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Abstract

The truth conditions for conditional sentences
have been well-studied, but few compelling at-
tempts have been made to define means of eval-
uating iterated or nested conditionals. In par-
ticular, most approaches impose very few con-
straints on the set of conditionals an agent
can hold after revision of its belief set. In
this paper we describe the method of natural
revision that ensures the preservation of con-
ditional beliefs after revision by an objective
belief. Our model, based on a simple modal
logic for beliefs and conditionals, extends the
AGM theory of belief revision to account for
sentiences of objective revisions of a belief set.
This model of revision ensures that an agent
makes as few changes as possible to the con-
ditional component of its belief set. Adopt-
ing the Ramsey test, natural revision provides
truth conditions for arbitrary right-nested con-
ditionals. We show that the problem of deter-
mining acceptance of any such nested condi-
tional can be reduced to acceptance tests for
unnested conditionals, indicating that iterated
revision can be simulated by virtual updates.
We also briefly describe certain reductions to
(sometimes tractable) propositional inference,
and other informational properties.

1 Introduction

Subjunctive conditionals have recently attracted much
attention in the knowledge representation community.
It has been pointed out that counterfactuals may play a
large role in planning and diagnostic systems (Ginsberg
1986), that subjunctives may be used to capture knowl-
edge base update and revision (Katsuno and Mendel-
zon 1991; Boutilier 1992b), and that they are intimately
related to the conditionals used in default reasoning
(Boutilier 1992c; Makinson and Gardenfors 1990). We
denote by A > B the subjunctive conditional "If A were
the case then B would be true." Various subjunctive
logics have been proposed to account for properties of
the connective > (Stalnaker 1968; Lewis 1973).

From the point of view of knowledge representation,

acceptance conditions for A > B are especially impor-
tant. Under what conditions should an agent assent to
the conditional? A widely endorsed acceptance test for
conditionals is the Ramsey test (Stalnaker 1968, p.44):

First add the antecedent (hypothetically) to
your stock of beliefs; second make whatever ad-
justments are required to maintain consistency
(without modifying the hypothetical belief in
the antecedent); finally, consider whether or
not the consequent is true.

The key step in the Ramsey test is the revision of
the belief set. The notion of revision adopted will de-
termine which conditionals are accepted and rejected.
Conversely, given a fixed (complete) set of accepted con-
ditionals, the revision function adopted by an agent will
also be determined: revising by A is simply a matter of
believing those B such that A > B is accepted. Con-
sequently, the study of revision and (subjunctive) con-
ditional logic are virtually the same if one accepts the
Ramsey test.

The most prominent theory of belief revision is that
put forth by Alchourron, Gardenfors and Makinson
(1985) and expounded by Gardenfors (1988). Within
this framework many people have explored the con-
nection to conditionals (Gardenfors 1988; Gardenfors
1986; Rott 1989; Boutilier 1992b; Boutilier 1992c). The
AGM theory, which we describe in the next section, im-
poses various constraints on acceptable revision func-
tions. Roughly, a revision function preserves as much
information as possible. Unfortunately, the AGM theory
has little to say about revision sequences. If we accept
the Ramsey test as determining conditional beliefs, this
means that the conditionals accepted in the new belief
set need not be related to those in the first set. Thus,
while information content is "preserved" with respect to
objective beliefs, the information content of conditionals
is ignored.

