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Constrained optimization

• Consider the following constrained optimization problem

θ
∗ = argmin

θ∈Ω
f(θ)

where Ω is some feasible set. If the parameters are real-valued, we
typically assume Ω ⊆ R

D, but it could be a more abstract space, such
as the set of positive definite matrices.as the set of positive definite matrices.

• The feasible set is then often defined in terms of a set of equality con-
straints, ci(θ) = 0, and/or inequality constraints, ci(θ) > 0, for cer-
tain constraint functions ci.



Constrained optimization
• Suppose that we have a single equality constraint c(θ) = 0.

• For example, we might have a quadratic objective, f(θ) = θ21+θ
2
2, subject

to a linear equality constraint, c(θ) = 1− θ1 − θ2 = 0.

• What we are trying to do is find the point θ∗ that lives on the line, but
which is closest to the origin. It is geometrically obvious that the optimal
solution is θ = (0.5, 0.5).

Constrained optimization
• The gradient of the constraint function ∇c(θ) will be orthogonal to the
constraint surface.

• To see why, consider a point θ on the constraint surface, and another point
nearby, θ+ ǫ, that also lies on the surface. If we make a Taylor expansion
around θ we have

c(θ + ǫ) ≈ c(θ) + ǫT∇c(θ)

Since both θ and θ+ǫ are on the constraint surface, we must have c(θ) =Since both θ and θ+ǫ are on the constraint surface, we must have c(θ) =
c(θ + ǫ) and hence ǫT∇c(θ) ≈ 0. Sinceǫ is parallel to the constraint
surface, we see that the vector ∇c is normal to the surface.



Constrained optimization
• We seek a point θ∗ on the constraint surface such that f(θ) is minimized.
Such a point must have the property that ∇f(θ) is also orthogonal to the
constraint surface, as otherwise we could decrease f(θ) by moving a short
distance along the constraint surface.

• Since both ∇c(θ) and ∇f(θ) are orthogonal to the constraint surface at
θ
∗, they must be parallel (or anti-parallel) to each other. Hence there
must exist a constant λ∗ �= 0 such that∗ �

∇f(θ∗) = λ∗∇c(θ∗)

λ∗ is called a Lagrange multiplier, and can be positive or negative, but
not zero.

Lagrangian
• We can now convert our constrained optimization problem into an uncon-
strained one by defining a new function called the Lagrangian:

L(θ, λ) := f(θ)− λc(θ)

We now have D+1 equations in D+ 1 unknowns, which we can solve for
θ
∗ and λ. Why? Since we are only interested in θ∗, we can “throw away”
the value λ; hence it is sometimes called an undetermined multiplier.



Inequality constraints

Inequality constraints

• Now consider the case where we have a single inequality constraint
c(θ) ≥ 0.

• If the solution lies in the region where c(θ) > 0, the constraint is inactive,
so we have the usual stationarity condition ∇f(θ∗) = 0. Our equations
still hold, provided we set λ∗ = 0.

• If the solution lies on the boundary where c(θ) = 0, the constraint is• If the solution lies on the boundary where c(θ) = 0, the constraint is
active, so∇c(θ) and∇f(θ) must be parallel, as for the equality constraint
case.

• However, this time we require that λ∗ > 0, so the gradients point in the
same direction. Since the gradients of c and f point in the same direction,
we will follow c to its minimum, where c(θ∗) = 0.

• We can summarize these two cases by writing λ∗c(θ∗) = 0: either λ∗ = 0
or c(θ∗) = 0 (or both). This is called the complementarity condition.



Inequality constraints

• Putting it all together, the problem of minimizing f(θ) subject to c(θ) ≥ 0
can be obtained by optimizing the Lagrangian subject to the following
constraints:

c(θ) ≥ 0

λ∗ ≥ 0

λ∗c(θ∗) = 0λ∗c(θ∗) = 0

Many constraints

• In general, if we have multiple equality constraints, ci(θ) = 0 for i ∈ E ,
and multiple inequality constraints, ci(θ) ≥ 0 for i ∈ I, we can define the
feasible set as

Ω = {θ ∈ RD : ci(θ) = 0, i ∈ E , ci(θ) ≥ 0, i ∈ I}

and the Lagrangian as

∑
L(θ,λ) = f(θ)−

∑

i∈E∪I

λici(θ)

• The active set is defined as the contraints that are active at a point:

A(θ) = E ∪ {i ∈ I : ci(θ) = 0}



Karush-Kuhn-Tucker conditions

• We have the following necessary first-order conditions for being at a local
minimum:

∇θL(θ,λ) = 0

ci(θ
∗) = 0 ∀i ∈ E

ci(θ
∗) ≥ 0 ∀i ∈ I

λ∗ ≥ 0 ∀i ∈ Iλ∗i ≥ 0 ∀i ∈ I

λ∗i ci(θ
∗) = 0 ∀i ∈ I ∪ E

• These are called the Karush-Kuhn-Tucker or KKT conditions.

