Imm86, Var82].

Thus, on unbounded classes of ordered structures, McColm’s First Conjecture becomes:

The Ordered Conjecture: There is no unbounded class of ordered structures on which first-
order logic captures polynomial time.

Note that the Ordered Conjecture can be viewed as a conjecture about the expressive power of
first-order logic. It is an open question whether the Ordered Conjecture implies McColm’s First
Conjecture.

The difficulty in proving the above conjecture comes from the fact that we are dealing with
arbitrary classes of finite structures. It is conceivable that the predicates in these structures
encode enough information to enable first-order logic to capture polynomial time. Consider, for
example, the query Q(x) that returns all even elements in the order <. It is easy to show that
this polynomial-time query is not first-order expressible on the class of all ordered structures (the
proof uses Ehrenfeucht-Fräıssé games). It is, however, first-order expressible on the classes of
ordered structures with a built-in unary predicate E whose interpretation is always the set of
even elements in the order <. Indeed, the addition of built-in predicates such as the Bit predicate
(where Bit(i, j) holds when the j-th bit of i is 1) is known to significantly increase the expressive
power of first-order logic [BIS90, Lin92].

The above discussion makes it clear that to prove the ordered conjecture we have to exhibit
a family of polynomial-time queries such that not all of them are expressible in first-order logic
on unbounded classes of ordered structures. We now present a family of polynomial-time queries
that appears to be such a candidate, on complexity-theoretic grounds.

We first need some technical definitions. For a positive number n, let length(n) = 1 +
⌊log n⌋. For a nonnegative number m ≤ n, let wordn(m) be the word comprising of the rightmost
length(n)−1 bits in the binary representation of m. For k nonnegative numbers m1, . . . ,mk ≤ n,
let wordn(m1, . . . ,mk) be the concatenation wordn(m1) . . . wordn(mk).
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Let T0, T1, . . . be an enumeration of all exponential-time languages (by exponential we mean
2cn for some integer c > 0). For each language Ti and each k > 0, we define a k-ary query Qki as
follows: a tuple (m1, . . . ,mk) is a member of Qki (A) if and only if wordn(m1, . . . ,mk) is a member
of Ti, where n = |A|. We denote by Q the family {Qki | i ≥ 0, k > 0}. It is not hard to see that
all queries in Q are polynomial-time computable.

Our belief in the Ordered Conjecture is supported by the fact that its negation has a certain
unlikely complexity-theoretic consequence that will be discussed in detail in the full paper.

Proposition 4.2: Let C be an unbounded class of ordered structures such that all queries in Q

are expressible in first-order logic over C. Then there is an oracle A with the following property:
There is an increasing sequence n1 < n2 < . . . such that for every exponential-time language
L and each k > 0 there is bounded-alternation alternating polynomial-time oracle machine M ,
where, for each j > 0, MA can test membership in L for all strings of length knj, while asking
the oracle only questions of length nj .

In the full paper, using the techniques of [KL82], we show that if the Ordered Conjecture is false,
then one can derive certain complexity-theoretic implications that do not involve an oracle.

4.3 Ramifying the Conjectures

McColm’s conjectures are stated in terms of first-order logic, fixpoint logics, and Lω∞ω. Some of
our earlier results (cf. Proposition 3.6, and Theorem 3.10) suggest that these logics are better
undersood as union of logics with bounded number of variables, i.e., first-order logic is

⋃
k>0 L

k
ωω,

fixpoint logic is
⋃
k>0 FPk and Lω∞ω is

⋃
k>0 L

k
∞ω. It turns out that we can obtain sharper results

and formulate finer conjectures if we consider the ramified logics.

We start by considering the logics Lk∞ω, k ≥ 1. In the full paper we prove the following
proposition, which reveals that Lω∞ω can collapse to first-order only in a ramified manner.

