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Abstract: It is well known that a measured groupoidG defines a von Neumann algebra
W ∗(G), and that a Lie groupoidG canonically defines both aC∗-algebraC∗(G) and
a Poisson manifoldA∗(G). We construct suitable categories of measured groupoids,
Lie groupoids, von Neumann algebras,C∗-algebras, and Poisson manifolds, with the
feature that in each case Morita equivalence comes down to isomorphism of objects.
Subsequently, we show that the mapsG �→ W ∗(G), G �→ C∗(G), andG �→ A∗(G)

are functorial between the categories in question. It follows that these maps preserve
Morita equivalence.

1. Introduction

Kontsevich has introduced the idea of the “three worlds”, viz. commutative, Lie, and
associative algebras, relating these worlds to each other and to “formal” noncommutative
geometry [17]. In the context of noncommutative geometry in the sense of Connes [4],
and in particular of its relationship with quantum theory and quantization, three other
worlds are relevant, namely von Neumann algebras,C∗-algebras, and Poisson manifolds.
Groupoids provide access to each of these.

Firstly, measured groupoidsG [29,38,13,10,2,33] define von Neumann algebras
W ∗(G) in standard form [5,14,43,45,40]. Secondly, Lie groupoidsG [27] canonically
defineC∗-algebrasC∗(G) [3,4]. Thirdly, one may canonically associate a Poisson man-
ifold A∗(G) with a Lie groupoidG [6,7,9].

For the most basic examples of these associations, first note that a setS defines
two entirely different groupoids. The first hasS as the total spaceG1, and also as the
base spaceG0 of G. If S is an analytic measure space(X,µ), this leads toW ∗(X) ∼=
L∞(X,µ), and ifS is a manifoldM one obtainsC∗(M) ∼= C0(M), andA∗(M) ∼= M

� The results in this paper were first presented in Cardiff on 10. 10. 2000.
�� Supported by a Fellowship from the Royal Netherlands Academy of Arts and Sciences (KNAW).
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with zero Poisson bracket. The second is the pair groupoid ofS, with G1 = S × S and
G0 = S. In that case one hasW ∗(X×X) ∼= B(L2(X,µ)), C∗(M ×M) ∼= K(L2(M)),
andA∗(M ×M) ∼= T ∗(M).

If the groupoid is a group, one recovers the usual von Neumann algebra andC∗-
algebra defined by a locally compact group. The Poisson manifold defined by a Lie
group is just the dual of the Lie algebra, equipped with the Lie–Poisson structure. Group
actions define the associated action groupoids [27], which in turn reproduce the group
measure space construction of Murray and von Neumann, the notion of a transformation
groupC∗-algebra, and the class of semidirect Poisson structures, respectively (for the
latter cf. [19]). For example, in the ergodic case all hyperfinite factors arise in this way.

Finally, the von Neumann algebras andC∗-algebras defined by foliations [2–4,33]
may be seen as special cases of the above constructions as well, whereG is the holonomy
groupoid of a smooth foliation. This class of examples formed a major motivation for
the development of noncommutative geometry.

For fixedG, there are certain relationships between these constructions. Under ap-
propriate technical conditions, both measured and Lie groupoids may be seen as special
instances of locally compact groupoids with Haar system [40]; see [39] and [23,21], re-
spectively. The von Neumann algebraW ∗(G) is then simply the weak closure ofC∗(G)

in its regular representation.The connection betweenA∗(G)andC∗(G) is deeper:C∗(G)

is a strict deformation quantization ofA∗(G)[21–23]. This means, among other things,
that there exists a continuous field ofC∗-algebras over[0,1], whose fiber above 0 is the
commutativeC∗-algebraC0(A

∗(G)), all other fibers beingC∗(G). TheC∗-algebra of
continuous cross-sections of this continuous field turns out to be theC∗-algebra of the
normal groupoid [15] defined by the embeddingG0 ↪→ G1 of the unit space ofG into
its total space (Connes’s tangent groupoid [4] corresponds to the special case of a pair
groupoidG = M ×M).

In the present paper, we examine and compare the properties of the associations
G �→ W ∗(G),G �→ C∗(G) andG �→ A∗(G) as a function ofG. Our main result is that
each of these maps is functorial, though not with respect to the obvious arrows defining
the pertinent categories. The categories that are involved have the desirable property
that isomorphism of objects is the same as Morita equivalence (as previously defined by
Rieffel for von Neumann algebras andC∗-algebras [42] and by Xu for Poisson manifolds
[54]), so that functoriality implies that Morita equivalence is preserved.