It is this problem of preserving conditionals under re-
vision that we investigate here. The semantic model of
AGM revision (for propositional belief sets) we describe
in the next section orders possible worlds according to
their plausibility, or "degree of consistency" with a fixed
belief set K. While this ordering guides the selection of
a revised belief set K*5 (which incorporates A into K),
this AGM model fails to provide a new ordering suitable
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for the revision of K*. The goal of this paper is to show
how one might use the original ordering to constrain the
new ordering, hence revision of the revised belief set K*4.
We propose that the new ordering retain as much of the
old ordering as possible, consistent with the AGM pos-
tulates. This minimal change in the ordering is precisely
defined and provides the semantic basis for our model
of revision sequences. This approach, dubbed natural
revision, ensures that a maximal subset of one's con-
ditional beliefs is retained during the revision process.
Of course, this is a specific instance of the more gen-
eral phenomenon of iterated revision captured by gen-
eral revision systems. However, we shall argue that our
model provides a very natural way of extending the con-
cept of "minimal change," the hallmark of the AGM
theory, to sequences of revisions and conditional beliefs.
Indeed, natural revision provably retains the maximum
amount of conditional information consistent with the
constraints of the AGM theory. It also provides a logical
characterization and computational methods such itera-
tion. Proofs of the main results can be found in the full
version of the paper (Boutilier 1992d).

2 A Logic for Revision

In this section we very briefly deacribe the AGM theory
of revision (Alchourron, Gardenfors and Makinson 1985;
Gardenfors 1988) and the logic and semantic model for
revision proposed by Boutilier (1992b). For more details
and motivation we refer to these works.

We take a beltef set K to be a deductively closed set
of sentences in the language Lop; of classical propo-
sitional logtc. MNew beliefs must be added to this set
when an agent learns new information. If this new sen-
tence A is consistent with K, then the new belief set
K} = Cn{K U{A}) seems appropriate. However, when-
ever K + - A, certain beliefs must be given up before
adding A to K. Alchourrén, Gardenfors and Makinson
(1985) have proposed that those sentences in K with the
least information content be retracted. They propose a
set of postulates (K*1)-(K*8) that constrain the behav-
ior of logically acceptable revision functions. We use K
to denote revision of belief set K by A. Two of the key
postulates are (K*3) and (K*4)

(K*3) K; CK}; (K*4)1f ~A ¢ K then K} C K.

Together these ensure that K = K} whenever K if - 4.
This reflects the principle of informational economy in
the extreme case: if no beliefs need to be given up to
accommodate a new belief A, then none should. Postu-
lates (K*7) and (K*8) taken together ensure that this
applies to revised belief sets as well:

If ~B ¢ K% then (K3)} C Kinp.

In (Boutilier 1992b) we provide a modal semantics and
logic for AGM revision based on an observation of Grove
{1988) that equates the entrenchment or importance of
beliefs with an ordering on possible worlds. The modal
logic used, called CO*, is based on a standard proposi-
tional language augmented with two modal operators O

and 5. We denote by Lp this bimodal language and b,
Lcpy its classical propositional sublanguage. A CO*-
model is a triple M = (W, R, ), where W is a set of
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worlds with valuation function ¢ and R is an ordering
(“accessibility”) relation over W. We insist that K be
transitive and connected.! Furthermore, every propo-
sitional valuation, or logically possible world, must be
represented by some world in W. This ensures that
o € Lcpy is satisfied at some world if it is consistent. An
axiomatization can be found in (Boutilier 1992b). Space
limitations preclude a discussion of the semantics of the
primitive modal operators. The defined operators (be-
low) are more crucial here. The satisfaction of & € Lopp
at a world in a model {M |=,, «) is defined in the usual
way. ||al] refers to the set {w: M |, a} and we define
the set of minimal a-worlds as min(M,a) =

{weW: M, a, and M |, o implies vRw for all v}

The notion of cluster will play a large role in future
developments. In any reflexive, transitive Kripke frame,
a cluster is any maximal set of mutually accessible worlds
(Segerberg 1970); C C W is a cluster just when wRuv for
all v, w € € and no extension £’ > C has this property.
CO*-structures consist of a totally-ordered sct of clusters
of worlds (see Figure 1).

We can use CO*-models to represent the revision of
a theory K (for a more detailed account we refer to
(Boutilier 1992b)). The interpretation of R is as follows:
wRviff vis as at least as plaustble a state of affairs as w
given an agent’s belief state K. As usual, v is more pleu-
stble than w ifl wRv but not »Rw. If v is more plausible
than w, loosely speaking v i1s “more consistent” with the
belief set K than w.

