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1. Let’s understand dogmatism about perception to be the view that we sometimes 
have immediate but defeasible justification to believe things are as they perceptually 
appear to us. That is, we have some justification that doesn’t “come from” our 
justification to believe other premises. When one has any justification of that sort, I’ll say 
one has dogmatic support for the relevant beliefs. 

Dogmatism is a claim about a possible epistemic position, not about the 
metaphysics of what puts us in that position. So, for example, it leaves it open whether 
the intrinsic nature of a perceiving subject’s state is the same as that of a hallucinating 
subject’s state. 

Further, dogmatism claims only that there is an epistemic position of the sort 
described, that we sometimes occupy. It leaves it open exactly which subjects are in this 
epistemic position. Is the dogmatic support available only to those whose perceptual 
appearances are reliable? Is it available only when one’s perceptual appearances 
constitute genuine perceptions? Or is it, rather, available only when one’s appearances 
don’t constitute genuine perceptions—whereas subjects who are perceiving are in better 
epistemic positions? I have views about these questions, but I’ve defined dogmatism so 
as to leave them all open. 

Similarly, I’ve left it open what conceptual resources are needed, for one to have 
dogmatic support to believe anything. 
 
2. In my earlier defenses of dogmatism, I operated in terms of having or lacking 
justification for all-out belief. I did characterize dogmatic support as prima facie, able to 
be opposed or undermined by other evidence. The idea of opposing already suggests that 
justification comes in degrees. But I never said how dogmatism should be understood 
when we’re working explicitly with degrees of justification, or justification for degrees of 
belief. Ultimately, I do think we should be prepared to work with those notions. 
 Are degrees of justification and justification for degrees of belief the same? It’s 
not obvious that they should be. And even if they are the same, it’s not obvious that what 
they come to should be the standard probabilistic story about degrees of belief that 
Bayesians employ. However, that is a reasonable place for us to start. If we need to alter 
the standard picture, we can discover that as we proceed. 
 Now, Bayesians construe updating as a matter of becoming certain that some 
hypothesis is true. And dogmatists will insist that perceptual updating needn’t involve 
becoming certain of anything. One might not have any opinion about what experiences 
one is having. Instead of updating on hypotheses about one’s experience, the dogmatists 
will say we should update on the mere having of the experiences. 
 I’m sympathetic to this complaint, but perhaps we can work around it. Let’s 
restrict our attention to subjects who both have, and are conscious of having, experiences 
of the sort that are alleged to provide dogmatic support. These reflective subjects are 
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presumably no worse off than subjects who have no opinions about their experiences. So 
it will be worthwhile to consider how the dogmatist will model their epistemic state. 
 For convenience, I’ll refer to experiences that provide dogmatic support as just 
“experiences.” I hope, though, to leave the questions we started with open. For all the 
definitions say, there may be phenomenological duplicates of subjects with dogmatic 
support, who don’t themselves have dogmatic support. For expository convenience, I 
exclude their states from what I’ll refer to with “experience.” 
 Even when subjects are aware of what experiences they’re having, the dogmatist 
will still be uncomfortable with a Bayesian conception of perceptual updating. The 
Bayesian story invites understanding one’s confidence about the world as only mediately 
justified, that is, supported in part by premises about what experiences one is having. 
Claims about how mediate one’s justification is aren’t part of the official Bayesian story, 
but as we’ll see, this is what the official story most naturally models. We’ll have to do 
some work to develop a model where one’s confidence about the world can be 
immediately justified, though still defeasible. 
 
3. What hypotheses do get dogmatic support? In my earlier work, I said that 
experiences as of P gave one immediate but defeasible justification to believe P. In the 
formal discussion we’ll have below, I’ll have experiences in the first place providing 
dogmatic support to the hypothesis that you’re, by having those experiences, thereby 
perceiving something to be the case. The effect on hypotheses about how things simply 
are in the world, regardless of whether you’re perceiving them, will be epistemically 
downstream. It’s natural to think that being an “epistemically downstream effect” 
amounts to the same thing as being a “mediately justified consequence.” If so, then the 
view I develop here will be that hypotheses about how things simply are in the world are 
only mediately justified. What gets immediate support are hypotheses about how you are, 
by having certain experiences, now perceiving things to be. 
 This may still fit the letter of my earlier work. One way for it to do so would be if 
the contents of experiences were self-referential claims about what those experiences 
constitute perceptions of. That is, if the P such that the experience is as of P is: by having 
this experience, I’m now perceiving Q to be the case. That P is the kind of proposition 
our formal treatment will allow to be dogmatically supported. Alternatively, one might 
try to pull apart the notions of being an “epistemically downstream effect” and being a 
“mediately justified consequence.” I will not attempt here to settle this. 

I trust that, even if the view I develop below violates the letter of my earlier 
proposals, it’s still true to their spirit. Hypotheses about what one’s perceiving to be so 
are also claims about the world.1 

                                                
1  Remember that we’re talking explicitly about subjects who are aware of the 
experiential source of the dogmatic support they’re acquiring. I’m modeling them as 
being such that their epistemically most upstream uptake is that they’re now perceiving Q 
to be the case. I don’t know how to model subjects who get justification from their 
experiences without being aware that they’re doing so. But I think there are many such 
subjects. 
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I’ll say that a hypothesis U undermines the dogmatic support an experience gives 
you to believe you’re perceiving Q iff U entails that you have that experience but aren’t 
perceiving Q. (In Pryor 2004, I called these “non-perceiving hypotheses.”) Hypotheses 
whose truth would merely make it to some degree likely that you’re having the 
experience, but not thereby perceiving, don’t count as underminers in this technical 
sense—though evidence for them may manage to raise the likelihood of U, and thereby 
have epistemically downstream undermining effects. 
 
4. Let PERC be the hypothesis that you are, by having some experiences η that 
dogmatically support PERC, now perceiving that Q. Let E be the hypothesis that you are 
having—or will have, I will ignore issues of tense—those experiences η. Though the 
experiences dogmatically support the claim that you’re perceiving, they’re also 
compatible with your not perceiving. Let U be a hypothesis that says you have η but 
aren’t thereby perceiving. So U is an underminer for the support that η gives you to 
believe PERC. Finally, suppose you’re not yet certain you’ll have η. 

Now standard probability theory tells us that: 
(Theorem 1) p(U|E) > p(U).2 

Since PERC entails not-U, another theorem of standard probability theory is that 
p(PERC|E) ≤ p(not-U|E). Since Theorem 1 is equivalent to p(not-U|E) < p(not-U), it 
follows that: 

(Theorem 2) p(PERC|E) < p(not-U). 
These two theorems relate static quantities. The Bayesian understands them to have 
dynamic upshots: first, updating on evidence E should make one more confident that U, 
not less; and second, one’s posterior confidence in PERC, after updating on evidence E, 
should never exceed one’s prior confidence in not-U. 
 This seems to pose two challenges to the dogmatist. We need to proceed 
cautiously, though, since it’s not yet clear what the probabilistic commitments of 
dogmatism are. 
 The first challenge arises like this. The dogmatist says that having η tends to 
support PERC in some way that it doesn’t also tend to support U. It has some kind of bias 
towards PERC. Since PERC is incompatible with U, that suggests that updating on the 
hypothesis that you’ve had η should tend to justify you in believing not-U. (And indeed, 
I’ve argued that, in the right conditions, an experience as of hands will give you 
justification to believe you’re not a handless brain in a vat; see Pryor 2004.) However, 
Theorem 1 says that p(U|E) is higher that p(U). If we accept the Bayesian construal of 
“justifying” as “probability raising,” it follows that E justifies U rather than not-U. One of 
these views must be wrong. Roger White puts the Bayesian viewpoint like this: 

                                                                                                                                            
 Neither do I know how to model subjects who are aware of their experiences but 
who have false beliefs about their epistemological effect. But as I discuss in Pryor 2004 
and Pryor Wright festschrift, I think there are subjects of this sort, too. 
 
2  Proof: p(U|E) = p(E|U)p(U)/p(E). Since U entails E, p(E|U) = 1. Since you’re not 
yet certain of E, p(E) will be < 1. It follows that p(U|E)>p(U). 
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Dogmatism has the consequence that when it appears to me that there is a 
hand before me, I can gain justification, perhaps for the first time, for 
believing that it is not a fake-hand, that I am not a brain in a vat, and so 
on. Now if I gain justification for a hypothesis, then my confidence in its 
truth should increase. But arguably when it appears to me that something 
is a hand, my confidence that it is not a fake hand should decrease. For 
since this is just what a fake-hand would look like, the degree to which I 
suspect it is a fake should increase.3 

The second challenge goes like this. The dogmatist says that η can justify you in 
believing PERC even if you’re not antecedently justified in believing not-U. But 
Theorem 2 puts an upper cap on the amount of justification you can get for PERC. It says 
that the hypotheses that you’ve had η can only raise your justification to believe PERC to 
a given level if you’re already justified above that level in believing not-U. Here again is 
White: 

…p(Q|E) < p(not-U). So its appearing to me that this is a hand can render 
me justifiably confident that it is a hand, only if I am already confident 
that it is not a fake-hand.4 

 These two challenges make the following assumptions: 

(a) Degrees of belief should conform to standard probability theory, and so 
should validate Theorem 1 and Theorem 2. 

(b) The justificatory effects of having η, at least for a subject who’s aware of 
and certain that she has η, should be the same as Bayesian 
conditionalizing on the hypothesis that she has η. 

(c) Updating on E cannot justify a hypothesis if its effect is to lower that 
hypothesis’s probability. 

(d) If E can justify PERC to a given level only when you’re already justified 
above that level in believing not-U, then your justification to believe 
PERC does require antecedent justification to believe not-U. 

 I have doubts about all four of these assumptions. 
The doubts about (a) will emerge below (in §§5–7, and §§15–18). 
I already voiced some uncertainty about (b) in §2. In the formal model I develop, 

it will be useful to press dogmatic support into the mold of updating on a hypothesis; but 
as we’ll see, the updating will be best understood to be non-Bayesian. 

