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1 Introduction

In real-life dynamic interactions, unawareness of players regarding the relevant actions

available to them is at least as prevalent as uncertainty regarding other players’ strategies,

payoffs or moves of nature. Players frequently become aware of actions they (or other

players) could have taken in retrospect, when they can only re-evaluate the past actions

chosen by partners or rivals who were aware of those actions from the start, and hence

re-assess their likely future behavior. Yet, while uncertainty can be captured within the

standard framework of extensive-form games with imperfect information, unawareness

and mutual uncertainty regarding awareness require an extension of this framework.

Such an extension is the first task of the current paper.

At first, one may wonder why the standard framework would not suffice. After all, if

a player is unaware of an action which is actually available to her, then for all practical

purposes she cannot choose it. Why wouldn’t it be enough simply to truncate from

the tree all the paths starting with such an action? The reason is that the strategic

implications of unawareness of an action are distinct from the unavailability of the same

action. To see this, consider the following standard “battle-of-the-sexes”game (where

Bach and Stravinsky concerts are the two available choices for each player)

II
B S

B 3 1 0 0
I

B 3, 1 0, 0

S 0 0 1 3S 0, 0 1, 3

augmented by a dominant Mozart concert for player II:

IIII
B S M

B 3, 1 0, 0 0, 4

I S 0, 0 1, 3 0, 4

M 0, 0 0, 0 2, 6

The new game is dominance solvable, and (M,M) is the unique Nash equilibrium.

Suppose that the Mozart concert is in a distant town, and II can go there only if player

I gives him her car in the first place: Here, if player I doesn’t give the car to player II,

player II may conclude by forward induction that player I would go to the Bach concert

with the hope of getting the payoff 3 (because by giving the car to II, player I could have
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Figure 1:
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I S 0, 0 1, 3 0, 4

M 0, 0 0, 0 2, 6

I
S 0,0 1,3

M 0, 0 0, 0

achieved the payoff 2). The best reply of player II is to follow suit and attend the Bach

concert as well. Hence, in the unique extensive-form rationalizable outcome, player I is

not to give the car to player II and to go to the Bach concert.1

But what if, instead, the Mozart concert is in town but player II is initially unaware

of the Mozart concert, while player I can enable player II to go to the concert simply by

telling him about it? If player II remains unaware of the Mozart concert, then neither

does he conceive that player I could have told him about the Mozart concert, and in

particular he cannot carry out any forward-induction calculation. For him, the game is

a standard battle-of-the-sexes game, where both actions of player I are rationalizable.

This strategic situation is depicted in Figure 2.

Figure 2:

II

not tell player II about
the Mozart concert

tell player II about
the Mozart concert
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B 3, 1 0, 0 0, 4

II

B S

I
B 3, 1 0, 0

I S 0, 0 1, 3 0, 4

M 0, 0 0, 0 2, 6

I
S 0, 0 1, 3

M 0, 0 0, 0

II

B S

I
B 3, 1 0, 0

S 0, 0 1, 3

The strategic situation is not a standard extensive-form game (more on this in Section

1For a discussion of forward induction in battle-of-the-sexes games, see van Damme (1989).
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2.6 below). If player I chooses not to tell player II about the Mozart concert, then player

II’s information set (depicted in blue) consists of a node in a simpler game – namely the

one-shot battle-of-the-sexes with no preceding move by player I.

This is a simple example of the general novel framework that we define in Section 2 for

dynamic interaction with possibly mutual unawareness of actions, generalizing standard

extensive-form games. The framework will not only allow modeling of situations in which

one player is certain that another player is unaware of portions of the game tree, as in the

above example, but also of situations in which a player is uncertain regarding the way

another player views the game tree, as well as situations in which the player is uncertain

regarding the uncertainties of the other player about yet other players’ views of the game

tree, and so forth.

In fact, this framework allows not just for unawareness but also for other forms of

misconception about the structure of the game that are especially relevant for modeling

awareness of unawareness. Section 2.5 specifies further properties obtaining in generalized

extensive-form games where the only source of players ‘misconception’ is unawareness and

mutual unawareness of available actions and paths in the game. Since we focus on this

type of unawareness, most of the examples in the paper satisfy the further properties

specified in Section 2.5. Nevertheless, modeling awareness of unawareness does require

the general framework in Section 2, as explained at its end.

In this new framework, for each information set of a player her strategy specifies –

from the point of view of the modeler – what the player would do if and when that

information set of hers is ever reached. In this sense, a player does not necessarily ‘own’

her full strategy at the beginning of the game, because she might not be initially aware of

all of her information sets. That’s why a sensible generalization of Pearce’s (1984) notion

of extensive-form rationalizability is non-trivial. In Section 3 we put forward a modified

definition, prove existence, and show the sense in which it coincides with extensive-form

rationalizability in standard extensive-form games.

We focus here on a rationalizability solution concept rather than on some notion of

equilibrium. While an equilibrium is ideally interpreted as a rest-point of some dynamic

learning or adaptation process, or alternatively as a pre-meditated agreement or expec-

tation, we find it difficult to carry over such interpretations to a setting in which every

increase of awareness is by definition a shock or a surprise. Once a player’s view of

the game itself is challenged in the course of play, it is hard to justify the idea that a

convention or an agreement for the continuation of the game are readily available.
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We chose to focus on extensive-form rationalizability because it embodies forward

induction reasoning. If an opponent makes a player aware of some relevant aspect of

reality, it is implausible to dismiss the increased level of awareness as an unintended

consequence of the opponent’s behavior. Rather, the player should try to rationalize

the opponent’s choice, re-interpret the opponent’s past behavior, and try to infer from

it the opponent’s future moves. Extensive-form rationalizability indeed captures a ‘best

rationalization principle’ (Battigalli, 1996).

With rationalizability, generalized games are necessary for properly modeling un-

awareness; trying to model unawareness by having the unaware player assigning prob-

ability zero to the contingency of which she is unaware might give rise to a completely

different rationalizable behavior, which does not square with unawareness in the proper

sense of the word. To see this consider the following example.

A Decision Maker (DM) has to choose between two policies, a0 and a1. Before choos-

ing she gets a recommendation from an expert via a narrow communication channel,

through which the expert can recommend either “0” or “1”. The expert makes the rec-

ommendation after observing the state of nature, which may be either γ0 or γ1, and which

the DM does not see. The interests of the expert and the DM are completely aligned:

They each bear a cost of 1 if a1 is implemented when the state of nature is γ0 or vice

versa. The expert furthermore bears a cost of 10 from “lying”, i.e., from recommending

“0” when the state of nature is γ1 or recommending “1” when the state of nature is γ0.

Assume the DM is aware only of the state γ0 and unaware of γ1. The dynamic

interaction is hence modeled by the generalized game in Figure 3. In this generalized

game the only extensive-form rationalizable strategy of the DM is to always implement

the policy a0: she does not conceive of a contingency that would make the policy a1

superior to a0 even if she hears from the expert the recommendation “1”; in such a case

she regrettably concludes that the expert behaved in an irrational way and bore the cost

of “lying”.

However, if we were to model the DM alternatively as being aware of γ1 but assigning

probability zero to it, the strategic interaction would be modeled by the standard game

in Figure 4.

In this game the unique extensive-form rationalizable strategy of the DM is to choose

a0 upon hearing “0” from the expert, but to implement a1 upon hearing the recommen-

dation “1”. Indeed, extensive-form rationalizability requires the DM to base her choice

on a system of beliefs about the expert’s strategies with which at every information set
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Figure 3:
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of hers she maintains a belief that best rationalizes the choices of the expert which could

have led to that information set. In particular, upon hearing the recommendation “1”

from the expert, the only way for the DM to rationalize it is to assume that the state of

nature is nevertheless γ1, where recommending “1” is strictly dominant for the expert;

and in γ1 the optimal choice for the DM is a1.