We require that those worlds consistent with our belief
set K should be exactly those minimal in B. That is,
vRw for all v € W iff M =, K. This condition ensures
that no world is more plausible than any world consistent
with K, and that all X-worlds are equally plausible. It is
just the epistemically possible worlds {those consistent
with X) that should be most plausible. Such models
are called K -revision models and have as their minimal
cluster the set ||K||. This constraint can be expressed in
Lp for any K that is finitely expressible as KB (Boutilier
1992b). This sentence is dubbed O{ A B} and is intended
to mean we “only know” KB.

Given this structure, we want the set of minimal A-
worlds to represent the state of affaira believed when
K is revised by A, since Lhese are the most plausible
worlds, the ones we are most willing to adopt, given A.
In Figure I, we have a typical K-revision model: each cir-
cle represents a cluster of equally plausible worlds, with
arrows indicating accessibility between clusters. The
minimal cluster consists of all K-worlds, and we have
K + —A. The set of minimal A-worlds is indicated by
the shaded region, and this set forms the set of “newly
accepted” worlds when K is revised by A. Thus A > B
should hold exactly when B is true at each world in
the shaded region.? This connective is definable in Ly

'R is (totally) connected if wRv or vRw for any v,w €
W (this implies reflexivity). This restriction is relaxed in
(Boutilier 1992a).

?0f course such a minimal set of A-worlds may not exist.
The definition of the connective is valid in this case as well
(Boutilier 1992b), but we ignore this circumstance here for
simplicity (see Section 3).



Figure 1: Truth conditions for the conditional

{Boutilier 1992b} and its truth conditions reduce to
ME, A>B iff min(M,A) C|iB|

It ia important to note the “global” nature of this con-
nective. If A > B holds at some world in W then it
holds at all worlds. The truth of A > B at w does not
depend on w, but on the set min(M, A).

For any A € Lcpy the belief sel resulting from revi-
sion of A by A, for a giv  model M, is

K3 ={Be€Lcps:MpE A> B). )

We can show that M satisfies the AGM postulates for
belief revision and any AGM revision operator has an
equivalent formulation as such a «™ (Boutilier 1992b).
Thus, we can use the logic CO* 1o represent the revision
of a theory KB, and reason about such a revision, in a
manner respecting the AGM posatulates,

CO* is 2 reasonable epistermic logic, as well. We can
define a belief modality B in L g (Boutilier 1992¢) reading
B(A) as “A is believed.” This sentence will hold just
when A is true at each epistemically possible (minimal)
world: M [, B(A)} iff min(M,T) C [|A] iff A € K.
We note that B behaves according to the nsunal weak S5
interpretation of belief (Boutilier 1992¢), and its truth
conditions too are “global.” For any CO*-model M, we
can define the objective belief set (or simply the belief
set) associated with it to be its propositional “beliefs”:
Def. 1 The objective belief set associated with M is

{O: ELcpr: M |= BO:},
Naturally, the belief set for any K-revision model s just
K. We will be more interested in “subjective beliefs” of
a revision model, those beliefs involving certain modal
operators {in particular, conditional beliefs).

Def. 2 The exiended belief set associated with M is
{e € Lg: M [ Ba).

For any CO*-model with belief set. K and extended belief

set K, we have X C E. While we have clear characteri-

zation of the revised belief set K%, it is less clear what

form the revised ertended set EY should take.

3 Natural Revision

3.1 The Problem of Iterated Revision

We say a model is smooth iff, for all A € Lcpz,
min(A, M) # 8. Grove (1988) shows that such mod-
els are adequate for the representation of AGM revision

functions and this result can be applied to our CQO*
model of revision directly. In what follows we assume
all CO*-models are smooth in this sense.