Proposition 4.3: Lk∞ω collapses to first-order logic over a class C of finite structures if and only
if Lk∞ω collapses to Lkωω over C.

By combining the above Proposition 4.3 with our earlier Theorem 4.1, we obtain the following
stronger solution to McColm’s Second Conjecture.

Theorem 4.4: Lk∞ω collapses to Lkωω on a class C of finite structures for all k > 0 if and only if
FPk is bounded on C for all k > 0.

This, in turn, suggests considering the ramified version of McColm’s First Conjecture.

The Ramified Conjecture: FPk collapses to Lkωω on a class C of finite structures for all k > 0
if and only if FPk is bounded on C for all k > 0.

We conclude by explaining the relationship between the Ramified Conjecture and McColm’s
First Conjecture. Recall that the (easy) “if” direction of McColm’s First Conjecture is a conse-
quence of Theorem 2.10. This theorem, however, does not give the “if” direction of the Ramified
Conjecture, because it only implies that if FPk is bounded on a class C of finite structures, then
FPk collapses to L2k

ωω on C. We now show that Theorem 2.10 can be sharpened to yield the “if”
direction of the Ramified Conjecture.
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Theorem 4.5: Let ϕ(x1, . . . , xk, S) be an Lkωω- formula over the vocabulary σ∪{S} and positive in
S, where S is a k-ary relation. Then, for every m ≥ 1, the stage Φm(x1, . . . , xk) of Φ is definable
by an Lkωω-formula on all finite structures over σ. As a result, the fixpoint ϕ∞(x1, . . . , xk) of ϕ is
definable by a formula of Lk∞ω on all finite structures over σ.

Corollary 4.6: If FPk is bounded on a class C of finite structures for all k > 0, then FPk

collapses to Lkωω on C for all k > 0.

By Corollary 4.6, to prove the Ramified Conjecture it remains to show that if fixpoint logic
is not bounded on a class C of finite structure, then there is some k > 0 such that FPk does not
collapses to Lkωω on C. Note that to prove McColm’s First Conjecture it remains to show the
stronger claim that if fixpoint logic is not bounded on a class C of finite structure, then there is
some k > 0 such that FPk does not collapses to first-order logic on C.

4.4 On 0-1 Laws for Infinitary Logics

Let C be a class of finite structures and assume that for each n ≥ 1 we have a probability measure
prn on the collection of all structures in C with n elements. The asymptotic probability pr(P ) of a
property P on C (relative to the probability measures prn, n ≥ 1) is defined as pr(P ) = limn→∞(P ),
provided this limit exists. If L is a logic, then we say that a 0-1 law holds for L on C relative to
the measure pr if for every sentence ψ of L the asymptotic probability of ψ exists and is either 0
or 1.

The study of 0-1 laws for various logics has been a major direction of research in finite-model
theory (cf. [Com88] for a survey of results). In [KV90a] we showed that the 0-1 law holds for
Lω∞ω under the uniform probability measure on the class of all finite structures. There is also a
lot of interest in 0-1 laws under variable probability measures and results have been obtained for
both first-order logic [SS87] and fixpoint logic [Tys91a, Tys91b]. Moreover, in [KV90a] we found
a necessary and sufficient condition for the existence of 0-1 laws for the logics Lk∞ω, k ≥ 1, under
variable probability measures on arbitrary classes of finite structures. Here, we use the solution
to McColm’s Second Conjecture to establish a markedly different criterion for the existence of a
0-1 law for the logic Lω∞ω.

Theorem 4.7: Let C be a class of finite structures over a vocabulary σ and let prn, n ≥ 1, be a
sequence of probability measures on the structures of C with n elements. Then the following are
equivalent:

1. The 0-1 law holds for the infinitary logic Lω∞ω on C relative to the measure pr.

2. The 0-1 law holds for first-order logic on C relative to the measure pr and for each k ≥ 1 we
have that FPk is bounded almost everywhere on C, i.e., for each k ≥ 1 there is a subclass D
of C such that pr(D) = 1 and FPk is bounded on D.

