
CPSC540

Nando de Freitas
February, 2012
University of British Columbia

Optimization: 

gradient descent and Newton’s method



Outline of the lecture

Many machine learning problems can be cast as optimization 
problems. This lecture introduces optimization. The objective is for 
you to learn:

� The definitions of gradient and Hessian. 
� The gradient descent algorithm.� The gradient descent algorithm.
� Newton’s algorithm.
� The stochastic gradient descent algorithm for online learning.
� How to apply all these algorithms to linear regression.



Gradient vector
Let θ be an d-dimensional vector and f(θ) a scalar-valued function. The
gradient vector of f(·) with respect to θ is:

∇θf(θ) =






∂f(θ)
∂θ1
∂f(θ)
∂θ2
...

∂f(θ)
∂θ









∂θn






The Hessian matrix of f(·) with respect to θ, written ∇2
θ
f(θ) or simply

as H, is the d× d matrix of partial derivatives,

∇2f(θ) =





∂2f(θ)
∂θ2

1

∂2f(θ)
∂θ1∂θ2

· · · ∂2f(θ)
∂θ1∂θn

∂2f(θ)
∂θ2∂θ1

∂2f(θ)
∂θ2

2

· · · ∂2f(θ)
∂θ2∂θd

. . .





Hessian matrix

∇2
θ
f(θ) =




2

· · ·

...
...

. . .
...

∂2f(θ)
∂θd∂θ1

∂2f(θ)
∂θd∂θ2

· · · ∂2f(θ)
∂θ2

d






In offline learning, we have a batch of data x1:n = {x1,x2, . . . ,xn}. We
typically optimize cost functions of the form

f(θ) = f(θ,x1:n) =
1

n

n∑

i=1

f(θ,xi)

The corresponding gradient is

g(θ) = ∇θf(θ) =
1

n

n∑
∇θf(θ,xi)∇

n

∑

i=1

∇

For linear regression with training data {xi, yi}
n
i=1, we have have the

quadratic cost

f(θ) = f(θ,X,y) = (y −Xθ)T (y −Xθ) =
n∑

i=1

(yi − xiθ)
2



f(θ) = f(θ,X,y) = (y −Xθ)T (y −Xθ) =

n∑

i=1

(yi − xiθ)
2

Gradient vector and Hessian matrix



Steepest gradient descent algorithm
One of the simplest optimization algorithms is called gradient descent
or steepest descent. This can be written as follows:

θk+1 = θk − ηkgk = θk − ηk∇f(θ)

where k indexes steps of the algorithm, gk = g(θk) is the gradient at step
k, and ηk > 0 is called the learning rate or step size.



Steepest gradient descent algorithm
for least squares

f(θ) = f(θ,X,y) = (y −Xθ)T (y −Xθ) =

n∑

i=1

(yi − xiθ)
2



How to choose the step size ?



Newton’s algorithm
The most basic second-order optimization algorithm is Newton’s algo-
rithm, which consists of updates of the form

θk+1 = θk −H
−1
K gk

This algorithm is derived by making a second-order Taylor series approx-
imation of f(θ) around θk:

fquad(θ) = f(θk) + gTk (θ − θk) +
1

2
(θ − θk)

THk(θ − θk)

differentiating and equating to zero to solve for θk+1.



Newton’s as bound optimization



Newton’s algorithm for linear regression

f(θ) = f(θ,X,y) = (y −Xθ)T (y −Xθ) =

n∑

i=1

(yi − xiθ)
2



Advanced: Newton CG algorithm
Rather than computing dk = −H−1

k gk directly, we can solve the linear
system of equations Hkdk = −gk for dk.

One efficient and popular way to do this, especially if H is sparse, is to
use a conjugate gradient method to solve the linear system.



Estimating the mean recursively



Online learning 
aka stochastic gradient descent 



Online learning 
aka stochastic gradient descent 



The online learning algorithm



Stochastic gradient descent
SGD can also be used for offline learning, by repeatedly cycling through
the data; each such pass over the whole dataset is called an epoch. This
is useful if we have massive datasets that will not fit in main memory.
In this offline case, it is often better to compute the gradient of a mini-
batch of B data cases. If B = 1, this is standard SGD, and if B = N ,
this is standard steepest descent. Typically B ∼ 100 is used.

Intuitively, one can get a fairly good estimate of the gradient by looking
at just a few examples. Carefully evaluating precise gradients using largeat just a few examples. Carefully evaluating precise gradients using large
datasets is often a waste of time, since the algorithm will have to recom-
pute the gradient again anyway at the next step. It is often a better use
of computer time to have a noisy estimate and to move rapidly through
parameter space.

SGD is often less prone to getting stuck in shallow local minima, because it
adds a certain amount of “noise”. Consequently it is quite popular in the
machine learning community for fitting models such as neural networks
and deep belief networks with non-convex objectives.



Next lecture

In the next lecture, we apply these ideas to learn a neural network 
with a single neuron (logistic regression).


