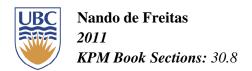


CPSC540

Constrained Optimization



Constrained optimization

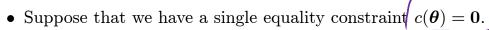
• Consider the following constrained optimization problem

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta} \in \Omega}{\operatorname{arg} \min} f(\boldsymbol{\theta})$$

where Ω is some feasible set. If the parameters are real-valued, we typically assume $\Omega \subseteq \mathbb{R}^D$, but it could be a more abstract space, such as the set of positive definite matrices.

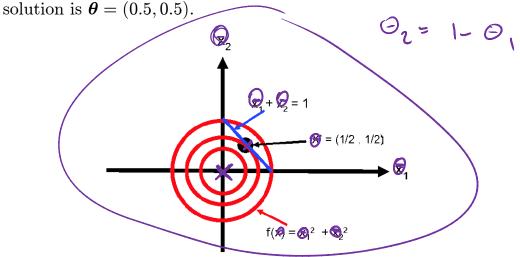
• The feasible set is then often defined in terms of a set of equality constraints, $c_i(\theta) = 0$, and/or inequality constraints, $c_i(\theta) > 0$, for certain constraint functions c_i .

Constrained optimization





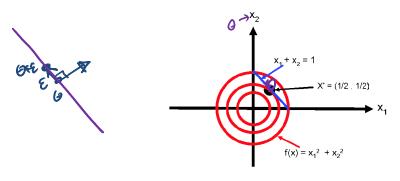
• What we are trying to do is find the point θ^* that lives on the line, but which is closest to the origin. It is geometrically obvious that the optimal solution is $\theta = (0.5, 0.5)$



Constrained optimization

- The gradient of the constraint function $\nabla c(\boldsymbol{\theta})$ will be orthogonal to the constraint surface.
- To see why, consider a point $\boldsymbol{\theta}$ on the constraint surface, and another point nearby, $\boldsymbol{\theta} + \boldsymbol{\epsilon}$, that also lies on the surface. If we make a Taylor expansion around $\boldsymbol{\theta}$ we have $\frac{1}{c(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \approx c(\boldsymbol{\theta}) + \boldsymbol{\epsilon}^T \nabla c(\boldsymbol{\theta})}$

Since both $\boldsymbol{\theta}$ and $\boldsymbol{\theta} + \boldsymbol{\epsilon}$ are on the constraint surface, we must have $c(\boldsymbol{\theta}) = c(\boldsymbol{\theta} + \boldsymbol{\epsilon})$ and hence $c(\boldsymbol{\theta}) \approx c(\boldsymbol{\theta}) \approx c(\boldsymbol{\theta})$. Since $\boldsymbol{\epsilon}$ is parallel to the constraint surface, we see that the vector ∇c is normal to the surface.

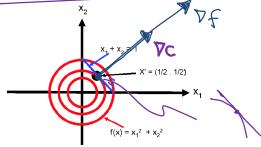


Constrained optimization

- We seek a point θ^* on the constraint surface such that $f(\theta)$ is minimized. Such a point must have the property that $\nabla f(\theta)$ is also orthogonal to the constraint surface, as otherwise we could decrease $f(\theta)$ by moving a short distance along the constraint surface.
- Since both $\nabla c(\boldsymbol{\theta})$ and $\nabla f(\boldsymbol{\theta})$ are orthogonal to the constraint surface at $\boldsymbol{\theta}^*$, they must be parallel (or anti-parallel) to each other. Hence there must exist a constant $\lambda^* \neq 0$ such that

$$abla f(oldsymbol{ heta}^*) = \lambda^*
abla c(oldsymbol{ heta}^*)$$

 λ^* is called a Lagrange multiplier, and can be positive or negative, but not zero.