Proof: (Hint:) Suppose first that the 0-1 law holds for Lk∞ω relative to the measure pr, for some
k > 0. By the results in [KV90a], there is a structure A in C such that pr([A]) = 1, where [A]
is the equivalence class of A with respect to Lk∞ω-equivalence on C. Since A is a finite structure,
there is a positive integer m0 such that for every formula ϕ(x, S) in Lkωω that is positive in S we
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have that Φm0 = Φm0+1. For each such ϕ, this statement is easily expressible in Lkωω and, as a
result it is true on every structure in [A]. Consequently, FPk is bounded on [A].

For the other direction, if FP2k is bounded on a subclass D of C, then the proof of Theorem
4.4 shows that Lk∞ω collapses to Lkωω on D. The 0-1 law for Lk∞ω follows now easily from the 0-1
law for Lkωω and the assumption that pr(D) = 1.

In this paper, we solved the second McColm conjecture and brought out the complexity-
theoretic character of the first McColm conjecture. In order to preserve the number of open
problems, we conclude by offering a conjecture concerning the interplay between 0-1 laws for
fixpoint logic and 0-1 laws for Lω∞ω.

Conjecture: Let C be a class of finite structures and let prn, n ≥ 1, be a sequence of probability
measures on the structures of C with n elements. Then the 0-1 law holds for the infinitary logic
Lω∞ω on C relative to the measure pr if and only if the 0-1 law holds for fixpoint logic on C relative
to the measure pr.
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[CFI89] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of vari-
ables for graph identification. In Proc. 30th IEEE Symp. on Foundations of Computer
Science, pages 612–617, 1989.

25



[CGKV88] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and M. Y. Vardi. Decidable opti-
mization problems for database logic programs. In Proc. 20th ACM Symp. on Theory
of Computing, pages 477–490, 1988.

[CH82] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of
Computer and System Sciences, 25:99–128, 1982.

[Cha88] A. Chandra. Theory of database queries. In Proc. 7th ACM Symp. on Principles of
Database Systems, pages 1–9, 1988.

[Com88] K. J. Compton. 0-1 laws in logic and combinatorics. In I. Rival, editor, NATO Adv.
Study Inst. on Algorithms and Order, pages 353–383. D. Reidel, 1988.

[dR87] M. de Rougemont. Second-order and inductive definability on finite structures.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 33:47–63, 1987.

[Fag75] R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 21:89–96, 1975.

[Gai82] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium
’81, pages 105–135. North Holland, 1982.

[GMSV87] H. Gaifman, H. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable optimization prob-
lems for database logic programs. In Proc. 2nd IEEE Symp. on Logic in Computer
Science, pages 106–115, 1987.

[GS86] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure
and Applied Logic, 32:265–280, 1986.

[Gur84] Y. Gurevich. Toward logic tailored for computational complexity. In M. M. Ricther
et al., editor, Computation and Proof Theory, Lecture Notes in Mathematics 1104,
pages 175–216. Springer-Verlag, 1984.

[IL90] N. Immerman and E. S. Lander. Describing graphs: a first-order approach to graph
canonization. In A. Selman, editor, Complexity Theory Retrospective, pages 59–81.
Springer-Verlag, 1990.

[Imm82] N. Immerman. Upper and lower bounds for first-order expressibility. Journal of
Computer and System Sciences, 25:76–98, 1982.

[Imm86] N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86–104, 1986.

[Ioa86] Y. E. Ioannides. Bounded recursion in deductive databases. Algorithmica, 1:361–385,
1986.

[KA89] P. Kanellakis and S. Abiteboul. Deciding bounded recursion in database logic pro-
grams. SIGACT News, 20:4, Fall 1989.

[KL82] R. Karp and R. Lipton. Turing machines that take advice. L’ Ensignement
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