Conceptually, upon hearing the surprising recommendation “1” both choices of the

DM have their internal logic. The former gives priority to “only γ0 is conceivable”,

the latter to the rationality of the expert. But in the latter case, if initially the DM is

genuinely unaware of γ1, there is no reason why the DM would conceive precisely of γ1 and

not of some alternative description γ′1 of nature that would also rationalize the expert’s

recommendation “1”; some such conceptualizations γ′1 need not necessarily induce the

DM to adopt the expert’s recommendation. Generalized games lend themselves also

to modeling such misconceptions that may arise upon a surprise, as demonstrated in

6



Figure 5. Here, the DM’s rationalizable strategy is to choose a0 also upon hearing the

Figure 5:
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(surprising) recommendation “1” , because the DM believes this recommendation was

strictly dominant for the expert but that her interest and those of the expert are actually

opposed. Such a subjective, erroneous conception of the strategic interaction by the DM

is represented by the tree on the right-hand side of Figure 5, where payoffs at some of

the terminal nodes are different than those in the objective, modeler’s game which is on

the upper left side of the figure.

1.1 Related Literature

Our framework for dynamic interaction under unawareness seems to be significantly

simpler than the one proposed by Halpern and Rêgo (2006) and Rêgo and Halpern (2012),

in which they investigated the notions of Nash and sequential equilibrium, respectively.

The simplification obtained in our framework is due to the fact that our initial building

block is a tree representing physical moves, with information sets defined only in the

sub-trees which represent subjective views of the game (and subjective views thereof,

etc.); in contrast, Halpern and Rêgo (2006) had information sets defined already in their

basic tree. As a result, Halpern and Rêgo (2006) had to postulate additional conditions

relating the information sets in sub-trees to those of the basic tree.

Our framework is also more parsimonious than the one proposed by Feinberg (2009).
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Feinberg (2009) defined unawareness with analogous properties both for static and dy-

namic games, by explicit unbounded sequences of mutual “views” of the game. In his

dynamic setting, a view is identified with a decision node. This means that even a

standard extensive-form game has to be described in Feinberg (2009) by infinitely many

copies of the the same game tree, specifying explicitly how each player views the game

in each of her decision nodes; how each player views, in each of her decision node, the

way in which each other player views the game in each of their decision nodes; etc. In

our setting such an infinite replication is avoided, since our definition of information sets

encapsulates, by its design, all these mutual points of view.2

Li (2006) considered a model for dynamic unawareness with perfect information, in

which at each decision node a player may have a subjective view of the game tree. Her

model is more restricted than ours, since it requires there to be one particular default

path of which all players are commonly aware, and since it does not allow for imperfect

information.

Ozbay (2007) studied sender-receiver games, in which an ‘announcer’ can make an

unaware decision maker aware of more states of nature before the decision maker takes

an action. Such games can also be naturally formulated as a particular instance of our

framework. For these games Ozbay studied an equilibrium notion incorporating forward-

induction reasoning. Filiz-Ozbay (2012) studied a related setting in which the aware

announcer is a risk neutral insurer, while the decision maker is a risk averse insuree. At

equilibrium, the insurer does not always reveal all relevant contingencies to the insuree.

Schipper and Woo (2012) use our framework to study political awareness of voters

in modern electoral campaigning. Ideologically motivated candidates with a wealth of

information about individual voters and sophisticated campaign strategies are faced by

voters who lack awareness of some political issues and are uncertain about the exact

political positions of candidates. They show that competition among candidates and

microtargeting voters with issues and information yield prudent rationalizable election

outcomes as if voters have full awareness of issues and complete information of candidates’

political positions. They also show political competition is necessary for the result to

obtain if voters are initially unaware of some political issues while it is not necessary

2Another important difference is that Feinberg (2009) does not define perfect recall, and this might
hamper the extension of known solution concepts such as sequential equilibrium or extensive-form ra-
tionalizability that rely on perfect recall. Extensive-form rationalizability is the focal solution concept
that we extend, define, and analyze in our paper, and to this effect we extend the definition of perfect
recall to our setting.
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under just standard uncertainty.3

Our aim is to provide a general framework for modeling misperceptions about the

availability of actions in dynamic strategic situations. Different kinds of perception biases

among players in games have been a popular topic in the recent literature on behavioral

game theory. For instance, in static games Eyster and Rabin (2005) analyze players

with correct conjectures about opponents’ actions but misperceptions about how those

opponents’ actions are correlated with the opponents’ information. In multi-stage games

with moves of nature, Jehiel (2005) studies players that bundle nodes at which other

players choose into “analogy classes”, correctly anticipate the average behavior for each

analogy class, and thus may have misperceptions about how others’ behavior is related to

others’ information. Recently there has been a renaissance of non-equilibrium iterative

solution concepts in behavioral game theory like level-k thinking and related models (e.g.

Stahl and Wilson, 1995, Camerer, Hu, and Chong, 2004, Crawford and Iriberri, 2007).

Note that our iterative solution concept, extensive-form rationalizability, does not only

provide behavioral predictions in the limit but also at every finite level of rationalization.

2 Generalized Extensive-Form Games

To define a generalized extensive-form game Γ, consider first, as a building block, a finite

game with perfect information and simultaneous moves4 with a set of players I, a set of

decision nodes N0, active players In at node n with finite action sets Ain of player i ∈ In
(for n ∈ N0), chance nodes C0, and terminal nodes Z0 with a payoff vector (pzi )i∈I ∈ RI

for the players for every z ∈ Z0. The nodes N̄0 = N0∪C0∪Z0 constitute a tree, i.e., they

are partially ordered by a precedence relation l with which
(
N̄0,l

)
is an arborescence

(that is, the predecessors of each node in N̄0 are totally ordered by l), for each decision

node n ∈ N0 there is a bijection ψn between the action profiles
∏

i∈In A
i
n at n and n’s

immediate successors, and there is a unique node in N̄0 with no predecessors – the root

of the tree.

3Currently we are unaware of further papers focusing directly and explicitly on dynamic
games with unawareness. The literature on unawareness in general is growing fast – see e.g.
http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm

4In allowing for simultaneous moves, we follow here Osborne and Rubinstein (1994) and Dubey and
Kaneko (1984).
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2.1 Partially Ordered Set of Trees

Consider now a family T of subtrees of N̄0. A subtree is defined by a subset of nodes

N̄ ′0 ⊆ N̄0 for which
(
N̄ ′0,l

)
is also a tree (i.e., an arborescence in which a unique node

has no predecessors). For two subtrees T ′, T ′′ ∈ T we write

T ′ � T ′′

to signify that the nodes of T ′ constitute a subset of the nodes of T ′′.

One of the trees T1 ∈ T is meant to represent the modeler’s view of the paths of

play that are objectively feasible.5 Each other tree T ∈ T represents the feasible paths

of play as subjectively viewed by some player at some node in T1; or as the frame of

mind attributed to the player at some node of T1 by another player (or even by the same

player at a later stage of the game, after her awareness regarding the feasible paths has

evolved), whose own frame of mind regarding the feasible paths is represented by yet

another T ′ ∈ T; and so forth.

Denote by NT
i the set of nodes in which player i ∈ I is active in the tree T ∈ T, and

by Ni =
⋃
T∈TN

T
i .

We require three properties:

1. All the terminal nodes in each tree T ∈ T are in Z0.

2. For every tree T ∈ T, every node n ∈ T , and every active player i ∈ In there exists

a nonempty subset of actions Ai,Tn ⊆ Ain such that ψn maps the action profiles

ATn =
∏

i∈In A
i,T
n bijectively onto n’s successors in T .