Lagrangian

• We can now convert our constrained optimization problem into an unconstrained one by defining a new function called the **Lagrangian**:

$$L(oldsymbol{ heta},\lambda):=f(oldsymbol{ heta})-\lambda c(oldsymbol{ heta})$$

We now have D+1 equations in D+1 unknowns, which we can solve for θ^* and λ . Why? Since we are only interested in θ^* , we can "throw away" the value λ ; hence it is sometimes called an **undetermined multiplier**.

$$\nabla_{\theta} L(\theta, \lambda) = \nabla_{\theta} f(\theta) - \lambda \nabla_{\theta} c(\theta) = 0$$

$$\nabla_{\theta} f(\theta) = \lambda \nabla_{\theta} c(\theta)$$

$$\nabla_{\lambda} L(\theta, \lambda) = -\lambda \mathcal{E}(\theta) = 0$$

$$C(\theta) = 0$$

Inequality constraints

Win f(e)S.t. c(e) > 0 f(e) f(e) f(e) f(e)

Inequality constraints

- Now consider the case where we have a single inequality constraint $c(\theta) \ge 0$.
- If the solution lies in the region where $\underline{c(\theta)} > 0$, the constraint is <u>inactive</u>, so we have the usual stationarity condition $\nabla f(\theta^*) = 0$. Our equations still hold, provided we set $\lambda^* = 0$. LHS
- If the solution lies on the boundary where $c(\theta) = 0$, the constraint is active, so $\nabla c(\theta)$ and $\nabla f(\theta)$ must be parallel, as for the equality constraint case. RHS
- However, this time we require that $\lambda^* > 0$, so the gradients point in the same direction. Since the gradients of c and f point in the same direction, we will follow c to its minimum, where $c(\boldsymbol{\theta}^*) = 0$.
- We can summarize these two cases by writing $\lambda^* c(\boldsymbol{\theta}^*) = 0$: either $\lambda^* = 0$ or $c(\boldsymbol{\theta}^*) = 0$ (or both). This is called the **complementarity condition**.

Inequality constraints

• Putting it all together, the problem of minimizing $f(\theta)$ subject to $c(\theta) \geq 0$ can be obtained by optimizing the Lagrangian subject to the following constraints:

$$\begin{array}{c|ccc}
\hline
c(\boldsymbol{\theta}) & \geq & 0 \\
\hline
\lambda^* & \geq & 0
\end{array}$$

$$\begin{array}{c|ccc}
\lambda^* c(\boldsymbol{\theta}^*) & = & 0
\end{array}$$

Many constraints

• In general, if we have multiple equality constraints, $c_i(\boldsymbol{\theta}) = 0$ for $i \in \mathcal{E}$, and multiple inequality constraints, $c_i(\boldsymbol{\theta}) \geq 0$ for $i \in \mathcal{I}$, we can define the feasible set as

$$\Omega = \{\boldsymbol{\theta} \in \mathbb{R}^D : \underbrace{c_i(\boldsymbol{\theta}) = 0, i \in \mathcal{E}}_{\text{ineq}}, \underbrace{c_i(\boldsymbol{\theta}) \geq 0, i \in \mathcal{I}}_{\text{ineq}} \}$$
 and the Lagrangian as
$$\underbrace{L(\boldsymbol{\theta}, \boldsymbol{\lambda}) = f(\boldsymbol{\theta}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(\boldsymbol{\theta})}_{\text{ineq}}.$$

• The active set is defined as the contraints that are active at a point:

$$oxed{\mathcal{A}(oldsymbol{ heta}) = oldsymbol{\mathcal{E}} \cup \{i \in \mathcal{I} : c_i(oldsymbol{ heta}) = 0\}}$$

Karush-Kuhn-Tucker conditions

• We have the following necessary first-order conditions for being at a local minimum:

