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Constrained optimization

Consider the following constrained optimization problem

0" = ar min (6)

where () is some(m If the parameters are real-valued, we
typically assume Q C RP, but it could be a more abstract space, such

as the set of positive definite matrices.

The feasible set is then often defined in terms of a set of equality con-
straints, ¢;(0) = 0, and/or inequality constraints, ¢;(6) > 0, for cer-

tain constraint functions c;. \\
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Constrained optimization ¢

e Suppose that we have a single equality constraint ¢(8) = 0.

e For example, we might have a quadratic objective, f(6) = 6% + 037 subjec o
to a linear equality constraint,|c(0) =1 — 60, — 65, = 0. /

e What we are trying to do is find the point 8" that lives on the line, but
which is closest to the origin. It is geometrically obvious that the optimal
solution is @ = (0.5,0.5).
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Constrained optimization

e The gradient of the constraint function V(@) will be orthogonal to the
constraint surface. o

e To see why, consider a point @ on the constraint surface, and another point
nearby, @ + €, that also lies on the surface. If we make a Taylor expansion

around 6@ we have
7@% o(8) + eTVc(BJ

Since both 6 and 0+ € a onstraint surface, we must have ¢(6) =

X+ X, =1

X =12, 12)

) = %2 + %2




Constrained optimization

e We seek a point 8 on the constraint surface such that f(0) is minimized.
Such a point must have the property that V f(8) is also orthogonal to the
constraint surface, as otherwise we could decrease f(0) by moving a short
distance along the constraint surface.

e Since both Ve(0) and Vf(0) are orthogonal to the constraint surface at
0", they must be parallel (or anti-parallel) to each other. Hence there
must exist a constant A* # 0 such that

VI(0) = \Ve(0")

A* is called a Lagrange multiplier, and can be positive or negative, but
-~ O
not zero.
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e We can now convert our constrained optimization problem into an uncon-
strained one by defining a new function called the Lagrangian:

Q(e, A) = f(0) = Ac

We now have D + 1 equations in D + 1 unknowns, which we can solve for
0" and \. Why? Since we are only interested in 8%, we can “throw away”
the value A; hence it is sometimes called an undetermined multiplier.
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Inequality constraints %%
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Inequality constraints

° ider the case where we have a single inequality constraint
c(0) > 0.

o If the solution lies in the region where c(6) > 0, the constraint is inactive,
so we have the usual stationarity condition Vf(6*) = 0. Our equations
still hold, provided we set A\* = 0. LHS

e If the solution lies on the boundary where ¢(f) = 0, the constraint is
active, so Ve(6) and V j@ must be parallel, as for the equality constraint
case. RHS

e However, this time we require that A* > 0, so the gradients point in the
same direction. Since the gradients of ¢ and f point in the same direction,
we will follow ¢ to its minimum, where ¢(8*) = 0.

e We can summarize these two cases by writing A*¢(0™) = 0: either A* =0
or ¢(0*) = 0 (or both). This is called the complementarity condition.
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Inequality constraints

e Putting it all together, the problem of minimizing f(8) subject to ¢(8) > 0
can be obtained by optimizing the Lagrangian subject to the following
constraints:

(cO) > 0
O > 0 )
Xe(0) = 0

Many constraints

e In general, if we have multiple equality constraints, ¢;(@) = 0 for i € &,
and multiple inequality constraints, ¢;(6) > 0 for ¢ € Z, we can define the
feasible set as

Q={0cRP:¢c;(0)=0,i€& c;(0)>0,icT}
\_’—VqJ M~

and the Lagrangian as €t tneq.

LON) = 1(0) — Y Aei(0)

e The active set is defined as the contraints that are active at a point:
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Karush-Kuhn-Tucker conditions

e We have the following necessary first-order conditions for being at a local
minimum:

0
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e These are called the Karush-Kuhn-Tucker or KK'T conditions.

e If f and the ¢; are convex, the KKT conditions are sufficient for a minimum
as well.

Example
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e Maximize f(8) = 1 — 07 — 02 subject to the constraint that §; + 6 = 1.
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Example

Quadratic programs

e A generic quadratic program or QP has the form

1

The constraints b; < 8 < b, are known as box constraints, and can
always be rewritten as linear inequality constraints.

e (QPs arise in several areas of machine learning, including su ector
machines and lasso .




Assume we want to minimize:

1
(@)= (0, — )2+ (0, — =)= §0TH9 + dée + const

fle)

Hx <1

where H = 2T and d = —(3,1/4), subject to

L Doy
“Q”\ = e “lo,| 2 |91J +[02] < 1)

. . y 4
We can rewrite the constraints ds —

|\9:+9L7/o
0h+02<1)] 01 —0><1, —61+60><1, —01—02<1 ()

, 69,70 < G C4
which we can write more compactly as

where b = 1 and

v 1 -1
1 A=1 1
1 1 -1

Quadratic programs

e The Lagrangian is

(i(e, A) = 367HO +d"6 + AT (A6 —D

and the KKT conditions are

T HO+d+ATAN = 0
~_5b-A0 > 0

If we treat the inequality as an equali




Quadratic programs

e The KKT matrix on the LHS is singular. Note constraints c3 and ¢4 (corre-
sponding to the two left faces of the diamond) are inactive, so ¢3(6*) > 0
and c4(0) > 0 and hence, by complementarity, A3 = Ay =0 We can
therefore remove these inactive constraints to get the following:

We see that the solution is

[0"=(1,0)", A" = (0.875,0.125,0@

Notice that the optimal value of @ occurs at one of the vertices of the L1
simplex. Consequently the solution vector is sparse.

Lasso for feature selection
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|asso for feature selection
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Duality

e Duality theory provides an alternative way to express optimization prob-
lems that can often lead to faster algorithms, as well as new insights into
a problem. It also relaxes some of the differentiation conditions.




Duality
e Consider the /@
Lmiinﬁev) s.t.c(0) >0

The Lagrangian is K
(10,3 = £(8) - \Tc(6) ) 16y = > db). L

—

We define the dual objective function as

g(\) }t min L(0,)) mgng(G)ATC(O)):f\*(y
A

where f* is the Fenchel conjugate oﬁf.

e We see that the dual objective g is a concave function, since it is a min-
imum over an affine function of A. The corresponding dual problem
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Duality

e Solving the dual has several advantages:

1. Tt is always convex, even if the primal is not;

2. The number of variables in the dual is equal to the number of con-
straints in the primal, which is often less than the number of variables
in the primal

3. I might enable us to deal with non-differentiable problems.
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P
° estion is, do the two methods give the same ZeSults? et
p* = f(0%)/be the optimal primal value, an be the optimal
ual value. We have the following two 1mportant theorems:

P*= L(e")=F) v o
— Weak duality:[ d* < p*/ This always holds To see this, note that
(;) >0

for A > 0, since ¢

Lf(e) > L(9,A) > min L(¥, W
nin L6, A) = g(A)

— Strong duality: d* = p*. This only holds for convex problems. The
reason is that a convex function can be precisely represented either
in primal or dual form.

Put another way, for any real function L(8, A), weak duality says we always
have
minmax L(6,A) > maxmin L(0, )
6 A A6

If strong duality holds, the two terms are equal, so the duality gap,
p* —d*, is zero. In this case, L(0*,\") is a saddle point.
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Further readin

ple.

e Read on the algorithms

1. Interior point methods

2. Active set methods

3. |Projected gradient
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