3. If for two decision nodes n, n′ ∈ NT
i (i.e., i ∈ In∩In′) it is the case that Ain∩Ain′ 6= ∅,

then Ain = Ain′ .6

Property 1 is needed to ensure that each terminal node of each tree T ∈ T is associated

with well-defined payoffs to the players. Property 2 means that at every node n ∈ T

5In generalized extensive-form games modeling unawareness (see Section 2.5 below), T1 will coincide
with N̄0. In more general applications including delusion (like in the game of Figure 5 above) or awareness
of unawareness (see Section 2.6 below) N̄0 may include additional nodes not in T1. In such a case N̄0

need not be one of the trees in T.
6Sometimes the modeler may want to impose an additional property: If in a subtree T ′′ ∈ T the

probabilities of reaching n̄1, . . . n̄k ∈ N̄ from the chance node c ∈ C are pn̄1
c > 0, . . . , pn̄k

c > 0 but some of
these nodes do not appear in a subtree T ′ � T ′′, then the probabilities of reaching the remaining nodes
emanating from c are renormalized in so as to sum to 1 in T ′. We do not impose this property here
since it may be natural in some contexts but unnatural in others.
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the actions available to each active player i ∈ In are independent of the actions the

other active players choose at n (and hence ATn =
∏

i∈In A
i,T
n is a product set – as in any

standard dynamic game with simultaneous moves7). Property 3 means that i’s active

nodes NT
i are partitioned into equivalence classes, such that the actions available to

player i are identical within each equivalence class and disjoint in distinct equivalence

classes. It will be needed for the definition of information sets which follows shortly.8

Within the family T of subtrees of N̄0, some nodes n appear in several trees T ∈ T.

In what follows, we will need to designate explicitly these different appearances of such

nodes n as distinct entities. To this effect, in each tree T ∈ T label by nT the copy in T

of the node n ∈ N̄0 whenever the copy of n is part of the tree T, with the caveat that if

the move an ∈ ATn leads from n to n′, then an leads also from the copy nT to the copy

n′T . Denote by N the union of all decision nodes in all trees T ∈ T, by C the union of

all chance nodes, by Z the union of terminal nodes, and by N̄ = N ∪ C ∪ Z (copies nT

of a given node n in different subtrees T are distinct from one another, so that N̄ is a

disjoint union of sets of nodes).

In what follows, when referring to a node in N̄ we will typically avoid the subscript

T when no confusion may arise. For a node n ∈ N̄ we denote by Tn the tree containing

n.

2.2 Information Sets

In standard extensive-form games, an information set πi (n) of a player i is both (1) the

set of nodes that the player considers as possible at n, and (2) the set of nodes in which

the player has the same state of mind as in the nodes which she considers as possible at

n.

In generalized games the two notions need not coincide: at a node n of the tree

Tn ∈ T, the player may conceive the feasible paths to be described by a different tree

T ′ ∈ T, and in particular she may conceive nodes πi (n) which are currently possible in

her mind to be a subset of T ′ rather than of Tn; in such a case n will not be contained

in πi (n). The information set πi (n) thus generalizes (1) above; the set of nodes (2)

at which the player conceives πi (n) to be possible may include additional nodes which

7See for instance, Osborne and Rubinstein (1994, p. 102, Section 6.3.2)
8The idea will be that in a given tree T , each action will correspond only to one view the player can

have regarding the way the dynamic interaction has evolved that far, and will hence be available at (all
the nodes of) a unique information set.
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belong to trees outside the tree T ′ containing πi (n).9

Formally, for each decision node n ∈ N , define for each active player i ∈ In a nonempty

information set πi (n) with the following properties:

I0 Confinement: πi (n) ⊆ T for some tree T .

I1 No-delusion given the awareness level: If πi(n) ⊆ Tn, then n ∈ πi(n).

I2 Introspection: If n′ ∈ πi (n), then πi (n
′) = πi (n).

I3 No divining of currently unimaginable paths, no expectation to forget currently

conceivable paths: If n′ ∈ πi (n) ⊆ T ′ (where T ′ ∈ T is a tree) and there is a path

n′, . . . , n′′ ∈ T ′ such that i ∈ In′ ∩ In′′ , then πi (n
′′) ⊆ T ′.

I4 No imaginary actions: If n′ ∈ πi (n), then Ain′ ⊆ Ain.

I5 Distinct action names in disjoint information sets: For a subtree T , if n, n′ ∈ T and

Ain = Ain′ , then πi (n
′) = πi (n).

I6 Perfect recall: Suppose that player i is active in two distinct nodes n1 and nk,

and there is a path n1, n2, ..., nk such that at n1 player i takes the action ai. If

n′ ∈ πi (nk), then there exists a node n′1 6= n′ and a path n′1, n
′
2, ..., n

′
` = n′ such

that πi (n
′
1) = πi (n1) and at n′1 player i takes the action ai.

The following figures (Figure 6) illustrate properties I0 to I6.

Properties (I1), (I2), (I4), and (I5) are standard for extensive-form games, and prop-

erties (I0) and (I6) generalize other standard properties of extensive-form games to our

generalized setting. The essential new property is (I3). At each information set of a

player, property (I3) confines the player’s anticipation of her future view of the game to

the view she currently holds (even if, as a matter of fact, this anticipation is about to be

shattered as the game evolves).

We denote by Hi the set of i’s information sets in all trees. For an information set

hi ∈ Hi, we denote by Thi the tree containing hi. For two information sets hi, h
′
i in a

given tree T, we say that hi precedes h′i (or that h′i succeeds hi) if for every n′ ∈ h′i there

is a path n, ..., n′ in T such that n ∈ hi. We denote hi  h′i.

9For example, in the game of Figure 3, for each node n in the upper tree in which the DM moves,
the DM’s information set πi (n) is a (singleton) subset of the nodes of the lower tree.
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Figure 6: Properties I0 to I6
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Remark 1 The following property is implied by I2 and I4: If n′, n′′ ∈ hi where hi = πi (n)

is an information set, then Ain′ = Ain′′.

Proof. If n′, n′′ ∈ hi where hi = πi(n) is some information set, then by introspection

(I2) we must have πi(n
′) = πi(n

′′) = πi(n). Hence by (I4) Ain′ ⊆ Ain′′ and Ain′′ ⊆ Ain′ . �

If n ∈ hi we write also Ahi for Ain.

Remark 2 Properties I0, I1, I2, and I6 imply no absent-mindedness: No information

set hi contains two distinct nodes n, n′ on some path in some tree.

Proof. Suppose by contradiction that there exists an information set hi with a

node n ∈ hi such that some other node in hi precedes n in the tree Tn. Denote by

n′ the first node on the path from the root to n that is also in hi. By I1 we have

n′ ∈ πi (n′) = hi = πi (n), and by perfect recall I6 there exists a path n′′ = n′1, ..., n
′
` = n′,

such that at n′′ player i had the same state of mind as in n′, i.e., πi(n
′′) = πi(n

′). By I1,

we have n′′ ∈ πi(n′′) = πi(n
′) = hi and n′′ is a predecessor of n′, a contradiction. �

The perfect recall property I6 and Remark 2 guarantee that with the precedence

relation  player i’s information sets Hi form an arborescence: For every information

set h′i ∈ Hi, the information sets preceding it {hi ∈ Hi : hi  h′i} are totally ordered by

 .

For trees T, T ′ ∈ T we denote T � T ′ whenever for some node n ∈ T and some

player i ∈ In it is the case that πi (n) ⊆ T ′. Denote by ↪→ the transitive closure of �.

That is, T ↪→ T ′′ if and only if there is a sequence of trees T, T ′, . . . , T ′′ ∈ T satisfying

T � T ′� · · ·� T ′′.

2.3 Generalized Games

A generalized extensive-form game Γ consists of a partially ordered set T of subtrees of

a tree N̄0 satisfying properties 1-3 above, along with information sets πi (n) for every

n ∈ T, T ∈ T and i ∈ In, satisfying properties I0-I6 above.

For every tree T ∈ T, the T -partial game is the partially ordered set of trees including

T and all trees T ′ in Γ satisfying T ↪→ T ′, with information sets as defined in Γ. A T -

partial game is a generalized game, i.e., it satisfies all properties 1-3 and I0-I6.
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We denote by HT
i the set of i’s information sets in the T -partial game.

For example, for the generalized game Γ in Figure 5, the tree N̄0 appears below in

Figure 7. N̄0 starts by nature choosing between γ0 (following which a0 is the optimal

action for both players), γ1 (following which a1 is optimal for both) or γ′1 (following which

a0 is optimal for the Decision Maker (DM) but suboptimal for the Expert (E)).

Figure 7:
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However, in the generalized game Γ of Figure 5 the tree which represents the physical

paths of the game is not N̄0 but rather T1, which appears in the upper left part of Figure 5.