Often involving different terminology, for von Neumann algebras many special cases
of the latter property have been known for some time, starting with Mackey’s ergodic
imprimitivity theorem [29,38], and including results in [10,18,39,49]. ForC∗-algebras
and Poisson manifolds the preservation of Morita equivalence was already known in
full generality; see [36] and [24], respectively. Special cases of our functoriality results
include also [34,35,48,47]. We surmise that the computations in [15], taking place in
the category KK of separableC∗-algebras as objects and KK-groups as arrows, can be
generalized to arbitrary Lie groupoids; they should then be related to our results as well.

The plan of this paper is as follows. In Sect. 2 we deal with measured groupoids and
von Neumann algebras, in Sect. 3 we treat Lie groupoids andC∗-algebras, and in Sect. 4
we end with Lie groupoids and Poisson manifolds. Our main results are Theorems 1, 2,
and 3.

The reader will notice that the category of measured groupoids and the category
of Lie groupoids are defined in an apparently totally different way. The fact that these
categories are actually closely related is explained in [26], to which we refer in general
for motivation and for more details about the categories we use here. This includes the
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proof that, as already mentioned, in each case recognized notions of Morita equivalence
turn out to coincide with isomorphism of objects in the pertinent category.

Notation. We use the notation

A×f,g
B C = {(a, c) ∈ A× C | f (a) = g(c)}

for the fiber product of setsA andC with respect to mapsf : A→ B andg : C → B.
The total space of a groupoidG is denoted byG1, and its base space byG0. The source
and target projections are calleds : G1 → G0 andt : G1 → G0, and multiplication is a
mapm : G2 → G1, withG2 = G1×s,t

G0
G1. The inversion is denoted byI : G1 → G1.

A functor� : G → H decomposes into�i : Gi → Hi , i = 1,2, subject to the usual
axioms.

2. Functoriality of G �→ W ∗(G)

2.1. The category MG of measured groupoids and functors. The concept of a measured
groupoid emerged from the work of Mackey on ergodic theory and group representations
[29]. For the technical development of this concept see [38,13,10]. A different approach
was initiated by Connes [2]. The connection between measured groupoids and locally
compact groupoids is laid out in [40,39].

Definition 1. A Borel groupoid is a groupoid G for which G1 is an analytic Borel space,
I is a Borel map, G2 ⊂ G1×G1 is a Borel subset, and multiplication m is a Borel map.
It follows that G0 is a Borel set in G1, and that s and t are Borel maps.

A left Haar system on a Borel groupoid is a family of measures {νu}u∈G0, where νu

is supported on the t-fiber Gu = t−1(u), which is left-invariant in that∫
dνs(x)(y) f (xy) =

∫
dνt(x)(y) f (y) (2.1)

for all x ∈ G1 and all positive Borel functions f on G1 for which both sides are finite.
A measured groupoid is a Borel groupoid equipped with a Haar system as well as

a Borel measure ν̃ on G0 with the property that the measure class of the measure ν on
G1, defined by

ν =
∫
G0

dν̃(u) νu, (2.2)

is invariant under I (in other words, ν−1 = I (ν) ∼ ν).

Recall that the push-forward of a measure under a Borel map is given byt (ν)(E) =
ν(t−1(E)) for Borel setsE ⊂ G0.

This definition turns out to be best suited for categorical considerations. It differs
from the one in [38,13], which is stated in terms of measure classes. However, the
measure class ofν defines a measured groupoid in the sense of [38,13], and, conversely,
the latter is also a measured groupoid according to Definition 1 provided one removes
a suitable null set fromG0, as well as the corresponding arrows inG1; cf. Thm. 3.7
in [13]. Similarly, Definition 1 leads to a locally compact groupoid with Haar system
[40] after removal of such a set; see Thm. 4.1 in [39]. A measured groupoid according
to Connes [2] satisfies Definition 1 as well, withν̃ constructed from the Haar system
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and a transverse measure [33]. See all these references for extensive information and
examples.

The fact that a specific choice of a measure in its class is made in Definition 1 is
balanced by the concept of a measured functor between measured groupoids, which is
entirely concerned with measure classes rather than individual measures. Moreover, one
merely uses the measure class ofν̃.