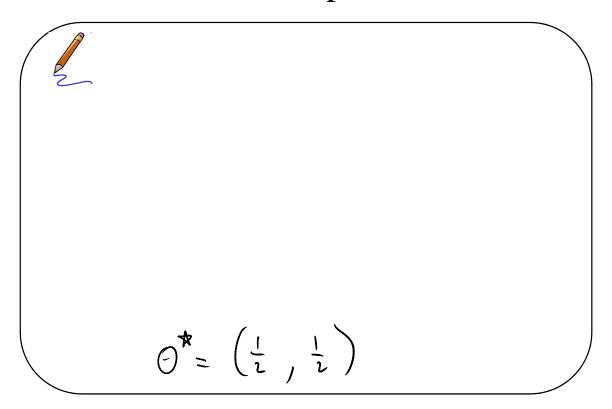
- These are called the **Karush-Kuhn-Tucker** or **KKT** conditions.
- If f and the c_i are convex, the KKT conditions are sufficient for a minimum as well.

Example

• Maximize $f(\boldsymbol{\theta}) = 1 - \theta_1^2 - \theta_2^2$ subject to the constraint that $\theta_1 + \theta_2 = 1$.

$$\begin{array}{ccc}
(i) & \nabla_{0} L(\Theta_{1}, \Theta_{2}, \lambda) = 0 \Rightarrow \\
\nabla_{0} L(\Theta_{1}, \Theta_{2}, \lambda) = 0 \Rightarrow \\
\nabla_{\lambda} L(\Theta_{1}, \Theta_{2}, \lambda) = 0 \Rightarrow
\end{array}$$

Example



Quadratic programs

• A generic quadratic program or QP has the form

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \boldsymbol{\theta}^T \mathbf{H} \boldsymbol{\theta} + \mathbf{d}^T \boldsymbol{\theta} \text{ s.t. } \mathbf{A} \boldsymbol{\theta} \leq \mathbf{b}, \mathbf{A}_{eq} \boldsymbol{\theta} = \mathbf{b}_{eq}, \mathbf{b}_l \leq \boldsymbol{\theta} \leq \mathbf{b}_u$$

The constraints $\mathbf{b}_l \leq \boldsymbol{\theta} \leq \mathbf{b}_u$ are known as **box constraints**, and can always be rewritten as linear inequality constraints.

• QPs arise in several areas of machine learning, including support vector machines and lasso.

• Assume we want to minimize:

$$f(\boldsymbol{\theta}) = (\theta_1 - \frac{3}{2})^2 + (\theta_2 - \frac{1}{8})^2 = \frac{1}{2}\boldsymbol{\theta}^T \mathbf{H} \boldsymbol{\theta} + \mathbf{d}^T \boldsymbol{\theta} + \text{const}$$
where $\mathbf{H} = 2\mathbf{I}$ and $\mathbf{d} = -(3, 1/4)$, subject to
$$|\mathbf{\theta}_1| + |\mathbf{\theta}_2| \le 1$$
We can rewrite the constraints as

$$\mathbf{b} - \mathbf{A}\boldsymbol{\theta} \geq \mathbf{0}$$

where $\mathbf{b} = \mathbf{1}$ and

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \end{pmatrix}$$

Quadratic programs

• The Lagrangian is

$$L(oldsymbol{ heta},oldsymbol{\lambda}) = rac{1}{2}oldsymbol{ heta}^T\mathbf{H}oldsymbol{ heta} + \mathbf{d}^Toldsymbol{ heta} + oldsymbol{\lambda}^T(\mathbf{A}oldsymbol{ heta} - \mathbf{b})$$

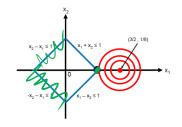
and the KKT conditions are

$$\mathbf{H}\boldsymbol{\theta} + \mathbf{d} + \mathbf{A}^T \boldsymbol{\lambda} = \mathbf{0}$$
$$\mathbf{b} - \mathbf{A}\boldsymbol{\theta} \geq \mathbf{0}$$

If we treat the inequality as an equality, we can write

$$\begin{pmatrix} \mathbf{H} & \mathbf{A}^T \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\theta} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} -\mathbf{d} \\ \mathbf{b} \end{pmatrix}$$