Moreover, N̄0 is none of the trees in T = {T1, T2, T3} of Γ, and hence N̄0 does not appear

in Figure 5.

In T1 if the Expert, after learning nature’s move, announces ‘0’, the DM is unaware of

the fact that nature could have chosen γ1. The DM’s frame of mind is hence represented

by the tree T3 at the bottom of Figure 5. According to the DM’s conception there she

does not miss any information, and her information set is a singleton. This single node is

also the unique node considered as possible by the DM at T1 after hearing the message ‘0’

(and hence the two arrows going from T1 downwards to that singleton in T3). Moreover,

under this frame of mind T3, by which only γ0 is feasible, the DM conceives that she

would have a singleton information set in T3 even if E were to announce ‘1’.

The truth of the matter, as portrayed in the tree of physical paths T1, is different. If

E announces ‘1’, the DM gets to believe that nature could have chosen not between γ0

and γ1 (as was actually the case) but rather between γ0 and γ′1. This is portrayed by the

fact that after hearing ‘1’ in T1, the nodes that the DM considers as possible are in T2,

the tree in the upper-right part of Figure 5. The information set of the DM in T2 after

hearing ‘1’ contains two nodes, corresponding to the two possible choices of nature that

the DM considers as possible there, γ0 and γ′1.

Moreover, in this state of mind the DM is surprised, in the sense that she realizes

that had she heard ‘0’ from the Expert, she would not suspect that nature could choose
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anything beyond γ0. This is reflected by the fact that in T2, the information set of the

DM had she heard ‘0’ is contained in T3.

The T1-partial game is the entire game Γ with the set of trees {T1, T2, T3}. The

T2-partial game consists only of the trees {T2, T3}. The T3-partial game is a standard

extensive-form game with the unique tree T3.

2.4 Strategies

A (pure) strategy

si ∈ Si :=
∏
hi∈Hi

Ahi

for player i specifies an action of player i at each of her information sets hi ∈ Hi.
10 Denote

by

S =
∏
j∈I

Sj

the set of strategy profiles in the generalized extensive-form game.

If si = (ahi)hi∈Hi
∈ Si, we denote by

si (hi) = ahi

the player’s action at the information set hi.

With the strategy si, at node n ∈ Ni define the player’s action at n to be si (πi (n)).

Thus, the strategy si specifies what player i does at each of her active nodes n ∈ Ni,

both in case n ∈ πi (n) and in case πi (n) is a subset of nodes of a tree which is distinct

from the tree Tn to which n belongs.

In a generalized game Γ only the tree T1 ∈ T represents the physical paths in the

game; every other tree in T represents the subjective view of the feasible paths in the

mind of a player, or the view of the feasible paths that a player believes that another

player may have in mind, etc. Moreover, as the actual game in T1 evolves, a player may

become aware of paths of which she was unaware earlier, and the way she views the game

may alter as well.

10The set of behavioral strategies is ∏
hi∈Hi

∆ (Ahi
) .
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Thus, in generalized extensive-form games, a strategy cannot be conceived as an ex

ante plan of action. Formally, a strategy si of player i is a list of answers to the questions

“what would the player do if hi were the set of nodes she considered as possible?”, for

hi ∈ Hi. This list of answers should be interpreted as follows. For every given frame of

mind T ∈ T that player i may entertain about the feasible paths (a frame of mind which

i actually has at some node in the actual game tree T1, or is attributed to i by player j

at some node of T1 [at which j’s frame of mind may be yet in another tree T ′ ∈ T], etc.),

1. for every information set πi (n) ⊆ T the action si (πi (n)) should be interpreted as

the action that player i actually takes at n under the strategy si, if and when n is

reached; and

2. for every information set πi (n
′′) ⊆ T ′′ 6= T the action si (πi (n

′′)) should be inter-

preted as the action that player i would have taken at n′′ if her frame of mind were

T ′′ rather than T . This means that when player j considers as possible that the

node n′′ can be reached, j believes that under the strategy si player i would take

the action si (πi (n
′′)) at n′′, if and when n′′ were reached.

For a strategy si ∈ Si and a tree T ∈ T, we denote by sTi the strategy in the T -partial

game induced by si (i.e., sTi (hi) = si (hi) for every information set hi of player i in the

T -partial game). If Ri ⊆ Si is some set of strategies of player i, denote by RT
i the set of

strategies induced by Ri in the T -partial game. The set of i’s strategies in the T -partial

game is thus denoted by STi . Denote by ST =
∏

j∈I S
T
j the set of strategy profiles in the

T -partial game.

We say that a strategy profile s = (sj)j∈I ∈ S reaches a node n ∈ T if the players’

actions sTj (πj (n′))j∈In′
and nature’s moves in the nodes n′ ∈ T lead to n with a positive

probability. Notice that by property (I4) (“no imaginary actions”), sTj (πj (n′))j∈I is

indeed well defined: even if πj (n′) /∈ T for some n′ ∈ T , the action profile sTj (πj (n′))j∈In′

is an action profile which is actually available in T to the active players j ∈ In′ at n′.

We say that a strategy profile s ∈ S reaches the information set hi ∈ Hi if s reaches

some node n ∈ hi.

We say that the strategy si ∈ Si reaches the information set hi if there is a strategy

profile s−i ∈ S−i of the other players such that the strategy profile (si, s−i) reaches hi.

Otherwise, we say that the information set hi is excluded by the strategy si.

Similarly, we say that the strategy profile s−i ∈ S−i reaches the information set hi if

there exists a strategy si ∈ Si such that the strategy profile (si, s−i) reaches hi.
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As is the case also in standard games, for every given node, a given strategy profile of

the players induces a distribution over terminal nodes in each tree, and hence an expected

payoff for each player in the tree.

To exemplify the above definitions, consider again the game of Figure 5. The Expert

(E) has two information sets in T1, two information sets in T2, and one information set

in T3. The following therefore describes a strategy sE of the Expert: ‘0’ after γ0 in T1;

‘1’ after γ1 in T1; ‘0’ after γ0 in T2; ‘1’ after γ′1 in T2; ‘0’ after γ0 in T3.

What about the DM? She has no information sets contained in T1 (!), one information

set in T2 (with two nodes in it) and two singleton information sets in T3. The following

therefore describes a strategy sDM of the DM: play a0 in every information set.

The profile of strategies (sE, sDM) described above induces the following paths in T1:

1. If nature chooses γ0, the path is (γ0, ‘0’, a0). Notice that after γ0, ‘0’ in T1, we

read the choice of the DM by following the arrow that leads to her information set

down in T3, and check her choice with the strategy sE there.

2. If nature chooses γ1, the path is (γ1,‘1’, a0). After γ1,‘1’ in T1, we read the choice of

the DM by following the arrow that leads to her information set, which this time

is in T2.

Observe that the Expert is never actually (in T1) deluded to think that the strategic

interaction is described by the T2-partial game, nor is he ever actually (in T1) unaware

so as to think that the strategic interaction is described by T3. Thus, the moves of sE in

T2 (in particular after nature chooses γ′1, which can never actually happen in reality, i.e.,

in T1) describe the DM’s belief about the Expert’s choice that led to her information set

if she believes that the Expert is using the strategy sT2E – the restriction of the strategy

sE to the T2-partial game. Under any solution concept we would need indeed to analyze

what the DM believes at her information set in T2 about the Expert’s past actions that

have led her to that information set, and those past moves are determined by a strategy

of the expert in the T2-partial game. This is the reason that we need to define a strategy

at all the information sets of each player, including those in which he will never actually

move: the latter parts of the strategy become the object of contemplation and analysis

of the other player (or players) when they are deluded or unaware of parts of the actual

game.
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2.5 Unawareness

Generalized games can describe many types of games with subjective reasoning. In a

generalized game, a player cannot imagine that she can take an action which is physically

unavailable to her (property I4), but at a given information set πi (n) she can nevertheless

imagine that in a succeeding information set she will have an action which is actually

nowhere available in the tree Tn as in the example of Figure 8. Furthermore, she can

imagine that along the path of play another player will forget the history of play, i.e.,

that at a later information set this other player will imagine he is playing in a game tree

which is completely unrelated to the game tree he imagined at an earlier stage along the

path.