• If f and the ci are convex, the KKT conditions are sufficient for a minimum
as well.

Example

• Maximize f(θ) = 1− θ21 − θ
2
2 subject to the constraint that θ1 + θ2 = 1.



Example

Quadratic programs

• A generic quadratic program or QP has the form

min
θ

1

2
θ
THθ + dTθ s.t. Aθ ≤ b, Aeqθ = beq, bl ≤ θ ≤ bu

The constraints bl ≤ θ ≤ bu are known as box constraints, and can
always be rewritten as linear inequality constraints.

• QPs arise in several areas of machine learning, including support vector
machines and lasso .



• Assume we want to minimize:

f(θ) = (θ1 −
3

2
)2 + (θ2 −

1

8
)2 =

1

2
θ
THθ + dTθ + const

where H = 2I and d = −(3, 1/4), subject to

|θ1|+ |θ2| ≤ 1

We can rewrite the constraints as

θ + θ ≤ 1, θ − θ ≤ 1, −θ + θ ≤ 1, −θ − θ ≤ 1θ1 + θ2 ≤ 1, θ1 − θ2 ≤ 1, −θ1 + θ2 ≤ 1, −θ1 − θ2 ≤ 1

which we can write more compactly as

b−Aθ ≥ 0

where b = 1 and

A =






1 1
1 −1
−1 1
−1 −1






Quadratic programs

• The Lagrangian is

L(θ,λ) =
1

2
θ
THθ + dTθ + λT (Aθ − b)

and the KKT conditions are

Hθ + d+ATλ = 0Hθ + d+ATλ = 0

b−Aθ ≥ 0

If we treat the inequality as an equality, we can write

(
H AT

A 0

)(
θ

λ

)
=

(
−d
b

)



Quadratic programs

• The KKT matrix on the LHS is singular. Note constraints c3 and c4 (corre-
sponding to the two left faces of the diamond) are inactive, so c3(θ

∗) > 0
and c4(θ

∗) > 0 and hence, by complementarity, λ∗3 = λ∗4 = 0. We can
therefore remove these inactive constraints to get the following:

    




2 0 1 1
0 2 1 −1
1 1 0 0
1 −1 0 0











θ1
θ2
λ1
λ2




 =






3
1/4
1
1






We see that the solution is

θ
∗ = (1, 0)T ,λ∗ = (0.875, 0.125, 0, 0)T

Notice that the optimal value of θ occurs at one of the vertices of the L1
simplex. Consequently the solution vector is sparse.

Lasso for feature selection



Lasso for feature selection

Duality

• Duality theory provides an alternative way to express optimization prob-
lems that can often lead to faster algorithms, as well as new insights into
a problem. It also relaxes some of the differentiation conditions.



Duality
• Consider the primal problem

min
θ

f(θ) s.t. c(θ) ≥ 0

The Lagrangian is
L(θ,λ) = f(θ)− λT c(θ)

We define the dual objective function as

g(λ) = min
θ

L(θ,λ) = min
θ

f(θ)− λT c(θ) = −f∗(λ)

where f∗ is the Fenchel conjugate of f .

• We see that the dual objective g is a concave function, since it is a min-
imum over an affine function of λ. The corresponding dual problem
is

max
λ

g(λ) s.t. λ ≥ 0

Duality



Duality

Duality

• Solving the dual has several advantages:

1. It is always convex, even if the primal is not;

2. The number of variables in the dual is equal to the number of con-
straints in the primal, which is often less than the number of variables
in the primal

3. I might enable us to deal with non-differentiable problems.3. I might enable us to deal with non-differentiable problems.



Duality
• The key question is, do the two methods give the same results? Let
p∗ = f(θ∗) be the optimal primal value, and d∗ = g(λ∗) be the optimal
dual value. We have the following two important theorems:

— Weak duality: d∗ ≤ p∗. This always holds. To see this, note that
for λ ≥ 0, since c(θ) ≥ 0,

f(θ) ≥ L(θ,λ) ≥ min
θ′
L(θ′,λ) = g(λ)

— Strong duality: d∗ = p∗. This only holds for convex problems. The
reason is that a convex function can be precisely represented either
in primal or dual form.

Put another way, for any real function L(θ,λ), weak duality says we always
have

min
θ

max
λ

L(θ,λ) ≥ max
λ

min
θ

L(θ,λ)

If strong duality holds, the two terms are equal, so the duality gap,
p∗ − d∗, is zero. In this case, L(θ∗,λ∗) is a saddle point.

Further reading

• Please read the book section about linear programming as another exam-
ple.

• Read on the algorithms

1. Interior point methods

2. Active set methods

3. Projected gradient
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