Quadratic programs



• The KKT matrix on the LHS is singular. Note constraints c_3 and c_4 (corresponding to the two left faces of the diamond) are inactive, so $c_3(\boldsymbol{\theta}^*) > 0$ and $c_4(\boldsymbol{\theta}^*) > 0$ and hence, by complementarity, $\underline{\lambda}_3^* = \underline{\lambda}_4^* = 0$. We can therefore remove these inactive constraints to get the following:

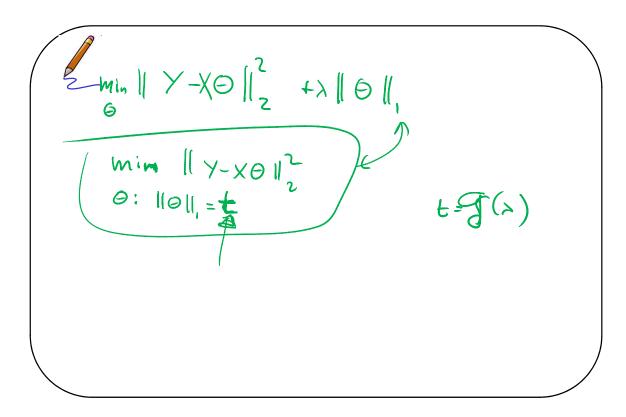
$$\begin{pmatrix} 2 & 0 & 1 & 1 \\ 0 & 2 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \\ \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1/4 \\ 1 \\ 1 \end{pmatrix}$$

We see that the solution is

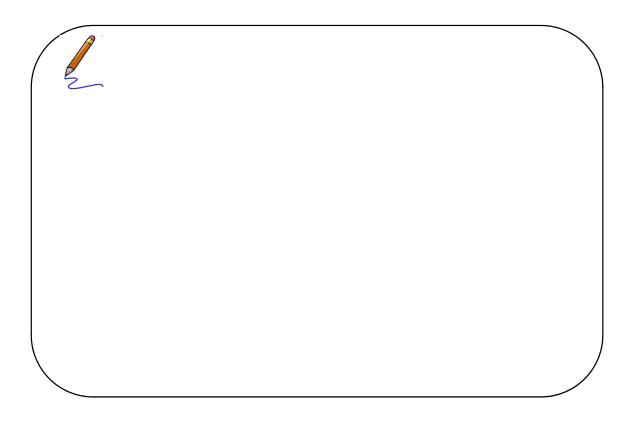
$$\boldsymbol{\theta}^* = (1,0)^T, \boldsymbol{\lambda}^* = (0.875, 0.125, 0, 0)^T$$

Notice that the optimal value of θ occurs at one of the vertices of the L1 simplex. Consequently the solution vector is sparse.

Lasso for feature selection



Lasso for feature selection



Duality

• **Duality theory** provides an alternative way to express optimization problems that can often lead to faster algorithms, as well as new insights into a problem. It also relaxes some of the differentiation conditions.

Duality

• Consider the primal problem

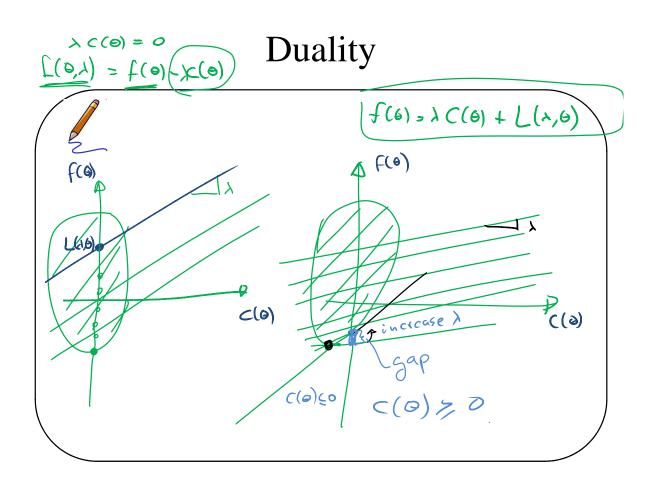
The Lagrangian is
$$\frac{\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) \text{ s.t. } \mathbf{c}(\boldsymbol{\theta}) \geq \mathbf{0}}{\left(L(\boldsymbol{\theta}, \boldsymbol{\lambda}) = f(\boldsymbol{\theta}) - \lambda^T \mathbf{c}(\boldsymbol{\theta})\right)}$$