Suppose we have a revision model M suitable for be-
lief set K. When K is revised by A the status of an
objective belief B in the new belief set K is easily de-
termined by inspection of M. B isin K just when B is
true at all most plausible A-worlds in M. (If ED K is
the corresponding extended belief set, this simply means
A > B € E.) We can speak of K being represented by
the set min(M, A) because K contains only objective
beliefs, and corresponds to this set of worlds in a natu-
ral fashion.

It is less clear just what new subjecitve beliefs an agent
acccpls after revision by A. If mim{M, A) is the set of
worlds representing an agent’s new belief set K%, we
might hope that it captures the new extended belief set
E’,, as well. However, this view is untenable because of
the nonextensional truth conditions for conditionals and
belief sentences. Unlike an objective sentence, the truth
of a conditional A > B or explicit belief sentence B(A)
is not determined by a set of worlds. These can only be
evaluated with respect to a complete model, or ordering
of worlds, stating the relative plausibility of all worlds.
This is due to the global nature of the connectives B
and >. It should be clear that the original model M
is not suitable for this purpose. A K-revision model
is suitable for a fixed belief set only {(indeed, a fixed
extended belief set). It represents one ordering, hence
one gset of conditionals and one sel of beliefs. If we used

{a € Lg: M Ey a for cach w € min(M, A)}

as Lhe new extended belief set, one could never give up
conditionals or other subjective beliefs, though the ob-
jective component K can change drastically. When E
is revigsed by A, the CO*-model used to represent E be-
comes inadequate. This mode! is an E-revision model
and the representation of 7 requires (of course) an E%-
revision model.

What are the natural requirements on this new model?
When a propositional revision A is received, we want the
revision function * to map model M into a new model
M} that captures the revised belief set E3. Clearly,
K3 is uniquely determined by M (in particular, by
min(M, A)). Naturally, we insist that K} C E% and
that A form the eatire objective component of E%.
This simply means that M} should be a Kj-revision
model, or that K} is only known in M} (Boutilier 1992b;
Levesque 1990). The minimal cluster of worlds in M}
should be exactly min(M, A). This is illustrated in Fig-
ure 2. Let us dub this constraint the Basic Requirement
on revision functions as applied to models.

The Basic Requirement: If M is a K-revision model
then the K -revision model M3 must be such that
min(M;, T) = min(M, A).

In fact, from a purely logical perspective, this is prob-
ably all we want to say about M3 . If one changes an ob-
jective belief, it is impossible in general to predict what
becomes of one’s conditionals. This model of iterated re-
vision is captured by Gardenfors’s (1988) belsef revision
systems, although not in this semantic fashion. A severe
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Figure 2: General constraints on the revised model

drawback of such a general model is that just about all
of the ordering information, capturing an agent's condi-
tional beliefs and judgements of entrenchment, is (po-
tentially) lost in this mapping (see Figure 2). There is
something unsatisfying about this model. The ordering
relation R is intended to reflect the informational con-
tent or importance of beliefs. When certain beliefs must
be given up, it seems natural to try to keep not only im-
portant beliefs, but as much of the ordering a possible.
A revision should not usually change one's opinion of the
relative importance of most sentences.

3.2 The Semantics of Natural Revision

Instead of arbitrary mappings from M to M*s;, we will
propose a class of natural mappings that preserve as
much ordering information as can be expected. This
determines the class of natural revision functions, that
tend to preserve the entrenchment information and con-
ditional beliefs found in an extended belief set. It is
important to note that the model we propose is not com-
pletely general, for it permits only a subset of those re-
vision functions (on extended sets) allowed by the ar-
bitrary mappings above. However, it is a very natural
subset, suitable for determining the result of proposi-
tional revision sequences, or the truth of right-nested
conditionals, when the general model has little to offer.

The conditionals accepted by an agent are determined
by its ordering of plausibility. If we insist that revision
preserve as much of this ordering as possible, then, for
the most part, the relative entrenchment and plausibil-
ity of sentences (hence conditional beliefs) will remain
intact. Let M = {W, R, p} be the revision model reflect-
ing some extended belief set E. Given a propositional
revision A of E (or the associated K), we must find a
revision model M* = (W, R', ) such that R’ reflects the
minimal mutilation of R.