I won’t pursue my doubts about (c) here, except to point out that (c) is 
incompatible with the intuitive thought that any justification to believe P&Q should count 
as some justification to believe Q. For we can raise the probability of P&Q while 

                                                
3  White 2006, 531. 
4  White 2006, 534. I’ve substituted my hypothesis-names for White’s. His passage 
concerns the probability of Q, rather than the probability of PERC (=I am now perceiving 
that Q). But the claims he makes apply to both hypotheses. 

See also Schiffer 2004, Silins ??, and Wright forthcoming.  
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lowering the probability of Q. There’s a clash of intuitions here, and I think they need to 
negotiate more with each other.5 

As to (d), the dogmatist’s central thesis concerns justificatory dependence. By 
contrast, Theorem 2 is about an upper bound on how much your experience can justify 
you in believing PERC. It’s not clear how those issues are connected. The fact that we 
use “already” in the antecedent of (d) and “antecedent” in the consequence seems to me 
to invite more confusion than illumination. It’d be wrong to identify the epistemic 
phenomenon the dogmatist is arguing for with a violation of Theorem 2. Dogmatic 
support is supposed to be present to some degree even in the perceptual updating of 
subjects who do have excellent evidence that not-U, and so don’t violate Theorem 2. 

White understands the dogmatist as at least committed to the possibility of 
violating Theorem 2; and this will turn out to be correct. But that commitment isn’t easily 
read off of our present formulations of dogmatism. It will take a lot of work to unearth it. 
And I hope that work will simultaneously have the effect of making (a) and (b) look less 
compulsory. 
 
5. It’s difficult to know what the probabilistic commitments of dogmatism are 
because dogmatism is stated and motivated using vocabulary that has no easy translation 
into the standard probabilistic model. The two most important pieces of vocabulary are 
the notions of agnosticism and of undermining defeat. 
 By agnosticism I mean the kind of doxastic attitude that’s an appropriate 
response to a lack of evidence. This is different than epistemic indifference, which can 
be appropriate even when one has a great deal of evidence on either side. Epistemologists 
should be careful not to conflate: 

(i) subjects who have no doxastic attitude at all towards an undermining 
hypothesis U, e.g. because they can't entertain U; 

(ii) subjects who do entertain U, but are wholly uninformed about it, and so 
agnostic; and  

(iii) subjects who think U is as likely as not, in response to a great deal of 
evidence on either side that balances out that way, or in response to 
knowledge that U has a 50% objective chance. 

I’ve discussed subjects in situation (i) elsewhere.6 In the present discussion I will set 
them aside. We’ll assume that our subjects always have some doxastic attitude towards 
the undermining hypotheses we consider. That leaves subjects who are in situation (ii), or 
situation (iii), or at points intermediate between them. 
 As I’ve developed dogmatism, it makes very different proposals about situation 
(ii) and situation (iii). It says that the immediate justification your experiences give you 
isn’t defeated or undermined by the mere epistemic possibility that U—by U’s failing to 
be conclusively ruled out by your evidence. But evidence that you’re in U does 
undermine. This suggests that any confidence you have in U that’s not based in evidence 
should have no undermining effect. So the confidence you have in U prior to acquiring 
any evidence must interact differently with your perceptual justification than the 

                                                
5  Part of the problem is that the Bayesian is thinking about all things considered 
justification, whereas the intuitive thought need not be. 
6  Pryor 2004, Pryor Wright festschrift. 
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confidence you base on evidence. We need to keep track of how much of your confidence 
is a response to evidence and how much is a leap in the evidential dark. The standard 
probabilistic framework gives us no guarantee of being able to untangle those. 
 In his critique of dogmatism, White describes a game where three cards are 
labeled “Leave his hands alone,” “Cut off his hands,” and “Cut off his hands and replace 
them with plastic replicas.” Your captors anesthetize your arms and put you to sleep, then 
draw a card randomly and carry out its instructions. You awaken and seem to see hands. 
White claims that at this point your probability that you do still have hands should be ½. 
I’m disposed to agree with him, because this sounds like a case where you know that the 
objective chance of your having hands, given that you seem to see hands, is ½. This 
knowledge comes from your evidence about the situation. Dogmatism only gives a 
contrary verdict when subjects don’t know what the objective chances are, and their 
views about how likely their experiences are to be perceptions are based on incomplete 
evidence. White says: 

The only apparent difference between the card game and an ordinary case 
of judging whether someone has a hand is the following. How we ought to 
distribute our credence among the possibilities seems more 
straightforward in the card game… In a regular case it is not so clear what 
the relative plausibility of these hypotheses is. But this does not appear to 
make any difference to how our convictions should be altered in the light 
of experience.7 

However, this last claim is exactly what dogmatism as I’ve developed it denies. In fact, it 
was my guiding thought in developing dogmatism that confidence based on evidence and 
confidence (or any doxastic attitude) not so based should be epistemically different. 
 So we need to settle on some formal representation of this difference, even to be 
able to state the distinctive claims of dogmatism. 
 
6.  Keynes drew something like the distinction I’m drawing. He used “risk” to 
designate evidentially-based confidence that falls short of certain knowledge. He used 
“uncertainty” to designate something like lacking an evidential basis for confidence. He 
explains this latter notion like this: 

By ‘uncertain’ knowledge, let me explain, I do not mean merely to 
distinguish what is known for certain from what is only probable. The 
game of roulette is not subject, in this sense, to uncertainty; nor is the 
prospect of a Victory bond being drawn. Or, again, the expectation of life 
is only slightly uncertain. Even the weather is only moderately uncertain. 
The sense in which I am using the term is that in which the prospect of a 
European war is uncertain, or the price of copper and the rate of interest 
twenty years hence, or the obsolescence of a new invention, or the position 
of private wealth owners in the social system in 1970. About these matters 
there is no scientific basis on which to form any calculable probability 
whatever. We simply do not know.8 

                                                
7  White 2006, 536. 
8  Keynes, “The General Theory of Employment,” Quarterly Journal of Economics 
51 (1937) 209-23. Reprinted in The Collected Writings of John Maynard Keynes, ed. DE 
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One common refinement to Bayesianism is to model doxastic states with sets of 
probability functions, rather than single probability functions. (Commonly, they’re 
required to be convex sets.) Then one’s credence in a proposition can be more or less 
spread out, as well as being more or less high. That may help us model the kinds of 
evidentially ungrounded agnosticism that Keynes describes. However, we should contrast 
that use of sets of probability functions from their use to model imprecision in one’s 
confidence. I don’t think they can play both of these explanatory roles at the same time. 
 
7. The second important notion for the dogmatist is the notion of undermining 
defeat. Dogmatists don’t just think that immediate perceptual justification can be 
defeated; they think it can be undermined. Intuitively, that’s the kind of defeat that says, 
not that your environment is some way other than it appears, but rather that you’re not in 
a position to perceptually tell what your environment is like. 

This notion has been formulated under different names by a variety of theorists in 
a variety of contexts.9 It’s difficult to explain what it amounts to in Bayesian terms. I 
don’t mean that the Bayesian can’t represent the defeating that goes on in paradigm cases 
of undermining; but rather that it’s difficult for him to identify what makes them 
undermining. The Bayesian will regard any kind of defeating evidence as increasing the 
confidence you should assign to your environment’s being other than it appears. 
Moreover, any evidence that makes it more likely that things are other than they appear 
should increase the likelihood that your earlier evidence is unreliable. So it seems like 

                                                                                                                                            
Moggridge, (London: Macmillan), vol 14, pp. 109-23, at pp. 114-15? Thanks to Brian 
Weatherson for bringing this article to my attention. 
 
9  The earliest sustained discussion I know is John Pollock, Knowledge and 
Justification (Princeton Univ. Press, Princeton, 1974), Ch. 2 and 5. But I think it was 
already then common to distinguish between skeptical scenarios that are incompatible 
with the truth of what you purport to know, and scenarios that are merely incompatible 
with your knowing it. The notion of undermining defeat may already be implicit in the 
attempt to assign that contrast any significance. 

Here’s a sampling of other sources: John Pollock, “Reliability and justified 
belief,” CJP 14 (1984); John Pollock and Joseph Cruz, Contemporary Theories of 
Knowledge, 2nd ed. (Rowman & Littlefield, Totowa, NJ, 1999), pp. 195-97; William 
Alston, “An internalist externalism,” Synthese 74 (1988), reprinted in Epistemic 
Justification (Cornell Univ. Press, Ithaca, 1989), 237-45, at p. 238; Crispin Wright, 
“Strict finitism,” Synthese 51 (1982), reprinted in Realism, Meaning and Truth, 2nd ed. 
(Blackwell, Oxford, 1993), 107-75, at pp. 117-20; Crispin Wright, “Rule-following, 
meaning and constructivism,” in Charles Travis, ed. Meaning and Interpretation 
(Blackwell, Oxford, 1986), 271-97, at pp. 290-1; Crispin Wright, “Skepticism and 
dreaming: imploding the demon,” Mind 100 (1991), 87-115, at pp. 94-95; Stewart Cohen, 
“Knowledge, context, and social standards,” Synthese 73 (1987); Alvin Goldman, 
Epistemology and Cognition (Harvard Univ. Press, Cambridge, Mass., 1986), Ch. 4; and 
Robert Audi, The Structure of Justification (Cambridge Univ. Press, Cambridge, 1993), 
pp. 142-44. 
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he’d regard defeating evidence as on a par: it all tends to confirm opposing alternatives, 
and it all tends to confirm that your initial justification was unreliable. There may be 
more subtle ways for a Bayesian to capture the intuitive notion of undermining. (One of 
my students, Matt Kotzen, has a proposal.) But it will take some care; especially if we 
want to model the facts that some evidence undermines more than others, and that much 
evidence is a mix of undermining and opposing components. 

I do think the Bayesian will be able to give some account of the intuitive notion of 
undermining. He may not be able to model everything we want to say informally with 
this notion, but I expect he’ll be able to go some distance. What primarily worries me is 
not how much the Bayesian will be able to say, but rather what he will say. I expect him 
to tell us that undermining always works like this: 

When you get evidence E, you also get defeasible support to believe Q, 
because of your prior confidence in some hypothesis about how E and Q 
are reliably linked. Undermining the support E gives you to believe Q is 
just getting evidence that should lower your confidence that E and Q are 
so linked. 

Now, no doubt we often are in epistemic positions of that sort. But what this sounds like 
is a case of undermining justification for Q that was mediated by a belief about how E 
and Q are linked. It’s central to the dogmatist’s thinking that undermining needn’t always 
be mediated in that way. The dogmatist says you can undermine justification for Q even 
when that justification is immediate. Perhaps that will have the consequence, if you’re 
aware that E describes the source of your justification, that you should be less confident 
that E and Q are linked. But it seems wrong to identify your weaker confidence in a 
linking belief as the mechanism through which your justification for Q is eroded. It 
should be possible to directly undermine the immediate justification you have for Q, 
without opposing any premise that supports Q for you. 
 The Bayesian doesn’t say this is impossible. Officially, he doesn’t say anything 
about relations of mediacy or justificatory dependence. But neither does his formalism 
offer anything that looks like an intuitive model of direct undermining. This is another 
reason why it’s hard to see how exactly to translate the dogmatist’s distinctive claims into 
the standard Bayesian picture. 
 
8.  Let’s make a fresh start. I propose to model epistemic states as a combination of  
two parts: a mass distribution, which changes as the subject acquires new evidence, and a 
range of inheritance plans, which does not change. 
 What is a mass distribution? Let W be a finite space of hypotheses, and call W’s 
most determinate epistemically possible hypotheses its “atoms.”10 For illustration, let’s 

                                                
10  Formally, W is a finite σ-algebra on some partition Ω of epistemic possibilities 
(that is, a finite set of Ω’s subsets including Ω and closed under complementation and 
union). W’s atoms are its minimal non-empty elements. I will designate non-atomic 
elements of W like {a,b} as a∨b. 
 I do not know whether there are obstacles to extending the formal model I set out 
below to infinite hypothesis spaces. 
 



 9 

say W has four atoms: a, b, c, and d. Since these are W’s most determinate hypotheses, 
they are jointly incompatible. W will contain 24 hypotheses altogether: 

a∨b∨c∨d 
a∨b∨c a∨b∨d a∨c∨d b∨c∨d 
a∨b a∨c b∨c a∨d b∨d c∨d 
a b c d 
∅ 

That’s as fine-grained as W represents the world. Hypothesis a∨b∨c∨d is represented by 
W to be epistemically certain; let’s designate this hypothesis ⊤. ∅ is epistemically 

impossible; let’s designate it ⊥. 
 I’ll say that i is a subhypothesis of h when i ⊆ h. For example, a and b and a∨b are 
each subhypotheses of a∨b. 
 A mass distribution on hypothesis space W is an assignment of reals to each 
hypothesis in W, such that: (i) ⊥ is assigned 0, (ii) every other hypothesis is assigned a 
real ≥ 0, and (iii) all the assignments sum to 1. For example, here is one mass 
distribution: 

⊤  
1/3 
 

a∨b∨c 
0 

a∨b∨d 
0 

a∨c∨d 
0 

b∨c∨d 
0 
 

a∨b 
1/3 

a∨c 
0 

b∨c 
0 

a∨d 
0 

b∨d 
0 

c∨d 
0 
 

a 
1/6 

b 
1/6 

c 
0 

d 
0 
 

⊥  
0 

 
The amount a distribution assigns to a hypothesis is that hypothesis’s specific mass, or 
mass for short. In the example above, a∨b has a specific mass of 1/3. I’ll write that as: 

m(a∨b) = 1/3. 

A hypothesis’s cumulative mass is the sum of the specific masses of all its 
subhypotheses. In our example, a∨b has a cumulative mass of 1/3 + 1/6  + 1/6  = 2/3. We 
won’t need to talk about these much; specific masses are more fundamental to what we’ll 
be doing. 

Intuitively, what h’s specific mass represents is the amount of evidentially-based 
confidence one’s epistemic state recommends specifically in h, and not in any of h’s 
more determinate subhypotheses. So a pre-evidential epistemic state—one prior to the 
effects of any evidence—will have all its mass assigned to hypothesis ⊤. Someone in 



 10 

that state would have no evidential basis for further dividing her confidence. In the 
example above, on the other hand, you’ve acquired some evidence with a net effect of 
assigning 1/3 of your confidence to a∨b’s being true; and you lack any evidential basis for 
further dividing that confidence between a and b. 
 To say you have no evidential basis for further dividing your confidence isn’t to 
say that you have no basis at all. This is where inheritance plans come in. An inheritance 
plan is a complete specification of how to divide your confidence in the absence of 
evidence. It will tell you how the mass that’s assigned higher up in a distribution should 
be “inherited by” more determinate subhypotheses. We’ll explain how questions of 
inheritance arise shortly. For now, trust that we sometimes do need to know how to 
divide up confidence that a mass distribution assigns to non-atoms. One inheritance plan 
might tell you to split ⊤’s mass evenly between a, b, and c∨d; to give 90% of a∨b’s mass 
to a, and the rest to b; and so on. An inheritance plan settles all such questions. 

In the usual case, a subject won’t have one fully determinate plan for how to 
divide her confidence in the absence of evidence. This is why I represent epistemic states 
as a combination of a mass distribution and a range of inheritance plans. 
 
9. Inheritance plans participate in three important operations on an epistemic state. 
 One of these operations is conditionalizing on a supposed hypothesis. I 
understand this to be deriving how a subject who’s in the epistemic state should be 
doxastically inclined when reasoning under the given supposition. For example, a subject 
may think c most likely to be true, but be prepared to reason hypothetically on the 
supposition that a∨b∨d. When adopting a supposition, subjects may find that their 
evidence still only gives a basis for assigning some of their confidence; so we should 
distinguish between mass assigned to atoms and mass not so assigned in the conditional 
case, too. I’ll write m(a∨b | a∨b∨d)=4/5 to mean that the subject’s specific mass for a∨b, 
conditional on the supposition that a∨b∨d, is 4/5. I’ll use m(•) and m(• |⊤) 
interchangeably to designate unconditional masses. 
 A second operation on an epistemic state is updating on evidence. This has 
internal connections to conditionalizing, but the connections are complex and it’s best to 
regard these as different operations. Conditionalizing is a matter of reading off what your 
current epistemic state says about things, against some suppositional background. 
Updating is a matter of changing your epistemic state in response to evidence. 
 Think of the hypotheses in our diagram as having buckets attached. Let the 
specific mass you have assigned to each hypothesis be a quantity of sand in that 
hypothesis’s bucket. When you update on evidence, you’ll be gaining confidence that 
some hypothesis is true. We’ll have to plug into our formalism a value indicating which 
hypothesis you’re most directly gaining confidence in. Other hypotheses may get more 
credible, too, in response. But the effect on them will be “downstream.” We need there to 
be one hypothesis that your evidence most directly supports. We’ll also need to plug a 
second value into our formalism, indicating how much more confident you should 
become in that hypothesis. 
 Let’s walk through an example. Suppose you get evidence of strength J for 
hypothesis a∨b. J will translate into a quantity θ of new sand you get to pour into the 
buckets of a∨b’s subhypotheses: a, b, and a∨b. You divide this new sand among those 
subhypotheses in such a way that the conditional masses m(a | a∨b), m(b | a∨b), and 
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m(a∨b | a∨b) don’t change. Then you renormalize so that the total amount of sand in your 
distribution again adds up to 1. In other words: 

m′(⊥) stays 0 
m′(a) = ( m(a) + θ m(a | a∨b) ) / (1+θ) 
m′(b) = ( m(b) + θ m(b | a∨b) ) / (1+θ) 
m′(a∨b) = ( m(a∨b) + θ m(a∨b | a∨b) ) / (1+θ) 
m′(c) = ( m(c)  ) / (1+θ) 
m′(a∨c) = ( m(a∨c)  ) / (1+θ) 
m′(b∨c) = ( m(b∨c)  ) / (1+θ) 
etc. 

How to calculate the conditional masses m( • | a∨b), and what relation there is between J 
and θ, are matters we have yet to settle. But our intuitive picture should already motivate 
the idea that as the evidence you’re updating on gets better and better, θ will get larger 
and larger. The limit as θ → ∞ will represent getting evidence that makes a∨b 
epistemically certain. In that case: 

 m′(a)    =   lim [ ( m(a) + θ m(a | a∨b) ) / (1+θ)  ] = m(a | a∨b) 
      θ → ∞ 
This is an intuitively natural result. It means that your conditional mass in a, given the 
supposition that a∨b, is the confidence you should end up having in a were you to acquire 
certain evidence that a∨b is true. 
 I’ve described the operations of conditionalizing and updating. A third operation 
on epistemic states is flattening. A mass distribution plus a single inheritance plan will 
determine (though usually not be determined by) a probability function on the hypothesis 
space. Flattening is the operation of reading off what that probability function is. Since 
subjects usually have a range of inheritance plans, their epistemic states will determine a 
corresponding range of probability functions. Those ranges of probability functions will 
turn out to be too coarse-grained, by themselves, to do all the work we want. Epistemic 
states will sometimes need the extra structure I’ve given them. But for other purposes 
we’ll only need the probability functions that are the “flattenings” of a state. 
 I’ve described three operations: conditionalizing, updating, and flattening. I’ll set 
out the details of how these work shortly. First I want to describe an intuitive constraint 
that I take to govern them. This is the constraint that these operations be “path-
independent.” 
 One way for that constraint to operate is this: if you were to conditionalize an 
epistemic state on the hypothesis a∨b∨c, and then conditionalized the result on the 
hypothesis a∨b, you should get the same result as if you had conditionalized the state 
directly on a∨b in the first place. 

A second way for the constraint to operate is that evidence should commute: if 
you get evidence of strength J1 directly supporting hypothesis h1, and then evidence of 
strength J2 supporting hypothesis h2, you should end up with the same result as if you 
had acquired the evidence in the other order. 

A third way for the constraint to operate is that updating and conditionalizing 
should be commutable: if you conditionalize a state on the hypothesis a∨c, and then 
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update the result on evidence of strength J for a, you should get the same result as if you 
had first updated the unconditionalized state on evidence of strength J for a (or for any 
hypothesis whose intersection with a∨c is a), and then conditionalized on a∨c. 
 These constraints are perhaps negotiable; if it turned out that we couldn’t meet 
them all, then perhaps we could reconcile ourselves to that outcome. But I take it to be a 
strength in a formal model that it does meet them. And the model I’m setting out will 
manage to do so. 
 
10. Our next step is to think harder about how to calculate conditional masses. I’ll 
describe three different approaches we might take to that. They correspond to three 
different structures that inheritance plans might have. This range of theoretical options 
about inheritance plans should not be confused with a subject’s own range of inheritance 
plans. I think that at most one of these theories about the structure of inheritance plans 
can be correct; and all of a subject’s inheritance plans must have the structure that the 
correct theory states. 
 A further complication is that we’ll need to talk separately about “classical” cases, 
where there’s no dogmatic support in one’s evidence, and cases where there is a dogmatic 
support. In the following sections, I’ll describe how things go when everything is 
classical. Later we’ll consider how things change in the context of dogmatic support. 

Let S be a subject whose opinion conforms to her epistemic state. Suppose we 
want to calculate S’s conditional opinion, relative to the hypothesis that a∨b∨c. We’ll 
need to settle to what extent the mass S has assigned to light grey cells can be “inherited 
by” darker grey cells: 

One natural proposal is that this confidence should be inherited along the paths where 
I’ve drawn arrows. That is, when conditionalizing on the hypothesis a∨b∨c, the 
hypothesis a gets the benefit of all the mass that had formerly been assigned to a∨d; the 
hypothesis a∨b∨c gets all the mass that had formerly been assigned to ⊤; and so on. At 
the end we renormalize. I’ll call this a Dempster-Shafer inheritance structure. 
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If that’s the right structure for inheritance to have, then S’s conditional masses  
m( • | a∨b∨c) should look like this: 

m(⊥ | a∨b∨c) =  0 
m(a | a∨b∨c) = ( m(a) + m(a∨d) ) / σ 
m(b | a∨b∨c) = ( m(b) + m(b∨d) ) / σ 
m(a∨b | a∨b∨c) = ( m(a∨b) + m(a∨b∨d) ) / σ 
m(c | a∨b∨c) = ( m(c) + m(c∨d) ) / σ 
m(a∨c | a∨b∨c) = ( m(a∨c) + m(a∨c∨d) ) / σ 
m(b∨c | a∨b∨c) = ( m(b∨c) + m(b∨c∨d) ) / σ 
m(a∨b∨c | a∨b∨c) = ( m(a∨b∨c) + m(⊤) ) / σ 

where σ is a renormalizing factor (= 1-m(d)). 
 This Dempster-Shafer inheritance structure has no free parameters; so if it’s the 
right way for inheritance to go, then subjects will only ever need, or have, a single 
inheritance plan, rather than a range of different inheritance plans. 

A second proposal retains the idea that confidence is inherited along the paths 
where I’ve drawn arrows. But on this proposal, subhypotheses only inherit a fraction of 
the confidence assigned to their superhypotheses. Let α be a probability function on our 
space of hypotheses. Then S’s conditional masses might look like this: 

m(⊥ | a∨b∨c) =  0 
m(a | a∨b∨c) = ( m(a) + α(a)/α(a∨d) m(a∨d) ) / σ′ 
m(b | a∨b∨c) = ( m(b) + α(b)/α(b∨d) m(b∨d) ) / σ′ 
m(a∨b | a∨b∨c) = ( m(a∨b) + α(a∨b)/α(a∨b∨d) m(a∨b∨d) ) / σ′ 
m(c | a∨b∨c) = ( m(c) + α(c)/α(c∨d) m(c∨d) ) / σ′ 
m(a∨c | a∨b∨c) = ( m(a∨c) + α(a∨c)/α(a∨c∨d) m(a∨c∨d) ) / σ′ 
m(b∨c | a∨b∨c) = ( m(b∨c) + α(b∨c)/α(b∨c∨d) m(b∨c∨d) ) / σ′ 
m(a∨b∨c | a∨b∨c)  = ( m(a∨b∨c) + α(a∨b∨c)/α(⊤) m(⊤) ) / σ′ 

where σ′ is another renormalizing factor. Here the mass assigned to a∨b∨d gets divided 
into two parts: one part, sized α(a∨b)/α(a∨b∨d), going to the intersection of a∨b∨d and the 
hypothesis you’re conditionalizing on, and the rest going to the complement: 
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When we’re calculating the subject’s conditional masses m(• | a∨b∨c), we only include 
that part of a∨b∨d’s mass that the dark grey a∨b∨c region has inherited. 

I’ll call this an α-based inheritance structure. You get a different inheritance plan 
for each probability function α. So a subject’s range of inheritance plans could be thought 
of as a set of α functions. 
 A third proposal works somewhat differently. Here the mass that S assigned to 
a∨b∨d gets divided into six parts, one for each of that hypothesis’s more determinate 
possible subhypotheses. So that mass gets inherited along each of the solid paths in this 
diagram: 

 
I’ll write γ(a∨b, a∨b∨d) to indicate the portion of a∨b∨d’s specific mass that should get 
inherited by a∨b. The only constraints this third proposal imposes on the values: 

 γ(a, a∨b∨d) 
γ(b, a∨b∨d) 
γ(a∨b, a∨b∨d) 
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γ(d, a∨b∨d) 
γ(a∨d, a∨b∨d) 
γ(b∨d, a∨b∨d) 

is that they’re each ≥ 0, and add up to 1. This proposal should be understood recursively: 
when hypothesis a inherits from a∨d (along the dotted path in the diagram), it should also 
inherit any mass that a∨d itself inherited from its superhypotheses. Spelled out, this 
proposal says S’s conditional masses should look like this: 

m(a | a∨b∨c) = (  
   m(a)  
+ γ(a, ⊤)* m(⊤) 

 + γ(a, a∨b∨d) * ( m(a∨b∨d ) + γ(a∨b∨d, ⊤) * m(⊤) ) 
 + γ(a, a∨c∨d) * ( m(a∨c∨d ) + γ(a∨c∨d, ⊤) * m(⊤) ) 
 + γ(a, a∨d) * ( 

   m(a∨d) 
+ γ(a∨d, ⊤) * m(⊤) 
+ γ(a∨d, a∨b∨d) * ( m(a∨b∨d ) + γ(a∨b∨d, ⊤) * m(⊤) ) 
+ γ(a∨d, a∨c∨d) * ( m(a∨c∨d ) + γ(a∨c∨d, ⊤) * m(⊤) ) 

  ) 
) / σ′′ 

m(a∨b | a∨b∨c) = (  
  m(a∨b)  
+ γ(a∨b, ⊤)* m(⊤) 

 + γ(a∨b, a∨b∨d) * ( m(a∨b∨d ) + γ(a∨b∨d, ⊤) * m(⊤) )  
) / σ′′ 

etc. 

where σ′′ is another normalizing factor. On this proposal, you get a different inheritance 
plan with each γ function; so we can regard a subject’s range of inheritance plans as a 
range of γ functions. 
 As it turns out, the formalism we get from the third proposal suffices for modeling 
the other two proposals, too. Set γ as follows: 

γ(a∨b∨d, ⊤) = 1 
γ(a∨c∨d, ⊤) = 1 
γ(a∨b, ⊤) = –1 
γ(a∨d, ⊤) = –1 
γ(a, ⊤) = 1 

γ(a∨b, a∨b∨d) = 1 
γ(a∨d, a∨b∨d) = 1 
γ(a, a∨b∨d) = –1 

γ(a∨d, a∨c∨d) = 1 
γ(a, a∨c∨d) = –1 
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γ(a, a∨d) = 1 

and the conditional masses just specified reduce to: 

m(a | a∨b∨c) = (  m(a) + m(a∨d) ) / σ′′ 
m(a∨b | a∨b∨c) = (  m(a∨b) + m(a∨b∨d) ) / σ′′ 

which is what the Dempster-Shafer proposal said. Similarly, if we set γ like this: 

γ(a∨b∨d, ⊤) =    α(a∨b∨d) / α(⊤) 
γ(a∨c∨d, ⊤) =    α(a∨c∨d) / α(⊤) 
γ(a∨b, ⊤) = – α(a∨b) / α(⊤) 
γ(a∨d, ⊤) = – α(a∨d) / α(⊤) 
γ(a, ⊤) =    α(a) / α(⊤) 

γ(a∨b, a∨b∨d) =    α(a∨b) /α(a∨b∨d) 
γ(a∨d, a∨b∨d) =    α(a∨d) /α(a∨b∨d) 
γ(a, a∨b∨d) = – α(a) /α(a∨b∨d) 

γ(a∨d, a∨c∨d) =    α(a∨d) /α(a∨b∨d) 
γ(a, a∨c∨d) = – α(a) /α(a∨c∨d) 

γ(a, a∨d) =    α(a) /α(a∨d) 

we get the conditional masses stated by the α-based proposal. Notice that to do this, we 
need to let γ sometimes take a negative value. The third proposal doesn’t itself supply any 
intuitive motivation for that. So I regard the Dempster-Shafer proposal and the α-based 
proposals as competitors to our third proposal, rather than special cases of it. Don’t think 
that their intuitive motivation comes from any way of telling the third story but with 
“negative inheritance.” Rather, it comes from the stories I set out earlier. It’s just that this 
“trick” of sometimes letting γ take negative values allows us to use the equations 
appropriate to the third proposal to cover all three proposals. 

In what follows, then, I will just use the γ-based equations for conditional masses. 
Moreover, I’ll for a time write as though there were only a single inheritance plan γ. In 
the full story, though, everything we say needs to be applied to each of the γ functions 
that are in a subject’s range of inheritance plans. 

 
11. What are the general equations for all of this? We can build conditional masses 
out of a recursive 3-place function ϕ (i, h, H), where i,h each ⊆ H and i ∩ h ≠ ∅. This is 
defined as follows: 
  ϕ (i, h, H)  =  m(i | H) + ∑

i ⊂ j ⊆ H
j /⊆ h

  γ(i,j) ϕ(j, h, H)  

One’s conditional mass m(i | h) will be equivalent to ϕ(i, h, H), only normalized so that 

the m(• | h) add up to 1. The relevant normalization factor will be:  ∑
j ⊆ h

  ϕ(j, h, H) . H in 

these equations can be any hypothesis such that ϕ(i, h, H) is defined, including ⊤. The 
results will be the same. 
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 Here’s a few examples of how this plays out: 

ϕ(⊤, a∨b∨c,⊤) =  m(⊤) 
ϕ(a∨b∨d, a∨b∨c,⊤) =  m(a∨b∨d) + γ(a∨b∨d,⊤) ϕ(⊤, a∨b∨c,⊤) 
ϕ(a∨c∨d, a∨b∨c,⊤) =  m(a∨c∨d) + γ(a∨c∨d,⊤) ϕ(⊤, a∨b∨c,⊤) 
ϕ(a∨d, a∨b∨c,⊤) =  m(a∨d) 

+ γ(a∨d,a∨b∨d) ϕ(a∨b∨d, a∨b∨c,⊤) 
+ γ(a∨d,a∨c∨d) ϕ(a∨c∨d, a∨b∨c,⊤) 
+ γ(a∨d,⊤) ϕ(⊤, a∨b∨c,⊤) 

ϕ(a, a∨b∨c,⊤) =  m(a) 
+ γ(a,a∨d) ϕ(a∨d, a∨b∨c,⊤) 
+ γ(a,a∨b∨d) ϕ(a∨b∨d, a∨b∨c,⊤) 
+ γ(a,a∨c∨d) ϕ(a∨c∨d, a∨b∨c,⊤) 
+ γ(a,⊤) ϕ(⊤, a∨b∨c,⊤) 

etc. 

That gives us a general algorithm for conditional masses. 
Our algorithm for flattening a mass distribution into a probability function takes a 

similar form. The basic idea is that, when we’re calculating the probability of a 
hypothesis, we let it and its subhypotheses inherit every portion they’re entitled to from 
all their superhypotheses. So, for instance, the probability of a would be: 

   m(a) 
+ γ(a, ⊤)* m(⊤) 
+ γ(a, a∨b∨c) * ( m(a∨b∨c)   + γ(a∨b∨c, ⊤) * m(⊤) ) 
+ γ(a, a∨b∨d) * ( m(a∨b∨d ) + γ(a∨b∨d, ⊤) * m(⊤) ) 
+ γ(a, a∨c∨d) * ( m(a∨c∨d )  + γ(a∨c∨d, ⊤) * m(⊤) ) 
+ γ(a, a∨b) * (  

   m(a∨b)   
+ γ(a∨b, ⊤) * m(⊤) 
+ γ(a∨b, a∨b∨c) * ( m(a∨b∨c ) + γ(a∨b∨c, ⊤) * m(⊤) ) 
+ γ(a∨b, a∨b∨d) * ( m(a∨b∨d ) + γ(a∨b∨d, ⊤) * m(⊤) ) 

) 
+ γ(a, a∨c) * (  

   m(a∨c)   
+ γ(a∨c, ⊤) * m(⊤) 
+ γ(a∨c, a∨b∨c) * ( m(a∨b∨c ) + γ(a∨b∨c, ⊤) * m(⊤) ) 
+ γ(a∨c, a∨c∨d) * ( m(a∨c∨d ) + γ(a∨c∨d, ⊤) * m(⊤) ) 

) 
+ γ(a, a∨d) * (  

   m(a∨d)   
+ γ(a∨d, ⊤) * m(⊤) 
+ γ(a∨d, a∨b∨d) * ( m(a∨b∨d ) + γ(a∨b∨d, ⊤) * m(⊤) ) 
+ γ(a∨d, a∨c∨d) * ( m(a∨c∨d ) + γ(a∨c∨d, ⊤) * m(⊤) ) 
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) 

In general, we can define p(h | H) =  ∑
j ⊆ h

  ϕ(j, h, H) . This you’ll notice is exactly the 

normalization factor for conditional masses. So the normalized conditional mass m(i | h) 
will = ϕ (i, h, H) / p(h | H), for any suitable H. 
 I’ve characterized p(•|•) as a probability function, but in fact whether it’s a 
probability function depends on the structure of inheritance plans. On the α-based and γ-
based ways of thinking about inheritance, p(•|•) does turn out to be a probability function. 
But on the first, Dempster-Shafer way of thinking about inheritance, p(•|•) instead turns 
out to be what Shafer calls a plausibility function. This is something like an upper 
probability. On the Dempster-Shafer model, the plausibility of a + the plausibility of not-
a will usually exceed 1. It’s surprising that a single formal model of confidence should be 
suited to represent both Dempster-Shafer and traditional Bayesian thinking. To preserve 
generality, I propose to call our p(•|•) functions “plausibilities,” and to let the further 
formal properties of a plausibility function be settled by the operative inheritance 
structure. If masses ought to be inherited in the Dempster-Shafer way, then our 
plausibility functions will be Dempster-Shafer plausibilities. If masses ought to be 
inherited in the α-based or γ-based ways, instead, then they will be probabilities. 
 I’ll remind you that our present claims about conditional mass are all about 
“classical” cases, where no dogmatic support is present. Given the way we’re 
understanding conditional mass, it follows that for any i ⊆ j ⊆ h: 

 p(i | j) p(j | h) = p(i | h) 

This is true for Dempster-Shafer plausibilities as well as for traditional probabilities. It 
will fail to be true, though, when we move to non-classical cases, with dogmatic support. 
(In fact, I think that different distributions of dogmatic support map onto the plausibility 
functions p(•|•) where some such inequality is violated; see fn. 18, below.) 
 
12. At the end of §9, I said that one of the “path-independence” constraints I wanted 
to respect was that: if you conditionalize an epistemic state on the hypothesis a∨c, and 
then update the result on evidence of strength J for a, you should get the same result as if 
you had first updated the unconditionalized state on evidence of strength J for a (or for 
any hypothesis h such that h ∩ a∨c = a), and then conditionalized on a∨c. 
 Let’s see what that constraint teaches us. Suppose you first get evidence for the 
hypothesis a∨b, which gives you quantity θ of new mass to add to your distribution and 
renormalize. We have yet to determine what the relation is between your evidence and θ; 
so for now θ is an unknown. As we said in §9, your unconditional masses should update 
like this: 

m′(a) = ( m(a) + θ m(a | a∨b) ) / (1+θ) 
m′(b) = ( m(b) + θ m(a | a∨b) ) / (1+θ) 
m′(a∨b) = ( m(a∨b) + θ m(a∨b | a∨b) ) / (1+θ) 
m′(c)  = ( m(c)  ) / (1+θ) 
m′(a∨c) = ( m(a∨c)  ) / (1+θ) 
etc. 
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If we then conditionalize your updated mass distribution m′ on the hypothesis a∨c, using 
the algorithm from §§10–11, and renormalize, we derive: 

m′(a | a∨c) = ( m(a | a∨c) p(a∨c) + θ ( m(a | a∨b) + γ(a, a∨b) m(a∨b | a∨b) ) ) 
/ ( p(a∨c) + θ p(a | a∨b) ) 

 = ( m(a | a∨c) p(a∨c) + θ p(a | a∨b) ) ) / ( p(a∨c) + θ p(a | a∨b) ) 

m′(c | a∨c) =   m(c | a∨c) p(a∨c) / ( p(a∨c) + θ p(a | a∨b) ) 
m′(a∨c | a∨c) =   m(a∨c | a∨c) p(a∨c) / ( p(a∨c) + θ p(a | a∨b) ) 

Suppose, on the other hand, we had started with the conditional masses m(• | a∨c), and 
updated them on the same evidence. In this case, the evidence should be understood to be 
supporting the intersection x of a∨b and the hypothesis we’re conditionalizing on (a∨c). 
So x=a. And whereas before our evidence gave us quantity θ of new mass to add to our 
distribution, we shouldn’t assume that it supplies the same quantity to add to this 
conditional mass distribution. Let’s designate the quantity it does contribute with a 
second unknown, θx. Applying the same updating operation, we get: 

m′(a | a∨c ) = ( m(a | a∨c) + θx m(a | x ) ) / (1+θx) 
m′(c | a∨c ) = ( m(c | a∨c)   ) / (1+θx) 
m′(a∨c | a∨c) = ( m(a∨c | a∨c)  ) / (1+θx) 

Our “path independence” constraint tells us that these results should match the results 
derived above, gotten by first updating then conditionalizing. Setting them equal, we 
obtain: 

 p(a∨c) / ( p(a∨c) + θ p(a | a∨b) )  =  1 / (1+θx) 

Solving for θx: 

 θx = θ p(a | a∨b) / p(a∨c) 

Now, choose some value J such that J p(a∨b |⊤) = θ. Then θx will = J p(a∨b |⊤) p(a | 

a∨b) / p(a∨c), which in classical cases will = J p(a | a∨c). That’s very interesting. It tells 

us that we can use J as our invariant J, measuring the evidence’s intrinsic strength; and 

that: 
The quantity θ of new mass to use, when applying evidence of strength J  
to hypothesis h, conditional on supposition H (which may be ⊤), is equal  
to J p(h ∩ H | H). 

This yields the most elegant formal system. However, it has the consequence that 
evidential strengths don’t add linearly: evidence of strength J1 for h plus evidence of 
strength J2 for h are equivalent to evidence of strength J1+J2+J1 J2 for h. One can move 
to a different scale to avoid this. (Designate your evidence’s linear strength L, and set 
J = eL–1. Then evidence of (linear) strength L1 for h plus evidence of strength L2 for h 
will be equivalent to evidence of strength L1+L2 for h.) But that needlessly complicates 
the formalism. 
 When you get evidence of strength J for a∨b, it follows that your new 
plausibilities will be this: 

p′(a) = ( p(a) + J p(a∨b) ( m(a | a∨b) + γ(a, a∨b) m(a∨b | a∨b) ) ) / (1+ J p(a∨b) ) 
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 = ( p(a) + J p(a∨b) p(a | a∨b) ) / (1+ J p(a∨b) ) 
 =   p(a) (1+J) / (1+ J p(a∨b) ) 
p′(b) =   p(b) (1+J) / (1+ J p(a∨b) ) 
p′(c) =   p(c) / (1+ J p(a∨b) ) 
p′(d) =   p(d) / (1+ J p(a∨b) ) 

In other words, the effect on plausibilities is to multiply the plausibilities of the supported 
hypothesis a∨b by 1+J, and then to renormalize. One can easily see that this operation 
commutes: if you get evidence of strength J1 for hypothesis h1, and evidence of strength 
J2 for hypothesis h2, you can just multiply the h1-plausibilities by (1+J1) and multiply 
the h2-plausibilities by (1+J2), and renormalize. It doesn’t matter what order you do it in. 
 Updating in the way I’ve described also commutes in its effect on masses, though 
I’ll leave that as an exercise for the reader. 
 
