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Outline of the lecture

This lecture introducelBayes rule and Bayesian learning for linear
models.

The goal is for you to:

1 Learn how Bayes rule is derivi

[ Learn to apply Bayes rule to simple examples.

1 Learn how to apply Bayesian learning to linear models.
d Learn the mechanics of conjugate analysis.



 The doctor has bad news and good news.
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 The bad news is that you tested positive for a @ |
serious disease, and thae test 1Is99% accurate :;

you have the disease is 0.99, as is the probabil
testing negative given that you don'’t have the |

disease). g){

1 The good news is that this is a rare disease,
striking only 1 in 10,000 people.

d What are the chances that you actually have the
disease?



Bayes rule

Bayes rule enables us to reverse probabilities:

P(A[B) = P(BIJ/(A\E),I)D(A)




Learning and Bayesian inference

p(h]d) = m—, ,
> p(d [h) p(h')
h'COH
Likelihood Posterior

Prior of “sheep” class




Problem 1: Diagnoses

The test is 99% accuratd?(T=1|D=1) = 0.99 and P(T=0|D=0) = 0.99
WhereT denotes test anld denotes disease.

The disease affects 1 in 10008(D=1) = 0.0001
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Speech recognition

P(words|soung a PEound| word9 P{wordg

Final beliefs Likelihood of data Prior language model
eg mixture of Gaussians  €g unigrams
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Hidden Markov Model (HMM)

“Recognize speech” M “Wreck a nice beach”




Bayesian learning for model parameters

Step 1: Givenn data,D = x,., = {Xy, X5,..., X, }, write down the
expression for thekelihood:

Step 2. Specify gorior: p(&)
Step 3: Compute theposterior:

p(é| D) _ p( D 18) p(&)
p(D)




Bayesian linear regression

The likelihood is a Gaussian, M (y|X8, c°I,,). The conjugate prior is also
a Gaussian, which we will denote by p(8) = N(0]0¢, Vo).

Using Bayes rule for Gaussians, the posterior is given by

p(9|X7Y702) X N(0|007V0)N(Y|X9702In) — N(0|0navn)
1
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Bayesian linear regression
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Bayesian linear regression
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Bayesian linear regression

Consider the special case where g = 0 and V§ = 7£14, which is a spherical
Gaussian prior. Then the posterior mean reduces to

1 - 1 /1 |
0, = —=VaX'y=—= |+ XX X'y
o2 g2 \ 78 o2
= (AL +X'X) ' XTy
where we have defined \ := %2 We have therefore recovered ridge re-

0
gression again!



Bayesian versus ML plugin prediction

Posterior mean: 6, = (AL;+XTX)" XTy

Posterior variance: V, = o2 (M, +XTX) ™

To predict, Bayesians marginalize over the posteriorxLée a new
iInput. The prediction, given the training ddda( X, y), Is:

PUIX. D, 02)= [H (%78, 0?) H(8] 6, .V,)dE
= Hx"8,, 07 +x"V X)
On the other hand, the ML plugin predictor is:

P(y|x.,D, 0?%) = H(|x." 8, ,0°%)
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Bayesian versus ML plug-in prediction

= prediction
QO training data

plugin approximation (MLE)
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Posterior predictive (known variance)

= prediction
QO training data




Next lecture

In the next lecture, we extend Bayesian learning to
nonlinear problems via a technique known as Gaussian
processes.