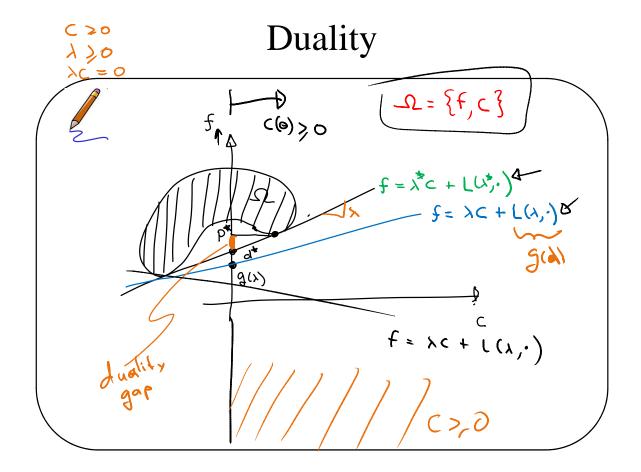
We define the dual objective function as

$$g(\lambda) = \min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \lambda) = \min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) - \lambda^T \mathbf{c}(\boldsymbol{\theta}) = -f^*(\lambda)$$
 where f^* is the **Fenchel conjugate** of f .

• We see that the dual objective g is a concave function, since it is a minimum over an affine function of λ . The corresponding dual problem is

 $\max_{oldsymbol{\lambda}} g(oldsymbol{\lambda}) ext{ s.t. } oldsymbol{\lambda} \geq oldsymbol{0}$

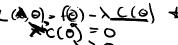




Duality

- Solving the dual has several advantages:
 - 1. It is always convex, even if the primal is not;
 - 2. The number of variables in the dual is equal to the number of constraints in the primal, which is often less than the number of variables in the primal
 - 3. I might enable us to deal with non-differentiable problems.

Duality



- The key question is, do the two methods give the same results? Let $p^* = f(\theta^*)$ be the optimal value, and $d^* = g(\lambda^*)$ be the optimal dual value. We have the following two important theorems:
 - Weak duality: $d^* \le p^*$ This always holds. To see this, note that for $\lambda \ge 0$, since $\mathbf{c}(\theta) \ge \mathbf{0}$,

$$f(oldsymbol{ heta}) \geq L(oldsymbol{ heta}, oldsymbol{\lambda}) \geq \min_{oldsymbol{ heta}'} L(oldsymbol{ heta}', oldsymbol{\lambda}) = g(oldsymbol{\lambda})$$

- Strong duality: $d^* = p^*$. This only holds for convex problems. The reason is that a convex function can be precisely represented either in primal or dual form.

Put another way, for any real function $L(\boldsymbol{\theta}, \boldsymbol{\lambda}),$ weak duality says we always have

$$\min_{oldsymbol{ heta}} \max_{oldsymbol{\lambda}} L(oldsymbol{ heta}, oldsymbol{\lambda}) \geq \max_{oldsymbol{\lambda}} \min_{oldsymbol{ heta}} L(oldsymbol{ heta}, oldsymbol{\lambda})$$

If strong duality holds, the two terms are equal, so the duality gap, $p^* - d^*$, is zero. In this case, $L(\theta^*, \lambda^*)$ is a saddle point.

Further reading Nocodal Liwright

Stephen Boyd

Beitsekas

• Please read the book section about linear programming as another example.

- Read on the algorithms
 - 1. Interior point methods
 - 2. Active set methods
 - 3. Projected gradient

Next class

Bayesian Learning