13. The operations I’ve described may seem computationally complex. However, if 
we make certain choices about scaling, then it all just turns out to be simple matrix 
algebra. 
 We’ve seen that updating on evidence of strength J for hypothesis a∨b should 
have the following effect on one’s unconditional masses: 

m′(a) = ( m(a) + J p(a∨b|⊤) m(a | a∨b) ) / (1+J p(a∨b|⊤)) 
m′(b) = ( m(b) + J p(a∨b|⊤) m(a | a∨b) ) / (1+J p(a∨b|⊤)) 
m′(a∨b) = ( m(a∨b) + J p(a∨b|⊤) m(a∨b | a∨b) ) / (1+J p(a∨b|⊤)) 
m′(c)  = ( m(c)  ) / (1+J p(a∨b|⊤)) 
m′(a∨c) = ( m(a∨c)  ) / (1+J p(a∨b|⊤)) 
etc. 

The effect on one’s conditional masses m(•|a∨c) will be: 

m′(a | a∨c ) = ( m(a | a∨c) + J p(a | a∨c)  m(a | a ) ) / (1+J p(a | a∨c)) 
m′(c | a∨c ) = ( m(c | a∨c)   ) / (1+J p(a | a∨c)) 
m′(a∨c | a∨c) = ( m(a∨c | a∨c)  ) / (1+J p(a | a∨c)) 

In general, for any i ⊆ each of a∨b and h: 

m′(i | h) = ( m(i | h) + J p(h ∩ a∨b | h) m(i | h ∩ a∨b) )  
/ (1+J p(h ∩ a∨b | h)) 

And for any i* ⊆ h but /⊆ a∨b: 

m′(i* | h) = ( m(i* | h)                                 )  / (1+J p(h ∩ a∨b | h)) 

If we multiply these through by (1+J p(h ∩ a∨b | h)), we get: 

m′(i | h)   (1+J p(h ∩ a∨b | h)) = m(i | h) + J p(h ∩ a∨b | h) m(i | h ∩ a∨b) 
m′(i* | h) (1+J p(h ∩ a∨b | h)) = m(i* | h) 

Replacing p(h ∩ a∨b | h) with p(h ∩ a∨b |⊤) / p(h |⊤), and multiplying through by  
p(h |⊤): 
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m′(i | h)   ( p(h |⊤)+J p(h ∩ a∨b |⊤) ) = m(i | h) p(h |⊤)  
  + J p(h ∩ a∨b |⊤) m(i | h ∩ a∨b) 
m′(i* | h) ( p(h |⊤)+J p(h ∩ a∨b |⊤) ) = m(i* | h) p(h |⊤) 

Then, since m(i | h) will in general = ϕ (i, h, ⊤) / p(h | ⊤): 

ϕ′(i, h,⊤)   ( p(h |⊤)+J p(h ∩ a∨b |⊤) ) / p′(h |⊤) = ϕ(i, h,⊤) + J ϕ(i, h ∩ a∨b, ⊤) 
ϕ′(i*, h,⊤) ( p(h |⊤)+J p(h ∩ a∨b |⊤) ) / p′(h |⊤) = ϕ(i*, h,⊤)  

p′(h |⊤) will = ( p(h |⊤) + J p(h ∩ a∨b |⊤) ) / (1+J p(a∨b |⊤) ), so: 

ϕ′(i, h,⊤)   (1+J p(a∨b |⊤) ) = ϕ(i, h,⊤) + J ϕ(i, h ∩ a∨b, ⊤) 
ϕ′(i*, h,⊤) (1+J p(a∨b |⊤) ) = ϕ(i*, h,⊤)  

Multiplying through by an arbitrary constant c, we get the following: 

c′ ϕ′(i, h,⊤)   = c ϕ(i, h,⊤) + J c ϕ(i, h ∩ a∨b, ⊤) 
c′ ϕ′(i*, h,⊤) = c ϕ(i*, h,⊤)  

where c′= (1+J p(a∨b |⊤) ) c. These results are easily represented with matrix algebra. 

Where h ⊆ H , suppose ΦhH is the vector   c 







ϕ(a,h,H)

ϕ(b,h,H)
ϕ(a∨b,h,H)

…
ϕ(h,h,H)

 . Even without knowing the 

constant c, we can derive the masses m(• | h) by normalizing that vector. Let Φ*H be 

concatenation of ΦhH for every h ⊆ H: c 









ϕ(a,a,H)
ϕ(b,b,H)
ϕ(a,a∨b,H)
ϕ(b,a∨b,H)
ϕ(a∨b,a∨b,H)

…
ϕ(H,H,H)

 . The elements of Φ*H will 

have some order, e.g., such that their first two arguments are <a,a>, <b,b>, <a,a∨b>, 
<b,a∨b>, <a∨b,a∨b>,…,<H,H>. Call that the serialization of Φ*H. Let λ be the length 
of that sequence, and define JhH(y) to be the sum of the  λ × λ identity matrix and the 
following  λ × λ matrix, where <rowi,rowj> is the pair of arguments at the row’s position 
in the Φ*H-serialization, and <coli,colj> is the pair at the column’s position: 









… … …

…if rowj ∩ h = colj and rowi=coli then y; else 0…
… … …

  

For instance, using the serialization described above, Ja(a∨b)(y) =  
 



 22 

. 

If we multiply JhH(y) × Φ*H, we get the vector c′ 









ϕ′(a,a,H)
ϕ′(b,b,H)
ϕ′(a,a∨b,H)
ϕ′(b,a∨b,H)
ϕ′(a∨b,a∨b,H)

…
ϕ′(H,H,H)

 , where  

c′= (1+y p(h | H) ) c, and ϕ′ is the result of updating on evidence of strength y for 
hypothesis h. That vector can be unpacked and normalized to yield m′(• | h) for any h ⊆ 
H. So essentially, updating is just a matter of multiplying matrices. 

Updating commutes because the construction of these J matrices is such that, for 
any hypotheses h1, h2 ⊆ H and strengths y1, y2:  Jh1H(y1) × Jh2H(y2) always = 
Jh2H(y2) × Jh1H(y1). 
 
 In classical cases, like we’ve been considering, conditionalizing and flattening can 
also be made into matrix operations. 

As before, let h ⊆ H. Define |h| to be the number of non-empty subhypotheses h 
has; and similarly for |H|. Understand rowi to be the hypothesis which is at the row’s 
position in the serialization of ΦhH; and similarly for coli. Then define QhH to be the 
following |h| × |H| matrix: 

where the 
powerchain of a set S of hypotheses is every element of S’s powerset that contains 
min(S) and max(S) and whose members are pairwise ⊃ or ⊂ each other; and x and y are 
adjacent elements in e iff: x ∈e, y∈e, x ⊂ y, and there’s no z∈e such that x ⊂ z ⊂ y. 

So, for instance, Qa(a∨b) will = 

 

and Q(a∨b)(a∨b∨c) will = 

 

These Q matrices can be used to conditionalize: just let ΦjH = Qjh × ΦhH. 
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The construction of Q matrices is such that Qjh × QhH will always = QjH. This 
corresponds to the “path-independence” of conditionalizing that I stated as a desideratum 
in §9. 
 Where j ⊆ h, let ∑Qjh be the 1 × |h| matrix that’s the result of adding up each of 
the columns of Qjh.  Define ||j|| to be the number of atomic subhypotheses j has, and 

define  Ψ jh to be the ||j|| × |h| array 








…

∑Qih
…

 , where i ranges over the atomic 

subhypotheses of j. Then the plausibilities p(•|j) of a mass distribution corresponding to 
ΦhH will = the normalization of  Ψ jh × ΦhH. 
 
14. There’s a thread of literature arguing that the right way to understand Jeffrey 
Conditionalization for degrees of belief is as an operation that changes the “Bayes Ratio” 
of one’s belief in a specified way. That is how we’re supposed to settle when two 
subjects should count as having updated on “equivalent evidence.” For instance, if Adam 
has probability function pa and acquires some evidence that directly supports h, then we 
calculate the Bayes Ratio: 

 β = 
pa′(h) / pa′(not-h)
pa(h) / pa(not-h)  . 

We’d need to induce an update with the same Bayes Ratio in Betty’s probability function 
pb, for her to count as acquiring evidence of the same strength for h. That is, for Betty 
too, it would need to be the case that: 

 β = 
pb′(h) / pb′(not-h)
pb(h) / pb(not-h)  .11 

 How do things play out with the plausibility updates I’ve described? Well, for an 
update on evidence of strength J for a∨b, the Bayes Ratio is: 

p′(a∨b) / p′(c∨d)
p(a∨b) / p(c∨d)   = 

p(a∨b) (1+J) / p(c∨d)
p(a∨b) / p(c∨d)   = (1+J). 

This will be constant no matter what p(•) was like to start with (we just require that the 
relevant ratios be defined). So the updating procedure I’ve described turns out to be 
Jeffrey Conditionalization! 

More carefully: I’ve described an updating procedure on a structure richer than a 
probability function. That rich structure can be “flattened” into a “plausibility function.” 
If we make certain theoretical choices about how inheritance works, then plausibility 
functions are just probability functions, and the effects that updating induces on those 
probability functions are just the ones that Jeffrey Conditionalization does. 

                                                
11  Cite Field, Wagner, Jim Hawthorne. They argue that by construing “equivalent 
evidence” in this way—and only by doing so—can we make Jeffrey Conditionalization 
commutative. 
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 If, on the other hand, we understand inheritance in the Dempster-Shafer way, then 
the updating procedure I’ve described constitutes an application of Dempster’s “Rule of 
Combination.” 
 We can understand what I’ve done so far as providing some extra structure to help 
us keep track of how much of your confidence is fixed by evidence (that is, is assigned by 
your mass distribution to more atomic hypotheses), and how much isn’t. I’ve told some 
intuitive stories about inheritance and updating and so on, that motivate making that extra 
structure behave in ways that correspond to more familiar models of belief. So far we 
haven’t used the extra structure to do anything novel. 
 
15. It’s time now to consider how things should go when we add dogmatic support to 
our model. Let’s construe the atoms of W like this: 

⊤  
 

a∨b∨c 
 

a∨b∨d 
 

a∨c∨d 
 

b∨c∨d 
 

a∨b 
Q is true and now 

perceivable by 
me 

a∨c 
 

b∨c = E 
I am now having 

experiences η as of 
perceiving Q 

a∨d 
 

b∨d 
 

c∨d 
Q is not now 

perceivable by me 
(Q may be true or 

false) 
a 

…but I don’t now 
even seem to 
perceive Q 

b = PERC 
I am now perceiving 

that Q 

c = U 
undermining 

scenario 
(Q may be true or 

false) 

d 
…and I don’t now 

even seem to perceive 
Q (it may be true or 

false) 
⊥  

 
We could subdivide U and d even further, but this is enough for our purposes. Our main 
concern will be with the subhypotheses of E: PERC, U, and their disjunction, E itself. 
 The dogmatist says that η has some dogmatic bias towards PERC over U. This 
bias gets undermined by any evidentially based confidence you have in U—in our model, 
the relevant factor will be m(U | E)—but not by any confidence you have in U that’s not 
based on evidence—in our model, that will be any mass that U merely “inherits” from 
m(E | E). 
 Here’s one way we might model that. Suppose you get dogmatic evidence of 
strength K. Treat that as evidence for E, only instead of the classical updating operation: 

m′(PERC) = ( m(PERC) + K p(E |⊤)   m(PERC | E) ) / σ′′′ 
m′(U) = ( m(U) + K p(E |⊤)   m(U | E) ) / σ′′′ 
m′(E) = ( m(E) + K p(E |⊤)   m(E | E) ) / σ′′′ 
m′(…) = ( m(…)  ) / σ′′′ 

do this instead: 

m′(PERC) = ( m(PERC) + K p(E |⊤) ( m(PERC | E) + m(E | E) ) ) / σ′′′ 
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m′(U) = ( m(U) + K p(E |⊤)   m(U | E) ) / σ′′′ 
m′(E) = ( m(E)  ) / σ′′′ 
m′(…) = ( m(…)  ) / σ′′′ 

What have we done? In this update, we’ve let PERC get the benefit of all the new mass 
that U wasn’t already entitled to in the classical update. That’s a way for the evidence to 
be “biased” in favor of PERC—to give PERC the benefit of any doubt that isn’t already 
evidentially assigned to U. As m(U | E) increases, there will be less and less extra mass of 
this sort for PERC to benefit from; so the dogmatic effect will tend to diminish. 
Moreover, notice that m′(U) on the new update comes out the same as it would on the 
classical update. The dogmatic bias in no way alters the evidence you have for U. It only 
steals from the evidentially uncommitted confidence m(E | E), some part of which U 
classically claims to inherit. 
 That’s the basic idea I will develop. However, it won’t quite work in its present 
form. 
 One difficulty stems from the fact that we now seem to have two different 
updating operations. What would distinguish the case where we should update classically 
on evidence of strength K for E, and the case where we should update dogmatically? Do 
we need to build a third parameter into our representation of evidence, indicating whether 
it has any dogmatic bias? Wouldn’t it be more natural to make the bias be intrinsic to the 
experience η, which E is just the hypothesis that you’re having? Then it ought to show up 
in any update on E.12 Yet nothing in our formalism indicates that updates on E should 
always be dogmatic. 
 A second difficulty stems from the fact that the dogmatic update I described will 
raise the cumulative mass of E—that is, m(PERC)+m(U)+m(E)—as much as classical 
evidence of strength K for E would. But what if you haven’t yet acquired evidence that 
you’ll have the experiences in question? Weatherson argues that in some cases, you 
might not enjoy the dogmatic benefits of some evidence until you actually acquire the 
evidence.13 But even he is reluctant to say that will always be the case—that the dogmatic 
bias in some evidence can never show up prospectively, before you’ve acquired the 
evidence.14 I’d like to find a way to represent a dogmatic bias in one’s epistemic state 
prior to acquiring any evidence that you in fact do or will enjoy experiences η. 

                                                
12  Granted, subjects aren’t always aware of what the proper effects of their evidence 
should be. That’s something they can be reasonably uncertain about. But it’s also the kind 
of reflective failure that models like mine, and the Bayesian’s, abstract away from (see fn 
1). We only try to represent what epistemic positions are available to subjects, should 
they reflect and epistemologize properly. Hence, if it’s true that your experiences have a 
dogmatic bias, then we should take E to be the hypothesis that you have experiences with 
that bias. 
 
13  Weatherson, “The Bayesian and the Dogmatist.” 
 
14  This came out in discussion of his paper when he visited the NYU Mind & 
Language seminar. 
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 Now, you may wonder: if I’m going to say there’s a bias in your epistemic state 
pre-evidentially, then what distinguishes my dogmatism from epistemologies of 
perception that I’ve taken pains elsewhere to oppose, which say we have a priori 
entitlement to believe we’re not brains in vats?15 
 I agree with those other epistemologists that we need an anti-skeptical bias 
somewhere; the question is where. I’m not satisfied with just giving subjects 
unconditional a priori justification to believe they’re not in skeptical scenarios. The 
constraints that places on their priors seem too arbitrary and ad hoc. It also seems too 
disconnected from what I take to be the proper source of anti-skeptical bias: the 
distinctive epistemic properties that dogmatists attribute to our experiences. I’d prefer any 
anti-skeptical bias to be represented as somehow coming from our experiences, even if 
the bias is in place antecedently to our having the experiences. 
 That raises a second point. I think the most interesting question here is not: Is our 
anti-skeptical bias already in our epistemic state prior to our having experiences? That’s 
one thing we may mean by asking whether the bias is a priori. The more interesting 
question is: Is the anti-skeptical bias present in virtue of the epistemic properties of 
experience—albeit perhaps experiences we haven’t yet enjoyed—or does it rather derive 
from extra-experiential considerations? This is another thing we may mean by asking 
whether it’s a priori. The view I prefer says that our anti-skeptical bias is a priori in the 
first sense but not the second: It’s there in our state before the experiences are, but it’s 
there because experiences have the epistemic properties they do. 
 That’s what I’d like to say. Let’s see whether we can revise our model of 
dogmatic updating in a way that accomplishes it. 
 
16. The best solution I’ve found to the difficulties set out in §15 goes like this. Begin 
by applying the dogmatic update procedure on one’s masses conditional on E (and E’s 
subhypotheses) with evidence of strength K for E: 

m′(PERC | E) = ( m(PERC | E) + K p(E | E) ( m(PERC | E) + m(E | E) ) ) / σ′′′ 
m′(U | E) = ( m(U | E) + K p(E | E)   m(U | E) ) / σ′′′ 
m′(E | E) = ( m(E | E)  ) / σ′′′ 

Leave one’s unconditional masses, and one’s masses on hypotheses that /⊆ E, alone. K 
here represents the strength of the experience’s dogmatic bias. Perhaps this will vary with 
some properties of the experience: e.g. more forceful experiences get higher Ks. Or 
perhaps we should always let K be maximal (take the limits as K → ∞). I’ll take its 
proper value to be supplied by considerations outside of the formalism. 
 At this point, you just deploy the matrix algebra laid out in §13! That is, if Φ*⊤ 
represents your epistemic state prior to the application of any bias, and B*⊤ represents it 
after the biasing operation described in the previous paragraph, then upon gaining new 
evidence of strength y for hypothesis h, you let your epistemic state be determined by 
Jh⊤(y) × B*⊤, instead of Jh⊤(y) × Φ*⊤. That’s all there is to it.16 

                                                
15  This is endorsed by Wright [cite]; Cohen 1999?, 2000?; White 2006; others. 
 
16  The details are available in a Mathematica workbook that I’ll place on my 
website. As we’ll see below, one can no longer rely on the Q matrices to derive 
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 As you then do get evidence for E, some portion of it will work classically and 
some portion will work dogmatically. How much does which will depend on the size of 
K. In the limit, as you come closer to having certain evidence that E, you’ll approach the 
initial dogmatic update laid out in the previous section. 
 This model has many intuitively appealing features. 

Firstly, the dogmatic bias gets to be present prospectively, in your conditional 
epistemic state, before you’ve yet had any dogmatic experiences. 

Secondly, no decisions need to be taken about whether to update dogmatically or 
classically. The K-bias in your conditional masses automatically settles what happens 
when you do get evidence that E. 
 Thirdly, the model gives us intuitive results about other conditional masses. It 
turns out we can’t use the same conditionalizing algorithms we developed in §§10–11.17 
However, what we can do is this. We let your epistemic state be determined not merely 
by your unconditional masses, or their encoding into the vector Φ⊤⊤ =  







ϕ(a,⊤,⊤)

ϕ(b,⊤,⊤)
ϕ(a∨b,⊤,⊤)

…
ϕ(⊤,⊤,⊤)

 . Rather we take the concatenation of all your conditional and 

unconditional masses, encoded into the (longer) vector Φ*⊤ = 











ϕ(a,a,⊤)

ϕ(b,b,⊤)
ϕ(a,a∨b,⊤)
ϕ(b,a∨b,⊤)
ϕ(a∨b,a∨b,⊤)

…
ϕ(⊤,⊤,⊤)

  . Prior 

to the application of any bias, the conditional parts of this could be derived in the usual 
way from the unconditional part. But when we apply a dogmatic bias, we end up with a 
new vector B*⊤. The conditional masses encoded in this vector will diverge from the 
relations the conditional masses in Φ*⊤ stand in to the unconditional masses in Φ⊤⊤. 
The degree to which they diverge encodes the amount of dogmatic bias in one’s 
epistemic state.18 For instance, the vector that encodes the K-bias described in our 

                                                                                                                                            
conditional masses; we’ll need to keep track of them as part of an expanded epistemic 
state. However, the J and Ψ  matrices continue to work as laid out in §13. 
 
17  Those algorithms guarantee the result stated in §11, that for any i ⊆ j ⊆ h: p(i | j) 
p(j | h) = p(i | h). But as we’ll see, the model of dogmatic bias I’ve presented requires that 
equation to sometimes fail. 
 
18  Indeed, I think we can formally identify any divergence whatsoever between 
one’s conditional masses and the results determined by the algorithms of §§10–11 with 
some amount of dogmatic bias. However, this exploits a feature of my formal model that 
I haven’t spelled out here, where some hypotheses exhibit competing biases: as though E 
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example will = 











ϕ(a,a,⊤)

…

ϕ(PERC,E,⊤)+
k

1+k ϕ(E,E,⊤)

ϕ(U,E,⊤)
1

1+k ϕ(E,E,⊤)

…
ϕ(⊤,⊤,⊤)

  . We then identify one’s epistemic state 

with the combination of that vector B*⊤ and a range of inheritance functions. One’s 
conditional masses will always be encoded in one’s B-vector at that time. 
 We preserve the intuitive idea floated in §9: your conditional mass in i, given the 
supposition that h, still turns out to be the same confidence you should end up having in i 
were you to acquire certain evidence that h is true. 

We get other intuitive results too. Suppose you acquire evidence of strength J for 
E. If you’ve got the dogmatic biases I’ve described, then your masses conditional on any 
hypothesis that intersects both PERC and U will update somewhat non-classically. But 
your masses conditional on any hypothesis that intersects only one of them will behave 
just as they would if you had classically updated on evidence of strength J for E. For 
example, conditional on the assumption that you’re not perceiving, it’s as though the 
dogmatic bias in your experience weren’t even there. This is a consequence of the rules 
for biasing and updating that we’ve already laid out. 

There is one result that’s less intuitive. Because your masses conditional on E are 
non-classical, so too will your plausibilities conditional on E (or on any hypothesis that 
intersects both PERC and U, including ⊤) be non-classical. In particular, in the case we 
described, and in the absence of any evidence for hypotheses intersecting E: 

p(PERC | E) = p(PERC) / p(E) + K γ(U, E) m(E | E) 

p(U | E) = p(U) / p(E) – K γ(U, E) m(E | E) 
When you do have evidence for hypotheses intersecting E, the relationship will be more 
complicated. But it will only be true that p(• | E) = p(•) / p(E) when you become certain 
that E. This makes our plausibilities diverge from the standard probabilistic definitions of 
conditional probability. 
 Is that something we can live with? 
 
17. It does raise the threat that we might be vulnerable to diachronic Dutch Books. 

It’s not clear to me how bad that would be, if it were true. The philosophical 
significance of diachronic Dutch Books is much contested.19 
                                                                                                                                            
had some amount of dogmatic bias for PERC and a competing amount of bias for U. This 
is a useful part of the formalism, but I’m not sure there are any intuitive applications for 
it. 
 
19  Howson and Urbach 1989; Christensen 1996; and G. Hellman, “Bayes and 
beyond” Philosophy of Science Vol 64 (1997), 191-221 try to give diachronic Dutch 
Books a non-pragmatic interpretation. More skeptical: P. Maher, “Depragmatized Dutch 
Book arguments” Philosophy of Science Vol 64 (1997), 291-305. Others? 
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 Still, I’d be more comfortable if my theory didn’t recommend that subjects expose 
themselves to diachronic Dutch Books. And as it turns out, it might not. 
 How can that be? Don’t we know from the existing literature that one will be 
Dutch Bookable just in case one’s conditional probability p(PERC | E) diverges from the 
ratio p(PERC & E) / p(E)? And doesn’t my theory propose that conditional probabilities 
should so diverge, exactly when E dogmatically supports PERC (and you’re not yet 
certain that E)? 
 As we’ve seen, the answer to the second question is yes. But let’s be careful about 
the first. What the existing literature tells us is that one will be Dutch Bookable just in 
case one’s decisions are determined by expected utilities derived from a single 
probability function whose conditional values p(• | E) diverge from p( • & E) / p(E). But 
recall that our plausibility functions are generated by the combination of one’s mass 
distributions and a range of inheritance plans. This will determine a range of plausibility 
functions. The literature may teach us that individual members of that range recommend 
decisions that are diachronically Dutch Bookable. But it’s not clear that it follows that 
decisions guided by the range itself must be Dutch Bookable too. 
  Here’s what I have in mind. 
 The Bookie puts you in a scenario like this. First, your eyes are masked and 
you’re asked to bet on certain questions having to do with whether you’ll soon have 
visual experiences as of a hamster; and if you do, whether they’ll constitute perceptions 
of a hamster. Then your eyes are unbound and you settle whether you do have those 
visual experiences. If you do, the Bookie may then transact further bets about whether 
your experiences constitute perceptions. After any such further transactions, you get to 
reach out and settle, by feeling, whether there is a hamster there. (We suppose there is no 
possibility of your tactile perceptions being mistaken. We suppose also that, in the 
scenario, you’ll visually perceive a hamster iff there’s a hamster there. There is no 
possibility of your having veridical hallucinations.) 
 What the Bookie will try to do is this: 
(i) He offers you a bet that pays $1 if U—that is, if you have experiences as of a 

hamster but aren’t thereby perceiving (because there is no hamster). You will pay 
up to $ p(U) for this bet. 

(ii) He offers you a bet that pays $ p(U)/p(E) if not-E—that is, if you don’t have 
experiences as of a hamster. You will pay up to $ p(U)/p(E) * p(not-E) for this 
bet. 

(iii) He offers you a bet that pays $ p(U)/p(E) – p(U | E) if E. You will pay up to $ ( 
p(U)/p(E) – p(U | E) ) * p(E) for this bet. 

At this point, you will have spent up to: $ p(U) + p(U)/p(E) – p(U | E) p(E). Now you get 
to open your eyes. 
 If you don’t have experiences as of a hamster, your bets (i) and (iii) lose, and bet 
(ii) pays you $ p(U)/p(E). At this point, you’ll be down by as much as $ p(U) – p(U | E) 
p(E). If p(U | E) < p(U)/p(E), this will be a positive amount. 
 If on the other hand, you do have experiences as of a hamster, then bet (ii) loses, 
bet (iii) pays $ p(U)/p(E) – p(U | E), and bet (i) is still open. The Bookie then continues 
by: 
(iv) Offering to buy from you a bet that pays him $1 if U. Since you’ve now become 

certain that E, you’ll be willing to sell him this bet for as low as $ p(U | E). 
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At this point, you’ll be down by up to $ p(U) – p(U | E) p(E). Now you get to reach out 
and touch and see whether you really are perceiving a hamster. If there is a hamster there, 
he’ll bite you (this doesn’t enter into your utility calculations). Bet (i) will then lose, but 
at the same time you don’t have to pay on bet (iv). If on the other hand, there is no 
hamster there, then you win $1 on bet (i), but have to pay out $1 on bet (iv). In either 
case, you’re left down $ p(U) – p(U | E) p(E). If p(U | E) < p(U)/p(E), this will be a 
positive amount. 
 So goes a standard diachronic Dutch Book. 
 However, let’s now consider what happens if your betting decisions are 
determined by a range of plausibility functions. When offered bet (i), you’ll be willing to 
pay up to $ plow(U)—the lower bound of your expected utility for bet (i). When the 
Bookie offers to buy bet (iv), you’ll be willing to sell it for as low as $ phigh(U | E). And 
so on. We have to keep track of whether the relevant plausibilities are your upper bounds, 
or your lower bounds, or some value in between. So far as I’ve been able to determine, 
you will be Dutch Bookable only if you violate one of these two inequalities: 

(a) 
phigh(X & E)

plow(E)    ≥ plow (X | E) 

(b)  phigh(X | E)  ≥ 
plow(X & E)

phigh(E)   

And whether my model will permit violations of those inequalities turns out to depend on 
the size of one’s dogmatic bias K and what range of inheritance plans one is working 
with. This problem is too hard to solve analytically, but it can be mathematically 
modeled. With the help of Branden Fitelson, I modeled it for some 3-atom hypothesis 
spaces and the α-based inheritance plans. It appears to be the case that: if a subject uses 
the entire available range of α-based inheritance plans, then arbitrary large dogmatic 
biases K are possible, without violating (a) or (b). If a subject uses smaller ranges of α-
based inheritance plans, then there will be constraints on how large K can be, before it 
permits violations of (a) or (b) for some possible mass distributions. However, as long as 
the range of inheritance plans has positive measure, there will still be positive values of K 
that don’t expose the subject to any possible violations of (a) or (b). 
 I wish that this matter were more clearly settled. I’d like to know whether 
diachronic Dutch Books do in fact always require violations of (a) or (b). I’d like to have 
an analytic solution to the question how high K can be, before exposing a subject to 
violations of (a) or (b). And I’d like to have a solution for γ-based inheritance plans as 
well as α-based ones. Still, the evidence we do have suggests that my model might not 
expose subjects to being diachronically Dutch Booked. 
 
18. Summarize how this model solves the difficulties we had making probabilistic 
sense of dogmatism: 
• How it models the difference between direct and mediate undermining 
• The sense it gives to the idea that your experiences can be dogmatically biased 

towards PERC rather than U, even though having experiences η will raise the 
plausibility of U too—and given some kinds of background evidence (God told 
you E ⊃ U)—may raise p(U) much more than it raises p(PERC). 
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• On the dogmatist model, p(PERC | E) need not always be < p(not-U). So Theorem 
2 from §4 can be violated. However, one’s evidence may be dogmatically biased 
towards PERC even in cases where that inequality is not violated. 

 