The measurẽν onG0 induces a measurêν onG0/G, as the push-forward of̃ν under
the canonical projection, and similarly for a measured groupoidH , for whose measures
we will use the symbolλ instead ofν. We say that a functor� is Borel if both�0 and
�1 are. If so,�0 induces a Borel map̂�0 : G0/G→ H0/H in the obvious way.

Definition 2. A measured functor � : G → H between two measured groupoids is a
Borel map that is algebraically a functor and satisfies �̂0(ν̂) ≺≺ λ̂.

What we here call a measured functor is called a strict homomorphism in [38], and
a homomorphism in [39]. Also, note that in [29,38,10] various more liberal definitions
are used (in that one does not impose that� be a functor algebraically at all points), but
it is shown in [39] that if one passes to natural isomorphism classes, this greater liberty
gains little.

Definition 3. The category MG has measured groupoids as objects, and isomorphism
classes of measured functors as arrows. (Here a natural transformation ν : G0 → H1
between Borel functors from G to H is required to be a Borel map.) Composition is
defined by [$] ◦ [�] = [$ ◦ �], and the unit arrow at a groupoid G is 1G = [idG],
where idG : G→ G is the identity functor.

2.2. The category W∗ of von Neumann algebras and correspondences. Let M,N be
von Neumann algebras. Recall that anM-N correspondenceM � H � N is given
by a Hilbert spaceH carrying commuting normal unital representations ofM andNop.
See [4]. The notion of isomorphism of correspondences is the obvious one: one requires
a unitary isomorphism between the Hilbert spaces in question that intertwines the left
and right actions.

Given two matched correspondencesM � H � N andN � K � P, one may
define anM-P correspondenceM � H�N K � P, called the relative tensor product
or “Connes fusion” of the given correspondences. This construction is a von Neumann
algebraic version of the bimodule tensor product in pure algebra. Various definitions
exist [4,44,51], which coincide up to isomorphism. This composition is associative up to
isomorphism. A standard representation of a von Neumann algebraM onH = L2(M),
unique up to unitary equivalence, is best seen as anM-M correspondence with special
properties. One of these is thatL2(M) acts as a two-sided unit for�M, again merely
up to isomorphism.

Definition 4. The category W∗ has von Neumann algebras as objects, and isomorphism
classes of correspondences as arrows, composed by the relative tensor product, for which
the standard forms L2(M) are units.

To detail, we here regard an isomorphism class[M � H � N] as an arrow from
M to N, so that the composition is

[N � K � P] ◦ [M � H � N] = [M � H �N K � P].
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Using results in [42,44], it is easily seen that two von Neumann algebras are Morita
equivalent iff they are isomorphic inW∗ [26], and this is true iff there is a correspondence
in which the commutant of one is isomorphic to the opposite algebra of the other, or iff
they are stably isomorphic.

2.3. The map G �→ W ∗(G) as a functor. It is well known that a measured groupoid
defines a von Neumann algebra in standard form [5,14,45,43,40]. In this section, we
extend the mapG �→ W ∗(G) to a map fromMG to W∗, and establish its functoriality.
The precise classes of Borel functionf, g on G1 for which the formulae below are
well defined are spelled out in the above papers; for example, one may assume that
f, g ∈ II (G1) as defined in [14].

LetG be a measured groupoid (cf. Definition 1). Convolution onG is defined by

f ∗ g(x) =
∫
G1

dνs(x)(y) f (xy)g(y−1), (2.3)

and involution is

f ∗(x) = f (x−1). (2.4)

We here use the conventions in [40]; many authors include the modular homomorphism
& : G1 → R+ in (2.4), defined by&(x) = dν(x)/dν−1(x). We writeL2(G) for
L2(G1, ν). Forψ ∈ L2(G) the formulae

πL(f )ψ = (&−1/2f ) ∗ ψ; (2.5)

πR(f )ψ = ψ ∗ f (2.6)

define the left and right regular representations ofII (G1); one then hasW ∗(G) =
πL(II (G1))

′′, which is in standard form with respect toJ : L2(G) → L2(G) defined
by

Jψ(x) = &(x)−1/2ψ∗(x). (2.7)

One then hasJW ∗(G)J = W(G)′ = πR(II (G1))
′′.