If w€ min(M, A), by the Basic Requirement w must
be minimal in R", and these must be the only minimal
worlds in R. For any such w the relationships wR'v
and vR'w are completely determined by membership of
v in min(M, A), independently of their relationship in R.
Figure 2 illustrates this. For w, v not in min(M, A), this
picture leaves wR v completely unspecified. If R is to be
left intact to the largest possible extent then the most
compelling specification is to insist that vR'w iff vRw.
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Figure 3: Natural revision of a model

This has the effect of leaving R unaltered except as in-
disputably required by the Basic Requirement. Such a
move is illustrated in Figure 3. We dub such a map-
ping on revision models the natural revision pperaior,
and now describe the revision function it induces on the
associated belief and extended belief sets.

Def. 3 Let M = (W, R, p) be a revision model. The
natural revigion operaior » maps M into My, for
any A € Lcpy, where M = (W, R', )}, and: a} if
v € min{M, A) then wR'v for all w € W and vR'w
iff w € min(M, A}; and b) if v,w ¢ min(M, A} then
vR'w iff vRuw.

Def. 4 Let E be the extended belief set associated with
the revision model M. The natural revision function
associated with M is +, defined for all A € Lopy as8:
E, ={B€eLs: M} EB(B)}

Let K C E be the objective part of E. The natural
revision of K, K, 18 the restriction of E to Ly,
K3 ={B €LcpL: M}  B(B)}

Clearly, the natural revision function is simply the
AGM operator determined by M, when restricted to K.

Proposition 1 Let M be a K-revision model. The
AGM function +™ anrd the natural revision function « de-
termined by M are identlical (when restricted to Lopr).

Notice that this extends the AGM model of revision. The
revised extended set E is defined using the updated re-
vision model M} and incorporates non-objective beliefs,
such as conditionals and nested belief sentences. Had we
simply defined E%, to be those sentences true in M at the
minimal A-worlds, we would have run into the problem
discussed in Section 2, namely the fact that a model M
can only model a fixed set of beliefe and conditionals.
If we are to extend the Ramsey test to include nested
conditionals, the truth conditions for statements A > §
must be recast in this framework. For M to satisfy A >
B, we must have 8 £ £ for the natural revision function
#. For § € Lopg these truth conditions will be identical
to those provided in Section 2. Thus, our new truth
conditions for > based on the Ramsey test will form a
“conservative extension” of the old definition. However,



for atbitrary # € Lp, especially sentences like B > C,
the meaning of > given in Section 2 is inadequate since
it refers to truth at worlds in min(M, A). To evaluate
A> (B > C) we must test B > C in Mg, not at
min(M, A). The connective > must be introduced as
primitive. The conditional language L is the extension
of Lg with primitive connective >. We have, for A €
Lcpr and B € L,

MEwA>B if M) [EB(B) )

Now we have a conditional connective whose truth con-
ditions are specified directly by the Ramsey test. While
this certainly provides us with a new logic, (seemingly)
requiring & new axiomatization, we will soon see that
these truth conditions can, in fact, be captured in the
bimodal language using only the original version of the
connective > (defined in Lg).

Notice that the truth of 4 > B is unspecified for
A & Lcopr. Natural revision functions are suitable only
for sequences of propositional revisions. Only the right-
nesting of conditionals is meaningfully sanctioned in this
framework, e.g., A > (B > ) where A, B,C € L¢pr.
A sentence {A > B) > C has an unspecified truth value
for it asks if C is believed when a knowledge base is re-
vised to include A > B. This framework dces not spec-
ify how to revise a knowledge base with non-objective
sentences, though this problem is addressed within the
natural framework in {Boutilier and Goldszmidt 1993).

