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Abstract

RISE (Domingos 1995; in press) is a rule induc-
tion algorithm that proceeds by gradually gen-
eralizing rules, starting with one rule per exam-
ple. This has several advantages compared to the
more common strategy of gradually specializing
initially null rules, and has been shown to lead
to significant accuracy gains over algorithms like
C4.5RULES and CN2 in a large number of appli-
cation domains. However, RISE’s running time
(like that of other rule induction algorithms) is
quadratic in the number of examples, making it
unsuitable for processing very large databases.
This paper studies the use of partitioning to
speed up RISE, and compares it with the well-
known method of windowing. The use of parti-
tioning in a specific-to-general induction setting
creates synergies that would not be possible with
a general-to-specific system. Partitioning often
reduces running time and improves accuracy at
the same time. In noisy conditions, the perfor-
mance of windowing deteriorates rapidly, while
that of partitioning remains stable.

Introduction

RISE (Domingos 1995; in press) is a rule induction
algorithm that searches for rules in a specific-to-general
direction, instead of the general-to-specific one used
by most rule learners. This has several advantages,
among them the ability to detect with confidence a
higher level of detail in the databases, and a reduction
of sensitivity to the fragmentation (Pagallo & Haussler
1990) and small disjuncts problems (Holte, Acker, &
Porter 1989). In a study comparing RISE with several
induction algorithms (including C4.5RULES and CN2)
on 30 databases from the UCI repository (Murphy &
Aha 1995), RISE was found to be more accurate than
each of the other algorithms in about two-thirds of
the databases, in each case with a confidence of 98%
or better according to a Wilcoxon signed-ranks test
(DeGroot 1986), and had the highest average accuracy
and highest rank.

RISE’s running time, like that of previous algo-
rithms, is quadratic in the number of examples, and

thus the question arises of whether it is possible to
reduce this time to linear without compromising accu-
racy. This paper proposes, describes and evaluates the
application of partitioning to RISE. This raises issues
and opportunities that are not present in general-to-
specific systems. Partitioning is also compared with
windowing, a commonly used speedup method (Catlett
1991; Quinlan 1993).

The structure of the paper is as follows. The next
three sections describe pure RISE, RISE with parti-
tioning, and RISE with windowing. This is followed
by an empirical study comparing the three, and dis-
cussion of the results.

The RISE Algorithm

In RISE, each example is a vector of attribute-value
pairs, together with a specification of the class to which
it belongs; attributes can be either nominal (symbolic)
or numeric. Each rule consists of a conjunction of an-
tecedents and a predicted class. Each antecedent is a
condition on a single attribute, and there is at most one
antecedent per attribute. Conditions on nominal at-
tributes are equality tests; for numeric attributes they
take the form of allowable intervals. An example can
be viewed as a maximally specific rule, with conditions
on all attributes and degenerate (point) intervals for
numeric attributes. A rule is said to cover an example
if the example satisfies all of the rule’s conditions; a
rule is said to win an example if it is the nearest rule
to the example according to the distance metric that
will be described below.

The RISE algorithm is summarized in Table 1. RISE
searches for “good” rules in a specific-to-general fash-
ion, starting with a rule set that is the training set
of examples itself. RISE looks at each rule in turn,
finds the nearest example of the same class that it does
not already cover (i.e., that is at a distance greater
than zero from it), and attempts to minimally gener-
alize the rule to cover it, by dropping conditions (in
the case of differing symbolic attributes) and/or ex-
panding intervals (for numeric attributes). This pro-
cedure is outlined in Table 2. If the change’s effect
on global accuracy is positive, it is retained; other-



Table 1: The RISE algorithm.

Input: ES is the training set.
Procedure RISE (ES)

Let RS be ES.
Compute Ace(RS).
Repeat
For each rule R in RS,
Find the nearest example £ to R not already
covered by it (and of the same class).
Let R’ = Most_Specific_Generalization(R, E).
Let RS’ = RS with R replaced by R’.
If Acc(RS') > Acc(RS)
Then Replace RS by RS’,
If R’ is identical to another rule in RS,
Then delete R’ from RS.
Until no increase in Acc(RS) is obtained.

Return RS.

Table 2: Generalization of a rule to cover an example.