We have now defined the alleged functorG �→ W ∗(G) on objects. To define it
on arrows, letH be a second measured groupoidH (with Haar systemλ), and let
� : G→ H be a measured functor (cf. Definition 2). Define a Hilbert space

L2(�) = L2
(
G0×�0,t

H0
H1,

∫
G0

dν̃(u) λ�0(u)

)
. (2.8)

Compare (2.2).Also, defineπλ : II (G1)→ B(L2(�)) andπρ : II (H1)→ B(L2(�))

by

πλ(f )ϕ(u, h) =
∫
G1

dνu(y)&(y)−1/2f (y)ϕ(s(y),�1(y
−1)h); (2.9)

πρ(g)ϕ(u, h) =
∫
H1

dλs(h)(l) g(l−1)ϕ(u, hl). (2.10)

These expressions extend tof ∈ W ∗(G) andg ∈ W ∗(H) by continuity, and it is easily
seen that one thus defines a correspondenceW ∗(G) � L2(�) � W ∗(H).
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Theorem 1. The map W ∗ : MG → W∗, defined on objects by W ∗
0 (G) = W ∗(G) as

above, and on arrows (i.e., natural isomorphism classes of measured functors � : G→
H ) by

W ∗
1 ([�]) = [W ∗(G) � L2(�) � W ∗(H)],

is a functor.

Proof. For H = G and� = id one easily sees thatL2(id) ∼= L2(G), πλ
∼= πL, and

πρ ∼= πR (the∼= here standing for unitary equivalence). Hence one obtains the standard
form

W ∗
1 (id) = [W ∗(G) � L2(G) � W ∗(G)].

Since the unit arrows inW∗ are precisely the standard forms, this shows thatW ∗ maps
units into units.

We now need to show that, for a third measured groupoidK and a measured functor
$ : H → K, one has

W ∗(G) � L2(�) �W ∗(H) L
2($) � W ∗(K) (2.11)

∼= W ∗(G) � L2($ ◦�) � W ∗(K). (2.12)

SinceW ∗(H) � L2(H) is in standard form, one can easily compute the relative
tensor product by applying the general prescriptions in [44] to the case at hand. We use
the notation in [44] and [14]. ThusAI ⊂ L2(H) is the left Hilbert algebra associated to
the above standard form. This defines a normal semi-finite faithful weightλ onW ∗(H)

by λ(f ∗ ∗ f ) = ‖f ‖2
L2(H)

for f ∈ AI , andλ(f ∗ ∗ f ) = ∞ otherwise. The space of

λ-bounded vectors inL2($) is calledD(L2($), λ). One defines a sesquilinear form on
L2(�)⊗D(L2($), λ) (algebraic tensor product overC) by sesquilinear extension of

(ϕ1⊗ ψ1, ϕ2⊗ ψ2)0 = (ϕ1, πρ(〈ψ1, ψ2〉λ)ϕ2)L2(�), (2.13)

where〈ψ1, ψ2〉λ ∈ W ∗(H) in fact lies inAI , and may be determined by its property

(f, 〈ψ1, ψ2〉λ)L2(H) = (ψ1, πλ(Jf )ψ2)L2($), (2.14)

wheref ∈ AI is arbitrary. The form( , )0 is positive semidefinite, and the completion of
the quotient ofL2(�)⊗D(L2($), λ)by the null space of( , )0 in the induced norm is the
Hilbert spaceL2(�)�W ∗(H) L

2($). The actions ofW ∗(G) andW ∗(K) onL2(�) and
D(L2($), λ) ⊂ L2($) (which is stable underW ∗(K)), respectively, induce actions on
L2(�)�W ∗(H) L

2($), defining this Hilbert space as aW ∗(G)-W ∗(K) correspondence.
Denoting the Haar system onK by ρ, from (2.14) one easily finds

〈ψ1, ψ2〉λ(h) =
∫
K1

dρ$0(s(h))(k) ψ1(s(h), k)ψ2(t (h),$1(h)k), (2.15)

from which the form (2.13) may explicitly be computed. Now define

Ũ : L2(�)⊗D(L2($), λ)→ L2($ ◦�)

by linear extension of

Ũ (ϕ ⊗ ψ) : (u, k) �→
∫
H1

dλ�0(u)(h) ϕ(u, h)ψ(s(h),$1(h
−1)k). (2.16)



Groupoids 103

Using (2.15) and (2.13), one finds that

(Ũ(ϕ1⊗ ψ1), Ũ (ϕ2⊗ ψ2))L2($◦�) = (ϕ1⊗ ψ1, ϕ2⊗ ψ2)0. (2.17)

HenceŨ descends to an isometric mapU : L2(�) �W ∗(H) L
2($) → L2($ ◦ �).