3.3 Properties of Single Revisions

In this section, we examine the behavior of the natural
revision model when a single propositional revision is
effected. We assume throughout that we have a revision
model M determining a belief set K and extended set
E. Natural revision is intended to change as little of
the ordering information R as posaible; consequently, as
many conditional beliefs as possible should be retained in
the move from E to E%. We now examine the structure
of E% and show that this is indeed the case. Since we
are only interested in single revisions at this point, we
restrict our attention to the stmple conditionals in EY,
of the form B > C where B,C € Lcpr. We note:

Proposition 2 Let M be a K-revision model where A €
K. Then M3 = M.

Updating by a sentence already in a belief set not only
causes no change in the belief set K, as required by the
AGM postulates, but also leaves the revision model M
(and the extended set E) intact.

Suppose we revise a belief set X C E by A as specified
by model M. We wish to determine the set of condition-
als B > C contained in the revised extended set E5,. We
consider two cases, +B ¢ K} and -B € K.

Consider the first situation where ~B ¢ K ; that is,
M [= (A > —B). This means that there is some B-
world among the set min(M, A) of minimal A-worlds in
M (the shaded region of Figure 3). Clearly then we have
that min(M3,B) = min{M, AAB);s0 M EB > C
iff M E AAB > C. Therefore, whenever K) i -8B,
a conditional B > C isin E} if AAB > Cisin E.
Notice that the status of B > C in E has no bearing
on its acceptance or rejection in E}. Thia behavior is

exactly in accordance with the AGM postulatea (K*7)
and (K*8). Any AGM revision function must ensure that
subsequent (iterated) consigtent revisions are treated in
the same manner as uniterated consistent revisions (i.e.,
a8 expansions).

The second situation arises when ~B € Kj; that
is, M F A > —~B. When K (or E) is revised by A,
=B is in the resulting belief set. This is true exactly
when no B-world is contained in min{M, A) (again, the
shaded region). Now, M3 = B > C just in case the set
min(M}, B) contains only C-worlds. Since ~B € K%,
the set min( M}, B) is not contained in the minimal clus-
ter of M. However, all worlds outside the minimal clus-
ter stand in exactly the same relation as they do in M.
Therefore min(M}, B) = min{M, B) and it follows that
M;EB>Ciff M B> C. For conditionals B > C
whose antecedents are not made plausible by the accep-
tance of A (i.e., K ¥ =B}, B> Cisin E, iff B> C
i8 in E. Since nothing forces the conditional to be aban-
doned when A is accepted, it is retained. We can sum-
marize these considerations in the following theorem and
equivalent corollaries.

Theorem 3 Lel M be @ revision model, let » be the nat-
ural revision operator and let A,B,C € Lepy. (a) If
MlB-Bthen M EB>CiffMEB>C. (b)) If
M, EB-Bthen MiEB>Ciff MEAAB>C.

Corollary 4 {a} If K3+ B then C € (K})p if C €
Ky. (6) If K3 ~B then C € (K3)%5 f C€ Kyup.

Corollary 5 (a) fA>-B€ E then B> C € E}, iff
B>CeE. (b)IfA>~BgE then B>C € E5 iff
AAMB>CcE.

These results precisely characterize the conditionals
that will be preserved in a revised extended belief set.
Each shows that the sentences accepted in the new revi-
sion model or belief state can be determined by appeal
to the original model or belief state. Theorem 3 shows
that the conditional belief set captured by M} can be
determined by the conditional beliefs of M. Further-
more, it demonstrates that natural revision preserves as
much conditional information in the revised belief set
as is consistent with the AGM postulates. The condi-
tionals removed from E when constructing E‘:‘ are only
those compelled by postulates (K*7) and (K*8). These
are just those conditionals B > ' whose antecedent B
is consistent with K3. This is reflected in clause b} of
the theorem. However, as indicated by clause a}, the re-
maining set of conditionals (or negated conditionals) in
E coincides precisely with the conditional information
in the original extended set E. Thus, no AGM revi-
sion function could preserve more conditicnal informa-
tion than the natural revision function.

Corollary 4 shows that the sequence of two revisions
applied to K can be reduced to a single revision, requir-
ing no iterated revision, and that the test to establish
which condition holds also requires no iterated revision.
Similatly, Corollary 5 shows that the revised extended
belief set E% and the nested conditionals in £ are deter-
mined by the unnested conditionals in E. These prop-
erties play a vital role in our characterization of revision
sequences in terms of single updates.
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3.4 Revision Sequences

For any revision sequence A;, ...A,, let us say that
revision Ay is compaiible within the sequence if it con-
sistent with the result of previous revisions, i.e, if -4, ¢
((K%,)4, - Va..,- The sequence is compatible if each
element Az, ... A, is compatible. In the previous sec-
tion we saw that a two-element sequence can be reduce
to a single propositional revision: (K3)p = K3.p if
B is compatible with A, and (K%)p = K if B is in-
compatible. This &nalyam can be extended to arbitrary
sequences as well, allowing us to compute single revisions
that characterize revision sequences'

Def. 5 Revision sequence A;, ... A, is characlerized by
the sentence o iff ((K‘,h)m=| Ja. = Ka-

Due to space limitations, a detailed motivation and anal-
ysis of the following definitions and results cannot be
provided. We refer to the full paper (Boutilier 1992d).

We first note that compatible sequences are reducible
to single updates.

Theorem 6 If A;, ... A, s
(K3, Y. = Kinoan

We also note that a sequence is compatible iff K3 V/
—(A3 A ---A,). We should note, however, that
while the objective set ({(K3 )}, )4, is the equiv-
alent to K3 , 4., this is not true for the revi-
sion model ((M A;) %, " Ya. or the extended belief set
((EX, Ve, )a,- The revised model is constructed by
first moving the set min(M, A;) to the bottom of the
model, then moving the set ﬂ'sm,(}l'fﬂl A3z) to the bot-
tom and so on. Because the sequence 18 compatnble the
final minimal cluster is precisely min(M, Ay A---A,) as
it would be in the model M3 .. , . However, in the
model ((M3 )4, - )a, €ach revision has left a “resid-
ual trace” on the model (Boutilier 1992d} with as many
as n new clusters added to M, whereas M} , , has
only one new cluster. This compllcatea somewhat our
analysis of incompatible revisions.

Suppose that an incompatible revision A,..H is added
to this sequence. Since —Any1 € (M, )%, )i, the
set min(((M3 )%, )4, Ans1) does not lie within the
minimal cluster of ((M7 )%, )% . Furthermore, for
any £ < n, if the sequence A,,... Ay, Any1 is not
compatible, then no A,4;-worlds can lie in the cluster
formed when revision by A, took place (nor for any 4;,
i > k). However, if Ay,... A, An4y 18 compatible, some
Any1-world must lie within the cluster of A; A -+ - Ag-
worlds representing K} .. .4,-

For any revision A; in the sequence A;, ... A,, its most
recent compatible revision is defined as the A, & < j,
such that

k=max{i:{< jand -4; ¢ ((K;.):I; " ):I.}

This is the most recent revision (before A;) in the se-
quence that did not force rejection of A;. If A; is com-
patible in the sequence, then clearly A;_; iz its most
recent compatible revigion. If the set above is empty, we
say A; has no such compatible revision.

Theorem 7 Let A;,...Ap be a revision sequence with
onc incompatidle update A,. Then (K3 )y, - )a. =

compatible then
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K} A-aan, where Ay is the most receni compati-
ble updatc Yor An. If there is no such Ay then
(K3,)a. )a. = Kao-

Thus, we need only look back to find the most recent
revision that allows the “possibility” of A,, and conjoin
An to its characterizing sentence. Putting together The-
orems 6 and 7 with the obvious inductive argument on
the pumber of incompatible updates, we obtain the main
result of this section.

Theorem B For any revision sequence A;,...A,,
there is some subset § C {Ay, - -,An} such that

(K3, ), " Ya, = K3 and A=AS.
Corollary 9 For any revision sequence A;,... A,, there
is some subsel of these updates S C {A;, -+, A,} such

that ((Ey )a, -
A= AS.

This result is given its constructive characier by The-
orem §, but it seems to suggest that one must keep track
of a characterizing sentence s{A;} for each subsequence
Ay, ... Ai. In fact, the critical sentences are only those
corresponding to incompatible revisions in the sequence.
Every other characterizing sentence s(A;) is simply the
conjunction of subsequent revisions to the most recent
incompatible revision (Boutilier 1992d). Taken together,
these theorems show that one may implement a pro-
cedure that tests for membership of B in a multiply-
revised belief set ((K3 )%, ---)%. using only an “oracle”
that answers requests of the form “Is # € K.7" for
a, B € Lcpy. Furthermore, the characterizing sentences
#(A;) that need to be recorded are only those captur-
ing some incompatible revision (see the full paper for
thig algorithm). In essence, iterated revision can be ac-
complished virfually, without having to construct the se-
quence of new belief sets, and without having to change
the ordering of entrenchment or plausibility associated
with K. One need only find the appropriate character-
istic sentence, and test a simple conditional belief with
that antecedent.

Ya FA>BIfEE A> B, and

4 Concluding Remarks

We have presented a model for belief revision that ex-
tends the AGM theory in & manner that accounts for
iterated revision. The natural revision model preserves
the maximal amount of conditional information, and has
the property that the result of any revision seguence can
be calculated using only the AGM revision function on
the original belief set K. This reduction is bears some
resemblance to suggestions in the literature equating 2
nested conditional A > (B > C) with AAB > C (Adams
1975; Levi 1988). If A and B are compatible this is pre-
cisely the behavior of natural revision. If A and B are
incompatible, our model behaves differently, allowing a
sentence like A > {(=A > C) to have meaningful truth
conditions. But it also extends this idea to “defeasibly,”
not just logically, incompatible sentences.

Another important property of natural revision, re-
flecting its commitment to information preservation is
the following (see (Boutilier 1992d)):



Theorem 10 Let M be & K-revision model and
Ap,...A, a revision sequence. If i < 3 then
((Kil);g " .);j ¢ ((K;.l);.g T ').A"

Thus, a revision sequence A, An causes a non-
decreasing change in "information" in a belief state. No
belief set further along in the revision sequence can be
smaller than an earlier belief set. This suggests that, as
we process a revision sequence, our revision model be-
comes more and more informationally complete. Given
"enough" revisions, a model approaches the point where
each cluster becomes a single world (since clusters are
only broken apart by revision, not put together)- then
K and K*, become complete theories.

We need not have complete information to reason
about natural revision. From a set of premises we can
reason in CO* about "constraints" on natural revision,
without perhaps determining complete theories. How-
ever, there are methods of "completing” an incomplete
set of conditionals, for instance, Pearl's (1990) System
Z. In (Boutilier 1991) we show how such a completion
can be expressed compactly in CO*. In the full paper,
we show that if a revision model has a finite number
of clusters each corresponding to a propositional theory
(as in System Z), then only propositional (sometimes
tractable) inference is required to compute natural revi-
sion.

Extensions of this work we are currently exploring in-
clude the application of this model to more quantitative
types of conditionals (e.g., probabilistic degrees of belief
and the J-conditionalization of (Goldszmidt and Pearl
1992)). We are also looking at applications to diagnosis,
where a stream of observations must be reconciled with
expected knowledge. Simply conjoining observations is
not feasible if they conflict. Planning also requires a no-
tion of revision as an agent must change its beliefs in
response to new information, and changes in the world,
requiring that we account for belief update (Winslett
1988; Katsuno and Mendelzon 1991). Finally, arbitrary
nesting is explored in (Boutilier and Goldszmidt 1993),
where we extend natural revision to include new condi-
tional information, how one can revise an extended belief
set to include new conditional information A > B.
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