Inputs: R = (a1,as,...,a4,cg) is a rule,
E = (e1,ea,...,ea,cg) is an example.
a; is either True, z; = r;, OF 74 jower < i < T3 upper-

Function Most_Specific_Generalization (R, E)

For each attribute ¢,
If a; = True then Do nothing.
Else if 7 is symbolic and e; # r; then a; = True.
Else if €; > 75 upper then r; upper = €;.
Else if e; < 75 jower then 7; jouer = €.

wise it is discarded. Generalizations are also accepted
if they appear to have no effect on accuracy; this re-
flects a simplicity bias. This procedure is repeated un-
til, for each rule, attempted generalization fails. The
accuracy Acc(RS) is measured using an approximate
leave-one-out methodology: when attempting to clas-
sify an example, the corresponding rule is left out, un-
less it already covers other examples as well. With
careful optimization to avoid redundant computations,
RISE’s worst-case time complexity has been shown to
be quadratic in the number of examples and the num-
ber of attributes, which is comparable to that of other
commonly-used rule induction algorithms (Domingos
in press).

At performance time, and when gauging the effect of
a rule change on global accuracy during learning, clas-
sification of each test example is performed by finding
the nearest rule to it, and assigning the example to
the rule’s class. Thus RISE’s behavior is in many ways

similar to that of nearest-neighbor or instance-based
algorithms (Aha, Kibler, & Albert 1991). The distance
measure used in RISE is a combination of Euclidean
distance for numeric attributes, and a simplified ver-
sion of Stanfill and Waltz’s value difference metric for
symbolic attributes (Stanfill & Waltz 1986).

When two or more rules are equally close to a test
example, the rule that was most accurate on the train-
ing set wins. So as to not unduly favor more specific
rules, the Laplace-corrected accuracy is used (Niblett

1987):

Ncorr (R) +1

LAce(R) Nuon(R) +C (1)
where R is any rule, C' is the number of classes,
Nuyon(R) is the total number or examples won by R,
Neorr (R) is the number of examples among those that
R correctly classifies, and C' is the number of classes.
The effect of the Laplace correction is to make the es-
timate of a rule’s accuracy converge to the “random
guess” value of 1/C as the number of examples won
by the rule decreases. Thus rules with high apparent
accuracy are favored only if they also have high sta-
tistical support (i.e., if that apparent accuracy is not
simply the result of a small sample).

Partitioning

In the partitioning speedup approach (Chan & Stolfo
1995b), the training data is divided into a number of
disjoint subsets, and the learning algorithm is applied
to each in turn. The results of each run are com-
bined in some fashion, either at learning or at classifi-
cation time. In RISE, partitioning is applied by pre-
determining a maximum number of examples €4, to
which the algorithm can be applied at once (100 by
default). When this number is exceeded, the training
set is randomly divided into [e/emqr| approximately
equal-sized partitions, where e is the total number of
training examples. RISE is then run on each partition
separately, but with an important difference relative to
a direct application: the rules grown from the exam-
ples in partition p are not evaluated on the examples in
that partition (see Table 1 and accompanying discus-
sion), but on the examples in partition p + 1 (modulo
the number of partitions). This should help combat
overfitting, and the resulting improvement in accuracy
may partly offset the degradation potentially caused
by using smaller training sets. It is not possible in
general-to-specific algorithms, where there is no con-
nection between a specific rule and a specific example.

Because the number of partitions grows linearly with
the number of training examples, and RISE’s quadratic
factor is confined to the examples within each parti-
tion and thus cannot exceed a given maximum (e.g.,
1002 if epmge = 100), the algorithm with partitioning
is guaranteed a linear worst-case running time. How-
ever, depending on é,,4,, the multiplicative constants
can become quite large.



Two methods of combining the results of induction
on the individual partitions have been implemented
and empirically compared. In the first, all the rule
sets produced are simply merged into one, which is
output by the learning phase. In the second, the rule
sets are kept separate until the performance phase,
and each partition classifies the test instance indepen-
dently. A winning class is then assigned to the example
by voting among the partitions, with each partition’s
weight being the Laplace accuracy of the rule that won
within it (Equation 1). The second method was found
to achieve consistently better results, and was there-
fore adopted. More sophisticated combination meth-
ods based on Bayesian theory are currently being stud-
ied, but have so far yielded inferior results. Many other
combination schemes are possible (e.g., (Chan & Stolfo
1995b)).

Windowing

Windowing is applied to RISE in a fashion similar to
C4.5’s (Quinlan 1993), and proceeds as follows. Ini-
tially, only 2,/e examples randomly extracted from the
training set are used for learning. This sample is strat-
ified (i.e., it contains approximately equal proportions
of all classes); this makes it possible to still learn classes
that have few representatives in the original training
set. If the remaining training examples are correctly
classified by the resulting rule set, this set is output.
Otherwise, the misclassified examples are added to the
initial example set, and this process repeats until it
produces no improvement in accuracy on two succes-
sive expansions. This policy of requiring two successive
failures to stop has been verified empirically to lead
to better results in the case of RISE than the policy
followed by C4.5, of stopping as soon as there is no
improvement in accuracy. The latter is more prone to
premature stopping (i.e., stopping at a local minimum
of the accuracy improvement curve).

In the best case, only O(v/e) examples are used, and
the algorithm becomes linear in the training set size.
In the worst case, the window grows to include the
entire training set (or nearly so), and the process is
more costly than learning directly on that set. This
is particularly likely in noisy domains, where it has
been observed to lead to serious performance degra-
dation in the case of C4.5 (Catlett 1991). To avoid
this, the implementation used in RISE also limits the
number of times the window is grown to a prespecified
maximum (5 by default). This should help prevent
the system from attempting to fit the noise in domains
where this is a problem, and has been found empirically
to sometimes achieve large reductions in running time
compared to the unlimited-expansion version, without
seriously affecting accuracy.

Empirical Evaluation

The two speedup methods were tested on seven of
the UCI repository’s largest databases (Murphy &

Aha 1995) (in increasing order of size: credit screen-
ing (Australian), Pima diabetes, annealing, chess
endgames (kr-vs-kp), hypothyroid, splice junctions,
and mushroom). Of these, at least one (Pima diabetes)
is thought to be quite noisy, and at least two (chess
and mushroom) aer known to be almost entirely noise-
free. Partitioning was tested with ey, =100, 200, and
500. Ten runs were carried out for each database, in
each run randomly dividing the data into two-thirds
for training and one-third for testing. The averaged
results are shown in Tables 3 (running times) and 4
(accuracies).

Partitioning is quite effective in speeding up RISE.
Its running time is (as might be expected) sensitive to
the choice of e,,q4, but it appears to increase less than
linearly with it. Linear growth would be expected,
since, if p is the number of partitions and ¢ is the total
running time, ¢ = O(peZ,,..), and since p ~ e/emaq,
t = O(eemaz), i.e., for a given e, t X emqgy. Exami-
nation of the rules produced shows that RISE tends
to stop earlier within each partition when the par-
titions are larger, presumably because the additional
information available warrants the induction of more
specific rules, and while in general-to-specific systems
this means that the algorithm will take longer to run
because more antecedents will be added, in RISE the
opposite 1s the case, since fewer antecedents will be
deleted. This will tend to partly offset the increase in
running time due to increasing partition size.

The effect of partitioning on accuracy is more vari-
able than that of windowing. In some domains a trade-
off between partition size and accuracy is observed;
however, only in the chess domain does increasing
emaz from 200 to 500 substantially increase accuracy.
More interestingly, in the credit, diabetes and splice
junctions domains the opposite trend is observed (i.e.,
partitioning increases accuracy, and smaller partitions
more so than larger ones); this may be attributed to
the reduction in overfitting derived from inducing and
testing rules on different partitions, to the increase
in accuracy that can result from combining multiple
models (Wolpert 1992; Breiman in press), and possibly
to other factors. On the splice junctions dataset, the
success of applying partitioning to RISE using a sim-
ple combination scheme contrasts with the results ob-
tained by Chan and Stolfo for general-to-specific learn-
ers (Chan & Stolfo 1995a). In general, the best parti-
tion size should be determined by experimentation on
the specific database RISE is being applied to, starting
with smaller (and therefore faster) values.

To test partitioning on a larger problem, and ob-
tain a clearer view of the growth rate of its running
time compared to that of RISE and windowing, ex-
periments were conducted on NASA’s space shuttle
database. This database contains 43500 training ex-
amples from one shuttle flight, and 14500 test examples
from a different flight. Each example is described by
nine numeric attributes obtained from sensor readings,



Table 3: Experimental results: running times (in minutes and seconds).

Database RISE | Windowing Partitioning
emar =100 emar =200  emar =500

Credit 4:31 3:21 1:37 1:11 4:38
Pima diabetes 4:15 6:20 1:32 1:13 2:47
Annealing 4:26 2:44 1:43 2:33 2:17
Chess 33:26 10:40 3:10 6:04 12:06
Hypothyroid 105:23 14:46 5:08 10:42 24:06
Splice junctions | 110:39 51:28 5:22 12:45 25:48
Mushroom 70:07 10:07 5:55 7:26 14:32

Table 4: Experimental results: accuracies and standard deviations.

Database RISE Windowing Partitioning
emaz =100 €maz =200  epqr =500

Credit 82.6+1.5 | 83.6+1.5 86.4+1.9 86.4+1.5 82.6+1.6
Pima diabetes 71.6+2.5 | 70.6+2.7 74.442.1 73.6+3.3 72.842.6
Annealing 97.5+0.9 | 98.0+1.0 93.6+1.6 96.1+1.6 96.5+1.1
Chess 98.440.6 | 98.4+0.7 94.54+0.5 95.240.6 96.61+0.9
Hypothyroid 97.940.2 | 97.5+0.5 97.04+0.3 97.54+0.3 97.940.4
Splice junctions 92.5+0.8 | 92.840.7 95.040.7 94.640.7 94.71+0.6
Mushroom 100.040.0 | 100.0£0.0 98.940.1 99.54+0.3 99.84+0.1

and there are seven possible classes, corresponding to
states of the shuttle’s radiators (Catlett 1991). The
goal is to predict these states with very high accuracy
(99-99.9%), using rules that can be taught to a human
operator.

Figure 1 shows the evolution of running time with
the number of examples for RISE, RISE with parti-
tioning (using emqe = 100), and RISE with windowing,
on a log-log scale. Recall that on this type of scale the
slope of a straight line corresponds to the exponent
of the function being plotted. Canonical functions ap-
proximating the asymptotic curves for RISE and RISE
with partitioning are also shown.! Partitioning’s run-
ning time grows linearly with the number of examples,
as expected, and is quickly dwarfed by that of RISE,
which is approximately quadratic. On the full training
database, RISE consumes over a week of CPU time,
while partitioning takes less than an hour. Partition-
ing’s accuracy (not shown) lags slightly behind RISE’s
(0.55% on average). Partitioning is also much faster
than windowing, whose asymptote is unclear.

The shuttle data is known to be relatively noise-free.
To investigate the effect of noise, the three algorithms
(pure RISE, partitioning and windowing) were also ap-
plied after corrupting the training data with 20% class
noise (i.e., each class had a 20% probability of being
changed to a random class, including itself). The learn-
ing time curves obtained are shown in Figure 2, again
on a log-log scale and with approximate asymptotes

1The constants a and b were chosen so as to make the
respective curves fit conveniently in the graph.

shown. The time performance of windowing degrades
markedly, making it worse than the pure algorithm for
all training set sizes greater than 500. In contrast,
partitioning remains almost entirely unaffected. Noise
reduces the accuracy of pure RISE and windowing by 3
— 8%, with the smaller differences occurring for larger
training set sizes. (Recall that noise was added only
to the training set.) The accuracy of partitioning is
barely affected, making it consistently more accurate
than pure RISE at this noise level.

An interesting observation is that noise substan-
tially reduces RISE’s running time, even though it re-
mains much larger than that obtained with partition-
ing. This may be attributed to the difference between
specific-to-general and general-to-specific systems al-
ready discussed: noise tends to make rule induction
algorithms produce more specific rules, which take
less time to induce in RISE and more in systems like
C4.5RULES (which, in addition, may then prune back
those rules, further adding to their running time; in
RISE pruning and initial induction are the same opera-
tion). This means that RISE may be more appropriate
than general-to-specific systems for noisy databases.

A potential disadvantage of partitioning when com-
pared to windowing is that it sometimes (but not al-
ways) tends to produce rule sets that are larger overall,
even if the individual rule sets learned from each parti-
tion are comparatively small. However, from the point
of view of human-comprehensible output (often a de-
sirable goal), this is not necessarily a serious problem,
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since understanding can still be gleaned by looking at
one of the individual rule sets, or one at a time.

Conclusion

This paper studied the application of partitioning to
the RISE rule induction system. Subject to a correct
choice of partition size, it was found to effectively re-
duce the growth of running time with database size,
while sometimes improving accuracy. Its superiority
over the commonly-used method of windowing is par-
ticularly apparent in the case of noisy data.

Directions for future research include testing and
developing more sophisticated methods of combining
the outputs of the individual partitions (e.g., (Chan
& Stolfo 1995b)), automating the selection of parti-
tion size, and testing partitioning on a larger variety
of larger databases.
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