Using the fact that the underlying measure spaces are analytic, it is easily shown that
the range ofŨ is dense, so thatU is unitary. A simple computation finally shows thatU

intertwines the pertinent actions ofW ∗(G) andW ∗(K). This proves (2.12). ��
Since Morita equivalence for measured groupoids is isomorphism inMG, and Morita

equivalence of von Neumann algebras is isomorphism inW∗, it follows that the map
G �→ W ∗(G) preserves Morita equivalence.

3. Functoriality of G �→ C∗(G)

Most of the following constructions apply to locally compact groupoids with Haar system
as well, but a key technical step in the proof of functoriality appears to be valid only in
the smooth case; cf. the paragraph preceding (3.10). Another reason for our restriction
to Lie groupoids is that the beautiful parallel with the classical case is only pertinent in
the smooth case.

3.1. The category LG of Lie groupoids and principal bibundles. Lie groupoids [27] play
a central role in differential geometry, once one starts looking for them. This applies, in
particular, to foliation theory [3,4]. In addition, many physical systems can be modeled
by Lie groupoids [21].

Definition 5. A Lie groupoid is a groupoid for which G1 and G0 are manifolds, s and t

are surjective submersions, and m and I are smooth.

It follows that object inclusion is an immersion, thatI is a diffeomorphism, thatG2
is a closed submanifold ofG1 × G1, and that for eachq ∈ G0 the fiberss−1(q) and
t−1(q) are submanifolds ofG1. In this paper we include Hausdorffness in the definition
of a manifold for simplicity, though the total spaceG1 of the holonomy groupoid of
a foliation usually fails to satisfy this condition. With more technical machinery, our
results should extend to that case also.

The categoryLG, and the key concept of a principal bibundle occurring in its def-
inition, arose in the work of Moerdijk [30], originally in the context of topos theory.
Similar structures independently emerged in foliation theory [3,12,15]. The connection
between these two points of entry was made by Mrˇcun [34,35], from which the following
definitions are taken; for the basic underlying notion of a Lie groupoid action cf. [27].

Definition 6. A G-H bibundle is a manifold M equipped with smooth maps M
τ→ G0

and M
σ→ H0, a left G-action (x,m) �→ xm from G×s,τ

G0
M to M , and a right H action

(m, h) �→ mh from M ×t,τ
H0

H to M , such that τ(mh) = τ(m), σ(xm) = σ(m), and
(xm)h = x(mh) for all (m, h) ∈ M×H and (x,m) ∈ G×M . We writeG � M � H .

Such a bibundle is called left principal whenσ is a surjective submersion, theGaction
is free (in that xm = m iff x ∈ G0) and transitive along the fibers of σ . Equivalently, the
map from G1×s,τ

G0
M → M ×H0 M given by (x,m) �→ (xm,m) is a diffeomorphism.
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A G-H bibundle M is called regular when it is left principal and the right H action
is proper (in that the map (m, h) �→ (m,mh) from M ×H0 H to M ×M is proper).

TwoG-H bibundlesM,N are called isomorphic if there is a diffeomorphismM → N

that intertwines the maps M → G0, M → H0 with the maps N → G0, N → H0, and
in addition intertwines the G and H actions (the latter condition is well defined because
of the former).

Note that theG action in a left principalG-H bibundle is automatically proper. In
the topos literature a left principal bibundle is seen as a generalized map fromH to G,
whereas in the foliation literature it is regarded as the graph of a map between the leaf
spaces of the foliations definingG andH .

Now suppose one has left principal bibundlesG � M � H andH � N � K.
The fiber productM×H0 N carries a rightH action, given byh : (m, n) �→ (mh, h−1n)

(defined as appropriate). We denote the orbit space by

M �H N = (M ×H N)/H. (3.1)

This is a manifold, and, indeed, aG-K bibundle under the obvious maps. The “tensor
product” � is well defined on isomorphism classes. The canonicalG-G bibundleG,
defined by puttingM = H = G, τ = t , andσ = s in the above definitions, with left
and right actions given by multiplication in the groupoid, is a left and a right unit for the
bibundle tensor product (3.1), up to isomorphism.

Definition 7. The category LG has Lie groupoids as objects and isomorphism classes
of regular (i.e., left principal and right proper) bibundles as arrows. The arrows are
composed by (3.1), descending to isomorphism classes. The units 1G in G are the iso-
morphism classes [G � G � G] of the canonical bibundles.

A number of definitions of Morita equivalence of Lie groupoids have appeared in the
literature [12,36,30,53,34,35]; it can be shown that these are all equivalent, and that
two Lie groupoids are Morita equivalent iff they are isomorphic objects inLG [34,26].

3.2. The category C∗ of C∗-algebras and Hilbert bibundles. The definition ofC∗ is
based on the concept of anA-B Hilbert bimodule, which is what Rieffel [42] called an
HermitianB-riggedA-module, with strict continuity of theA action added. Thus an
A-B Hilbert bimodule is a HilbertC∗ moduleE overB, along with a nondegenerate
∗-homomorphism ofA intoLB(E).We writeA � E � B.TwoA-BHilbert bimodules
E,F are called isomorphic when there is a unitaryU ∈ LB(E,F); cf. [20], p. 24.

The canonical bimodule 1B over aC∗-algebraB is defined by〈A,B〉B = A∗B, and
the left and right actions are given by left and right multiplication, respectively. Rieffel’s
interior tensor product [42,20] maps anA-B Hilbert bimoduleE and aB-C Hilbert
bimoduleF into anA-C Hilbert bimoduleE⊗̂BF . This operation is well defined on
unitary isomorphism classes, and 1B acts as a two-sided unit for̂⊗B, up to isomorphism.

Definition 8. The category C∗ has C∗-algebras as objects, and isomorphism classes
of Hilbert bimodules as arrows. The arrows are composed by Rieffel’s interior tensor
product, for which the canonical Hilbert bimodules 1A are units.

This category was introduced independently in [46], and, in the guise of a bicategory
(where the arrows are Hilbert bimodules rather than isomorphism classes thereof), in
[25]. It was shown in [46] that twoC∗-algebras are Morita equivalent as defined by
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Rieffel [42] iff they are isomorphic as objects inC∗; also see [26] for a detailed proof.
The nondegeneracy condition in the definition of the arrows inC∗ is essential for this
result.

It should be noted that Thm. 2.2 in [1] implies that the categoryW∗ of Definition 4
is isomorphic to the subcategory ofC∗ consisting of von Neumann algebras as objects
and normal selfdual Hilbert bimodules as arrows.

3.3. The map G �→ C∗(G) as a functor. We will now prove that the mapG �→ C∗(G)

mentioned in the Introduction may be extended so as to associate Hilbert bimodules to
regular bibundles, thus defining a functor fromLG toC∗.Although it should be possible
to use the geometric definition ofC∗(G) in terms of half-densities [4], as in our previous
direct proof thatG �→ C∗(G) preserves Morita equivalence [24], we find it much easier
to regard a Lie groupoid as a locally compact groupoid with smooth Haar system (cf.
the Introduction).

Specifically, a Lie groupoidG has a left Haar system{νq}q∈G0 such thatνq is sup-
ported ont−1(q) and is equivalent to Lebesgue measure in each coordinate chart (recall
that t−1(q) is a submanifold ofG1). Furthermore, for eachf ∈ C∞c (G1) the function
q �→ ∫

dνq(x) f (x) on G0 is smooth. This endowsC∞c (G) with the structure of a
∗-algebra under the operations (2.3) and (2.4). The groupoidC∗-algebraC∗(G) is a
suitable completion of the∗-algebraC∞c (G); see [40] for the analogous case ofCc(G),
or [4,21] for the smooth case.

We have now defined the mapG �→ C∗(G) on objects. To define it on arrows, let
G � M � H be a regular bibundle (cf. Definition 6 for the notation that will be
used throughout this chapter). A key fact is that a Haar system onG defines a family of
measures{µr}r∈H0 onM, whereµr is supported onσ−1(r), on which it is equivalent
to Lebesgue measure in each coordinate chart. Moreover, for eachf ∈ C∞c (M) the
functionr �→ ∫

dµr(m) f (m) onH0 is smooth, and the family isH -equivariant (in the
sense of [41]) with respect toσ , the givenH action onM, and the natural rightH action
onH0. This means that for eachf ∈ C∞c (M) one has

∫
dµt(h)(m) f (mh) =

∫
dµs(h)(m) f (m). (3.2)

Namely, for fixedr ∈ H0 this system is defined by choosingm0 ∈ σ−1(r), and putting

∫
dµr(m) f (m) =

∫
dντ(m0)(x)f (x−1m0). (3.3)

Using (2.1), one verifies that this is independent of the choice ofm0 (despite the fact
thatτ(m0) is not constant onσ−1(r)). This definition is evidently possible because in a
regular bibundle theG action is principal overσ .

The following lemma is similar to Thm. 2.8 in [36], and also appeared in [48] for
the locally compact case (this paper was drawn to our attention after the circulation of
an earlier draft of this paper as an e-print); our assumptions are weaker, since we do not
have an equivalence bibundle but merely a regular one. However, what is really used in
[36] is precisely our regularity properties.
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Lemma 1. Let G � M � H be a regular bibundle. The formulae

〈ϕ,ψ〉 : h �→
∫

dµt(h) ϕ(m)ψ(mh); (3.4)

f · ϕ : m �→
∫

dντ(m) (x)f (x)ϕ(x−1m); (3.5)

ϕ · g : m �→
∫

dλσ(m) g(h−1)ϕ(mh), (3.6)

where ϕ,ψ ∈ C∞c (M), f ∈ C∞c (G), and g ∈ C∞c (H), define functions in C∞c (H),
C∞c (M), and C∞c (M), respectively. This equips C∞c (M) with the structure of a pre
Hilbert C∗-module over C∞c (H) (seen as a dense subalgebra of C∗(H)), on which
C∞c (G) (seen as a dense subalgebra of C∗(G)) acts nondegenerately by adjointable
operators. This structure may be completed to a C∗(G)-C∗(H) Hilbert bimodule, which
we call E(M).

Proof. It should now be obvious why the rightH action on a regular bibundle has to be
proper, since this guaranteesC∞c (H)-valuedness of the inner product (otherwise, one
could land inC∞(H)).

The necessary algebraic properties may be checked by elementary computations. The
property〈ϕ,ψ〉∗ = 〈ψ, ϕ〉 follows from (3.2), the property〈ϕ,ψ ·g〉 = 〈ϕ,ψ〉 ∗g is an
identity, the properties〈ϕ, f ·ψ〉 = 〈f ∗ · ϕ,ψ〉 and(f1 ∗ f2) · ϕ = f1 · (f2 · ϕ) require
(3.3) and (2.1), and finallyϕ · (g1 ∗ g2) = (ϕ · g1) · g2 follows from (2.1) forλ.

The proof of positivity of〈 , 〉 is the same as in [36]; it follows from Prop. 2.10 in
[36] and the argument of P. Green (see the remark following Lemma 2 in [11]). This
also proves the nondegeneracy of the action ofC∞c (G) (and hence of the ensuing action
of C∗(G)).

We cannot use the entire argument in [36] to the effect that everything can be com-
pleted, since in [36] one has aC∞c (G)-valued inner product as well. However, it is quite
trivial to proceed, since by the above resultsC∞c (M) is a pre HilbertC∗-module over
C∞c (H), which can be completed to a HilbertC∗-moduleE(M) over C∗(H) in the
standard way (cf. Ch. 1 in [20] or Cor. IV.2.1.4 in [21]). One then copies the proof in
[36] of the property

〈f · ϕ, f · ϕ〉 ≤ ‖f ‖2〈ϕ, ϕ〉, (3.7)

where the norm is inC∗(G), to complete the argument.��
Theorem 2. The map C∗ : LG �→ C∗, defined on objects by C∗0(G) = C∗(G), and on
arrows by

C∗1([G � M � H ]) = [C∗(G) � E(M) � C∗(H)],
is a functor.

Proof. We begin with the unit arrows. We claim that the construction in Lemma 1 maps
the canonical bibundleG � G � G into the canonical Hilbert bimoduleC∗(G) �
C∗(G) � C∗(G). It is easy to check from (3.4)–(3.6) that〈ϕ,ψ〉 = ϕ∗∗ψ ,f ·ϕ = f ∗ϕ,
andϕ · g = ϕ ∗ g. These properties pass to the completions by continuity. HenceC∗
preserves units.

Now letH � N � K be a second regular bibundle, so that one may form the bi-
bundle tensor productM �H N (cf. (3.1)) and its associatedC∗(G)-C∗(K) Hilbert
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bimoduleE(M �H N). To compare this with theC∗(G)-C∗(K) Hilbert bimodule
E(M)⊗̂C∗(H)E(N), we define a mapŨ : C∞c (M) ⊗C C∞c (N) → C∞c (M �H N)

by

Ũ (ϕ ