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Using (nonrigorous) operator-algebraic and group-theoretic techniques the particle struc- 
ture of interacting real-time thermal field theory is investigated. A description in terms of 
elementary unstable entities without a dispersion relation is arrived at. The asymptotic fields 
are found to be two-parameter generalized free fields. Contact with the Licht-field description 
of on-shell unstable particles is thereby achieved. Poincar6-symmetry breaking and the 
rearrangement of spin to helicity at finite temperature are fully discussed and incorporated. 
A unique thermal Gell-Mann/Low formula is obtained. Feynman rules and renormalization 
conditions pertaining to non-shell thermal particles are given. Dissipation thereby naturally 
emerges. All relevant esoteric mathematics is explained. © 1988 Academic Press, Inc. 
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1. INTRODUCTION 

In the course of 60 years quantum field theory has evolved from an algorithm for 
calculating elementary particle collision cross sections into a comprehensive 
theoretical framework covering statistical mechanics and condensed matter physics 
as well. In high-energy physics many-body aspects are particularly relevant for the 
description of the quark-gluon plasma in a cosmological setting, or in the 
laboratory (heavy-ion collisions) [1], and for the analysis of phase transitions in 
the early universe in the context of the inflationary scenario [2]. In and near 
thermal equilibrium these statistical aspects are the domain of "field theory at finite 
temperature and density" [3], or thermal field theory, as we prefer to call the 
subject. 

The basic observable quantities that are to be calculated in thermal field theory 
are the equation of state (EOS), thermodynamic response functions (e.g., the 
specific heat), transport coefficients (e.g., the shear viscosity), and the effective 
potential in the case of a nontrivial phase structure. In fact, the thermal effective 
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potential (in curved spacetime) is the starting point of any inflationary scenario, 
whereas transport coefficients are indispensable in order to trace the space-time 
evolution of the quark-gluon plasma by means of hydrodynamic equations. In 
principle, reliable lattice calculations of these thermal observables would be 
preferable over (semi-) perturbative evaluations. Indeed, our understanding of the 
phase structure of (gauge) field theories is definitely based on lattice results [4], but 
with the present state of the art other thermal objects of interest have mainly been 
analyzed by some version of perturbation theory. 

Now the fact that vacuum and thermal field theories are two branches of a single 
tree has apparently led to the general belief that their respective perturbation 
theories should be set up in uniform similitude; this means that in both cases the 
same free dynamics (i.e., a free Lagrangian or Hamiltonian and its associated free 
fields) is chosen to expand around. The presence of a nonzero temperature (T) 
(and/or chemical potential (~t)) is subsequently "incorporated" in a way that 
depends on the formalism used, namely by the introduction of T-dependent 
Matsubara frequencies in the imaginary-time method and by the appearance of 
ghost fields and thermal state conditions in the real-time approach [3]. In any case, 
the temperature appears in a certain way in the free propagator, and Green 
functions (from which all thermal observables can be derived) are computed in 
essentially the same way as in the vacuum theory. (Of course, this last feature was 
the main reason why field-theoretic methods were introduced in quantum statistical 
mechanics in the first place.) 

The procedure may be refined by introducing T- and p-dependent renor- 
malization conditions defining T- and/2-dependent masses and coupling constants 
[5-7]; in zero-temperature many-body theory this is essentially the so-called 
dynamical quasi-particle approach [8, 3]. 

In relativistic field theory conventional vacuum perturbation theory works fine in 
various cases where the Haag-Ruelle collision theory [9-11 ] applies (cf. Section 3). 
Roughly, this means that the Hamiltonian must be positive and that the four- 
momentum operator p2 must have an isolated discrete eigenvalue m2> 0, while in 
addition there must be no room for nonperturbative field configurations; that is, the 
Hilbert space .~  must be a Fock space spanned by the multiparticle states of mass 
m. There are theoretical reasons why perturbation theory works in this situation 
[11, 12], while it has, in a rather complicated sense, been well vindicated by 
experiment. Conventional perturbation theory is based on the Gell-Mann/Low 
formula, and the actual derivation of this formula [13] already identifies the 
correct free dynamics as the one pertaining to the asymptotic on-shell particles of 
mass m. It is important to remark that this perturbation method is consistent in 
that it produces an S-matrix that is unitary order by order; this follows from the 
cutting equations [14, 15] in combination with the fact that the free propagator 
i/(p 2 -  m2+ is) contains the physical mass. Another prominent feature is the direct 
observable nature of the parameters occurring in the perturbation series: the expan- 
sion parameter 2 is given by renormalization theory as the actual scattering 
amplitude at some specified energy, while m is necessarily the physical mass, as we 
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have seen. Since vacuum field theory in Fock space describes scattering experiments 
these quantities are measurable indeed. 

In thermal field theory the situation is very, very different. The disparity between 
vacuum and thermal boundary conditions (actually, representations of the operator 
algebra, see below) is so large that in our opinion the standard perturbation scheme 
that copies the vacuum one is totally inadequate; it is the purpose of this paper to 
point out the differences and to analyze the situation to such an extent that an 
entirely new and unexpected structure emerges almost by necessity [16], be it 
attractive or not. 

To begin with, it should be remarked that the formalism of relativistic thermal 
field theory has never been tested by experiment. The only area where thermal field 
theory has actually been confirmed is low-temperature condensed matter physics 
[ 17, 18 ]. This, however, is nonrelativistic second-quantized many-particle 
behaviour in or near the ground state rather than full-fledged thermal field physics. 

A first indication that the usual perturbation method could be diseased was the 
discovery [19] of the infrared problem in high-temperature Yang-Mills plasmas, 
notably in the quark-gluon plasma [20, 1 ]. Namely, power counting shows that the 
pressure as a power series in the coupling constant g shows infrared divergences of 
the order g6 and higher. This was unexpected, because the singular infrared 
behaviour of quantum chromodynamics (QCD) is supposed to be related to its 
confining nature, which lattice studies [1, 4] claim to be absent in the high T-phase 
(pace [21, 22]). Since QCD is not well understood it may be unfair to ascribe this 
infrared problem to the general inappropriateness of the standard thermal pertur- 
bation formalism; for the moment suffice it to say that the quite similar infrared 
problem in the charged sector of vacuum quantum electrodynamics, which is 
unrelated to confinement, too, has been shown [23] to be due to an improper 
identification of the photon Hilbert space, 

A model-independent argument in favour of a new approach is implicit in certain 
results of Narnhofer et al. [24], who showed that, in great contrast to the state of 
affairs at zero temperature, there is no room for interactions between exact 
quasiparticles at finite temperature (cf. Section 6). 

To achieve strong structural results in scattering theory or statistical mechanics 
(of the type in Refs. I-9, 23, 24]) it is extremely convenient to assume that the 
system is spatially infinitely extended. This assumption may always be an 
idealization and in addition introduces technical mathematical complications, but it 
definitely forces the issue and brings certain properties of the system to a head: 
quantities that are negligibly small (like the interaction between scattering states) or 
devastatingly large (like the total energy in a thermodynamic system) will actually 
be zero and infinite, respectively, in an infinite system. Artificial "boxes" are 
eliminated in this way; self-maintained boundaries, on the other hand, can naturally 
be accounted for in infinite systems [18]. To illustrate how the use of infinite 
systems avoids certain ambiguities in thermal field theory, consider the following 
paradox. If we write the canonical partition function as Z( f l )=Trexp( - f lH) ,  
where fl is the inverse temperature and H is the total Hamiltonian, and if we 
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assume that the Hilbert space over which the trace is taken is spanned by in- (or 
out-) scattering states, it follows that Z(fl)=Tr e x p ( - f l H 0 ) =  Zo(fl), where Ho is 
the free Hamiltonian governing the time evolution of the scattering states. This 
follows because the trace is sensitive only to the spectrum of an operator, and in 
field theory existence and completeness of the asymptotic states require that H and 
Ho have identical spectra; cf. Section 3. This paradox arises because one wants the 
best of all worlds, i.e., both the simple trace formula for Z(fl) and in-out-states 
spanning the Hilbert space. The paradox is resolved by noting that in an interacting 
system exact asymptotic states exist only if the system is infinite; in that case, 
however, the operator exp( - f lH)  is no longer of trace-class, and thermodynamic 
equilibrium should be defined abstractly by the KMS condition (cf. Section 5). 

Infinite systems can be studied by abstract operator-algebraic techniques [25-27] 
(also cf. Sections3 and 5); if we use the language of algebraic states and 
inequivalent representations the situation clears up considerably, and the essential 
differences between vacuum and thermal field theory are easy to formulate. Roughly 
speaking, the algebraic approach to quantum field theory starts from an abstractly 
defined algebra 9~ of (local) observables that may be coordinatized by fields [25]. 
A state is a positive linear functional over this algebra rather than a density matrix 
on some given Hilbert space, which as yet is absent. Selecting a particular state ~o 
one is led to an explicit representation go,(9.1) of ~I on a certain Hilbert space ~ ,  
by applying the GNS construction [26, 27]. In infinite systems different states in 
general induce inequivalent representations of 9.1. This is precisely what happens in 
vacuum vs thermal field theory: vacuum and thermal equilibrium (or KMS) 
representations of oA are not only unitarily inequivalent but also disjoint [26]. This 
implies that the basic structural properties of vacuum representations, such as the 
existence of in- and out-states and a unitary S-matrix, and the weak equivalence of 
the full Hamiltonian and the renormalized free Hamiltonian of the asymptotic par- 
ticles [9, 18], do not carry over to thermal representations. Since, in our opinion, a 
good perturbation theory directly reflects such underlying properties of the Hilbert 
space we clearly see the need to start all over again if we wish to examine the 
structural properties of thermal representations in connection with the search for a 
consistent thermal perturbation theory. 

In summary, the simple point we make here is that the objects defining pertur- 
bation theory, namely the free dynamics and the expansion parameter(s), cannot be 
simply read from the Lagrangian (or, more generally, the automorphism on 9.1 
defining the dynamics), but instead are strongly dependent on the "setting" 
(vacuum, thermal, etc.) that one has chosen. Zero-temperature masses and coupling 
constants are contextually meaningless in thermal situations; if a thermal pertur- 
bation theory is possible at all it should be formulated solely in terms of thermal 
observables, like the specific heat and the shear viscosity. 

The preceding remarks strongly motivate the following questions: given a KMS 
state ~o on a field-theoretic algebra oA and a space-time evolution ax (indirectly 
defining m, cf. Section 4), what is tile explicit structure of the "thermal Hilbert 
space" ~ , ,  are there particle-like states, is it a Fock space in some sense, etc.? As 
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we shall see in detail, the known properties of the representative n~,(od) and its com- 
mutant 9J/', the "bottomless" nature of the effective Hamil tonian/~  in Jcg~, and the 
group-theoretic structure (broken Lorentz symmetry) on ~o~ together are so restric- 
tive that an essentially unique structure emerges. Namely, we shall find that ~,o is 
spanned by a peculiar type of "particle" state: these "particles" have no mass-shell 
or dispersion relation, and even the single-particle states are unstable. We will call 
these objects non-shell unstable particles. (Of course, a particle without a mass-shell 
is no particle at all; the analogy with ordinary particle states is mathematical rather 
than physical.) 

The situation may be compared with (axiomatic) vacuum field theory, where the 
corresponding problem starts from the Wightman (or Haag-Kastler)  axioms [11],  
which also turn out to be so stringent that reasonable field theories with discrete 
mass-gap necessarily find an interpretation in terms of asymptotic (ordinary) 
particles. 

Following our general programme, the next step is to derive, if possible, a pertur- 
bation method that is consistent (i.e., it satisfies the KMS condition order by order) 
and reflects the structure of 4 , .  In the case in which a certain weak asymptotic 
condition (cf. Section 9) is satisfied, it turns out to be indeed possible to set up a 
diagrammatic perturbation scheme. The propagators contain a certain continuous 
function Z(E, p) that effectively weighs the contribution of the non-shell particle 
with energy E and momentum p. We can derive a self-consistent integral equation 
for Z which in principle admits a solution with two free parameters. These must 
subsequently be exchanged for two thermal observables plus a set of renor- 
malization conditions; we shall demonstrate this procedure in a simple example. 

Unfortunately, the completely self-consistent nature of this perturbation scheme, 
which in principle represents its structural power, renders it extremely difficult to 
use in practice, and it remains to be seen whether our method is of much use in 
actual computations. In any case, our criticism of the conventional method stands 
apart from the particular alternative we are offering here. 

We now give a preview of the contents of this paper. To make our ideas 
accessible to nonspecialists in operator algebras we start in Section 2 with a brief, 
informal introduction to the subject, on the same heuristic lines as those of an 
earlier exposition [27].  Then (Section3) we place the main ideas of the 
Haag-Ruelle scattering theory in this light in order to understand why vacuum per- 
turbation theory is as it happens to be, and to appreciate later on the deep differen- 
ces with the thermal case. In particular, the derivation of the Gell-Mann/Low for- 
mula is considered in detail. The Haag-Ruelle theory is valid for a theory with 
stable particles, but it can easily be accommodated to include unstable ones as long 
as there exists a lightest stable particle defining the Fock space. In thermal field 
theory all particles are effectively unstable, a fact of profound significance in our 
approach. To fix ideas in this direction we find it very helpful to discuss in Section 4 
an approach to unstable particles at zero temperature due to Lukierski [28-30],  
which de-emphasizes the role of the stable particles in the theory and assigns a 
particular type of asymptotic field to an unstable particle, namely a so-called 
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(one-parameter) Licht field [31, 32]. It is precisely this feature of vacuum unstable- 
particle theory that we will be able to generalize to the thermal case; for group- 
theoretical reasons we will, however, end up with a two-parameter field. 

Having discussed relevant features of vacuum field theory we pass on to thermal 
KMS representations; in Section 5 we discuss the operator mathematics that we 
need, giving "physicist's proofs" of the particularly relevant results of the 
Tomita-Takesaki theory [26]. As we see in Section 6, this theory leads almost 
instantly to the theorem of Narnhofer et al., quoted before, on the noninteraction of 
exact thermal quasiparticles. This theorem in plain language means that the thermal 
self-energy always has an imaginary part on any (would-be) mass-shell, however 
refined the perturbation scheme. Thence it denies the possibility that the thermal 
Hilbert space J~ffo~ is an ordinary Fock space. The question what it should be instead 
is answered [16] by almost purely group-theoretical considerations in Section 7; 
the crucial ingredient is that ~ carries a unitary representation of the unbroken 
subgroup S=S0(3)  (× T 4 of the Poincar6 group. (The representations and 
Clebsch-Gordan series of this subgroup are derived in the Appendix.) Having iden- 
tified 3¢g~ as an "energy-extended Fock space" of nonshell unstable "particle" states, 
we construct a complete set of free-field operators on ~,o in Section 8; this step also 
elucidates the meaning of spin and helicity in thermal representations. The com- 
pleteness of these operators here means that any operator on ~ , ,  in particular any 
element of go(~.l)" u go(9.I)', can be expressed in terms of them by means of the 
so-called generalized [27] dynamical map [33, 18]. (The one-particle spectral 
function Z(E, p) enters the theory at this stage.) 

Nevertheless, to construct a diagrammatic perturbation method more is needed, 
namely a weak LSZ-type asymptotic condition. Due to poor cluster properties in 
thermal representations we have been unable to prove such a condition. However, 
the choice of free-field operators is so flexible that it seems reasonable to assume 
that there exists a particular arrangement of the complete operator set such that the 
smeared Heisenberg field converges weakly to an element of this set. On this 
assumption we can derive a generalized Gell-Mann/Low formula for certain spec- 
trally decomposed Green functions (Section 9), and following a two-step strategy 
we eventually arrive at explicit propagators and other Feynman rules (Section 10). 

The perturbation scheme thus obtained is incomplete without an explicit 
expression for the function Z(E, p) which enters in the propagator. In a canonical 
theory, Z is in principle determined by the equal-time commutation relations, 
which in the case where Z is a function give rise to a self-consistent integral 
equation for this function. It is not clear how to attack this most complicated and 
implicit equation. Therefore, in order to develop some intuition as to what its 
solution may look like, we perform a certain rearrangement of the conventional 
perturbation series to derive a new expansion that also follows from our original 
method for a particular choice of Z(E, p) (Section ! 1). Contact with the so-called 
nonequilibrium thermo field dynamics [34-37] is thereby established. Instead of 
attempting to solve the integral equation we then simply adopt this choice for 
Z(E, p) in order to discuss the final ingredient of our perturbation method. This is 
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the process of exchanging the parameters in the diagrams for physical thermal 
observables and renormalization conditions. In doing so in Section 12 we derive 
simple diagrammatic expressions for the viscosity and the specific heat, which are 
also useful outside our particular framework. 

We close the paper with conclusions and some remarks on possible extensions of 
our work. Also the feedback to our original motivation, the infrared problem in 
thermal QCD, is discussed. 

To avoid misinterpretation we feel obliged to make a qualifying statement con- 
cerning the level of mathematical analysis in this paper (also cf. 1,-27]). We employ 
various techniques from functional analysis and operator algebra theory that are 
usually associated with rigorous mathematical physics 1,26]. In contrast we use 
these methods rather heuristically, that is, more or less analogously to the way most 
physicists utilize path integrals. However, the very nature of our operatorial 
analysis in principle should allow an analyst to amend this paper so as to render its 
derivations and results rigorous. 

2. OPERATOR ALGEBRAS 

The motivation for the use of abstract operator algebras, in particular 
C*-algebras, in statistical mechanics and field theory is given in Refs. 1-25, 26] (also 
cf. 1,39, 27]). Basically they allow a precise and conceptually transparent discussion 
of phase transitions, symmetry breaking, etc., in infinite systems; in addition their 
use is profitable in emphasizing structural properties in field theory. Our discussion 
below understates technical aspects, and we mostly omit precise mathematical 
definitions; for these cf. 1,26]. 

A convenient starting point is the abstract algebra 9.1 of bounded local obser- 
vables [25] defined without direct reference to a particular Hilbert space. This 
algebra may in some sense be regarded as a noncommutative manifold that can be 
coordinatized by quantum fields; to avoid problems with the abstract treatment of 
algebras of unbounded operators, however, it is preferable to postpone this step 
until a concrete representation of 9.1 has been constructed. 

States and Representations 

A state 09 is abstractly defined as a normalized positive linear functional on 9.I; 
the number 09(A) that 09 assigns to A e ~ is interpreted as the expectation value of 
the observable A in the state 09. States can be used to construct representations of 
the abstract algebra by operators on a concrete Hilbert space by means of the GNS 
construction 1,26] (for a simple presentation cf. 1,3, 27]). All we will need here is the 
final result: every state 09 induces a representation of 9/, called ~t,o(9/), by operators 
on a Hilbert space Yt~,; this space contains a cyclic vector [0)~,  which satisfies 

09(A) = o~ (01 ~o~(A)l 0)o~; (2.1) 

~ = ~(9.I)] 0)~o. (2.2) 
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In words, the state o9 is "purified" in ~ o ,  whether or not it is a pure state originally. 
In addition, any vector in ~o, can be arbitrarily well approximated by acting with 
representatives of 9.1 on I O),o. In vacuum representations (see below) the vector 
10)~ is just the ordinary vacuum state 10); in thermal (KMS) representations it is 
what is known in thermo field dynamics as the "thermal vacuum" r0(fl)) 
[18,38,3] .  

It is technically convenient to extend the set of operators rt,o(9.1) a little bit by 
closing it in the weak operator topology 1-26] or, equivalently, by taking its bicom- 
mutant 93/= z~o,(~I)". (The commutant of an algebra of bounded operators is the set 
of bounded operators that commute with all elements of the algebra; this com- 
mutant itself has a commutant which is the bicommutant of the original algebra.) 
The commutant of 93/is called 93/'; it will play a decisive role in thermal represen- 
tations. The elements of ~J/are bounded observables, but for practical purposes we 
prefer to work with the usual quantum operator fields. We therefore assume that it 
is possible to "coordinatize" 99/ by the usual zoo of quantum fields, which are 
supposed to be affiliated with ~ .  (Apart from domain problems [26], this means 
that they commute with 9J/', and that their unitary elements and bounded spectral 
projections actually lie in 93/.) We make this assumption in order to be able to 
utilize both nice C*-algebra theory and the practical apparatus of field theory. 

Symmetries 

In the algebraic approach symmetries are defined as *-automorphisms of the 
operator algebra [25, 26, 39]; this means that the symmetry group G is realized by 
operators ~g on 9A satisfying 

O~gO~g, = O~gg, ; (2.3) 

Oeg[ A ] O~g[ a ] = O~g[ AB ]; (2.4) 

~g[A*] = ~.I-A]* (2.5) 

for all A, B ~ 9.I. Here * is the adjoint operation. A symmetry group G prolongates 
into the representation ~t,o if co is G-invariant in the sense that 

o~(~g[A ]) = co(A) (2.6) 

for all g eG. If (2.6) is satisfied G can be unitarily implemented in ~¢go, by 
constructing the unitary representative U(g) of g e G as 

U(g) rco,(A)l 0)o, = lc~o(O~g[A ])l 0~>co (2.7) 

for all A E g.I. This indeed defines U(g) as (2.2) holds. If follows from (Z3)-(2.7) 
that the U(g) are indeed unitary operators representing G and leaving 10),o 
invaiant. We also have 

U(g) ~ ( A )  U*(g) = g,,(~g[A]). (2.8) 
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In infinite systems G cannot be unitarily implemented if (2.6) is violated and, 
assuming that the ~g commute with space translations ax, if in addition, co is not 
related by localized operations [25] to a state for which (2.6) does hold. 

Whenever G is unitarily implementable, the direct integral decomposition of the 
representation U(g) on g~, is an extremely useful tool in the structural analysis of 
the Hilbert space. We will quote a particularly relevant mathematical result for the 
special case that G is a so-called type I group [40]; this suffices for our 
applications. As such the following is a combination of theorems of von Neumann, 
Mautner, and Naimark-Guichardet [40]. We must first define the dual object (~ of 
a group G; this is the space of equivalence classes of inequivalent irreducible unitary 
representations of G. Elements of G are denoted ~, and the carrier space (up to 
unitary equivalence) of the representation ~ is called ~ ( ~ ) .  The theorem states that 
there exists a unitary operator F (the generalized Fourier transform) which maps 
~o  into an equivalent Hilbert space ~o  admitting a direct integral decomposition 
in the following way: 

<X3 

FoUr'o, = ~,o = @ k f ,  d#k(~) 5¢g(~). (2.9) 
k = l  OG 

Here the /~k are measures on (~, and k is the multiplicity of the Hilbert space 
:=Sd#k(~ ) ~,ug(~), i.e., the number of times it occurs in Go. Of course, if/~j-=0 

then the multiplicityj does not occur at all in the decomposition of ougo,. Elements of 
the direct integral Hilbert space ~ are by definition [40] (/~k-measurable) 
functions u on (~ such that u(~)~ ~g(~), and the inner product 

(u Iv )~k = I duk(g)(u(g)l v(g))~,~, (2.10) 

is finite. Hence the structure of ~,o, and thereby its physical interpretation, is 
largely determined by the measures/~k(g); these are, in turn, governed by both the 
dynamics of the theory and the state co. 

A further element in the analysis of ~,~ and rco,(9.I), which is crucial for the for- 
mulation of perturbation theory, is the identification, if possible, of a manageable 
complete set of operators. By complete we here mean that it must be possible to 
express all elements as well as the coordinatizing fields of 9X = r~o~(9.I)" in terms of 
this set ("dynamical map" [18, 36]); in particular, (2.2) implies that 10)co must be 
cyclic for the complete set. By manageable we mean that their commutation 
relations and transformation behaviour under G must be explicitly known. A good 
example of such a complete set is given by the creation and annihilation operators 
if ~,o is a (standard) Fock space. As we will see especially in the thermal case, the 
identification of such a complete manageable set is intimately related to the group- 
theoretic analysis in the preceding paragraph; mathematically this is associated with 
the infinite-dimensional generalization of the Burnside theorem [ 4 0 ] .  

To close this possibly dry section we announce that all of the above will actually 
be used in our analysis of thermal field theory in Sections 5-9. 
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3. HAAG-RUELLE THEORY AND GELL-MANN/LOW FORMULA 

In relativistic quantum field theory the symmetry group G in any case contains 
the Poincar6-group P; in the sequel we will ignore possible internal or conformal 
symmetries and we will just assume G = P ,  and label its elements by p. In 
particular, translations are labeled x e I~ 4, and we write c~x[A ] = A(x); clearly ~t t 
specifies the dynamics. 

To arrive at a concrete representation of the operator algebra we must select a 
state 09 on 9.I. This essentially means that we make up our mind about a particular 
type of problem we are interested in: accelerator physics needs (approximate) 
vacuum states, while thermodynamics needs thermal (equilibrium) states, etc. Given 
a state and a "theory," i.e., an algebra 9.1 and its symmetries (particularly its space- 
time evolution ~x), it is necessary to determine the physical interpretation of the 
theory in the state 09. For example, one may ask whether there is a particle struc- 
ture, or whether the original symmetries are realized, etc. Answering such questions 
amounts to analyzing the representation space ~ ,  and the representative no~(9.1). 
For instance, ~,~,~ is a conventional Fock space if the theory admits a complete 
particle interpretation. (If such is not the case, as in realistic gauge theories, it is 
very relevant to ask what ~,o looks like instead [41].) In some cases it may happen 
that the above analysis identifies a particularly natural or even unique consistent 
perturbation theory, i.e., a choice of the "free" dynamics. 

Input 

A good example of essentially such an analysis is the Haag-Ruelle scattering 
theory [9 1l] .  Here ~o is taken to be a vacuum state (i.e., a state satisfying (2.6) for 
all g = p  E P), and (vacuum expectation values of) the fields coordinatizing ~o,(9.1) 
on ~ o  are supposed to satisfy the Wightman axioms [9, 11 ]. In addition there is a 
spectral assumption which in fact puts in part of the final result by hand. (As we 
shall see, it will be this assumption that in general will not be satisfied in interacting 
thermal field theories.) In the language of the previous section this assumption 
states that the measures/~k(/~) in (2.9) contain one or several point-contributions 
concentrated at positive masses, i.e., /~k(m 2, s ) =  1 for some multiplicity k, spin s 
and m, 2 > 0. Furthermore, the absolutely continuous contribution to the #k must 
start at some value mZ> maxi{m~}. (Note that here (~ =/~, where/~ ~/~ are labeled 
by m2>0 ,  s; m 2 = 0  ..... etc. The contribution from the vacuum representation 
10) := [0)o~ is considered understood.) It follows from the spectral representation 
[18] that these point-contributions correspond to poles in certain two-point 
functions. In the sequel we will for simplicity assume that the point-measures occur 
for k =  1 and s = 0 .  Each different mass mi corresponds to a proper subspace 
~ I  j) c ~ such that (p2 = p~ _ p2) 

P 2 ~ } l )  = m 2 ~ l ) .  (3.1) 

Here the P~' are defined by U ( x ) = e x p i P . x ,  where U(x) is given by (2.7) with 
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P ~g = x. Again for simplicity we assume that 93~ = n,,~(~)" can be coordinatized by 
a single (Heisenberg picture) neutral scalar field A(x), which is chosen in such a 
way that it couples the vacuum to all subspaces ~¢~I 1). 

Output 

We can now discuss certain elements of the Haag-Ruelle (-Hepp I-9]) theory that 
are particularly relevant for our purpose of comparing vacuum and thermal 
representations and perturbation methods. The principal result is that ~ 
necessarily contains a Fock space over the one-particle subspace ~ ) =  G~ o¢g~1): 

~o ~ FocK(J~¢~(1)) :~ C I 0) ~) (p@l + ~(1) ) . (3.2, 

(To avoid confusion in terminology, we mention that in the context of a canonical 
formalism this result does not imply that the representation n,o of the Weyl CCR- 
algebra 1-26] defined by the time-zero field is a Fock representation, i.e., admits a 
vacuum state.) The decomposition in (3.2) is not multiplicity-free, and therefore 
nonunique for p > 1, and one usually chooses in- or out-multiparticle states (see 
below). 

Since it is sufficient for our purpose (cf. Section 7), we will restrict ourselves to 
the case of asymptotic completeness, in which the inclusion sign in (3.2) is replaced 
by an equality sign. Then the free fields ~b~(x) : =  ~mi(X) with mass m i form a com- 
plete set of operators on Jgo~ in the sense of Section 2. The actual choice of this set is 
tied to the choice of the decomposition in (3.2); i.e., the fields can be chosen as in- 
or out-fields, etc.; see below. The following property [9] cannot be overemphasized: 
the unitary representatives U(p) of the Poincar6-group, which are defined in terms 
of the automorphism ~p via (2.7), have the same action on ~ as that in a free-field 
theory. Expressing the U(p) in terms of the field A and omitting the label p, we 
write symbolically 

U[A] =~, U0[~b], (3.3) 

where U0[~b] denotes the standard expression of the U's in terms of the free fields 
~bi. The symbol = ~ signifies equality in the representation space o~,~ (note that the 
U[A ] are not representatives of elements of 9.1; they are in the bicommutant 9Jl). It 
is remarkable that (3.3) holds true even if the dynamics ~, in 9.1 is nontrivial; 
physically it expresses the fact that there is no interaction between asymptotic 
particles. A similar relation is valid for the generators of the U(p); in particular the 
Hamiltonian in ~ ,  reads 

H[A] l~k )=Ho[O] lqz )=l~ fd  3x" ((Oo(bi(x))Z+qk,(x)~,(V)2ck,(x)): IO) (3.4) 

on any I qz) in its dense domain of definition (e~(V) = ~ + m~). 
The remarkable properties (3.2)-(3.4) are established by means of a strong 
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asymptotic condition on the one-particle excitation operators Bi(x ) defined by their 
Fourier transforms 

JBi(P) = Zj-1~2 hi(p2 ) .~(p). (3.5) 

Here the hi(p 2) are test functions with support in S t=  (m~-e ,  mE + e), where e is 
chosen such that St n Sj = 0 for i 4 j ;  moreover, ht(m2i)= 1. By construction one has 

Bt(f)l 0 > := f d4xf (x)  Bi(x) l  0 > ~ ,~1) (3.6) 

for a test functionj~ the constants Zt in (3.5) are chosen such that these one-particle 
states are properly normalized. For later comparison with the thermal situaton it is 
important to note that although (3.1) implies 

Bi(f~ t)l O) : =  (eintBi(f) e- tm) l  0 > = Bt(et+(v)'f)l 0>, (3.7) 

the same equation without 10), i.e., the corresponding operator equation, is valid 
only in free-field theories. As we see in Section 6, in thermal representations 
Eq. (3.7) does imply the corresponding operator equation. 

Now define 

(gi~oB)(t) = fxo =t d3x(gi(x) a°Bi(x) - 630 gt(x) Bt(x)), (3.8) 

where gi(x) is understood to be a regular, positive-frequency solution of the 
Klein-Gordon equation with mass mi (wave packet). The strong asymptotic 
condition that essentially implies the structure of 9~o, sketched above is 

s -  lim f i  i(g~'~oBi,)(t)[O ) 
t ~  -T-~ /=1 

f i  in f i  in = it,,~,,~ ,~out~l 0 )  = ~outt,,~,ql 0) ,  (3.9) 
1 , 6 #  ~ 0  W i  I 11 tl " ,Oil  I I  

/=1 l=1 

where any it is one of the i's considered above, while the cq label possibly different 
wave packets. Of course, s-lim means that the limit is considered in the strong 
operator topology. We now see explicitly that (3.7) without 10) would lead to 
a * i n =  a *°ut, i.e., absence of scattering, hence of interaction. 

Gell-Mann/Low Formula 
The Haag-Ruelle strong asymptotic condition (3.9) is crucial for the analysis of 

~o,(9.I) and ~'~o, but it cannot be used for the derivation of a perturbation expansion 
for Green functions (i.e., the Gell-Mann/Low formula), because these are expressed 
in terms of the full Heisenberg fields A rather than the restricted one-particle 
excitation operators B. Fortunately, it can be shown 1-9] that (3.9) is even valid 
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when all Bit are replaced by Z T m A  if the limit is taken in the weak operator 
topology (i.e., in matrix elements). (This seemingly technical difference in fact 
modifies the physical meaning of the asymptotic condition considerably.) Starting 
from this observation, the Gell-Mann/Low formula has been derived with varying 
degrees of rigor and correctness: the standard textbook derivation based on the 
interaction picture is clearly wrong both mathematically and physically (it violates 
Haag's theorem [39] and fails to uniquely identify the choice of Ho leading to an 
order-by-order consistent perturbation theory, see below), whereas the most 
superior treatment [13] in the operator formalism known to this author is so com- 
plete that it solves the existence problem of the models for which it applies 
simultaneously, and therefore takes up an entire book. Our derivation below inter- 
polates between these two extremes, in that it does not address the existence 
problem and is formal in the sense that it leads to the usual difficulties involving 
infinite renormalization constants. Nevertheless we shall give it here, because it 
illustrates the interplay between Hilbert-space structure and perturbation theory in 
the well-known vacuum context, while its proof will easily extend to the thermal 
case (cf. Section 9). 

Thus the starting point is the (LSZ) asymptotic condition 

in 
w -  lim f i  (g~'i~oA)(t)lO) = f i  (Z~/2-~'~, ,~o-t~'0> ~il  OWil 11 • 

t ~  -T-oo l = 1  l = 1  
(3.10) 

It is convenient to use a two-Hilbert-space formalism [10]. We define a fiducial 
reference Hilbert space ~ 4  ( M =  {mi}) which is isometrically isomorphic to ~,o. 
This ocgM is just the space Fock (Yg(~)) (cf. (3.2)) with a vacuum state called If2>. In 
contrast to the physical vacuum 10) in ~,o, however, the state If2 ) is defined as the 
vacuum associated with the free fields ~ i  : =  ~ml at t = 0. Similar to the ~bi" on 4 ,  
the q~i form a complete set of operators on ~¢gM" We now define a map K: 9~'M --* ~,o 
that, roughly, maps a free multiparticle state into an interacting one. To do so, it is 
necessary to decompose the field A(x) as 

A(x) = ~ Z]/2 Ai(x). (3.11) 
i 

Here the Ai must be chosen in such a way that they have the LSZ limit (cf. (3.10)) 
A i __, in ~b i for t ~ - o %  which is always possible in view of (3.10). This demand is 
satisfied if A i couples the vacuum to Jegl 1) defined in (3.1). Beyond this demand, the 
decomposition (3.11) is quite arbitrary. We then define K according to 

K g~'/Yo ~i, I f2>= (g~'~oAo)(t=O)[O). 
1=1  

(3.12) 

This is well-defined, because any vector in ~ t  can be written uniquely in the form 
occurring on the l.h.s, for suitably chosen g's and it's. In the case of asymptotic com- 
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pleteness (that we exclusively deal with) the inverse K 1 is then also well-defined. 
Choosing n = 0  in (3.12) we have 

K I t 2 > = 1 0 > .  (3.13) 

Also note the intertwining relations 

Kqb i = A i K ;  (3.14) 

~ i  K l = g - l A i .  (3.15) 

Furthermore, we introduce the evolution operators U ( t l , / 2 ) :  ~'~'M ~ ~'M according 
to 

U(t 1, t2) = eiH° tl K -  1 e - ill(t1 - -  ,:)Ke - iHot2, (3.16) 

where H o = H o [ ¢  ~] is the free Hamiltonian on ~M, and H = H [ A ]  is the full 
Hamiltonian on ~ .  Finally, we define the quasi-M011er wave operators 
I2 + : ~ g  ~ ~,~ by 

I2 + = w - lim KU(0, t). (3.17) 

The existence of these limits follows from (3.10) (compare this with Ref. [10], 
where similar wave operators are constructed in the single-mass case, and with A in 
(3.12) replaced by B. The limit (3.17) then exists strongly). Note that the relations 

imply that 

HIO> = H o  I ~ > = o  (3.18) 

-(2 + I,Q) = 10>. (3.19) 

We are now in a position to prove the Gell-Mann/Low formula on the 
assumption that the field theory and the dynamics derived from H actually exist. 
After all preparatory work the demonstration reduces to the standard textbook 
manipulations, but now placed in their proper context, and with due care taken of 
the multi-mass spectrum and Eq. (3.ll) .  We choose t~ smaller and tf larger than 
other relevant times. Then 

i G ( x l ,  ..., x , )  := (0l  T [ A ( x I ) . . . A ( x , ) ] ] 0 }  

= Z Z ) ( 2 " " Z ) / 2  < OI T [ A i , ( x l ) ' " A i . ( x , , ) ] ]  O }  

il • • • in 

: Z z ] ( ~ z ] j  ~ <of u(o, t,) r [~, ,(x,) . . .~,o(x.)  
il • • • in 

x U(t f ,  ti)] U(ti ,  01]0}. (3.20) 
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We then use (3.19), take the limits t i ~ - ~  and tf---~ cx3, and use (3.17) and the 
isometric nature of t2- to find 

iG(x,...xn)= 
i I . . . 

Z ~ ( 2 . . . Z ~ / 2  (g '21  T [ c I ~ i l ( X l ) . . . q S i , ( x n )  U ( ~ ,  - - o o ) ] ] g ' 2 )  (3 .21)  

(Ol u(~, - ~ ) I O )  

The denominator is actually equal to unity: 

( O I ( Q ) - ' O + I Q > = ( 0 1 0 > = I ,  

but not so in naive perturbation theory, where it is the sum of all closed diagrams; 
hence we have explicitly exhibited it (vacuum renormalization). Note that in real- 
time thermal field theory this factor does equal unity identically [3]. To identify 
(3.21) with the standard Gell-Mann/Low formula, we remark that (3.15) implies 
that (3.16) is actually equal to 

U(ll, /2) = eiH°[~] qe iH[~lb](tl - -  tZ)e --iHo[,~]t2 

= Texp ( - i  ftt2'dt H,(t)), (3.22) 

where Hi(t) is the interaction Hamiltonian in the interaction picture defined by H0, 
as usual. It is the limiting procedure ti ~ - ~ ,  tf ~ + ~ that calls for a relatively 
refined procedure based on the weak asymptotic condition (3.10). 

Remarks 
We can summarize the preceding as follows: the strong asymptotic condition 

(3.9) is used to identify the structure of Yg, o, whereas the weak asymptotic condition 
(3.10) is used to derive the Gell-Mann/Low formula (3.21), hence diagrammatic 
perturbation theory. In the full Haag-Ruelle theory, the choice of the free dynamics 
implicit in (3.21) is uniquely governed by (3.4), which in turn is closely related to 
the Hilbert space property (3.1). 

For later comparison with the thermal case it is important to remark that the 
correct choice of the free Hamiltonian in (3.21) is already implicit in the demand 
that this formula can actually be derived. As we have seen, this amounts to 
demonstrating that the limit in (3.17) exists and is nonvanishing, which in turn is 
equivalent to proving the LSZ limit (3.10). The latter limit, however, brings a con- 
sistency requirement with it, namely [ 18 ] 

H[A]=w-  lim f d3x,~o[~i.n(x)], (3.23) 
V ~  V 

where o~o is the free Hamiltonian density expressed in terms of the scalar fields ~i n. 
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This consistency condition can be derived from the Haag-GLZ expansion, which 
is a weak expansion of Heisenberg operators in terms of in-fields, and which follows 
directly from (3.10) 1-33]. Of course, Eq. (3.4) of the Haag-Ruelle theory implies 
(3.23), but the point is that the latter equation must necessarily hold whenever the 
weak LSZ condition (3.10) is valid (and the operator set {4iin } is complete), 
whether or not there exists an underlying Haag-Ruelle-like theory based on a 
strong asymptotic condition. As we see in Sections 7-9, in thermal representations 
we have no strong Haag-Ruelle theory at our disposal; the structure of ~ will be 
determined from quite different considerations, and we must postulate a relation 
similar to (3.10). The choice of H o in the Gell-Man/Low formula will then be 
dictated by the consistency condition (3.23). 

Feynman diagrams follow by substituting (3.22) in (3.21) and expanding the 
exponentials. The (momentum-space) free propagators are i / (p2-m2+ ie). The 
masses m 2 are the eigenvalues of p2 in the one-particle subspaces ~ I  ~) and can be 
identified with the physical masses of the asymptotic particles. The propagators 
with these masses are the unique ones that guarantee that the S-matrix obtained 
from the Green functions (3.20) is unitary order by order in perturbation theory, 
i.e., without resummations. This fact, which follows from the cutting equations [14, 
15], illustrates the overall consistency and tightness of perturbation theory based 
on operator methods. Namely, there is a one-one correspondence between the free 
Hamiltonian and the free propagator; the correct choice (asymptotic condition and 
Gell-Mann/Low formula) of the former ascertains the correct choice (unitarity) of 
the latter, and vice versa. 

The next step is renormalization, i.e., the translation of bare parameters, say m~ 
and 20, in H[A] into contextually relevant physical parameters. This point is 
discussed in connection with thermal field theory in Section 12. 

To close this section it should be mentioned that the spectral assumptions 
underlying the Haag-Ruelle theory are not met in any realistic model [41]. 
Nevertheless, the example it sets is very useful in situations where its postulates are 
approximated in some sense. For us it is the chain of ideas leading to the Gell- 
Mann/Low formula that is particularly relevant for understanding the state of 
affairs in thermal field theory. 

4. UNSTABLE PARTICLES AND LICHT FIELDS 

In this section we assume that the spectral assumption (3.1) is satisfied only for a 
single mass m. An interesting situation arises when a local coordinatization of the 
bicommutant M is only possible using more than one field, say two, called A(x) 
and C(x). Without loss of generality we may assume that the pole at p2= m 2 occurs 
in the two-point function of the A-field. Then A ~ Z 1/2 in ~out, and C ~ 0  for t---, -T-~ 
in the LSZ sense (3.10). The Fock space ~ is completely spanned by multiparticle 
states "belonging" to the A-field. 
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Model 

For concreteness' sake we consider the Veltman model [14] described by the 
Lagrangian 

1 1 1 2A 2 1 M 2 C 2  _ ~. .St'=-~O,Aa"A +-~O, COuC-~m - ~  ~A2C+c . t .  (4.1) 

Here c.t. are the renormalization counterterms, and M is the renormalized mass of 
the C-field, which satisfies M >  2m. (The precise physical meaning of the quantity 
M is, of course, less clear than that of m; it is fixed by the renormalization con- 
ditions. For  example, the real part of the C-self-energy can be chosen to vanish for 
p2=M2. )  It is then not completely wrong to state that the would-be particle 
associated to the C-field is unstable and can decay into two stable A-particles. This 
decay, however, is not exactly expressed by the LSZ condition C ~ 0; instead, this 
seems to suggest that the C-particle dissipates into nothingness. A related problem 
concerns the choice of the C-propagator De(p) in perturbation theory, as the naive 
attempt De(p) = (p2 _ M 2 + ie) 1 violates unitarity in every finite order of pertur- 
bation theory [14].  The reason is, of course, that this propagator  in the cutting 
equations gives rise to intermediate on-shell states of a particle with mass M which 
in reality is absent. 

The first step towards a solution of these difficulties consists in the realization 
that a state containing two on-shell A-particles in s-wave pairing with invariant 
mass p 2 =  s, 4m2~< s < ~ ,  may just as well be regarded as a state containing a 
single C-particle whose mass can assume continuous values s [28].  The continuity 
of this mass spectrum may then be seen to be the cause of the unstableness (as soon 
as there is an interaction opening allowed decay channels). From a spectral and 
group-theoretic point of view there is indeed no distinction between these two 
pictures. 

Licht Field 

To formalize this idea one introduces a so-called one-parameter Licht field [31] 
~s(X) which satisfies the Klein-Gordon equation with mass-squared s, s ranging 
from 4m 2 to infinity. The field ~bs is constructed in the usual way from annihilation 
and creation operators c~*)(p, s), which now contain the extra parameter s and 
satisfy the commutation relations 

[c(p, s), c*(p', s ' )]  = (27z) 3 6 3 ( p -  p ') •(s-s'). (4.2) 

We may regard c*(p, s) as an operator that creates an on-shell ( p 2 = s ! )  unstable 
particle [28, 30] from the vacuum. Because of the equivalence of the two pictures 
alluded to above, we can ultimately express c*(p, s) in terms of the stable-particle 
creation operators a*(p) (p2=mZ) belonging to the A-field by employing the 
Clebsch-Gordan series for the Poincar6-group [30]. This, however,  is not advan- 
tageous if we wish to study the C-field and its associated unstable particle. 
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It is now physically obvious that the free field ~s(x) should be related to the 
asymptotic limit of the field C(x). This is indeed the case, and the crucial step is to 
decompose C(x) in a manner similar to (3.11), but now in a continuous way: 

C(x) = ds Z1/2(s) Cs(x). (4.3) 
m 2 

As in (3.11), it is required that Cs(x) connect the (this time unstable) particle state 
with p 2 = s  to the vacuum; otherwise the decomposition is quite arbitrary. The 
functon Z(s) is a continuous generalization of the wavefunction renormalization 
constants Zi of the previous section; there, i is a discrete index referring to the dis- 

2 in the spectrum of p2, while here the relevant part of this spectrum is crete mass m i 
continuous, so that the emergence of such a continuous function Z(s) could have 
been expected. Z(s) effectively weighs the contribution to C(x) of the Licht field 
creating a single-unstable particle state with p2=  s. As with (3.11), the whole point 
of the decomposition (4.3) is that the Cs(x) supposedly have LSZ-limits equal to 
~bs(x) [28, 30, 31]. Formally the appropriate asymptotic condition should read 

-~bs(x)-  w -  lira f d3y A(x--y; s) ~yofs(y), 
y o  ~ - - ~  

(4.4) 

if ~bs(x) refers to incoming two-(A-)particle states; of course, the same construction 
can be applied to outgoing states and limits (here A ( x - y ;  s) is the Pauli-Jordan 
commutator function). Actually, this condition can be satisfied only in the range 
4m 2 ~<s< 16m 2, since the higher-order decay of the C-particle into four or more 
stable particles is ignored. 

Propagator 

It is important to remark that neither C(x) nor the Cs(x ) have strong 
(Haag-Ruelle) asymptotic limits; as we have seen, the existence of a strong limit is 
directly tied to the existence of a discrete point in the spectrum of p2, so that in the 
model (4.1) only the A-field (more precisely, its associated one-particle excitation 
operator) has such a limit. We repeat that it is this strong limit that leads to the 
Hilbert-space structure of the vacuum sector of the theory (4.1), namely that of a 
Fock space of A-particle states. Nevertheless, as we have seen in the previous sec- 
tion, weak limits can be used to derive the Gell-Mann/Low formula, so that the 
result (4.4) implies that we can indeed set up a perturbation theory. We actually do 
this in Section 9 for the thermal case, which, as we schall see, is strikingly similar to 
the situation above, albeit without the stable A-particle and its field. The reasoning 
of Section 9 would here lead to the C-propagator (cf. [29, 30]) 

iD,.(p) = f ~  ds i (4.5) m 2 Z(S)pz -s+ie"  
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This choice does not give rise to problems with unitarity, because its cuts now 
describe on-shell two-(A-)particle states that do exist in the Hilbert space under 
consideration. 

The "free" propagator (4.5) formally looks like the spectral representation of the 
full two-point function. The latter, however, contains the spectral function pc(s) of 
the C-field, of which Z(s) is only a part containing information about the 
asymptotic behaviour of the fields Cs(x). Thus Z(s) is the analogue of the delta 
function 6 ( s -  m 2) which is the first term of the spectral function of a stable-particle 
field. This actually renders the ordinary stable-particle propagator a special case of 
the unstable one. Unfortunately, the actual determination of even the "free" spectral 
function Z(s) for an unstable field is a very difficult task. Like its discrete counter- 
part Zi in the stable case it is in principle determined by the dynamics of the full 
theory in a fairly complicated manner [29] (also cf. Section 11). In practice, 
however, it may be sufficient just to parametrize Z(s) in a more or less oppor- 
tunistic manner, the actual values of the parameters being taken either from 
experiment or from some lowest-order perturbative approximation to the decay 
parameters. For example, a two-parameter Breit-Wigner form 

r/~ 
Z(s) = (s - M2) 2 + F 2 (4.6) 

will often do for practical pruposes. In the case where / ' < M  2 (so that the 
integration in (4.5) may be extended from 4m 2 to - o o )  this leads to an 
approximate second-sheet pole [29, 42] of D,(p) for p2 = M 2_ iF. The occurrence 
of this approximate pole in the free propagator of the C-field signifies that its 
instability is already taken into account at the free-field level, as it should be. 

As we shall see, thermal representations of interacting field theories give rise to 
similar structures. The underlying stable-particle Hilbert space will be absent, 
however, whereas the remaining unstable states will not have a mass-shell. Also for 
group-theoretical reasons we will end up with two-parameter Licht fields. In spite of 
these differences, unstable particle theory in vacuum representations is an important 
background for understanding the thermal situation. 

5. THERMAL (KMS) REPRESENTATIONS 

KMS Condition 

We now turn to our main subject, viz. the investigation of the properties of 
representations of 9.I induced by thermal equilibrium states, also called KMS states 
[26]. Given a time evolution ~t on 9.1, a KMS state 09 at inverse temperature fl is 
by definition a state satisfying the KMS condition 

~(A,x , [~ ] )  = ~(oc,_ i,~[~] A). (5.1) 

595/186/I-I1 
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(Here and in the following we refrain from giving the mathematically most precise 
versions [26] of definitions and theorems in order to preserve clarity.) The use of 
the KMS condition as a characterization of thermal equilibrium states can be 
motivated by stability arguments [26, 43] or, in a more low-brow way, by the 
observation that this condition is satisfied by finite-volume (grand-) canonical 
states co(A)=Z - t  TrA e x p ( - f l ( H v - # N v )  ) (note that the chemical potential # 
drops out of the KMS condition because we assumed that A, Be91 are (local) 
observables; for its incorporation in connection with the field algebra cf. Ref. [26]). 

A number of important structural properties ot KMS representations which 
follow from (5.1) have been known for some time now. We will state and prove 
these properties below, because they all play a crucial role in our reasoning in the 
remainder of this paper. From the general point of view of Sections 2 and 3, and 
Refs. [25, 27], it is very instructive to see how these properties actually can be 
derived from the single condition (5.1); as such this analysis partly complements the 
Haag-Ruelle theory for vacuum representations. The results below may be found in 
the mathematical literature [26] which, however, appears to be relatively 
inaccessible to nonspecialists. For this reason we will give "physicist's" or "tree- 
level" proofs of the relevant theorems; the "mathematical" or "loop" corrections to 
these proofs are not small, however. They mostly involve taking into account the 
unboundedness and domain problems of certain operators. 

We will use the following notation: the cyclic vector 10),o of Eqs. (2.1) and (2.2) 
will be called 10(fl)) as co is a KMS state at T l= f l ;  as before we define the 
bicommutant 93/= no~(91)", and its elements are generically called A. In fact, we will 
not make any notational distinction between A ~ 91 and A := no~(A)~ 991 whenever 
no confusion can arise. 

Thermal Hamiltonian 

To begin, with A = ~ in (5.1) it immediately follows from analyticity arguments 
that o) is time-translation invariant, so that (2.6) is satisfied with g = t. Hence (Sec- 
tion 2) time translations can be unitarily implemented in ~o~. This implementation 
is done indirectly by (2.7); we write 

U(t) = exp iI?-It, (5.2) 

which defines the effective "thermal" Hamiltonian/~, being a representation-depen- 
dent object. It follows from (2.7) with A = ~ that H must annihilate the thermal 
vacuum: 

gl  0(/~)) =0. (5.3) 

Equation (2.8) implies 

rc,o(ct, [A ] ) =: A(t) = eimAe-im. (5.4) 
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Commutant 

The principal feature of KMS states which distinguishes them clearly from 
vacuum states is that 10(/3) ) is separating for 9~. This means that for any A ~ ~ff/the 
property A 10(/3)) = 0 implies A = 0 (so that co(A'A) = 0 only if A = 0 in clear con- 
trast with the vacuum case). The proof proceeds in two steps; the first is to show 
that A 10(/3)) = 0 implies A* 10(/3)) = 0. To wit, consider the function of a complex 
variable z, 

F(z)=co(A*~z[A])= (0(/3)Ih*A(z)l 0(/3)). (5.5) 

It follows from the KMS condition that F is analytic in the strip 0 < Im z < 13 and 
continuous on its boundary. Hence A 10(/3))= 0 implies by (5.4) and (5.3) that F 
identically vanishes in this strip, and, by continuity, F(i/3)= 0. However, by (5.1) 

F(i/3) = co(AA*) = (0(/3)1AA* 10(/3)) = 0, (5.6) 

which indeed implies A* 10(/3))=0. This completes the first step. It then easily 
follows that 10(/3)) is indeed separating for ~ :  A [ 0 ( / 3 ) ) = 0  implies 
B*A 10(/3))=0 for all B; if B ~  then the result above gives A*B 10(/3))=0 for 
all BE93~; since 10(/3)) is cyclic for 9J/ (cf. Section 2), this implies A* = A  =0.  

This result is important because it implies that 10(/3)) is cyclic not only for ~ (as 
in all GNS representations) but also for its commutant 93/'= ~o~(9.I)': 

A¢~o~ = rto~(°d) ' 10(/3)). (5.7) 

In words, any vector I x ) e  ~¢g,o can be arbitrarily well approximated by vectors 
of the form Bx 10(/3)), with Bx~gJ/'. (This shows that 9J/' is nontrivial, and we 
adopt the convention that a tilde tops its elements.) To prove (5.7) we first define 
a projection operator P that projects on the space 9J/' 10(/3))=:A~. Clearly 
(5.7) is equivalent to P = 4. We have A~ = ~c • Ag{, and from this it follows that 
P commutes with all elements in ~ ' : P - 4 1 x ) = A l x ) = - 4 P l x )  for all 
I x ) = B x l 0 ( / 3 ) ) ~ ,  while P A l y ) = O = A P l y )  for all l y ) ~ J . f ~ .  The first 
member of the last pair of equalities follows by taking the inner product with an 
arbitrary vector, and then using the first pair. Hence P~99/, but then also 
P - ~ ~ 931, and since ~ ~ 931' we have P 10(/3)) = 10(/3)) and therefore P = ~ by the 
previous theorem. This proves (5.7). As we see in Section 6 it is basically this result 
that prohibits a particle picture in thermal representations. 

Tomita- Takesaki Theory 

9~' must obviously be fairly large in order for (5.7) to be satisfied (in contrast to 
the vacuum case, where 9~ '=  C~ ), and in fact a more detailed analysis will show 
that ~ '  is as large as 9J/: there is a one-one correspondence 9J/~ A ~ .4 ~ 93/'. This 
analysis forms the contents of the so-called Tomita-Takesaki theory [26]. It starts 
from the observation that the operator S given by 

SA 10(/3)7 = A *  10(/3)7 (5.8) 
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is well-defined, because the fact that 10(fl)) is separating for 931 implies that a 
vector Ix)  can be written in at most one way as I x ) = A x  10(/~)) for some Axe 9)l. 
We define the positive self-adjoint operator zl := S*S and the anti unitary operator 
J =  S A -  1/2, so that we have the polar decomposition 

S = J ,d  1/2. (5.9) 

Note that S is anthinear, so that its adjoint is defined by 

(x l  S* l Y) = (Yl S i x ) ,  (5.10) 

i.e., without complex conjugation of the r.h.s. A similar relation holds for J. It 
should be remarked that S, J, and zl are not in ~ .  

The aim of the following manipulations is to explicitly construct the isomorphism 
between ~0/and ~ '  and to relate A to the Hamiltonian defined in (5.2). If follows 
from (5.8) that $2=~,  and hence jA1/2=A-1/2j  *, from which we see that the 
operator JZA1/2 equals (JA-~/4)(jA-1/4)*, so that it is positive. But j2 is unitary 
because J is antiunitary, so the polar decomposition of j2A1/2 is on the one 
hand unitary x positive operator = j 2 x  A 1/2 and on the other hand ~ x f A  1/2. 
Uniqueness of the polar decomposition therefore implies 

j2  = 1; J* = Z  (5.11) 

where the second equation follows from the antiunitarity of J combined with the 
first one. From the reasoning above it also follows that JA 1/2j = A -  1/2, and calling 

A = e  -~t, (5.12) 

this implies 

JKJ= - K .  (5.13) 

This property will ultimately lead to the instability of all thermal (would-be) par- 
ticles. Choosing A = ~ in (5.8) yields S 10(fl))= 10(fl)), and this result combined 
with (5.10) shows that the same equation is satisfied by S*. Hence by (5.9), (5.11), 
and (5.12) we find from S ' S =  A that 

k I 0(/~)) = O. (5.14) 

The resemblance with (5.3) is not accidental; see (5.23). Use of (5.8) with A = 4, 
(5.9), (5.12), and (5.14) also shows that 

J I 0(/if)) = I 0(/if)). (5.15) 

The definition (5.8) leads to [SAS, B] = 0 for all A, B ~ ~ by operating with this 
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c o m m u t a t o r  on an arbi t rary  vector C 10(/3)). Hence S ~ S ~  9J/'. I t  follows f rom 
(5.8) and  (5.10) that  

s*3 10(/~))=.~* 10(/~)) (5.16) 

for .4E~J/ ' ,  and then the reasoning above  leads to S * g J I ' S *  c gJl. Therefore,  
AgJlzl  - 1 = S * S g J I S  I S *  1 ~ 9Jl. I tera t ion gives M n := AngJ~A -n c 9J/ for all n ~ ~.  
The sequence ~ n  has a limit point  at infinity, so [26]  we in fact have 9 ~ z c  9J / for  
any z ~ C. Tak ing  z = - 1, it then follows that  ~0/= AA - I ~ A A  - 1 ~ AgJ/A - 1, and 
hence AgJ /A- I=gJ / .  I terat ing this equat ion  and using the reasoning above  once 
again give, on use of (5.12), 

eitC~gjie i8~ = 9J/ (5.17) 

for all t. Fo r  real t the so-called modu la r  a u t o m o r p h i s m  

~r t [  A ] := e i R t A e  - iR t  E 9J~ (5.18) 

is an * -au tomorph i sm (i.e., it satisfies (2.4), (2.5)) which maps  991 into itself. We 
are now in a posit ion to construct  the i somorph ism ~0/,--,~J/': we have 
J 9"JlJ = J A  1/29JIA - 1/2j  = S g J I S  c 9Ji', and similarly J 9Ji 'J ~ 9Y/, which on use of 
(5.11) together  yield 

J gJlJ  = gJl' ; J gJ l ' J  = 9~. (5.19) 

Hence the i somorphism 931 ~ A ~ A e 9J/' is given by 

2 = J A J .  (5.20) 

T h e r m a l  F i e l d  T h e o r y  R e g a i n e d  

We can extend the a u t o m o r p h i s m  o" t to act on 9Jl', and use of  (5.13), 
(5.17)-(5.20) shows that  

J a r [ A ]  J = a , [ . ~ ]  = e i ~ ' J e  z~'~gJ~'. (5.21) 

The whole point  is now that  a t satisfies the K M S  condi t ion at fl = 1 : 

(0(fl)l  A a t [ B ]  10(fl)) = (0(fl)l  at  i [ B ]  A 10(fl)), (5.22) 

as follows f rom a simple direct compu ta t ion  employing  (5.8), (5.9), (5.12), (5.18) 
and the c o m m u t a n t  propert ies  above. Therefore,  at /a  satisfies the K M S  condi t ion at 
fl, and because an a u t o m o r p h i s m  that  satisfies the K M S  condi t ion is unique [26] ,  
we m a y  identify at /a  with the actual  t ime evolut ion (5.4). C o m p a r i n g  with (5.18) 
yields 

/ £ =  fl/t, (5.23) 
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so that (5.13) implies 

JtYlJ = - ISI, (5.24) 

and (5.8) translates to the so-called thermal state condition [38] 

e (1/2)#HA 10( f l ) )=2*  [0(fl)), (5.25) 

where we have substituted (5.9) with (5.12) and (5.23) and used (5.20), (5.15). Note 
that (5.11) implies that the tilde operation commutes with taking the adjoint. 
Finally, (5.23) and (5.14) reproduce (5.3). 

Equation (5.24) shows that the effective thermal Hamiltonian /~ must have a 
spectrum that is symmetric around zero: its (possibly improper) eigenvectors I E )  
and J IE) have opposite eigenvalues, so that 

J [E)  = [ - E ) .  (5.26) 

In an infinite sys tem/~ is always an unbounded operator, and we see that it must 
be unbounded from below (bottomless). This property will lead to the instability 
alluded to before. In fact, it can be shown [44] that the spectrum o f / t  as a set is 
equal to the real axis. In local field theory we can introduce a Hamiltonian density 
oVa(x) such that 

H =  f d3x~'C~(x). (5.27) 

The properties (5.18), (5.20), (5.21), (5.24), and (5.3) then imply 

~(x)  = ~ ( x ) -  ~(x),  (5.28) 

where ~,~(x) is the ordinary Hamiltonian density composed of the fields that coor- 
dinatize 9J/, so we presume that W(x)  is affiliated with ~ and ~ with 9J/'. 
Although the operator H = S d3xjt~(x) makes sense in vacuum representations and 
also in finite-volume KMS representations, it is a meaningless object in general 
thermal (KMS) representations (for example, it sends the thermal vacuum [0(fl)) 
away to infinite norm). The formal decomposition [18, 34-38] 

/~=  H - / ~  (5.29) 

is only meaningful if it is read as a (strong) limit 

I:I= lirn fvd3X(~(x)  - ~ ( x ) ) .  (5.30) 

We emphasize this point, because for our purpose it is extremely important to 
realize that the spectrum o f / 4  is altogether unrelated to that of H, as the latter is 
defined in vacuum representations and, l ike/ t ,  is a representation-dependent object. 
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As we have seen in Section 3, correct perturbation theory in infinite field-theoretic 
systems is strongly related to spectral properties of the relevant symmetry 
generators, and the remarks above indicate that the situation in thermal represen- 
tations will be radically different from the vacuum case. 

A parenthetical remark is that there exist more intrinsic, representation-indepen- 
dent notions of the spectrum of an automorphism group (like ctt), namely the 
Arveson spectrum and the Connes spectrum [45]. The practical relevance of these 
partial characterizations of the dynamics for the type of analysis performed in this 
paper ought to be closely examined. 

To close, we mention that the commutant structure A ~ , 4  and the properties 
(2.1), (5.3), (5.25), and (5.29) are the basis of (equilibrium) thermo field dynamics 
[18, 38, 3]; as we have seen, the whole structure follows from the single KMS 
condition (5.1). The connection between thermo field dynamics and the operator- 
algebraic formalism was recognized by Ojima [46]. 

6. THERMAL QUASIPARTICLES. 9 

Free Fields 

The theory defined by a free neutral relativistic scalar field A(x) with mass m can, 
of course, be exactly solved in thermal representations. The results are the following 
[ 18, 3 ]. We decompose 

d3p e-iSvt+~pXa(p)+h.c. (6.1) f A(x) 
3 (2/1;) 3 (2ep) 1/2 

with ep = x/p z + m 2, and [a(p), a*(p')]  = (2rr) 3 6(p - p'), as in the vacuum case. The 
a*(p) create (unnormalized) one-particle states with energy (i.e., eigenvalue of H)  ep 
from the thermal vacuum 

a*(p)[ 0(fl)) = IPj; ep), (6.2) 

and according to (5.26) we also have 

a*(p)10(/~)) = [ -pj ;  -~p )  (6.3) 

(we have p = p _ [ 5  in the sense of (5.28)). However, the a(p) and h(p) do not 
annihilate the thermal vacuum, for this would contradict (5.25) and (6.3). In fact, 
a(p) creates a negative energy particle ~ la (6.3) (cf. (6.4), (6.5)). Instead, (5.25) 
allows the construction of "thermal" annihilation operators by the Bogoliubov 
transformation 

fl(p) = ~/1 + N(ep) a(p) - Nx//~p) h*(p), (6.4) 
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where N is the Bose distribution function [3]. By (5.25) and (6.2), (6.3) we indeed 
have 

fl(p) 10(fl)) = ~(p) 10(fl)) = 0. (6.5) 

Note that fl and ~ are not affiliated with 93l and 9J/', respectively, but with 931 w 9J/', 
although ~ is still defined by (5.20). Up to normalization, Eqs. (6.2), (6.3) are also 
satisfied with a, a* replaced by fl, fl*; to indicate that fl*(p) creates a state with 
energy ep we may call it fl*(p, ep). We thus have 

~ * ( - p ,  ~p) = fl*(p, -ep). (6.6) 

Explicit construction 1-18, 26] based on the results above shows that for a free- 
field theory ~¢t~ is a "doubled" Fock space; we may symbolically write 

~ ,  = ~ ® ~ (6.7) 

where ~ and ~ are both isomorphic to the Hilbert space Fock(L2(~3)). The dif- 
ference lies in the fact that states in the subspace ~ have positive energy while those 
in ~ have negative energy. Since ~ is a Fock space, theoperators a~*)(p, ep) form a 
complete set on ~, and so do the ~(*)(p, -ep)  on ~. Hence the a (*) and ~(*) 
together form a complete set on 4 .  (The a (*) alone are sufficient to "span" ~/g~, in 
the sense of (2.2), but they are not complete because the tilde operators cannot be 
expressed in terms of them.) Equivalently, the fl(*), ~(*)form a complete set on ~o~. 
This set is more convenient because well-defined operators on ~,o must be normal- 
ordered with respect to the (j~)(*) and not with respect to the (8)(*). For example, 
the free Hamiltonian reads [ 18 ] 

/ t= /~o= f ~d3p ep(fl*(p, ep) fl(p, ep)-~*(p, ep) ~(p, ep)). (6.8) 

It is very instructive to recast the structure of ocgo, in group-theoretic language, in 
particular t o  establish contact with (2.9). Because K M S  states explicitly break 
boost symmetry, the implementable symmetry group is not the full Poincar6-group 
P but its boostless subgroup S = SO(3) (× T 4. As explained in the Appendix, the 
irreducible unitary representations of S are labeled by three numbers: E E l ,  
a z ~ R  +, and n~7/ (so that S = R x  ~+x Z). In the scalar case we can ignore n 
(=0)  for free fields because of the Fock structure (6.7) combined with the proper- 
ties of the Clebsch-Gordan series (A.19) for n = 0, so the decomposition (2.9) in the 
present case reads 

f f ,  o = (~ k dE dtr 2 ,~,(E, tr 2) ~ ( E ,  a 2, 0). (6.9) 
k=l -or 

Here we have (sloppily) written p~,(E, tr 2) = d2#k(E, a2)/dEda 2, which we allow to 
be a product of two delta functions in the case where p~ is a point measure, and a 
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product of a single delta function and a continuous function in the case where #k is 
a singularly continuous measure. In the case where #k is absolutely continuous, 
/~,(E, 0"2) is just a continuous function of E and 0"2, which may be taken to be a 
constant. The existence of one-particle states (6.2), (6.3) then implies that apart 
from the vacuum contribution 6(E) ~(0-2) the measure contains two delta functions, 

#i(E, 0-2) = 6(E-/3(0"2)) + 6 ( E  --{- /3(0"2))  -'['- • • • , (6.10) 

plus an absolutely continuous part, whose explicit form may be calculated from the 
Clebsch-Gordan series (A.19). As in the vacuum case, the measures #~, in (6.9) 
contain direct spectral information. 

Interacting Theories 

We now ask what remains of this structure in the interacting case. It is a highly 
distinctive feature of the Haag-Ruelle theory for vacuum representations that the 
spectral structure of ~o~ does not change at all in passing from the free to the 
interacting theory. In particular, ~,o remains a Fock space in the sense of (3.2). 
What does change is the representation of the canonical commutation relations; the 
physical vacuum 10) is no longer annihilated by the annihilation operators 
associated with the time-zero fields but by those associated with the in- or out-field. 
In perturbation theory the conditions for the Haag-Ruelle theory may be checked 
by examining whether or not the self-energy vanishes on-shell. 

What happens in thermal representations? The standard perturbation theory that 
is universally used employs the propagators of the free-field theory [3, 18, 20], and 
this can be justified only if we have the Haag-Ruelle situation even at nonzero tem- 
perature; i.e., if the measure in (6.9) is not affected by the presence of interactions. 
This perturbation theory, however, predicts its own collapse: the perturbatively 
calculated self-energy does not vanish on-shell. The next- simplest assumption is 
that the spectral structure (6.10) remains intact, but with an energy e(tr 2) that dif- 
fers from its vacuum value and may become T-dependent. In other words, one has 
a dynamical quasi-particle structure [7]. This assumption is based on experience 
with zero-temperature finite density representations [18], where it is often satisfied, 
e.g., in the case of normal Fermi liquids. Bound states c.q. collective excitations, as 
in superfluid systems, can be incorporated by adding more delta-function con- 
tributions of the type (6.10) to the measure in (6.9). The energy e(0-) and therewith 
the free propagator are then determined by self-consistent computations [ 18]. 

We have seen, however, that thermal representations differ radically from 
ground-state (including vacuum) ones. In the present context it is the typically ther- 
mal property (5.7), showing that 10(fl)) is cyclic for the commutant 9Y/', that essen- 
tially precludes such a dynamical thermal quasi-particle picture. The crucial point is  
that contrary to vacuum and ground-state (quasi-) particles it is impossible to add 
interactions between thermal quasiparticles. Hence they do not scatter, and their 
contribution to thermodynamic quantities would be trivial. This does not actually 

595/186/1-12 
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prohibit their presence in thermal representations, but is does show that they com- 
pletely decouple from the rest of the theory if they exist, and do not influence any 
dynamical features. This would be in very sharp contrast with the ground-state c.q. 
vacuum case, where the (quasi-) particle sector makes up the whole theory in the 
case of asymptotic completeness! 

Narnhofer-Requardt-Thirring Theorem 
The basic argument leading to this result is due to Narnhofer, Requardt, and 

Thirring [24]. It is not absolutely rigorous in a mathematical sense, because it 
presumes that the one-particle excitation operators creating the quasi-particle states 
from the thermal vacuum (cf. Section 3) are affiliated with 931, which has not yet 
been proven. Nevertheless, this shortcoming is what we earlier have been calling a 
"loop correction" to the argument, and we shall proceed on the assumption that it 
does not affect the end result. 

If one-particle states 

I f )  =fd3pf(p)[P,  ~p~> (6.11) 

exist, there must be one-particle excitation operators B(f )  creating them from the 
thermal vacuum, as in the Haag-Ruelle theory (cf. Section 2; the actual construc- 
tion of B(f)  from the field A(x) is more complicated in the thermal case, because 
the discrete point e(p) is embedded in a continuum [24]). By construction, they 
must satisfy the analogue of (3.7): 

B(f, t)10(fl)) :=eiI~B(f) e -il:lt [0(fl)) = B(ei~(v)tf)lO(fl) ). (6.12) 

Now, however, this property implies that the B(f, t) are actually free-field 
operators! As mentioned above, we assume that B(f, t) commutes with all elements 
in 9Jl' (which would definitely be true if B were bounded, cf. (5.18)). But then (6.12) 
is true with [0(fl)) replaced by an arbitrary vector i x ) = B x  [0(fl)), B z E ~ ' ,  so 
that 

B(f, t) = B(ei'(v)~ c) (6.13) 

and from the construction of in- and out-operators in Section 2 it then follows that 
a in =a°Ut; i.e., the S-matrix is unity and there is no interaction between the 
quasiparticles. To be quite certain of this result, the authors of [24] also evaluated 
the n-point correlation functions of the one-particle excitation operators and 
showed that they factorize in a free-field way. 

To this result we add the physical argument that a Hamiltonian which is 
unbounded from below, l ike/~ in thermal representations, cannot admit stable par- 
ticle states in the presence of interaction (and allowed decay channels). On top of 
this, even improved perturbation theory with self-consistently determined tem- 
perature-dependent energies in the propagator leads to a nonvanishing value of the 
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imaginary part of the self-energy on the (improved) energy-shell [-18]. Combining 
these arguments we feel forced to conclude that thermal representations of 
interacting relativistic field theories do not have a particle structure. But what do 
they look like instead? 

7. HILBERT-SPACE REARRANGEMENT 

Thermal Measure 
To at least partly answer the question of the preceding paragraph we should 

determine the measures #k(g) in (2.9) for ~ = ~= (E, a2, n). For the moment, we 
shall restrict ourselves to a situation in which a single real scalar field A(x) suffices 
to coordinatize M. It may be worthwhile to remark that we cannot exclude the 
possibility that representation spaces ~ (E, tr 2, n v~ 0) carrying nonzero helicity n 
(cf. (A.8)) occur in the decomposition (2.9), even though these are absent in the 
free-field case (6.9). For simplicity we just assume that such subrepresentations do 
not materialize in interacting theories. One should keep in mind, however, that by 
this assumption we may miss a natural incorporation of certain (linearized) 
hydrodynamic modes as state vectors in ~¢g~o. Foregoing this opportunity, we are 
back to the problem of determining the functions/~,(E, a2) in (6.9). 

As we have seen, the Ansatz (6.10) seems to be excluded in the interacting case. A 
few basic properties are helpful in specifying an alternative. In theories where the 
field A(x) satisfies canonical equal-time commutation relations one needs support 
from the entire tzZ-axis. Furthermore, the spectrum of the effective Hamil tonian/~ is 
the real axis ~ [44]. Finally, the thermal vacuum 10(/3)) is assumed to be invariant 
under the entire group S =  SO(3) (x T4, so that it is annihilated by its generators 
(el. (2.7), (5.3)): All these features are incorporated by the postulate [16] that up to 
unitary equivalence the function kt~, in (6.9) is the sum of a delta function picking up 
the thermal vacuum, and an absolutely continuous part, which without loss of 
generality we may take to be a/4n. Hence 

with 

0"~¢o = ~ ( 0 ,  O, 0 ) ~  O0 • ~o(1)  (7.1) 

for interacting thermal scalar field theories. Any multiplicity other than infinity in 
(7.1) would be most puzzling indeed. 

Function Space 

Let us now investigate the structure of the Hilbert space (7.1) more closely. First, 
it follows from the Clebsch-Gordan series (A.19) for S that a~,~ in (7.1) is in fact 
nothing but a Fock space over ~(1), 

a% = (7.3) 

:,¢g~1)=~ o~ 2-~ dtrZ a~'ff(E' ~2' O) (7.2) 
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in the sense of (3.2); cf. the text below (A.20). This feature is a consequence of the 
fact that, in contrast to the corresponding situation for the Poincar6-group, the 
tensor product of scalar (i.e., n = 0 )  representations of S contains only scalar 
subrepresentations. Therefore, the study of ~'@o~ is greatly simplified, and for most 
intents reduces to that of o@ cl). 

According to the definition of a direct integral of Hilbert spaces (cf. (2.10) and 
surrounding text), elements of ~(1) (7.2) are L2-functions ~( . )  with argument 
(E, a 2) and taking values in Jeg(E, a 2, 0). Since elements of the latter are L 2- 
functions ~e ,~ ( ' )  on the two-sphere, with inner product ('[')~rce.~2) given by 
(A.4), it follows from (2.10) that elements of .,@(1) are in fact ordinary complex- 
valued functions cb(.) on ~4 with argument (E, a 2, 0, ~b), for which the inner 
product in #(1) ,  

( ~J(" )l ~(" )>~(1): f ~ do'~'2 < ~[]E, o.2(" )l ~E,o'2( " ) >~(E,o'2,0) 

=(2n)-4 f dEdadg2a2~P(E, a2,0, qk) q~(E, a2,0, qk), (7.4) 

is finite. We may assemble the variables E, a 2, 0, ~b into the four-vector p = (E, p) 
with p2= a2, and write (7.4) in the appealing form 

f d4p 
( ~(.)1 a~(.)) = j ~ ~(p) q~(p). (7.5) 

Consequently, ~ ( 1 ) i s  isomophic to L2(~4). The different components of p are not 
on equal footing; however, P0 = E and p2= a2 together label different orbits in T4 
(cf. Appendix), while 0 and ~b identify points on a given orbit. Note that the mass- 
shell factor O(po)6(p2-m 2) characterizing the corresponding inner product for 
scalar representations of the Poincar6-group is absent from (7.5). 

Generalized Fourier Transform 
The theory of induced representations has provided us with a concrete realization 

of o@ ~) as the function space L2(~ 4) with elements qs(.), and of ~ as a Fock 
space over L2(~4). We now return to the original representation space ~¢t~o~, which is 
related to o@o, by (2.9). According to (7.3) it is sufficient to restrict ourselves to 

~ (1 )  : = F  1o@(1), (7.6) 

where F is the generalized Fourier transform appearing in (2.9), because (7.3) 
clearly implies that ~,o is a Fock space over ygtl). We denote elements of ~ t l )  by 

I ~ ) : = F  1~(.) .  (7.7) 

By unitarity of F 

( e l ~ )  = (~( . )1~( . ) ) ,  (7.8) 



NON-SHELL UNSTABLE PARTICLES 171 

where the right-hand side is given by (7.5). We can bring (7.7) into a more explicit 
form by invoking the nuclear spectral theorem [40]. This ascertains the existence 
of a linear functional (P l ,  defined on a dense nuclear subspace F - 1 N c ~  ~1), 
satisfying 

( p l Y )  = ~(p). (7.9) 

(One may, for example, choose N as the Schwartz space ~(~4).)  It then follows 
from (7.5), (7.8), and (7.9) that 

[~ )=f  ~dap ~(p) lp> ,  (7.10) 

where [ p )  is the antilinear functional on F 1N defined by ( q ~ F p ) =  (plq~).  
Equation (7.10) establishes the explicit correspondence between [ ~ ) E F - I N c  
W~)  and ~ ( . ) ~ N c  9¢~(1)=L2(~4). 

Non-shell States 

The improper kets I P ) =  I E, a 2, 0, ~b) are at the basis of our physical inter- 
pretation of the thermal representation space ~,ug~o. By the Fock structure (7.3) the 
vectors 10(fl)~, I P)  ..... I Pl'" "PN),''" form an improper basis in 9¢g,o. This resem- 
bles a basis of ordinary multiparticle states that spans ~,o in the vacuum case, cf. 
Section 3. The crucial difference is that now Po and p are altogether unrelated. We 
express this absence of a mass-shell restriction P0 = e(p) by calling I P )  a non-shell 
particle state. As the notation already suggests (and as we show in the next section), 
[p )  is a generalized eigenvector of the generator/5~ of the unitary representation 
U(x) of x ~ T 4 c S in the representation space Jt~,o with generalized eigenvalue p". 
To obtain proper elements of ~'~g,o we must smear in both Po and p separately 
(cf.(7.10)). This resembles the description of multi(-stable-)particle states in 
vacuum representations, where one must smear in the momentum p and the mass 
s =p2. As we have seen in Section 4, one may regard an s-wave two-particle state as 
a single-particle state of an unstable particle with continuous mass s, and thereby 
partly forget the underlying description in terms of stable particles. In the thermal 
case such an underlying level is absent, and only the description in terms of 
unstable particles remains. We summarize these ideas by calling proper vectors in 

non-shell unstable-particle states. Paraphrasing Lukierski [28 ] we may call the 
generalized state I P )  an elementary non-shell unstable object. 

We cannot overemphasize the peculiarity that in contrast to the vacuum case 
(without symmetry breaking) the introduction of interactions in thermal represen- 
tations completely changes the representation Hilbert space. This process is 
somewhat similar to what occurs in zero-temperature (vacuum or finite density) 
representations in which an internal symmetry is broken spontaneously or 
dynamically. The spectrum of the theory, and therewith the complete set of 
operators tied to the representation no~, ~o,, then completely changes [18]. One 
may call this phenomenon an interaction-induced Hilbert-space rearrangement. 
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At zero temperature such a rearrangement is always accompanied by the 
emergence of Goldstone bosons (or fermions, if a supersymmetry is broken). Since 
in our description so much emphasis is put on the breakdown of the Poincar6- 
group P to its boostless subgroup S in thermal representations, one may wonder 
where the accompanying Goldstone bosons are. It turns out that these are absent 
indeed, because the breakdown of P to S in thermal representations is of a very 
special type. To wit, the zero-energy (intermediate) states that are necessary for the 
fulfillment of the Ward-Takahashi identities associated with the symmetry breaking 
are automatically present, because the spectrum of the effective thermal 
Hamiltonian H is the entire real axis. Adding special gapless particles is 
unnecessary: the zero modes can be formed by combining positive and negative 
energy states [47, 48], and the Ward-Takahashi relations are identically satisfied 
[49]. 

8. COVARIANT OPERATOR FIELDS 

In order to further analyze the thermal representation rco~(9/), out~, keeping in 
mind the possible derivation of a Gell-Mann/Low formula, we proceed with the 
construction of a complete set of operators on 3¢t°~) in the sense explained at the end 
of Section 2. The implementable symmetry group is now S=S0(3)  (x T4. We 
must, therefore, construct a set of covariant operator fields ~b(x) whose transfor- 
mation behaviour under S, in particular its subgroup T4 describing space-time 
evolution, is explicitly known. In this context "covariant" means that the ~b(x) are 
tensor operators transforming under a so-called covariant representation of S; cf. 
(A.10). 

S-Covariance 

The covariance of the fields ~b(x) ultimately derives from the automorphism 
(2.3)-(2.5) for G chosen as the Poincar6-group P. At the level of coordinatizing 
fields Aa(x) this automorphism is always generated by a covariant representation T r 
of P according to 

O~p[Aa(x)] = (Tf (p  -1  ) A)a (X). (8.1) 

The representation T r is, in turn, given by a representation/" of the Lorentz group L 
acting on the index a of A, viz. 

(T[(p) A)a (x) = Ol(A)ab Ab(A l ( x -  a)), (8.2) 

where p = (A, a); cf. (A.10). Then (2.3) is identically satisfied, while (2.4) and (2.5) 
are supposed to hold on account of the particular algebraic structure imposed on 
the algebra 9/ [25, 27]. As we have seen, the automorphism ~s can be unitarily 
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implemented in the thermal representation space ~o, for s ~ S c P. From (2.8), (8.1), 
and (8.2) we then have for s = (R, a) 

O~s[Aa(X)] = U(s) Aa(X ) U*(S) = DI(R 1)a b Ab(RX .-]- a), /8.3) 

where Rx=  (x °, Rx). (Here and in (8.1) we have made no notational distinction 
between the automorphism • acting on 92 and that on the fields coordinatizing 
n~o(92)".) Now since the complete set of fields {~b(x)} is chosen in such a way that 
the fields Aa(x) can be polynomially expressed in terms of them (dynamical map 
[18]) it follows from the unitarity of the U(s) that the ~b(x) must satisfy (8.3), i.e., 
transform covariantly under S, too. Note that the representation f subduced from 
the Lorentz-group L to its subgroup SO(3) is reducible in nontrivial cases. 

Non-shell Particle Content 

Apart from transforming covariantly, the fields ~b(x) should also carry all infor- 
mation about the non-shell particle content of the thermal space ~,o. This infor- 
mation is contained in the direct integral decomposition (2.9) (for G = S), a special 
case of which is (7.1)-(7.3) for the scalar case, together with the generalized Fourier 
transform F. In order to explicitly demonstrate that our formalism does not hinge 
upon the restriction to scalar representations we shall consider the Hilbert space 
(7.3) with ~:~1) given by (A.8) rather than the special case (7.2). The Hilbert space 
(A.8) is the minimal choice for a non-shell one-particle space with nonzero 
"helicity" n, since the occurrence of the subrepresentation (E, tr 2, n) automatically 
implies the presence of ( - E ,  a 2, - n )  as well: the two of these are connected by the 
modular conjugation J defined in Section 5 (cf. (5.24) and (8.15)). Representations 
with a more general non-shell particle content may then be constructed by forming 
tensor products or direct sums, as in the vacuum case. Note, however, that even 
with this generalized choice of ;,~") we do not cover the most comprehensive 
situation thinkable, because we derived the (generalized) Fock space structure (7.3) 
for the scalar case (7.2) only. For practical applications, however, the formalism 

below seems to be sufficiently general. 
Consider, then, the representation (A.9) of S acting on the function space 

~ ( 1 )  = L2([~4). The actual non-shell one-particle subspace oUC~n l) c its, o, over which 
~o  is a Fock space, is given by the generalized Fourier transform (7.6), which has 
been made concrete by (7.9). The action of the unitary operator U(s), defined by 
(2.7) (for G = S) or by the first member of (8.3), on ~¢gt~) is given by the generalized 
Fourier transform of (A.9). Using (7.7), (7.9), and (A.5) this yields 

(p; n[ U(s) I q~ ) = ( U~I)(s) ~)(P) = exp i(pa + mr(R, p ) ) ( R - l p ;  n I ~ ), (8.4) 

where s = (R, a), and the Wigner rotation ~ is defined below (A.5). We have written 
(p;  n l rather than (Pl  to explicitly indicate that this is a functional on (a dense 
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subspace of) oug~, ~). Taking the conjugate of (8.4), omitting the arbitrary state 
I ~ )  ~ F ~N c ~¢g ~) (cf. Section 7), and using the unitarity of U(s) we find 

U(s)[ p; n )  = exp i(poao - R p .  a + n~(R, P))I (Po, Rp); n).  (8.5) 

In particular, we may choose S = (4, (t, 0)) and use (5.2) to find 

ISI l p; n ) = po I p; n ),  

as anticipated in the previous section. 

(8.6) 

Thermal Construction Operators 

We subsequently introduce a thermal creation operator fl*(p), which is the non- 
shell analogue of fl*(p) in Section 6, so that 

I P; n )  =f l*(p) lO( f l ) ) .  (8.7) 

Its transformation behaviour follows from (8.5), (8.7) as 

U(s) f l*(p) U*(s) = e iRp~ + i n c t ~  n (Re)  , (8.8) 

with Rp = (Po, Rp), and • = ~(R, p). Hence 

U(s) fin(P) U*(s) = e-iRpa-in~fln(Rp) (8.9) 

for the annihilation operator fin satisfying 

fl,(p)l 0(/~) > =0,  (8.10) 

cf. (6.5). We emphasize that fin and fl* are affiliated with 93/w 9J/' and not with 93/; 
cf. Section 6. Their commutator follows from (8.7), (8.10) and (7.5), (7.8) as 

[fin(P), fl*,(P')] -- (2rt) 4 6~,64(P - P ' ) .  (8.11) 

These results may be compared with the corresponding rules for massless particles 
in vacuum field theory [50]. One finds that the integer n e 7/plays the same role for 
non-shell particles as the helicity for massless on-shell particles. 

It follows from the results of the Appendix that irreducible non-shell one-particle 
states may be obtained by restricting p to the orbit (9s,,2= {po=E,  p2= 0.2}. The 
corresponding irreducible creation and annihilation operators are denoted fl*(.) 
and fl~(.), respectively; their argument can be chosen as p, where it is understood 
that p ~ CgE, ,2, or as 0, ~b; cf. the text after (A.3). The element ~ = (E, a z, n) of the 
dual S is defined in the Appendix; below it is understood that a 2 > 0, and we omit 
the suffix > in ~>. We also use the abbreviations ~_ := (E, a 2, - n ) ,  and s_ := 
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(R, - a ) ~  S. We then see from (A.5), (8.3), (8.8), and (8.9) that the following trans- 
formation rules hold, 

O~s[flg(p ) ] -~- ( Ug(s  - 1) flg)(p);  (8.12) 

~[f l*(p)]  = (U~_(s-') fl*)(p); (8.13) 

cf. (8.1). Hence fl~ transforms as a positive-frequency operator with helicity n, while 
its adjoint is a negative-frequency operator with helicity - n ,  in entire analogy with 
the massless on-shell case [50]. 

Covariant Field 
These rules allow a simple construction of irreducible S-covariant free operator 

fields: we must only read (A.13) as an equation involving operators rather than 
c-number functions and replace the irreducible representation @J of SO(3)) by the 
reducible one D r occurring in (8.3). To be able to do so, the "helicities" +n must 
both occur in the reduction of Dr(SO(3)) to a direct sum of representations of 
SO(2); cf. the text after (A.11). As we explain in the Appendix, irreducible covariant 
representations carry the same label i as the canonical ones. Combining these 
remarks with (8.12), (8.13) we arrive at the expression 

qk~(x) = ~-z f ~ e-,px6(lp[ _ 0){ 6(po- E) D'(p(p))ab Ubu+fl,(p) 

+ 6(--po -- E) D:(p(--P))ab Ub,_ ~*( --p)} (8.14) 

for a covariant irreducible operator field transforming under S according to (8.3). 
Here y* is the thermal creation operator (i.e., its adjoint annihilates the thermal 
vacuum) of the possible non-shell antiparticle of the particle created by fl*, that is, 
carrying the opposite quantum numbers and "helicity" n. If no conserved internal 
charges are present then y = ft. The case with 7 ~ fl corresponds to the situation 
where the non-shell one-particle subspace ~(1)  is the tensor product of ~ )  and 
~(1)  defind in (A.8). The possible existence of non-shell antiparticles is unrelated to 
the modes l - E , - n )  that are necessarily present, whether or not 7 equals fl, 
because of the existence of the modular conjugation J in KMS representations; cf. 
Section 5. The rotation p(p) is described after (A.5), while the connecting quantities 
Ubu are specified after (A.11). In this case the indices #+ refer to the subspaces orgy± 
(of the space g ( [ )  carrying the representation [ of the Lorentz group) carrying the 
helicity n +-representations of SO(2) occurring in the decomposition of ~f([), which 
is analogous to that of the SO(3)-irreducible space ~ J  described after (A.11). The 
normalization factor in (8.14) is related to the normalization chosen in (A.8) and 
(7.5). 

In fact, (8.14) is not the most general expression, because the non-shell particle 
and antiparticle contributions may enter with a different (p-independent) weight 
factor. As it stands, Eq. (8.14) is correct if particle-antiparticle symmetry is main- 
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tained, i.e., in the special KMS representation in which the chemical potential # 
corresponding to the particular charge carried by the (anti-) particle vanishes. In 
general one may expect #-dependent weight factors in (8.14), which ultimately 
cause the/~-dependence of the real-time thermal propagator. In the sequel we will 
assume # = 0. 

Two-parameter Licht Fields 

Since ~= (E, cr 2, n) while according to Section 7 all values of E and a 2 t>0 
actually participate in the representation, we find that the covariant field (8.14) 
depends on two continuous parameters; in analogy with the one-parameter Licht 
field (with spin [30]) emerging in Section4 we may call ~b~(x) a two-parameter 
Licht field with helicity. The fact that in thermal representations one needs a two- 
rather than a one-parameter field to describe unstable particles has a group- 
theoretical origin: canonical representations of the Poincar&group happen to be 
characterized by one continuous parameter m 2 (plus a discrete one) while those of 
the "thermal symmetry group" S=S0(3) (× T4 are characterized by two con- 
tinuous numbers E and a 2 (plus a discrete one); cf. Appendix. As we have seen in 
Section 2, the choice of Licht fields as a complete set (in a given sector) was a mat- 
ter of choice in the vacuum case, for ultimately they could be expressed in terms of 
the discrete-mass free fields relating to the stable particle. In the interacting thermal 
case, on the other hand, there is no such underlying description in terms of stable 
particles, and we have no choice but the set of two-parameter Licht fields describing 
non-shell unstable particles. 

As a consequence of the alleged Fock structure (7.3) of ~o ,  hence of ~ ,  the 
operator set {~b~(x)} is indeed complete on 3¢g,o in the sense of Section 2, so that all 
operators on ~% may be expressed in terms of them. However, the Heisenberg fields 
A(x) and A(x) coordinatizing 9J/= no~(9,I)" and 9~', respectively, have a structure 
different from that of the fields ~b ~ in that they are (up to domain problems) 
affiliated with 93/ and 93~', respectively, while ~ is affiliated with ~J/u 9J/'; cf. the 
remark after (8.10). 

Bogoliubov Transformation 

The same situation occurs in free-field theory (cf.. Section 6) and is easily 
remedied by a Bogoliubov transformation similar to (6.4). To do so, we note that 
according to (8.6), (8.7), and (5.24) we have, with ~ = (E, a 2, n), 

- -  ~ 2 /~ 6. °2 _ , ~ ( p ) - / ~  . . . .  ~(po, -p ) ,  (8.15) 

where the tilde operation is defined by (5.20); cf. (6.6). We accordingly may restrict 
the domain of the energy variable to E > 0 and replace the set of operators fl~e, ~:, n) 

2 for E e  R, n =  + Inl by the two sets tic* ~2.n) and ~E . . . .  ) both restricted to E > 0  
and n = Inn; cf. (A.7), (A.8). Then, by (8.15), fl* and ~* create positive and negative 
energy modes, respectively, from the thermal vacuum. The same holds for the 
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possible antiparticle operator ~*. We subsequently perform an (inverse) 
Bogoliubov transformation (cf. (6.4)) defining the operator 

a~(p) = ~/i + N(E) fls(P) + ~ ~*(P), (8.16) 

as well as the hermitian and tilde conjugate transformation, where N(E) is the Bose 
distribution function (exp(flE)-  1)-1, E > 0. Quite similar to the free-field case it 
follows from (5.25) that aJ *) and ~*) are affiliated with 9J/ and 93T, respectively 
(ignoring domain problems). Antiparticle operators c (*) can be constructed in a 
similar way from ~(*) and ~7 (*). In order to construct irreducible covariant operator 
fields F~(x) and P~(x), which are affiliated with 9J/ and 9~', respectively, we must 
only replace fl by (8) and y* by (?)* in (8.14). We repeat that E > 0  in 8= (E, a 2, n) 
so that F~ corresponds to the canonical representation (E>O, a2, n) while P~ 
corresponds to ( E <  0, a 2, - n ) .  In the scalar case n =0 ,  to which we shall restrict 
ourselves in the sequel, we thus have 

FE,.(X)=a -z f d3p eip.,,6(i j(--~n)3 p l - a ) { e  ie'a(E,p)+em'a*(E,-p)}, (8.17) 

where we simply write FL-,. rather than F ~e' .2 o). The normalization follows from 
(8.11) and (8.16) as 

[a(E, p), a*(E', p')] = (2n) 4 6(E-  E') 63(p - p'); (8.18) 

cf. (4.2). The corresponding formulae for FE. ~ are obtained by placing a tilde on top 
of the operators. 

Remarks 
Before we continue with the scalar field (8.17) in the next section it may be 

appropriate to comment on the physical significance of the group-theoretic results 
achieved above. The most telling feature is the decoupling of different components 
of a field with spin into "helicity" states, which are no longer connected by 
rotations. This means that they are not necessarily degenerate, as already remarked 
by Borchers and Sen [51] in the context of ground-state representations. There is 
not even a direct connection between the number of independent spin states in 
vacuum representations and the number of helicity states in thermal representations 
(except for free fields). For example, in superconductivity [18] the electromagnetic 
gauge field excites modes with n = 0 and n = _ 1 from the ground state, neither of 
which is massless. 

Indeed, the connection between gauge invariance and mass is lost in thermal 
representations. In vacuum representations massless particle states with helicity + 1 
can be described covariantly by a gauge-equivalence class of vector fields 1-50, 52], 
whereas at nonzero temperature the use of ordinary fields suffices to describe any 
representation of S covariantly. This explains why a gauge field may approximately 
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generate a "thermal mass" without breaking gauge invariance [20]. Note, however, 
that the considerations on exact mass generation in Section 6 also apply to gauge 
fields! 

9. THERMAL GELL=MANN/LOW FORMULA 

We now discuss to what extent one can derive a self-consistent diagrammatic per- 
turbation scheme based on a Gell-Mann/Low formula. To keep matters relatively 
simple we will do this for the case in which a single neutral scalar field A(x) coor- 
dinatizes the bicommutant 93/= rc~(9.1)" of the representation of the observable 
algebra (so that A(x) coordinatizes 9J/', cf. Section 5). Then, according to Section 7, 
the thermal representation space ~ o  may be taken to be a Fock space over the 
non-shell one-particle space ~,o (1) d e f i n e d  by (7.6) and (7.2) (with the reservations 
expressed in the beginning of that section). The set of S-covariant free fields (8.17), 
with E and a both ranging from zero to infinity, together with its tilde conjugate is 
complete in ~ , .  Hence A(x) can be (weakly) expressed in terms of the FE.~ 
(dynamical map): 

A(x) =AEFE,,~, x]. (9.1) 

Desiderata 
As we explained at length in Section 3 for vacuum representations, the validity of 

the Gell-Mann/Low formula (3.21) hinges upon the following requirements: 

(i) the completeness of the fields ~i  n in if ,  o, hence of the fields I~J i in the 
reference Hilbert space JgM; 

(ii) the weak asymptotic condition (3.10); and 

(iii) the weak equality of the full Hamiltonian H[A] and the free one 
Ho[~bl n ] on ,.gg~, (Eq. (3.23)). 

As we have seen, in the asymptotically complete case these requirements are con- 
sequences of the Haag-Ruelle theory [9], based on the strong asymptotic condition 
(3.9). In thermal representations the situation is rather different: we have no strong 
asymptotic condition at our disposal, because there exist no on-shell one-particle 
states. Nevertheless, we do have, mutatis mutandis, (i) and (iii) (see below) with ~iin 
replaced by Fe.~ (cf. (8.17)) and its tilde counterpart, a n d / t  instead of H. In fact, 
the Fock nature of W~ (7.3), combined with (7.2), (8.6), (8.7), and (8.15), implies 
the weak equality 

i2i= fo dpo f d3p _ o  (-~)4P {fl*(P) fl(P)-fl*(P) fl(P)}. (9.2) 
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Since the expression in curly brackets is invariant under the Bogoliubov transfor- 
mation (8.16), this may be written as 

( d3p 4 E{a*a- 17I=f?dEj(-~)4 8"8}, (9.3) 

with a = a(E, p). Finally, using (8.17) we find [16] 

/~ =/~0 IF, P] 

=f d3Xfo dE f~daldaza~a~ Jo , (9.4) 

where F =  F(x), F= OoF is the canonical momentum conjugate to F, and t.c. means 
tilde conjugate, i.e., the same expression with a tilde on top of the operators. Note 
that (9.4) is automatically normal-ordered with respect to the thermal creation and 
annihilation operators (the "vacuum" contributions from the tilde and the nontilde 
parts cancel out). According to (8.17), (8.18), and (9.4) the time evolution of the 
fields Fe,,(x ) is generated by/qo,  as it should. 

Asymptotic Condition 

What is still lacking is the precise relation between the Heisenberg field A(x) and 
the complete set {FE,~}. As in the vacuum unstable-particle case (Section 4) a 
strong (Haa~Ruelle)  asymptotic limit for A(x) does not exist, whereas a naive 
weak LSZ asymptotic limit vanishes on account of the lack of a discrete point in 
the joint spectrum o f / t ,  P. Nevertheless, we have seen in Section 4 that the field 
C(x) describing an unstable particle admits the decomposition (4.3) such that the 
components C,(x) do have a nonvanishing LSZ-limit (4.4) between s-wave mul- 
tiparticle states; indeed, asymptotic conditions provide a most natural setting for 
Licht fields to emerge [31, 32]. Since in the thermal case we have the two- 
parameter Licht fields Fe,~(x) at our disposal we may attempt a similar construc- 
tion here. We therefore decompose the Heisenberg field A(x) according to 

A(x)= f?  dE f? da a2(4n E)-l/2 Z'/2(E, a2) Ae.~(x). (9.5) 

The prefactor of Z 1/z has been extracted for later convenience. In order, then, to be 
able to derive a Gell-Mann/Low formula it is required that Ae,, ~ Fe,~ for t ~ - 
in the LSZ sense, i.e., weakly and smeared with a solution of the free-field equation 
satisfied by Fe,, ;  cf. (3.10) and (4.4). More precisely, we should have 

w -  lim Ae(t-  t') i~oAe,~(t', x) = Fe,~(x), (9.6) 
t ' ~  -oc~ 

with 

AE(t ) = i(e ie'- e-mt)/2E. (9.7) 



180 N . P .  LANDSMAN 

Since AE,~ and Fe,~ are distributions in E and 0 "2, Eq. (9.6) should in fact also be 
smeared with test functions in these variables. 

The idea behind the asymptotic condition (9.6) is similar to that underlying the 
ordinary LSZ-condition: for large (negative) t', matrix elements of Ae,,(t', x) are 
expected to approach a free-field time evolution with prefactors e iEc and e mc for 
the particle and antiparticle contributions in AE,~, respectively; these factors are 
canceled by the opposite ones in the function (9.7) so that the limit will exist. This 
also shows how the decomposition (9.5) should be chosen: Ae,,(x) represents the 
contribution to A(x) that exhibits the above asymptotic behaviour. This still 
renders (9.5) highly nonunique, like the decompositions (3.11) and (4.3), but this 
lack of uniqueness is immaterial for the Gell-Mann/Low formula, which uses only 
the asymptotic behaviour (cf. Section 3). This argument is, however, heuristic only, 
and we stress that (9.6) is a postulate and not a theorem. Indeed, the poor cluster 
properties in KMS representations [24, 26] indicate that an actual proof of a 
condition like (9.6), if it holds at all, would be excessively hard (the situation is 
much more favourable in vacuum representations, where the LSZ condition (3.10) 
can be proved from the Wightman axioms [9]). 

Apart from the mere existence of the limit on the left-hand side of (9.6) it should 
be ascertained that this limit actually equals the right-hand side. If the left-hand 
side has the correct free-field (energy-extended) commutation relations, however, 
we simply define Fe,~ to be this limit. We are free to do so, because up to this point 
we did not have to specify which non-shell one-particle space ~ t l )  out of the 
infinitely many occurring in (7.1) was selected to construct the Fock space (7.3). 
We choose the particular ~ " )  as that created from the thermal vacuum by the 
(smeared) Fe,, defined by (9.6). It then follows that Ae,,(x) in (9.5) must have a 
nonvanishing matrix element between the state I E, p)  ~ (F-IN) * (cf. Section 7), 
with p2= a2, and the thermal vacuum. This situation should be compared with the 
decomposition (3.11). The difference between the two cases is that in contrast to 
~'~ t~) above, the subspaces Yfl ~) (cf. text below (3.11)) occur multiplicity-free in the 
decomposition (2.9), and thus are uniquely identified from the start. Finally, the 
correct normalization of the left-hand side of (9.6) is guaranteed by the presence of 
the function Z 1/2 in (9.5), which in a canonical theory is determined in principle 
(cf. Section 11 ). 

There It is 

Suppose, then, that the LSZ-like condition (9.6) holds, so that the fields FE,~(x) 
are in-fields. The three conditions (i)-(iii) below (9.1) are thereby satisfied, and a 
thermal Gell-Mann/Low formula may accordingly be derived. All the work has 
already been done in Section 3: we must just replace the discrete index i in (3.11) by 
the continuous pair E, a in (9.5). Following the same route as that in Section 3, we 
introduce a reference Hilbert space ~E (analogous to JcfM in Section 3) with thermal 
vacuum [0, f l)  (analogous to [~2)). The Hamiltonian on this space is H o [ ~ , ~ ]  
(cf. (9.4)) which is expressed in terms of the covariant Licht fields t~)e,~(x) 
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(analogous to the #i in Section 3, and not to be confused with the c-number 
functions q~E,,2(p) in the Appendix). The thermal state condition (5.25) on ~ff~ reads 

( flIgIo[qS,~])AlO, f l )=~*lO,  fl), (9.8) exp - 2  

which implies 

floE~b, ~ ]  10,/~) =0. (9.9) 

Following, mutatis mutandis, the same steps as those leading to (3.21) we then 
arrive at the thermal Gell-Mann/Low formula 

iG(r)(Xl . . . x,) := (0(/~)1 TE A"(x, ) . . . Ar"(x,) ] [0(fl) ) 

= f h d~(Ei, a,) 
t = l  

× <0,/~1T[~b2,,,,, (Xl)... qs~,,,,,(x,,) 0 ( ~ ,  - o o ) ]  I0, B> (9.10) 

with the abbreviation 

f d#(E,a) :=f;  dEf?  daa2(4~E)-mZ'/2(E, a2); (9.11) 

cf. (9.5). Analogous to (3.22), we have 

0 ( 0 % - o o ) =  Texp ( - i f  ~o~ dtI2It(t)) (9.12) 

with the interaction Hamiltonian 

/~z(t) =/~[~b, ~ ]  - Ho[~, ~] ,  (9.13) 
(~)  (~)  

in which the time evolution of the • = q~ (x) in (9.13) is governed by the free 
Hamiltonian Ho, which is given by(9.4), wlth F replaced by q~. As in Section 3, 
/~[q~, ~ ]  is obtained by replacing A by • in H[A, .~]; in this case this means 
that first (9.5) should be substituted in / I [A,  A], whereupon Ae,~ is to be replaced 
by q~E,~. We omitted the denominator (vacuum renormalization) in (9.10) 
(cf. (3.21) and text thereafter) because this factor is identically equal to one even in 
perturbation theory [3]. Finally, we employed the thermal doublet notation 
[18, 38, 3] A' = (A, A*). The Feynman rules implied by (9.10) are presented in the 
next section. 
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10. NON-SHELL FEYNMAN RULES 

Interaction Hamiltonian 
For simplicity we consider a theory with a quartic interaction. According to 

(5.27)-(5.30) the Hamiltonian on ~,o reads 

1 { 02+ )- I?I[A,.4]=~fd3x (VA)2+m2oAZ)~0 A4"~ t.c.}, (10.1) 

with A =A(x)  and canonical momentum A; mo and 2o are the bare mass and 
coupling constant, respectively. The free Hamiltonian that is to be used in the 
derivation of the Feynman rules is/4o[(b, ~] ,  i.e., (9.4) with FE,~ replaced by ¢~e,~ 
which is the covariant irreducible operator field in the interaction picture. As 
explained in the previous section, the interaction Hamiltonian in the interaction 
picture determined by the free Hamiltonian Ho follows from (9.4), (9.5), (9.13), and 
(10.1) as 

i=1 

+ (1 Z 1/ (E1, Z -  1/2(E2, 

+ (m 2 -- E~g(E, -- E2) Z-'/2(EI, a~) Z-I/2(E2, 0"2)) tiDE, , oi qbE2, a2 ] 

- t.c.}, (10.2) 

where dp is given in (9.11), t.c. means tilde conjugate, and the x-integration is 
understood in the sense of (5.30). All terms but the first in (10.2) are counterterms. 

We are going to derive the Feynman rules in two steps: first for Green functions 
of the operator AE,~(x) (cf. (9.5)) and second for those of the full operator A(x), 
which is the quantity of physical interest. 

First Step 
We first remark that the Wick theorem holds for the right-hand side of (9.10) as 

in conventional real-time perturbation theory [38, 3]. The computation of the free 
propagator employs (9.8), (8.17), and (9.4) and is analogous to the conventional 
case [38, 3]. In terms of the doublet q)r= (@ ~ . )  one finds 

ir-;(~lr2)t~" ,, xl; E2, 0"2, X2) ;= <0, fl[ T[~ , ,o , (x l )  qb~2,~2(x2)] 10, fl> ~ 0  ~,~1, Vl~ 

= 4zdgl 0"14c~(E1 - -  E2) 6(0"1 - 0"2) 

x f~e-O'(~l-x2)6(Ipl-0")D(r'~2)(po, E), (10.3) 
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with 

f' o) L)(r"2)(po,  E ) =  M(I Pol) ~ - E ~ + i e  
- 1  

0 2 - - '5  
Po - -  E1 - -  ie 

Here M ( I P o l )  is the well-known 2 x 2-matrix [3] with entries 

M 11 = M22 = 4 1  +N(I Pol); 

M12 = M2I = X / / ~  Po I), 

M(IP01) (10.4) 

(10.5) 

where N is the Bose distribution function. We denote the momentum-space 
propagator by a line and have our first Feynman rule: 

r l ,  E l ,  0.1 r2, E2,  0.2 
= 4 h i E 1 0 . F 4 6 ( E I  - E2) 6(0.1 - o'2) 

x 6(1Pl - 0.,)/)tr'r')(P0, E). (10.6) 

Since the interaction (10.2) does not mix tilde and nontilde operators there are 
two types of vertices: one type containing type 1 (nontilde) legs only, and one 
containing type 2 (tilde) legs only. The Feynman rules of these two types differ by a 
sign only. Below we will, therefore, give the type 1 vertices only. (This situation is 
the same as that in conventional real-time perturbation theory [3].) First there is a 
four-point vertex 

El, 0 . 1 ~ E 2 ,  0.2 

E4, 0.4 E3, 0.3 

= - i 2 o A f 2 f 3 A  (10.7) 

with 

fi =f(E, ,  a2) = a2(4nE,)- ,/2 Zl/2(gi, 0.2). (10.8) 

There are two qualitatively different types of two-point counterterms: one coming 
from H and one from/4o. They follow from (10.2) as 

p, El, 0.1 

and 

P, E l ,  0.1 

P, E2,  0" 2 1 
× = if~ f 2 ( p  2 - mg) ,  (10.9) 

P, E2,  0" 2 
1 

- - 0  . . . .  ia2a~(4uE~)-' 6(E,--E2)(p2--E2). (10.10) 

595/186/l-13 
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A diagrammatic expansion for an n-point function of A r with external E,o" 

momenta Pi and external "non-shell parameters" Ei, a~, that is, the Fourier trans- 
form of the integrand of (9.10), is now obtained by drawing Feynman diagrams 
with rules (10.6)-(10.10), and the corresponding ones for type 2 vertices, in the 
usual way [3]. Apart from the loop momenta one should now also integrate over 
all internal variables E, a from zero to infinity. This completes the first stage in the 
derivation of the non-shell thermal Feynman rules. 

Second Step 

We now pass to the derivation of the Feynman rules for the full Green functions 
of the operator A(x) ,  which according to (9.10) are obtained from the Green 
functions constructed above by also integrating over the external variables E;, a~ 
with weight function fg given by (10.8). The delta functions in (10.6) imply that all 
a-integrations and one-half of the E-integrations can be trivially performed. Two 
different situations then arise. External points and vertices of types (10.7) and 
(10.9), collectively called regular vertices, contribute a factor Z 1/2. A propagator 
connecting two regular vertices therefore will contain a factor Z. Each such 
propagator carries its own E-variable which is integrated over with weight function 
Z(E,  p2). This yields the "regular" propagator (cf. (4.5)) 

S 

• =: iGfor')(p) = i fo ~° dEZ(E,  p2)ffm(po, E). (I0.11) 

Regular here means that the external points are regular, i.e., not of type (10.10). In 
contrast, the vertex (10.10) contributes a delta function rather than a factor Z. 
Hence two propagators connected by the vertex (10.10) carry the same "energy" E. 
Eventually a regular vertex will be encountered on both sides, so that a factor Z 
will be picked up in any case. However, all propagators connecting these outer 
regular vertices carry the same "energy" E, and there is only one factor Z and one 
E-integration for such a chain. Since all awkward factors cancel between 
propagators and vertices, the type 1 vertices in the E, a-integrated diagrams are just 

~ = -i2o, (10.12) 

1 × =i (p2 - -m~) ,  (10.13) 
P 

and 

1 
- - . 0 - -  - i ( p  2 -  E2). (10.14) 

p, E 

Equations (10.11)-(10.14) are the final non-shell thermal Feynman rules. One 
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should draw all diagrams as usual, but with the propagator (10.11) and the extra 
vertex (10.14), keeping in mind the prescription given above for the special treat- 
ment of the latter. The whole situation is illustrated by the following diagram (see 
Fig. 1) with all vertices of type 1 for simplicity: 

( d4k f~ ~I (dE, Z(E~, p~) ~)~H)(pO, E~))(q2_ m 2) 
A = 22 J (27t)4 Jo ~=~ 

• I :  dE7Z(E7' k2)(/)~'i)(k°' E7))2 (k~ -- E72), (10.15) 

with P5 =P6 = q = k - P l - P 2 .  The point to remember is that the two propagators 
connected by the vertex (10.10) together acquire only one E-integration and one 
factor Z, while those connected by the vertex (10.9) have a weight Z and an E- 
integration each. 

Consistency 
It is to be remarked that a diagrammatic expansion for the full two-point 

function employing the propagator (10.11) identically satisfies the KMS condition 
[3] for any choice of the function Z. This is because (10.11) formally has the same 
structure as the spectral representation of the full 2 x 2-real-time propagator [3], 
with the full spectral function p(cn, p) replaced by Z(E, p). This feature, which forms 
the basic consistency condition for real-time thermal perturbation theory, has 
nowhere been put in by hand; it results naturally as a consequence of the unique 
choice of the free Hamiltonian (9.4) for which the asymptotic limits in the Gell- 
Mann/Low formula exist. This is analogous to the situation in the Haag-Ruelle 
theory: as we have seen in Section 3, the unique choice of the free vacuum 
propagator that leads to a unitary S-matrix automatically results from the 
derivation of the vacuum Gell-Mann/Low formula (cf. the text after (3.21)). 

In spite of the formal similarity between (10.11) and the full spectral represen- 
tation, the function Z should not be confused with the spectral function p. In 
vacuum perturbation theory Z would equal 6(E-e(a2)) for the on-shell energy 
e(a2); i.e., in that case it represents only the one-particle contribution to the full 
spectral function. In the thermal case at hand, Z is prohibited from being a delta 

Pl P 
3 

E 7 

FIG. 1. Example of a non-shell diagram. 
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function by the results of Sections 6 and 7; it now represents the contribution to the 
spectral function coming from the non-shell one-particle Hilbert space A~ (1). Its 
actual determination is the subject of Section 11 and 12. 

Ansatz 

For the moment we find it most illuminating to yet further elaborate the 
Feynman rules above for a model choice of Z. Guided by conventional wisdom in 
vacuum unstable-particle theory (cf. (4.6)) we adopt the normalized Breit-Wigner 
form 

Z(E, a 2) = x / n [ ( E -  e(a2)) 2 + x2] - -1  (10.16) 

Here x is a parameter, and e(a 2) is a certain dispersion relation. In the standard 
picture Eq. (10.16) represents the contribution to the spectral function coming from 
an unstable quasiparticle with lifetime x-1. In our operator formalism it weighs the 
relative contribution of a state [E, p )  ~ ( F - I N )  * with p2 = 0.2. In any case, (10.16) is 
useful only if x ~ e(0.2). Then the E-integration in (10.11 ) may be extended to minus 
infinity (introducing errors of order x/e), and using (10.4) the propagator (10.11) 
becomes 

I 1 1 - ( ~ - -  ix) z 01 

0 po2_ ( ~ _  it¢) ~ 

(~(orS)(p) = M(I Po l) M(I p0[), (10.17) 

with M(lPol)  given by (10.5). (It is actually possible, although not very 
illuminating, to do this computation exactly using techniques developed in 
Ref. [53].) 

We can also explicitly evaluate the effect of the counterterms (10.13) and (10.14). 
A computation of the relevant two-point diagrams (i.e., the two internal lines in 
Fig. 1), taking care of the special rule pertaining to (10.14) and summing over 
type 1 and type 2 insertions, shows that in the case of (10,16) both of these counter- 
terms may be replaced by a single, complex one that mixes type 1 (nontilde) and 
type 2 (tilde) fields, namely 

r ® - -  
P 

s - = i ( e ( p ) 2 - e o ( p ) 2 - x z ) z 3 - 2 i e ( p ) x z 3 M ( l p o l ) Z z 3 }  rs. (10.18) 

Here %(p)2 = p2 + mo 2, ~'3 is the third Pauli matrix, and r and s are thermal indices 
taking values 1, 2. To arrive at (10.18) we used the identity 

M([ P0l) z3M([ Po 1) = %. (10.19) 

Since the special nature of (10.14) has been explicitly taken into account in deriving 
(10.18) one may use (10.18), (10.17), and (10.12) without any further prescriptions. 
The propagator (10.17) and the counterterm (10.18) have a very interesting struc- 
ture, which was originally discovered, in a rather different setting, in the context of 
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nonequilibrium thermo field dynamics [34, 35]. We defer a further discussion to 
the next section. For the moment we just remark that in the limit x ~ 0 the above 
degenerates into the standard set of real-time thermal Feynman rules [3]. In this 
limit (10.16) reduces to a delta function, which entails the form (6.10) of the ther- 
mal measure. In view of the results of Section 6 this is not allowed for interacting 
theories, and we conclude that if the Breit-Wigner form (10.16) applies it must be 
for strictly finite x. 

11. CHOICE OF THE FUNCTION Z(E, tr 2) 

Canonicity 

We now turn to the question of determining the function Z(E, a2), which enters 
in the "free" propagator (10.11), in general. For this purpose we return to its 
defining equation (9.5). Since the normalization of AE,~ appearing there is fixed by 
the asymptotic condition (9.6), with Fe,~ given by (8.17), with the normalization 
(8.18), it follows that Z completely determines the normalization of the Heisenberg 
field A(x). On the other hand, in a canonical theory the latter is fixed by the equal- 
time commutation relations. The fact that both the overall normalization and the 
functional form of Z(E, a 2) are governed by the canonical relations may be 
illustrated by the example of an interacting theory possessing a multi-mass spec- 
trum at zero temperature: there the renormalization constant for each asymptotic 
field (cf. (3.11), (3.12)) is separately dictated by imposing the equal-time com- 
mutators. 

Actually, at zero temperature the canonical relations are not explicitly needed in 
order to calculate Z (which in the single-mass case reduces to a constant). The 
reason is that the renormalized full two-point functon has a pole in p2= rn 2 with 
residue i. Perturbation theory can be set up in such a way that the propagator is 
just the renormalized free two-point function, so that Z appears only in the two- 
point counterterm i ( Z - 1 ) p  2. Then Z is determined order by order by the con- 
sistency condition Z -  1 = (t~/t~p2X)(p 2= m 2 ) ,  where the contribution of given order 
to the self-energy by definition excludes the counterterm above of the same order. 
Consistency here does not lead to self-consistency, because the self-energy itself 
contains only lower-order contributions from Z, which had been determined in a 
previous step. All this is true basically because the free propagator itself is indepen- 
dent of Z altogether. 

This favourable situation does not extend to thermal representations: first the 
two-point Green function has no stable-particle pole, and second the "free" 
propagator (10.11) itself contains Z. At the moment we do not see any possibility 
other than calculating the function Z(E, tr 2) the hard way. This means that the 
dynamical map (9.1) should be evaluated explicitly (the first term being (9.5) with 
A replaced by F on the right-hand side) after which the canonical commutator may 
be derived. There are two ways of accomplishing this end. 
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Basic Techniques 

The first method consists of making an Ansatz for the expansion of A(x) in terms 
of the asymptotic fields (Fe.~ in our case) and then calculating the mapping coef- 
ficients by the Heisenberg equation (perturbation theory in the Heisenberg picture, 
cf. Ref. 1-18] for the zero-temperature case). This scheme always works and in 
principle allows one to check the condition (9.6). 

In the second method one calculates all retarded Green functions in perturbation 
theory, in our case employing the consistent Feynman rules (10.11)-(10.14), 
whereupon the dynamical map follows in the guise of the so-called Haag-GLZ 
expansion 1-33]. This method works if the asymptotic condition (9.6) holds. 

It should be remarked that, in contrast to the state of affairs at zero temperature, 
in real-time thermal field theory retarded functions can be expressed immediately in 
terms of time-ordered ones 1-54] so that one indeed has a direct perturbation 
method for the former. 

In either method, imposing the canonical relation leads to a nonlinear 
inhomogeneous integral equation for the function Z, which enters both directly as 
in (9.5) and indirectly because it is contained in the mapping coefficients. In the first 
method above this is caused by the Z-dependence of the interaction Hamiltonian 
(10.2), while in the second it is due to the appearance of Z(E, p2) in the "free" 
propagator (10.11). Actually, at this stage it is rather unclear what is to be 
understood by a perturbation expansion (for the retarded functions) since we have 
not yet identified what the physical expansion parameters are (let alone ascertain 
their smallness), so that the counterterms (10.13), (10.14) are undetermined, as is in 
fact the "coupling constant" in (10.12). We further elaborate on this point in the 
next section. 

The preceding prescriptions to evaluate Z(E, a 2) are excessively complicated and 
in practice turn out to be untractable to the extent that we seem to be compelled to 
significantly modify our strategy. Rather than attempting to derive Z from first 
principles, we are going to motivate the Feynman rules (10.17), (10.18) directly. 
This, then, will lead us back to the Breit-Wigner form (10.16) as a reasonable first 
approximation to the function Z. 

Practical Approach: Quasi-naive GML Formula 

The starting point is the following formal Gell-Mann/Low formula [55], 

iG(r)(xl " " Xn) = < O, ~ l U ( ~ -- i l ,  oo ) [  T~rl(Xl) - 

x U ( - o o , -  oo + il) ,0,/3>/<0,/~ 

x 0 ( o o , - o o ) U ( - - ~ , - o o + i l )  

#'°(x=) 0(oo, -oo)] 

-- ~ ,  

O,/3>. (11.1)  
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Here iG(r)(x~ "" x,) is the full n-point Green function defined in (9.10). The 
notation is similar to that in Section 9, with the essential difference that now q~(x) is 
a field in the conventional interaction picture determined by the free Hamiltonian 
/to = H o - / t o  (in the sense of (5.30)), with H o the free Hamiltonian of the vacuum 
theory. The evolution operator U is defined by (3.22); in contrast to 0 (of. (9.12)) it 
does not contain contributions from the tilde fields. Unlike our non-shell thermal 
Gell-Mann/Low formula (9.10), which is meaningful as it stands, the expression 
(11.1 ) is formal in the sense that neither the infinite-volume limit nor the asymptotic 
time limits have been treated properly. Namely, the operator U diverges with the 
volume, while the limits t ~ _+ oo in U and 0 do not exist in the strong operator 
topology and vanish in the weak topology for the conventional (vacuum) choice of 
H 0 (cf. Sections 6 and 9). Hence (11.1) should be properly regularized by a space 
and time cutoff, whereupon the divergences in taking the infinite space-time limit in 
the numerator and the denominator supposedly cancel out. The regularized 
expression corresponding to (11.1), however, is valid for any choice of H o, so that 
the Gell-Mann/Low formula loses its function of identifying the unique consistent 
choice of the free propagator in perturbation theory (el. Sections 1, 3, 9, and 10). 

A related difficulty is that (11.1 ) does not give rise to the usual Feynman diagram 
method because of the presence of the factors U(oo-½i[3, oo) and U ( - 0 %  

- oo + ½i[3). It has been shown [56] that these factors are essential in order for the 
KMS condition to be satisfied, except in the case where the fields in the interaction 
picture carry the same masses as the asymptotic fields in the usual sense of vacuum 
field theory. In that case the contributions of the operators U to the denominator 
and the numerator in (11.1) cancel out. However, we have seen that this condition 
cannot be satisfied in interacting thermal systems. 

As we have argued, the way out of all these difficulties is to modify the choice of 
the free Hamiltonian, which required rather elaborate considerations. If one is 
willing to ignore most of the fine mathematical issues involved, however, the 
problem may to a certain extent be solved "by hand" starting from (11.1). 

Self-Consistent Perturbation Method 
The essential idea has been introduced by Matsumoto [37] in nonequilibrium 

thermo field dynamics and is easily adapted to equilibrium representations. 
Namely, one rewrites (11.1 ) as 

iG{r)(xl " " x , ) =  <T[q~r'(xl) "' '  ~r"(x,) OIz(O0, -- O0)] ). (11.2) 

Here 

On= T exp ( - i  l d4x [ :,Vgxx (x) + S(x) ]) ,  (11.3) 

where ~ = ~ i -  ~ ,  with ~ the interaction Hamiltonian density of the vacuum 
theory, while S is given by 

S ( x )  := -- l ~ r ( x )  1-I(rs)(iO) (I)S(x) (11.4) 
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for a certain 2 x 2-matrix H, to be specified below. The average in (11.2) is given for 
any time-ordered operator product TO by 

(11.5) 

Because of the presence of the time-ordering in (11.1) and (11.2), the latter is 
actually an identity if the factors U in (11.1) can be ignored. As remarked above, 
these factors ascertain the identical fulfillment of the KMS condition. We must, 
therefore, choose the matrix H in (11.4) in such a way that the perturbation expan- 
sion derived from (11.2) identically satisfies the KMS condition. It should be 
remarked that in the absence of the factors U in (11.1) the denominator is equal to 
unity, because the closed diagrams corresponding to the nontilde operators in 0 are 
canceled by their tilde counterparts. In (11.4), on the other hand, the matrix H will 
in general be nondiagonal so that tilde (~ = 2) and nontilde (# = 1) fields are mixed. 
The normalization factor in (11.5) is therefore explicitly present. 

It is easily shown that the averaging (11.5) satisfies the Wick theorem. To wit, the 
generating functional 

Zo[j r] := ( T e x p  i f  d4xj"(x)~"(x)) (11.6) 

satisfies the differential equation 

[0 + m 2) z~f') + H~S)(i0)] - -  6 j"(x)} Zo = 0, (11.7) i&(x) 
where m is the mass in the free Hamiltonian; cf. the text below (11.1). The solution 
is 

) Zo[j r] = exp f d4x d4x'jr(x) D(rS)(x, x ' ) f (x ' )  , (11.8) 

where the propagator satisfies 

[(c~ + m 2) z(f')+H(r')(i~)] D('S)(x, x ' )=  -.(~rs)64(x-x'). (11.9) 

Functional differentiation of (11.6) and comparison with (11.5), (11.8) then proves 
the Wick theorem. 

Consistent Choice of H 
If H ~rs) is replaced by the thermal self-energy £.~rs), Eq. (11.9) becomes formally 

identical to the equation for the full two-point function G trs). This allows us to 
further specify Htrs) by the demand that the free propagator of the improved pertur- 
bation expansion (11.2) satisfy the KMS condition. Namely, it is known [3] that 
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the Green function G t~) satisfies the KMS condition if and only if the self-energy 
has the form (Eq. (3.2.17) of Ref. [3]) 

0 -r~rs)(p)---M-l(Z'(0P) _ ~ ( p ) ) M  -1, (11.10) 

where M =  M([ P0l) is given by (10.5), and Z'(p) is some scalar function. We infer 
that H(m(p) must have the same matrix form. Any choice of the function H(p), 
analogous to Z'(p) in (11.10), then gives rise to a perturbation theory in which the 
free propagator D ~), and thereby 1-3] the full Green functions, satisfy the KMS 
condition. The only restriction is that H(p) should have a nonvanishing, negative 
imaginary part in order that (11.5) exists. For example, the usual real-time 
propagator is obtained by choosing H = -ie.  

A simple specific choice for II(p) is 

/-/(p) = e(p)2 _ p2 _ m 2 _ ~¢2 _ 2ixe(p) (11.11) 

for certain e(p) and ~. We may then determine Htrs) by the analogue of (11.10), and 
subsequently find D ~m by solving (11.9). The Fourier transform/)~orS)(p) then comes 
out to be exactly identical to the function t~torS)(p) in (10.17). The presence of the 
operator S in (11.3) also induces a new two-point counterterm. If the choice (11.11) 
is combined with the mass counterterm t~m2z3 coming from ~i  in (11.3), on use of 
the identity (10.19) the total two-point counterterm just reproduces (10.18). 

In the approach of this section, the detailed matrix forms of (10.17) and (10.18) 
are a consequence of the KMS condition (which is equivalent to (11.10) that has 
been imposed on the choice of H ~rs). In the procedure of Section 9 and 10, on the 
other hand, the correct matrix structure came out automatically on choosing 
(10.16) for Z(E, a2). In any case, the Feynman rules (10.17) and (10.18), and 
thereby the specific form (10.16) of Z, have now been motivated from a rather dif- 
ferent point of view. Effectively, the "improved" Gell-Mann/Low formula amounts 
to a resummation of naive thermal perturbation theory to infinite order. By the 
above results, the same may be said of the approach in the previous sections for the 
special case (10.16). We should stress, however, that being tied to Green functions 
the formalism of this section cannot determine the actual form of the function H(p), 
whereas the function Z(E, a2) is in principle fixed by the canonical relations, as we 
have seen. 

Dissipative Field Theory 

The most significant characteristic of (10.17) is the presence of dissipation already 
at the tree level. The emergence of the complex counterterm (10.18) is necessarily 
associated with this feature. Dissipative propagators and imaginary counterterms 
were first introduced in nonequilibrium thermo field dynamics [34-36] at the 
operator level. The free Hamiltonian determining the free propagators was there 
taken to be non-hermitian from the outset. This is definitely different in our 
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approach, where both the free and the full Hamiltonians are formally self-adjoint, 
and the emergence of imaginary quantities is due to the integration (in (9.5) and 
(10.11)) over the continuous variable E. The continuity of this parameter is a 
consequence of the fact that in interacting thermal representations the energy 
spectrum is continuous even at fixed momentum. 

The appearance of dissipative terms in the bare Feynman rules even in 
interacting equilibrium representations should be no surprise. The representation 
space ~o, contains not only the equilibrium state [0(fl)) but in addition all states 
A 10(fl)), A ~ no~(9.l). These states describe fluctuations around and excitations of 
the equilibrium state, which by the fluctuation-dissipation theorem are directly 
related to the dissipative part of the full propagator. A heuristic perspective on the 
emergence of dissipation in quantum field theory is given in Ref. [36]. 

12. THERMAL RENORMALIZATION 

The final ingredient in any calculational scheme based on propagators and 
vertices is the expression of bare parameters in terms of physical ones, and the 
associated choice of renormalization conditions. The physical parameters should be 
chosen to be directly observable quantities. The point we make is that the choice of 
these quantities is representation-dependent. That is, apart from being observable in 
principle, the physical parameters must be immediately relevant to the context in 
which the calculations are performed. 

Renormalization in Vacuum Representations 

For example, in a scattering-theoretic context one studies (approximate) vacuum 
representations in which the Haag-Ruelle theory is realized; then the relevant 
observables are obviously the masses m of the asymptotic particles and the 
scattering amplitudes 2(/~) at a given energy scale/~. The process of translating the 
bare parameters too, 20 into the physical and contextually relevant ones m, 2(/~) is 
manageable in diagrammatic perturbation theory if 20 is a formal power series in 
2(/~) (usually with divergent coefficients). In that case the bare vertex (10.12) is 
replaced by an infinite series of vertices proportional tO 2n(#) for n = 1, 2, .... The 
first of these is already, by definition, the complete scattering amplitude at energy 
scale/t, while the other vertices are counterterms whose presence ascertains that at 
energy scale/~ there are indeed no further contributions. The explicit form of 2(/~) 
may be determined by the renormalization group equation d2o/d/~ = 0. Also, the 
physical mass already appears directly in the Feynman rules (i.e., in the free 
propagator), and the two-point counterterms i6m 2 = i(m 2 - Zm~) and i p 2 ( Z -  1) are 
fixed by the requirement that m actually be the physical mass. 

This translation process is relatively easy in (Haag-Ruelle) vacuum represen- 
tations because the relevant physical observables have a simple and direct diagram- 
matic interpretation: a two-particle scattering amplitude is just a four-leg diagram, ~ 
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while masses are identified in terms of the one-particle irreducible self-energy. 
In fact, the whole process in practice boils down to a set of momentum-space 
subtractions. 

Thermal Complications 

In thermal representations the situation is much more complicated. The con- 
textually relevant observable numbers are now thermodynamic response functions 
and dissipative transport coefficients rather than masses and cross sections. 
Therefore, the renormalization procedure will by necessity be qualitatively different 
from the one in vacuum representations. Indeed, since thermal and vacuum 
representations have just about nothing in common, it would be asinine to first 
express 20 and mo in terms of the vacuum parameters 2(/~) and m and then calculate 
the thermodynamic observables as functions of these. Reasoning physically rather 
than mathematically, one should try to parametrize experimental results in terms of 
other experimental results in the same class. 

For  concreteness' sake, we will discuss this issue for a 2oAa-theory in which we 
adopt the model choice (10.16) for Z. The bare parameters are 20 and too, and 
these are to be expressed in terms of two thermally observable quantities A, B plus 
a set of renormalization conditions ascertaining the self-consistency of this 
expression. As in the vacuum case, a third, dependent quantity enters, namely the 
wavefunction renormalization Z. In our case (10.16) we have Z=Z(x ,  ep). If we 
now succeed in relating 2o, x, and ep to the observables A and B, we can ultimately 
express the Feynman rules in terms of A and B rather than 20, etc. In analogy with 
the counterterm 6m 2 in a vacuum theory, the thermal counterterm (10.18) is com- 
pletely fixed by specifying 20 = 2o(A, B), x = x(A, B), and ep= ep(A, B, p) once the 
meaning of A and B has been agreed upon. Clearly, only two of these three 
relations may be independently stipulated. Of course, unlike A and B, the bare 
parameters 20 and mo are representation-independent. As in the vacuum case, this 
independence may be expressed by a renormalization group equation. In thermal 
field theory A and B will be functions of temperature T, a state of affairs that may 
be compared with the energy-scale dependence 2 = 2(p). (Of course, T is fixed in a 
given representation!) We thus have the renormalization group equation 
d2o(T, A(T), B(T))/dT= O, and similarly for mo, asserting the autonomy of the bare 
parameters. 

Choice of Thermal Observables 

The crucial step in the thermal renormalization procedure, then, is the 
appropriate choice of the relevant observables A(T) and B(T). An obvious practical 
requirement is that A and B have a relatively simple diagrammatic interpretation. 
Although the situation is definitely not as straightforward as that in vacuum field 
theory, this demand is to a certain extent met by observables that may be represen- 
ted in terms of correlation functions of the energy-momentum tensor t uv (or of con- 
served currents in theories with internal symmetries). For  a first attempt, we choose 
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the specific heat c v and a static transport coefficient, e.g., the shear viscosity q, as 
the basic thermal observables. 

For vanishing chemical potential, it is straightforward to express the specific heat 
in terms of the time-ordered energy-density autocorrelation function, viz. 

O2p 
cv(T, l~=O)=T.~-~=-i f l21im ~ e i~7~°°'°°(z, 0), (12.1) 

6 1 0  res 
I m z < O  

where 

~uv,p,(p) = f d4x eipx (0(fl)[ T[t"~(x) tP~(O)]lO(fl) )c (12.2) 

is the connected part of the Fourier transform of the full Green function of the 
energy-momentum tensor t"v= t~V[A ]. The sum in (12.1) is over the residues of all 
poles in the lower-half complex plane. 

The (static)) shear viscosity r /may be written as [57] 

with the retarded function 

q = ~  DR (0), (12.3) 

iffl R( p ) 
¢, 

= J d4x eiPxO(t)(O(fl)l [rra(x), n;j(0)] I 0(fl)), (12.4) 

which contains the traceless irreversibles stress tensor (i,j, k = 1 .. ~ 3) 

~Z/j : =  I ij - -  16iJtkk. (12.5) 

In real-time thermal field theory any retarded two-point function GR may be 
rewritten in terms of time-ordered ones G ~rs) according to [58] 

~R(P) = d ( l l ) ( P )  - e (l/2)ppo~(12)(p), (12.6) 

where 1 and 2 are thermal indices [3]; cf. (9.10). This formula follows from the 
thermal state condition (5.25). In addition, ¢~(12) is related to (~(11) by [3] 

~ ( 1 2 ) ( p )  = (e(1/2)/~po _{_ e - ( 1 / 2 ) # p o ) - 1  ( ( ~ ( l l ) ( p )  _ (~(11)(p)). (12.7) 

We now use (12.2)-(12.7) and the fact that the real part of G (11) is an even function 
for Po ~ 0 [3] to find the absorptive expression 

q = - ~ofl Im Du'•(0). (12.8) 

Here /7  is given by (12.2) with t ~ replaced by rt ° (12.5). 
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Nonrenormalization 
It should be remarked that (12.2), and thereby (12.1) and (12.8), contain the bare 

energy-momentum tensor, i.e., the one given by its naive definition in terms of the 
bare Heisenberg field A(x). However, this composite operator is automatically 
renormalized because its connected Green functions are finite 1-3] (the disconnected 
version of (12.2) contains a divergence coming from the product of the vacuum 
expectation values of t "v and tP~; this term is by definition subtracted in the connec- 
ted Green function (12.2)). A similar statement holds for (most) other conserved 
currents [3]. It is a remarkable feature of thermal observables that they are 
expressed in Green functions of the bare fields of the theory. In contrast, vacuum 
observables (S-matrix elements) are given by Green functions of the "renormalized" 
fields Z mA (cf. (3.11)). This distinction is crucial for our whole programme, 
because, as we have seen, the renormalization constant Z plays no role in thermal 
representations. Indeed, in the absence of particle poles with unit residue it would 
lack a natural renormalization prescription. 

Example 
A specific example of a renormalization prescription fixing the parameters 2o, x, 

and ep is the following: x and ep are defined by demanding that the lowest-order 
(one-loop) contribution to Cv and q yields the exact result. Since the propagator 
(10.17) contains x and ep, these are directly fixed by this prescription. The bare 
coupling constant 20 is then regarded as a pure counterterm whose value, like that 
of eo in (10.18), is determined by computing higher-order contributions to Cv and r/ 
and demanding that they vanish. This prescription may be surprising at first sight, 
but in fact it is the direct analogue of the prescription defining m and 2(p) in 
vacuum field theory: m is defined to be the physical mass; i.e., the pole in the full 
propagator is required to be at p2= m 2, where it indeed is at tree-level. Higher- 
order corrections to this pole, i.e., -r(p2= m2), are ordered to vanish, which fixes Z 
and 6m 2. The treatment of 2(#) is analogous (cf. the beginning of this section). 

Using the Feynman rules for Green functions of the energy-momentum tensor 
(e.g., [3]) it is a simple matter to compute the one-loop contributions. As t uv and 
t p" in (12.2) are both ordinary (nontilde) operators, i.e., of type 1, the one-loop 
diagrams just contain the "free" propagator t~o 11) given in (10.17). By the renor- 
malization prescription above only the "free"-field contribution to t uv participates. If 
we parametrize e 2 = p2+/~2 and assume for simplicity T and # much larger than x, 
we find 

cv=[32 f (~)--------3eZN(1 + N); (12.9) 

. = _ ~ f  d3p N(1 + N) 
Ip41 x(e~ + x2), (12.10) 

where N = (exp(flep) - 1 ) -  1. 
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Remarks 

The expression for the specific heat looks like that for a free gas of particles of 
mass #. This is a consequence of the condition x ~ # and the renormalization 
prescription, which now implicitly determines # as a function of Cv by (12.9). 
Similarly, (12.10) is formally identical to a result obtained by Hosoya et al. [57] 
in the Matsubara formalism, but has a very different interpretation. In Ref. [57], 
x (F  in their notation) represents a particular approximation to the imaginary part 
of the self-energy proportional to the vacuum coupling constant squared. In our 
formalism, on the other hand, (12.10) is a renormalization prescription that shows 
a particular way of choosing the parameters of perturbation theory. 

As stated before, the next step consists in calculating higher-order corrections to 
r/ and Cv as functions of 20, Co, X(Cv, rl), and #(Cv) and thereby determining 
2o = ;to(T, Cv, ~l) and co(T, Cv, q) in such a way that these corrections vanish. How 
this is to be done is unfortunately unclear, because the functional form of 20 and eo 
is not known (recall that in vacuum renormalization theory 2o = 2o(#, 2(#), m) is a 
power series in 2(#)). In principle, however, the solution gives rise to an infinite 
series of two- and four-point vertices, analogous to the usual counterterms at T = 0, 
with Feynman rules depending on q and ev (or x and #). It is from these renor- 
malized Feynman rules that other thermal/observables, like the equation of state, 
dynamic transport coefficients, screening lengths, etc., are to be calculated. So in the 
end one finds the pressure P = P(cv, q) expressed in the specific heat and the shear 
viscosity, rather than the contextually meaningless vacuum parameters 2 and m. Of 
course, different choices of the basic thermal observables should be considered, 
while with a given choice an infinite number of renormalization conditions is 
possible. A given renormalization condition, like that leading to (12.9) and (12.10), 
may turn out to be nonimplementable, i.e., inconsistent, in higher orders. A vacuum 
example is the condition ~F(p 2 = M 2) = 0 on the self-energy of a field describing an 
unstable particle with approximate mass M >  2m; cf. Section 4. In those cases one 
should just try again; in the present situation a modification of the Ansatz (10.16) 
for Z may also be contemplated. 

The above is an idealized scenario of what, in our opinion, one should aim at in 
perturbative thermal field theory. The practical difficulties may well turn out to be 
insurmountale, in which case the whole idea of diagrammatic perturbation theory 
at finite temperature may have to be abandoned. The ultimate reason for this 
failure would be the unfortunate truth that thermal observables, in contrast with 
vacuum observables, are not themselves primitive building blocks of Feynman 
diagrams. 

13. SUMMARY AND CONCLUSIONS 

In the early years of relativistic thermal field theory, Weinberg [59] wrote "The 
aim of quantum field theory is to calculate S-matrix elements. However, at a finite 
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temperature there is no such thing as an S-matrix; a finite temperature means that 
space is filled with debris like black-body radiation, so any particle that participates 
in a collision is scattered again and again before it gets out to infinity. Instead of 
S-matrix elements, one wants to calculate...." 

In our opinion this remark is both deep and true (although in an infinite ther- 
modynamic system a particle does not "get out" at all), but regrettably enough, it 
apparently has not significantly influenced the daily practice of the subject. Conven- 
tional thermal perturbation theory [20, 3] is strongly based on the belief that the 
presence of a finite temperature does not modify the particle structure of quantum 
field theory in an essential way. This attitude is most directly reflected in the choice 
of the free Hamiltonian defining perturbation theory: it is basically taken to be 
same as that in the vacuum theory. 

We have made an effort to show that this point of view is untenable in an 
interacting system; this paper is an attempt to start all over again. Combining 
operator-algebraic, group-theoretic, and physical arguments, we have been led to a 
description and an interpretation of interacting thermal field theories in terms of 
so-called non-shell unstable particles. These are elementary unstable particle-like 
objects without any dispersion relation. The fact that states containing these 
peculiar objects, rather than ordinary on-shell particles, form the basic building 
blocks of the representation space of a thermal field theory may be interesting in 
itself; it certainly has a profound impact on the problem of constructing a consistent 
and tractable diagrammatic perturbation method. 

As in vacuum field theory with a unitary S-matrix, there is a unique self-con- 
sistent choice of the free Hamiltonian and thereby of the free propagator that leads 
to a correct perturbation theory in the interaction picture; this feature is intimately 
related to the existence of the asymptotic time limits in the Gell-Mann/Low 
formula. However, in thermal perturbation theory the propagator is given by 
specifying an entire continuous function Z(E, ~2) rather than a single particle mass 
m. The functional form of Z is in principle given by a rather intractable self- 
consistent integral equation. In simple cases Z will contain two free parameters 
which are to be fixed by suitable renormalization prescriptions. 

We have shown how this can be done, in principle, on the basis of a simple 
model choice of the function Z. This model choice, which we justified in a poor 
man's way, happens to lead to propagators and vertices that had been postulated 
before in the formalism of dissipative thermo field dynamics [34-37]. These 
dissipative Feynman rules illustrate the essential differences between thermal and 
vacuum renormalization; renormalized Feynman rules should, ideally, contain only 
thermodynamic observables rather than vacuum masses and coupling constants. 
It is, however, questionable whether a completely self-consistent "perturbation" 
theory, as constructed in this paper, is of much practical use. In fact, our results 
strongly indicate that not only thermal QCD (see below) but also all thermal field 
theories are inherently nonperturbative in nature. 

We briefly return to the infrared problem in thermal QCD mentioned in the 
Introduction. Infrared problems emerging in naive perturbation theory are in 
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general a consequence of an incorrect selection of both the free Hamiltonian and 
the representation of the operator algebra [23]; as such they are completely 
circumvented in our approach. Indeed, either the thermal gluons are sharp thermal 
quasiparticles, in which case they do not interact (cf. Section 6) and are absent in 
loop diagrams where they might cause divergences, or the gluon states are 
rearranged in terms of "helicity" n = _  1 non-shell particle states, in which case 
their propagator is regular at k2=0.  Alternatively, it may be said that the 
dissipative parameter x in the propagator (10.17) automatically shields all would-be 
infrared singularities. 

Finally, it may be tempting to immediately generalize our results to non- 
relativistic field theories also. Although, in view of the physical arguments given, 
such an extension is not inevitably incorrect, it should be mentioned that the notion 
of mass, and thereby of a particle, is distinctly more involved in nonrelativistic 
physics. This is due to the mass superselection rule generated by the central exten- 
sion of the Galilei-group [60, 51]. In relativistic theories there exists a deep connec- 
tion between superselection rules and the representation theory of algebras of local 
observables [25 ]. In order to generalize our observations to the nonrelativistic case 
it is imperative to first investigate the emergence of superselection sectors in the 
representation theory of nonrelativistic field algebras. 

APPENDIX:  GROUP THEORY FOR KMS REPRESENTATIONS 

In this appendix we review the representation theory of the boostless subgroup 
S =  SO(3) (× T4 of the Poincar+-group P = L(x T4, where L is the proper connec- 
ted Lorentz group. In addition we will derive the Clebsch-Gordan series for the 
tensor product of two irreducible unitary ("canonical") representations. 

Canonical Representations 

The group S is a regular type I semidirect product [40] of the rotation group 
SO(3), with elements R, and the abelian group 7"4 of translations in four dimen- 
sions, with elements a = ( a o ,  a). SO(3) has a natural action on T 4 given by 
Ra = (ao, Ra), which defines the semidirect product structure. Elements of S are 
labeled by the pair s = (R, a). We will determine the canonical representations of S 
[60] by the method of induced representations [40]. The dual 7~4 of T4 is 
isomorphic to the latter; we denote elements of T4 by p = (Po, P). The action ofp  on 
a ~ T 4, which produces a one-dimensional unitary representative of a, is 

p(a)=e ipa, 

where pa = p o a o - P  . a .  S acts on the dual ]F 4 according to 

(sp)(a) :=p(R-Xa) = exp i(Rp) a, 

(A.1) 

(A.2) 
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where Rp = (Po, Rp). The dual T4 then splits into orbits under the action of S; 
clearly the orbits (gE. ~2 are labeled by the pair (E, a2), so that a given orbit contains 
the points p satisfying Po = E, p2 = 0-2. In each orbit we choose a fiducial point, e.g., 
/~= (E, 0, 0, 0-). The little group H is the subgroup of R satisfying h/~=/~, h EH. 
Obviously H =  SO(2) for a2> 0 and H =  SO(3) for tr 2 =0.  

The canonical representations of S are, therefore [40], labeled by the triples 
g> = (E, 0-2 > 0, n), where n e 7/ specifies the canonical representations of 
H=SO(2),  and go = (E, tr2=0,j) ,  where j e  I~l, specifies the canonical represen- 
tations of SO(3). Hence S as a set is 

,~= (R x I~ + x Z ) u ( ~ x  N). (A.3) 

The carrier space ~ ( g > )  of the representation g> is the L2-space of functions 
cbE,~2 ( • ) on the orbit (ge,~:. The argument • is the constrained four-vector p I(Po = E, 
p2 = 0.2) or, more explicitly, the pair of angles 0, ~b. We choose the S-invariant inner 
product in ~ ( E ,  0-2 > 0, n) to be 

= (2~) -3 f dO ~e,~2(0, ~b) ~e,~2(0, ~b) 

= O.-2(2X)--3 f d4pt~(po _ E) 6(I P l --0-) ~'(P) ~(P), (A.4) 

where dl2 = d~b dO sin 0, and q~ denotes the extension of q~E,~2 to arbitrary values of 
its argument. 

The unitary representative U~>(s) of an element s = (R, a) of S in the represen- 
tation g is defined by its action on the constrained function ~bE,,2 according to 

(Us>(s) ~e,~2)(p) = exp i(Ea o - p. a + mr(R, p)) ~e,~2(R- lp). (A.5) 

Here ~(R,p) is the rotation angle around the z-axis specified by the Wigner 
rotation p (p ) - i  Rp(R- lp)~  SO(2)c  SO(3). In this expression p(p) is a particlar 
element of the coset S0(3)/S0(2) that rotates/~ into p, i.e., p(p)~ =p. We see from 
(A.5) that the representations g> of S are similar in structure to the massless 
representations of the Poincar6-group [50], with the helicity 2 corresponding to the 
integer n in (A.5). 

The representations go = (E, 0,j) are simpler: the representation space ~(go)  is 
identical to the (2j+ 1)-dimensional carrier space of the canonical representation 
@J of SO(3), and we have 

( Ugo(S ) I~) a = e i E a ° ~ J ( R ) a b  fflb, (m.6) 

instead of (A.5). A special case is So = (0, 0, 0) which gives the identity represen- 
tation of S. In thermal field theory the carrier space ovt°(0, 0, 0) is spanned by the 
thermal vacuum 10(3)). 

595/186/1-14 
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In the main text an important role is played by the reducible direct integral 
representation 

Jo 2-~n Jo da az[u(E'~2"")@U(-e'~2'-")]' (A.7) 

which acts on the carrier space 

f0 °de ~@~1) :__ -f-~ndog2[.g~(E, g2, n ) G g ( - E ,  a2, --n)]. (A.8) 

This representation space has been described in Section 7 for n = 0; by the special 
structure of (A.5), however, this description, including the inner product (7.4), 
(7.5), is valid for any n ~ Z. By definition of a direct integral of representations [40] 
the action of U(~l)(s) on the elements ¢(-)  of ~@(1) is given by 

(U(1)(s) ~) (p)= (U(po, p2,n_+)(S ) ~)(p), (A.9) 

with n + - - i n  determined by the sign of Po. The corresponding expression has 
already been given in (A.5) for po=E, p2=o "2. Note that a 2 = 0  in (A.7) is of 
measure zero. 

Covariant Representations 
Apart from the canonical representations of semidirect products A (x B, a second 

class of representations of such groups is of physical interest, namely the so-called 
covariant representations [52]. These are carried by the space of L2-functions on B 
with values in the carrier space of a canonical representation of A. In our case 
(A = SO(3), B =  T4) this means that we have functions ~,(.) of the argument x, on 
which the covariant representation T j acts according to (s = (R, a)) 

(TJ(s) (b)~ (x)= @J(R)~b qkb(R '(x--a)). (A.10) 

To relate the covariant representations to the canonical ones [50, 52] we Fourier 
transform (A.10), yielding 

( TJ(s) q~)a(P) := f d4x eipx( TJ(s) (b )~ (x) 

= eipa~J(R)ab ~6(R -lp). (A.11) 

In general, covariant representations are nonunitary and reducible. To construct 
irreducible ones we adapt the method developed by Asorey et al. [52] (also cf. 
[50]) to the group S. We start by restricting the argument p in (A.11) to a specified 
orbit (.0E.~2 in 7~4, with fiducial point /~ = (E, 0, 0, a) and little group H =  SO(2) 
(a2> 0). Subsequently, the representation ~J  of SO(3) is subduced (restricted) to 
H, which for j > 0 gives a reducible representation of H. Since H is compact, this 
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can be reduced, so that the carrier space acg j = C 2j+ ~ decomposes as a direct sum of 
one-dimensional irreducible subspaces ~ = C, # = 1 ..... 2 j+  1. Let {ea} be the basis 
with respect to which ~ b  is defined, and let eu be a basis vector for ~ ;  there exists 
a unitary matrix Uau such that e~ = e~u~,. Each subrepresentation ~J(H) restricted 
to oug, is specified by an integer n~. Therefore, if R~(~)~ SO(3) is a rotation around 
the z-axis by angle ~ we have 

(U 1)/m ~J(Rz(OQ)ab Ubv = 6~v exp inu~. (A.12) 

Finally, let the function q~"~)2(") with argument p restricted to (_9E,~2 transform 
canonically by (A.5) with n=n, .  Then for any value of n,  occurring in the 
reduction of ~J ) (H)  sketched above, the function 

~Sa(p) := ~J(P(P))ab (nta) Ub. ~ e,.2(P ) (A.13) 

transforms covariantly, i.e., by (A.11). Here p(p) has been defined below (A.5). As 
we see, the left-hand side, albeit transforming covariantly, carries the label 
g= (E, a2, n) specifying the canonical representation. This formula is used in 
Section 8. For scalar representations (j = n~ = 0) we call ~tE"2'°)(p) simply q~e,,(P). 

A physically relevant illustration of the above construction is provided by the 
adjoint ( j = l )  representation of SO(3). The subrepresentation of H=SO(2)  
(rotations around the z-axis) reduces into an n = 0  part with basis vector (0, 0, 1), 
as n =  1 part with basis vector ( 1 , - i ,  0) and an n = - 1  part with basis vector 
(1, i, 0). Any of these may be used to build a covariant three-vector field by (A.13) 
(also cf. Section 8). 

Clebsch-Gordan Series 

In Section 7 we needed the Clebsch-Gordan series for the decomposition of a 
product of two canonical representations of S =  SO(3)(x  T4. We close this paper 
by deriving this series. Since the subgroup T1 of time translations factorizes in the 
semidirect product, hence in its Clebsch-Gordan series, the problem can be reduced 
to the determination of the Clebsch-Gordan series of the Euclidean subgroup 
E(3) = SO(3) (x T 3. 

By the reasoning in the first subsection above, the canonical representations of 
E(3) are labeled by the pair ~ = (a 2, n), n ~ Z. The carrier space ~ ( ~ )  consists of 
L2-functions q~2(-) on the orbit (9~2 = {Pl p2= a2}. Up to (A.20) below we assume 
a > 0 .  

Let E(3)~ e = (R, a). The unitary representative Ue(e ) acts on ~.2(-) according to 

(U~(e) q~,,2)(p)= exp i ( - p .  a + na(R, p)) ~,,2(R lp); (A.14) 

cf. (A.5) and text below it. The Hilbert space 3¢g(~1)® ~(e2)  carrying the product 
representation el ® e2 consists of L2-functions ~ ,  ,~( . , .  ) on the orbit (_0~ x (_9~; i.e., 
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the argument .,. is the pair p~, P2 with p~ =a/2, i=  1, 2. By (A.14) the product 
representation is given by 

(UoI ® U~2(e ) #o~, a~)(Pl, P2) 

= exp i( - (p~ + P2)" a + n I ~(R,  P l )  -~- n2ct(R, P2)) t~a~, .~(R-lpl , R lp2 ). 

(A.15) 

We are now going to reduce this product representation applying a geometric 
method given by Moussa and Stora [61] for general regular semidirect products. 

In order to decompose ~(e t )®#ff (e2)  into irreducible subspaces, we first 
observe that the subset of (9.~ x (9.~, 

Mk,, k~ := {(R'k,, R'k2)l R'~ SO(3)}, (A.16) 

where kl ¢ d~,~ and k2 ~ (9~ are fixed and R' varies in SO(3), is closed (i.e., invariant, 
but not pointwisely so) under the natural action R(p~, P2)= (Rpl, Rp2) of SO(3) on 
the product orbit (cf. (A.2)). A pair (p~, p2)e (9,~x C,~ clearly is in Mk~, k2 if and 
only if pt .p2=kt  .k2. However, any two pairs (P~, P2), (!~,!2) satisfying p2=l~, 
i=  1,2, and Pl 'P2=l~'12 are connected by a rotation R such that R(p~,p2)= 
(Rp l ,  Rp2) = (!1,12). This shows that Mkl, k2 is not only closed but also irreducible 
under the action of SO(3). By the same argument we see that, 01 and 02 being 
given, the manifold Mk,. k2 is completely identified by specifying the angle 0 in 
k l -k  2 = aaa2 cos 0. We therefore rename the manifold (A.16) as Mo. 

Returning to (A.15), it follows that the subspace oW0 of functions taking values on 
Mo is irreducible under the representation ~1®~2. Hence ocg(~)®~cg(~2) can be 
reduced as a direct integral over these subspaces. Because each submanifold Mo 
occurs only once in the product orbit, it follows that each Hilbert subspace ~0 
occurs with multiplicity one in this reduction. We can easily relate ~0 to the 
canonical carrier spaces oW(a 2, n) by comparing (A.15), with q5o~,~ restricted to oW0, 
with (A.14). This shows that 

o~ O = ,k¢{(O'l 2 + 0"92 + 20" 10" 2 COS O, nl + n2). (A.17) 

Thus the tensor product decomposes as 

i .,+02 da ~ ( a  2, n, +n2). 
~,ud(al 2, nl)®gff(o'~, n2)= ,,, ,,21 (A.18) 

Combining (A.18) with the trivial Clebsch-Gordan series for the group T~, we 
find the reduction of a product of two canonical representations di = (E ,  a~, hi) of 
SO(3) (x T4 to be 

X~(ii) ® X~(~2) = ~o1+ o2 da ~ ( E ~  + E2, a 2, nl + n2), 
la1-021 

(A.19) 
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for o- 1 ~ 0  ~ 0" 2. The same equation holds, of course, if off is replaced by U. In 
particular, with j~tl)  given by (7.2) it follows that 

(A.20) 

Together with (7.1) and the obvious property m. ~ = 0% m~t~,  the Fock space 
nature of ~o  for the scalar case, i.e., Eq. (7.3), ensues. The analogy between (A.19) 
and the Clebsch-Gordan series for the decomposition of the product of two 
massless representations of the Poincar6-group [61] is illuminating. In this analogy 
the integer n corresponds to the helicity of a massless particle. 

To be complete we also give the results for 0-1 = 0-2 = 0 and o 1 = 0 ~ 0" 2. The first 
case reduces to giving the Clebsch-Gordan series series for SO(3) (cf. the text above 
(A.3)), because the carrier spaces Of(E, 0,j) are those of the representation ~ J  of 
the rotation group. Hence 

Jl + J2 

J/t°(E1, O, jl)®.~f~(E2, O, j2)= 
k = IJl --J21 

J~F(EI + Ez, O, k). (A.21) 

The second case is similar to the reduction of covariant representations discussed 
earlier. Specializing to E(3) as above, the carrier space o f ( 0 , j ) ®  of(o-2, n) consists 
of functions ~ka( • ) on the orbit C~2 taking values in C 2j+ 1. By (A.6) and (A.14) the 
product representation acts by 

( U(oo) ® U(~2,)(e) ~ )a (P) 

= exp i( - p - a  + n~(R, p)) ~J(R),b~b(R lp); (A.22) 

cf. (A.11). The reasoning in the previous subsection may then be imitated to derive 
the Clebsch-Gordan series 

of(E,, O,j)®..~(E2,0-2, n ) = ~  ~ff(El + Ez, a2, m+n). (A.23) 
m 

The values of m occurring in this sum are those labeling the irreducible components 
in the representation ~J(SO(2)) obtained by subducing ~ J  from SO(3) to (SO(2); 
cf. the text after (A.11). 

Fermions 
We finally remark that all results in this appendix and, indeed, mutatis mutandis, 

in the rest of the paper, may be extended to the fermionic case. To do this one 
simply replaces S by its covering group S =  SU(2) (× T4. The little group SO(2) in 
the above considerations is then to be replaced by its lift in SU(2), namely 
U(1) × Z2 (and not by its own covering group SO(2)= It~!). The net effect of these 
substitutions is that the integers n and j above are now allowed to be half-integers 
as well. 
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