Since our main motivation is to analyze games with unawareness rather than games

with arbitrary kinds of subjective reasoning, it is worthwhile spelling out additional

properties of generalized games in which the only reason for players’ misconception of

the game is (differing) unawareness of available actions. In extensive-form games with

unawareness the set of trees T forms a join semi-lattice under the inclusion partial

order relation �. The maximal tree in this join semi-lattice is the modeler’s objective

description of feasible paths of play.

The following additional properties parallel properties of static unawareness structures

in Heifetz, Meier, and Schipper (2006).11

U0 Confined awareness: If n ∈ T and i ∈ In, then πi(n) ⊆ T ′ with T ′ � T .

U1 Generalized reflexivity: If T ′ � T , n ∈ T , πi(n) ⊆ T ′ and T ′ contains a copy nT ′ of

n, then nT ′ ∈ πi(n).

U2 Introspection: If n′ ∈ πi(n), then πi(n
′) = πi(n). (I.e., property I2.)

U3 Subtrees preserve awareness: If n ∈ T ′, n ∈ πi(n), T � T ′, and T contains a copy

nT of n, then nT ∈ πi(nT ).

U4 Subtrees preserve ignorance: If T � T ′ � T ′′, n ∈ T ′′, πi (n) ⊆ T and T ′ contains

the copy nT ′ of n, then πi (nT ′) = πi (n).

U5 Subtrees preserve knowledge: If T � T ′ � T ′′, n ∈ T ′′, πi (n) ⊆ T ′ and T contains

the copy nT of n, then πi (nT ) consists of the copies that exist in T of the nodes of

11The number of each property corresponds to the respective property in Heifetz, Meier, and Schipper
(2006).
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πi (n).

The following remark is analogous to Remark 3 in Heifetz, Meier, and Schipper (2006).

Remark 3 U5 implies U3.

Proof. If n ∈ T ′, n ∈ πi(n), T � T ′, and T contains a copy nT of n, then by U5 πi(nT )

must consist of the copies that exist in T of the nodes of πi(n). Since by assumption

n ∈ πi(n) and the copy nT exists in T , we must have nT ∈ πi(nT ). �

Remark 4 U0 implies I0. U1 implies I1.

Remark 5 U0 is equivalent to I0 and T � T ′ implies T ′ � T .

Proof. I0 and T � T ′ implies T ′ � T are equivalent to if there exists n ∈ T and i ∈ In
such that πi(n) ⊆ T ′ then T ′ � T . �

All these properties are static properties in the sense that they relate nodes in one tree

with copies of those nodes in another tree. One may wonder about dynamic properties

of unawareness. The following property states that a player can not become unaware

during the play.

DA Awareness may only increase along a path: If there is a path n, . . . , n′ in some

subtree T ′′ such that player i is active in n and n′, and πi (n) ⊆ T while πi (n
′) ⊆ T ′,

then T ′ � T .

Perfect recall and confined awareness imply that awareness may only increase along

a path.

Remark 6 U0 and I6 imply DA.

Proof. Suppose n, ..., n′ is path in T ′′ such that i ∈ In∩In′ , πi(n) ⊆ T while πi(n
′) ⊆ T ′.

Then by the nonemptyness of πi(n
′) there exists n′′ ∈ πi(n′). For this n′′ there is by I6 a

path n′1, ..., n
′
` = n′′ in T ′ such that πi(n

′
1) = πi(n). By U0, we have T � T ′. �
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2.6 Awareness of Unawareness

In some strategic situations a player may be aware of her unawareness in the sense

that she is suspicious that something is amiss without being able to conceptualize this

‘something’. Such a suspicion may affect her payoff evaluations for actions that she knows

are available to her. More importantly, she may take actions to investigate her suspicion

if such actions are physically available.

To model awareness of unawareness some of the trees may include imaginary actions

as placeholders for actions that a player may be unaware of and terminal nodes/evaluations

of payoffs that reflect her awareness of unawareness. (The approach of modeling aware-

ness of unawareness by “imaginary moves” was proposed by Halpern and Rêgo, 2006.)

Figure 8: Game form with awareness of unawareness
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Consider the example in Figure 8. There are two players with a common interest.

The payoffs at the terminal nodes in each tree correspond to the payoffs to each player.

Player 1 is a professor of player 2, a doctoral student. The doctoral student has to choose

a topic for his dissertation. He can conceive of two topics, topic a and topic b. This is

modeled in the lowest tree, T3. Before he selects his topic, the professor can intervene or

keep silent. If she intervenes, she could simply suggest a topic to the student. Or, she

could point the student to a book and suggest to him to read it in anticipation of finding

a suitable topic. Before reading it, the student does not anticipate of what he will become

aware upon reading it. Yet, he suspects that he will become aware of something. This
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is modeled in the upper left tree, T2. Moreover, he realizes that he benefits more from

reading the book than if the professor were to simply tell him this something. The payoffs

upon reading are increased by 1. When the student reads the book, he becomes aware

of two additional topics, one of them, D′, is strictly worse than any previously conceived

topic and one topic, C ′, is much more promising than any previously conceived topic.

Moreover, he realizes that reading the book was actually more beneficial to him than

anticipated before as all payoffs upon reading are increased by 2 in upper right tree, T1.

Note that before the student decides whether or not to read the book, he is not modeled

as anticipating to be in the upper right tree T1, because he cannot conceptualize the

nature of dissertation topics he discovers upon reading the book.

As before, a strategy of a player ascribes an available action at each of his information

sets in all trees. The strict dominant action of player 1 in both of her information sets

is to suggest reading the book. (Recall that players have a common interest; the payoffs

at terminal nodes are each player’s payoffs.) Moreover, since the student realizes that

reading is beneficial, the unique extensive-form rationalizable outcome corresponds to the

terminal node in T1 that is reached by the path in which the professor suggests reading

the book, the student indeed reads, and after reading chooses topic C ′.

The generalized extensive-form game in Figure 8 does not satisfy all properties of

unawareness of Section 2.5. For instance, at the node after player 1 asked player 2 to

read the book in tree T1, player 2’s information set is in tree T2. But T2 is not a subtree

of T1. Thus, property U0 is violated. Modeling awareness of unawareness requires our

more general framework of generalized extensive-form games.

2.7 The Connection to Standard Extensive-Form Games

Harsanyi (1967) showed how to transform games with asymmetric information into games

with imperfect information about a move of nature. Can a similar idea be used to

transform any generalized extensive-form game into a standard extensive-form game?

Given a generalized extensive-form game Γ with a partially ordered set of trees T, one

could define the transformation of Γ to be the extensive-form game with an initial move

of nature, in which nature chooses one of the trees in T.

Notice, however, that the resulting structure would not be a standard extensive-form

game. To see this, notice that every standard extensive-form game has the following

property (E): the equivalence class of nodes in which a player considers as possible a
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given possibility set of nodes is identical with that possibility set; this set is called an

information set of the player, and in all of its nodes the player has the same set of

available actions. In contrast, in the transformation considered above for games with

misperceptions, this equivalence class may be a strict super-set of the possibility set. For

example, when the generalized game in Figure 9(a) is transformed so as to have an initial

move of nature, the possibility set for the (unique) player is the right node, while the

equivalence class contains both the right and left node.

Figure 9:

ta b     c nature nature

a b   a b     c a b   a b     c a b  

(a) (b) (c)

Thus, if after adding the initial move of nature the information sets are defined to be

synonymous with the possibility sets, the resulting game would be non-standard, because

for some information set there may be additional nodes outside it in which the player

considers it as possible (as in Figure 9(b), where in the left node the player considers

only the right node as possible). If, in contrast, we choose the alternative definition, by

which an information set is the equivalence class in which a player has a particular set

of nodes that she considers as possible, the resulting game would again be non-standard,

this time because the actions available to the player in the nodes of a given information

set might not be identical across these nodes (as in Figure 9(c), where in the left node

the player has more available actions than in the right node, even though both are within

the same information set).12

There is also another aspect that prevents the above transformation from yielding

a standard extensive-form game. In a standard extensive-form game each player has

12In this example of a game with a single player who is unaware of her action c, one could obviously
describe the game simply as a single-person decision problem between a and b. This would not be
possible, however, in more complex games like the one in Figure 2. There, one cannot do away with any
of the nodes in the upper tree or in the lower tree; if these two trees are joined by a preceding move
of nature, then when player 1 doesn’t tell player 2 about the Mozart concert, player 2’s information set
becomes non-standard.
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a full-support prior on the moves of nature.13 Using Bayes rule, the player therefore

has a well-defined belief about nature at each stage of the game. In contrast, in the

above transformation each player ascribes probability 1 only to one of the initial moves

of nature; moreover, along the path of play the player may switch completely the move

of nature in which she confides even if nothing in the path of play itself imposed such a

switch. Such a switch corresponds to a node in the generalized game in which the player is

defined as becoming aware of new aspects of the dynamic interaction; such an increase

of awareness may occur even when the physical path of play per se did not imply a

surprise, and may have also been compatible with the player’s previous conception of the

game. Thus, if we do add an initial move of nature to connect the trees of the generalized

game, the player’s (evolving) belief about nature cannot be encapsulated within an initial

probabilistic belief about nature, and must be represented explicitly by a belief system

as part of the definition of the game.

Adding an initial move of nature has a further conceptual drawback. In classical

extensive-form games the implicit assumption is that the players understand the entire

structure of the dynamic interaction as embodied in the game tree.14 Assigning prob-

ability zero to some move of nature is still compatible with realizing what could have

happened if this zero-probability move were nevertheless to materialize. This is concep-

tually distinct from being completely unaware of a subset of paths in the game, and it is

the latter concept that we want to model here. Moreover, as we have seen in the example

of the introduction (Figures 3 and 4), it may lead to behavioral predictions different from

unawareness.

Thus, standard extensive-form games are neither technically fit (without further gen-

eralization) for modeling behavior under dynamic misperceptions and unawareness, nor

do they convey the appropriate conceptual apparatus for modeling such interactions,

hence the need for our definition of generalized games.

13Moreover, in the classical definition of an extensive-form game the priors of the different players
about nature are actually identical, i.e., the players have a common prior about nature.

14For instance, Myerson (1991, p. 4) puts forward explicitly the tenet that game theory deals with
intelligent players, where “a player in the game is intelligent if he knows everything that we know about
the game and he can make any inference about the situation that we can make.”
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3 Extensive-Form Rationalizability

Pearce (1984) defined extensive-form (correlated) rationalizable strategies by a procedure

of an iterative elimination of strategies (see also Battigalli, 1997). The idea behind the

definition involves a notion of forward induction. In generic perfect-information games,

extensive-form rationalizable strategy profiles yield the backward induction outcome,

though they need not be subgame-perfect equilibrium strategies (Reny 1992, Battigalli

1997, Chen and Micali, 2011, Perea, 2012). In what follows we extend this definition to

generalized extensive-form games.

A belief system of player i

bi = (bi (hi))hi∈Hi
∈
∏
hi∈Hi

∆
(
S
Thi
−i

)

is a profile of beliefs - a belief bi (hi) ∈ ∆
(
S
Thi
−i

)
about the other players’ strategies in

the Thi-partial game, for each information set hi ∈ Hi, with the following properties

• bi (hi) reaches hi, i.e., bi (hi) assigns probability 1 to the set of strategy profiles of

the other players that reach hi.

• If hi precedes h′i (hi  h′i) then bi (h
′
i) is derived from bi (hi) by Bayes rule whenever

possible.

Denote by Bi the set of player i’s belief systems.

For a belief system bi ∈ Bi, a strategy si ∈ Si and an information set hi ∈ Hi, define

player i’s expected payoff at hi to be the expected payoff for player i in Thi given bi (hi),

the actions prescribed by si at hi and its successors, assuming that hi has been reached.

We say that with the belief system bi and the strategy si player i is sequentially

rational at the information set hi ∈ Hi if either si doesn’t reach hi or there exists no

strategy s′i which is distinct from si only at hi and/or at some of hi’s successors in Thi and

yields player i a higher expected payoff in the Thi-partial game given the belief bi (hi)

on the other players’ strategies S
Thi
−i .

We now turn to define extensive-form rationalizability in generalized extensive-form

games. The following definition generalizes Battigalli’s (1997) definition of (correlated)

extensive-form strategies, which he proved to be equivalent to that of Pearce (1984).
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Definition 1 (Extensive-Form Rationalizable Strategies) Define, inductively, the

following sequence of belief systems and strategies of player i.

B1
i = Bi

R1
i =

{
si ∈ Si :

there exists a belief system bi ∈ B1
i with which for every

information set hi ∈ Hi player i is sequentially rational at hi

}
...

Bk
i =

bi ∈ Bk−1
i :

for every information set hi, if there exists some profile of

the other players’ strategies s−i ∈ Rk−1
−i =

∏
j 6=iR

k−1
j such

that s−i reaches hi, then bi(hi) assigns probability 1 to R
k−1,Thi
−i


Rk
i =

{
si ∈ Si :

there exists a belief system bi ∈ Bk
i with which for every

information set hi ∈ Hi player i is sequentially rational at hi

}

The set of player i’s extensive-form rationalizable strategies is

R∞i =
∞⋂
k=1

Rk
i .

The definition captures rationality and common strong belief in rationality (Battigalli

and Siniscalchi, 2002): At each information set, a rationalizable strategy should be op-

timal vis-a-vis some belief over the opponents strategy; if the information set is reached

by some tuple of optimal opponents’ strategies (vis-a-vis some beliefs of theirs), then the

player’s belief is further required to be concentrated on such tuples; if, furthermore, the

information set is reached by some tuple of the opponents’ strategies which are optimal

vis-a-vis a belief system of theirs concentrated on optimal strategies of their opponents,

the player’s belief should concentrated on those tuples; and so forth.

In other words, along each feasible path of play, in the first information set an ac-

tive player believes that all her opponents will behave rationally, will believe that their

opponents will behave rationally, etc. If at some information set in the game all the

opponents’ strategy profiles which could lead to that information set fail this ideal con-

dition, the player seeks a best rationalization (Battigalli, 1996) which could have led to

that information set.

For example, if player i has a unique opponent j, who has only two strategies that

lead to an information set of i – s′j which is strictly dominated for j, and sj which is

optimal for j but only under a belief of j that i is (or was, or will be) irrational, then
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at that information set i is required to believe that in the sequel j will continue to

employ sj (because sj embodies a better rationalization of j’s past behavior than does

s′j). Forward induction reasoning then implies that from that information set onwards, i

’s rationalizable strategy should be optimal vis-a-vis sj, unless a further information set

h′i is reached which is compatible only with s′j; at h′i player i has no choice but to revert

to the belief that j is irrational, and react accordingly.

The definition of this solution concept for generalized extensive-form games highlights

the need to define the notion of a strategy as we did, by the actions taken not only at

the tree T1 which represents the physical paths of the game, but also at all the other

trees T ∈ T. True, to track the physical paths compatible with profiles of extensive-form

rationalizable strategies it is enough to look at their restrictions to T1. However, at each

given node n ∈ T1 in which player i is active, the set of nodes πi (n) that she considers as

possible is a subset of her subjective view of the feasible paths Tπi(n), and at that point

she can only contemplate her strategy in terms of the Tπi(n)-partial game. Furthermore,

in order to rank the opponents’ strategies according to their rationality, player i has to

weigh them in the terms the opponents conceive the game, i.e., in the T -partial games

which represent their subjective view of the strategic interaction within the Tπi(n)-partial

game (which may be different than the actual subjective views the opponents have on

the game at various nodes of T1); and so forth.

This means that profiles of extensive-form rationalizable strategies have a different

significance in their different domains. In T1 they define paths which could actually be

realized; for n ∈ T1 for which Tπi(n) 6= T1, in Tπi(n) these profiles define paths conceived

as feasible by player i when the actual node at T1 is n; for n′ ∈ Tπi(n) for which Tπj(n′) 6=
Tπi(n), in Tπj(n′) these profiles define paths that at node n ∈ T1 player i conceives player j

to conceive as possible if and when n′ is reached in i’s subjective view of the game Tπi(n);

etc.

Although extensive-form rationalizability is defined as a reduction procedure on the

set of beliefs, it implies a reduction of strategy sets.

Remark 7 Rk
i ⊆ Rk−1

i for every k > 1.

Proof. Consider si ∈ Rk
i . By definition, si is sequentially rational at each of player

i’s information sets given some belief system bi ∈ Bk
i . Since Bk

i ⊆ Bk−1
i , si is also be

sequentially rational at each of player i’s information sets given a belief system in Bk−1
i ,

namely given bi. Hence si ∈ Rk−1
i . �
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Proposition 1 The set of rationalizable strategies is non-empty.

The proof is in the appendix.

It may be instructive to compare explicitly the extensive-form rationalizablity strate-

gies in our battle-of-the-sexes example from the introduction (Figures 1 and 2).15

Remark 8 In the Bach-Stravinsky-Mozart example with unavailability of actions from

the introduction (Figure 1) there is a unique extensive-form rationalizable outcome while

in the Bach-Stravinsky-Mozart example with unawareness (Figure 2), there are several

extensive-form rationalizable outcomes.

The proof is contained in the appendix.

When we compare these examples, then the main difference arises from the the lack

of forward induction of player II under unawareness. In the Bach-Stravinsky-Mozart

example with unawareness (Figure 2), player II can not forward-induce anything from

the action “don’t tell” taken by player I since former is unaware of this action. Yet,

in the Bach-Stravinsky-Mozart example with the unavailability of an action (Figure 1)

player II can forward-induce from the action “don’t give the car” player I’s intention to

go to the Bach concert. In other words, awareness of an available action (providing the

car for going to the Mozart concert) and certainty that it hasn’t been taken has stronger

strategic implications than unawareness of the very same action.

In the Bach-Stravinsky-Mozart example with unawareness (Figure 2), the rational-

izable outcome is not unique. This is in contrast to the example with unavailability of

actions instead, where there is a rationalizable outcome. However, there exist also games

where with unavailability of actions there are more rationalizable outcomes than with

unawareness of the same actions. Such an example is presented in Meier and Schipper

(2012).

3.1 The One-Deviation Principle

In dynamic decision problems, the one-deviation principle reflects a property of dynamic

optimization, namely that a sequence of “locally optimal” decisions is also “globally

optimal”. Since in games with unawareness, both the relevant optimization horizon and

the available set of actions may change during the play, it is not a priori immediate

15We thank an anonymous referee for this suggestion.
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whether the one-deviation principle still holds for generalized extensive-form games. In

this section we show that the one-deviation principle applies to generalized extensive-form

games as well.

We say that with the belief system bi and the strategy si player i is rational at the

information set hi ∈ Hi if there exists no action a′hi ∈ Ahi such that only replacing the

action si (hi) by a′hi results in a new strategy which yields player i a higher expected

payoff at hi given the belief bi (hi) on the other players’ strategies S
Thi
−i .

The one-deviation principle states that requiring rationality (which is a local notion

of optimality) at all of i’s information sets yields also sequential rationality at all of i’s

information sets:

Proposition 2 If with the belief system bi and the strategy si player i is rational at all

of her information sets hi, then she is also sequentially rational at all of her information

sets.

The proof is in the appendix. The argument is the same as in the proof of the one-

deviation property for standard extensive-form games with perfect recall, exploiting the

fact that if hi precedes h′i then both these information sets of player i are subsets of the

same tree T ∈ T in the generalized game.

Proposition 2 implies that if, in Definition 1 of extensive-form rationalizability, we

were to replace “sequentially rational” by “rational”, a smaller set of strategies could

emerge. This is only due to the fact, however, that sequential rationality does not

require optimization at information sets which were excluded by the strategy itself at an

earlier information set. Thus, in terms of plans of action (equivalence classes of strategies

which coincide at all information sets that none of them excludes), using “rationality”

instead of “sequential rationality” would not affect the set of extensive-form rationalizable

outcomes. Using “rationality” rather than “sequential rationality” seems, nevertheless,

conceptually advantageous, because it rules out strategies with which a player behaves

sub-optimally at some information sets – even if reaching them is counterfactual given

the player’s own earlier choices.16

16We nevertheless used sequential rationality in our definition of extensive-form rationalizability, so
as to be consistent with the previously published literature, and thus abide by a request of a referee.
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4 Conclusion

We proposed a general framework for analyzing dynamic strategic interaction with asym-

metric unawareness. We extended Pearce’s (1984) notion of extensive-form (correlated)

rationalizability to this setting, explored its properties, and proved existence. In a com-

panion paper, Heifetz, Meier, and Schipper (2011) we introduce a refinement of extensive-

form rationalizability, called prudent rationalizability, and show that it rules out implau-

sible outcomes in examples due to Pearce (1984) and Ozbay (2007). We apply it to a

model of verifiable communication of Milgrom and Roberts (1986) and show that prudent

rationalizability implies full unraveling of information in their model, but if the receiver

is unaware of a dimension, then full unraveling does not need to occur. Thus, this is yet

another example in which unawareness has strategic implications which are genuinely

different than those implied by asymmetric information. In another companion paper,

Meier and Schipper (2012), we define the normal-form game associated to a general-

ized extensive-form game with unawareness. We use it to characterize extensive-form

rationalizability (resp. prudent rationalizability) in generalized extensive-form games by

iterated elimination of conditional strictly (resp. weakly) dominated strategies in the

associated generalized normal-form game. Moreover, we extend iterated admissibility to

such associated generalized normal-form games.

A Proofs

A.1 Proof of Proposition 1

We proceed by induction.

B1
i is non-empty. Indeed, to construct a belief system bi, for each information set

hi with no predecessors (according to the precedence relation  ) in the arborescence of

information sets Hi, assign to player i a full-support belief bi (hi) on the other players’

strategies S
Thi
−i that reach hi. The full-support guarantees that Bayes rule is applicable

for deriving the beliefs of player i in all her remaining information sets.

Suppose, by induction, we have already shown that Bk
i is non-empty. We have to

show that Rk
i is non-empty. For a typical belief system bi ∈ Bk

i we have to construct

a strategy si ∈ Rk
i , i.e., a strategy with which player i is sequentially rational at each

of her information sets Hi given the belief system bi. Since Hi is an arborescence, it is
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standard to construct such a strategy si by backward induction on Hi.

To complete the induction step, observe that Bk+1
i is non-empty, because by definition

it singles out a non-empty subset of Bk
i .

Now, since player i’s set of strategies Si is finite and by Remark 7, Rk+1
i ⊆ Rk

i for

every k ≥ 1, for some ` we eventually get R`
i = R`+1

i for all i ∈ I and hence B`+1
i = B`+2

i

for all i ∈ I. Inductively,

∅ 6= R`
i = R`+1

i = R`+2
i = ...

and therefore

R∞i =
∞⋂
k=1

Rk
i = R`

i 6= ∅

as required. �

A.2 Proof of Proposition 2

Suppose, by way of contradiction, that with the belief system bi and the strategy si

player i is rational at all of her information sets in all the trees T̂ ∈ T, but there exists a

tree T ∈ T and an information set hi in T such that player i is not sequentially rational

at h. This means that sTi reaches hi in T and that there exists a strategy s′i which is

distinct from si only at hi and/or at information sets succeeding hi in T , and such that s′i

yields player i a higher expected payoff with her belief bi (hi) over her opponents’ strategy

profiles ST−i.

For every information set h′i in T , denote by s′h′i
the strategy of player i which coincides

with s′i at h′iand its successors in T , and with si at the remaining information sets of

player i.

The contradiction assumption implies that there exists at least one information set

h′i with the property

(∗) with the belief bi (h
′
i) the strategy s′h′i

yields player i a higher expected payoff at h′i

than does si.

– namely the information set h′i = hi.

Among the information sets h′i satisfying (∗), there exists at least one h̃′i which is

furthest in the tree T , i.e., with the property that h̃′i satisfies (∗) but no successor of h̃′i

in T does. Such a furthest information set exists since the tree T is finite, and since by
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the perfect-recall property (I6) the information sets within each given tree T form an

arborescence (i.e., for every information set hi in T, the information sets in T preceding

hi are linearly ordered).

For such a furthest h̃′i, let s̃′i be the strategy which coincides with s′
h̃′i

at h̃′i and with si

elsewhere. In other words, we get s̃′i from s′
h̃′i

by restoring si’s choices at all the successors

of h̃′i. Since h̃′i is furthest with the property (∗), with the belief bi

(
h̃′i

)
the expected payoff

that s̃′i yields player i at h̃′i is greater or equal than the expected payoff that s′
h̃′i

yields

her17, while – due to (∗) – s′
h̃′i

yields player i a higher expected payoff at h̃′i than does si.

Together this implies that even though s̃′i is distinct from si only at h̃′i, nevertheless

with the belief bi

(
h̃′i

)
it yields player i a higher expected payoff at h̃′i than does si. This

contradicts the assumption that with the belief system bi and the strategy si player i is

rational at all of her information sets. �

A.3 Proof of Remark 8

Note first that a strategy for player I in the game of Figure 1 is a function that prescribes

an action at the root of the tree and each matrix whereas in the game of Figure 2 it is a

function that prescribes an action at the root of the tree, the left and right matrices in

the upper tree as well as an action in the lower matrix. Consequently, the belief systems

of player II differ accordingly in those examples.

To make the differences and similarities between the examples more transparent, we

will derive the extensive-form rationalizable strategies for both examples side-by-side.

17Because the expected payoff that s′
h̃′
i

yields with the belief bi

(
h̃′i

)
is a weighted average of its

expected payoff with the beliefs{
bi

(
h̃′′i

)
: s′

h̃′
i

reaches h̃′′i and h̃′′i is a successor of h̃′i

}
at the corresponding information sets h̃′′i – due to the fact that the belief system bi satisfies Bayes rule
whenever possible.

32



At the first level, any strategy is rational for player

I except all strategies that both prescribe “don’t

give” at the root of the tree and “Mozart” at the

left matrix. Thus,

R1
I =

{
(“don’t give”, B, ∗), (“don’t give”, S, ∗),
(“give”, ∗, ∗)

}
,

where the first component of each strategy corre-

sponds to player I’s action at the root of the tree,

the second component corresponds to his action

at the left matrix, and the last component cor-

responds to his action at the right matrix. We

denote by “∗” any available action of the player at

his corresponding information set.

For player II, both the Bach concert and the

Stravinsky concert are rational if player I does not

give him the car, i.e., at the right matrix. If player

I does give him the car, then only the Mozart con-

cert is rational since it is a dominant action con-

ditional on being the right matrix. Thus,

R1
II = {(B,M), (S,M)} ,

where the first component of a strategy refers to

player II’s action in the left matrix and the second

refers to the right matrix.

At the first level, any strategy is rational for player

I except all strategies that both prescribe “don’t

tell” and going to the Mozart concert at the upper

left matrix. Thus,

R1
I =

{
(“don’t tell”, B, ∗, ∗), (“don’t tell”, S, ∗, ∗),
(“tell”, ∗, ∗, ∗)

}
,

where the first component of each strategy corre-

sponds to player I’s action at the root of the upper

tree, the second component corresponds to his ac-

tion at the left upper matrix, the third component

corresponds to his action at the right upper ma-

trix, and the last component refers to his action in

the lower matrix. We denote by “∗” any available

action of the player at his corresponding informa-

tion set.

For player II, both the Bach concert and the

Stravinsky concert are rational if he is unaware of

the Mozart concert. If he is aware of the Mozart

concert, then only this concert is rational since it

is a dominant action conditional of being in the

right matrix. Thus,

R1
II = {(M,B), (M,S)} ,

where now the first component of a strategy refers

to player II’s action in the upper right matrix and

the second refers to the lower matrix.
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At the second level, player I is certain that player

II will go to the Mozart concert when given the

car. Thus, any second level rational strategy for

player I that gives the car to player II must also

prescribe going to the Mozart concert after “give

the car”. Not giving the car to player II and going

to the Stravinsky concert is dominated by giving

the car to player II and going to the Mozart con-

cert. Not giving player II the car and going to the

Bach concert is rational for player I assuming that

she believes with probability at least 1
4 that player

II will go to the Bach concert. Giving the car to

player II and going to the Mozart concert is ratio-

nal for player I if she believes with probability at

least 3
4 that player II would go to the Stravinsky

if not given the car. To summarize,

R2
I = {(“don’t give”, B, ∗), (“give”, ∗,M)} .

For player II, R2
II = R1

II since the deletion of

strategies that prescribe M in the left matrix for

player I (and reach the left matrix) at the first level

does not influence the optimality of any strategy

of player II because when player I takes M any

of player II’s actions yields the same payoff in the

left matrix.

At the second level, player I is certain that player

II will go to the Mozart concert when told about it.

Thus, any second level rational strategy for player

I that specifies “tell” at the root of the upper tree

must also prescribe going to the Mozart concert in

the upper right matrix. Not telling player II about

the Mozart concert and going to the Stravinsky

concert is dominated by telling player II about

the Mozart concert and going to the Mozart con-

cert. Not telling player II about the Mozart con-

cert and going to the Bach concert is rational for

player I assuming that she believes with probabil-

ity at least 1
4 that (the unaware) player II will go

to the Bach concert. Telling player II about the

Mozart concert and going to the Mozart concert is

rational for player I if she believes with probabil-

ity at least 3
4 that (the unaware) player II would

go to the Stravinsky concert if not told about the

Mozart concert. In the lower tree, both players are

unaware of the Mozart concert. Going to Bach is

rational for player I if she believes with probability

at least 1
4 that player II goes to Bach as well. Go-

ing to the Stravinsky convert is rational for player

I if she believes with probability at least 3
4 that

player II goes to Stravinsky. This is just the stan-

dard Battle-of-Sexes game. To summarize,

R2
I = {(“don’t tell”, B, ∗, ∗), (“tell”, ∗,M, ∗)} .

For player II, note that his strategy does not pre-

scribe an action in the left matrix. Hence, the

deletion of M in the left matrix for player I at the

first level has no effect on the optimality of of any

strategy of player II. Thus R2
II = R1

II .

So far, the arguments are analogous in both examples. A difference arises at the third level for player

II. For player I, any second level strategy is also third level rational for player I since in both examples

no strategies of player II have been eliminated at the second level.
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At the third level, when player II is not given the

car, he can forward-induce that player I will go to

the Bach concert. This is because any second level

rational strategy of player I that reaches the right

matrix must prescribes the Bach concert. Conse-

quently, a third level rational strategy of player II

must prescribe going to the Bach concert as well

when not given the car. Thus,

R3
II = {(B,M)} .

At the third level, when player II is not told about

the Mozart concert, he can not forward-induce

that player I will go to the Bach concert. This

is because he is unaware of the Mozart concert

and his information set is located in the lower

subtree of Figure 2. At this matrix, both Bach

and Stravinsky are second level rational actions

for player I. Thus, no strategies can be eliminated

R3
II = R1

II .

At the fourth level, if player I gives the car to

player II, then latter will go to the Bach concert.

Otherwise, if player I does not give the car to

player II, then latter will go to the Mozart con-

cert. Since player I strictly prefers to the Mozart

concert together with player II, any fourth level

rational strategy of player I must involve her not

giving the car to player II. Thus,

R4
I = {(“don’t give”, B, ∗)} = Rk

I , for all k ≥ 4.

For both players, no strategies were eliminated at

the third level. Thus, no further strategies can be

eliminated at any level k ≥ 3.

Hence, the extensive-form rationalizable strategies

are

R∞I = {(“don’t give”, B, ∗)},

R∞II = {(B,M)}.

Hence, the extensive-form rationalizable strategies

are

R∞I = {(“don’t tell”, B, ∗, ∗), (“tell”, ∗,M, ∗)},

R∞II = {(M,B), (M,S)}.
�
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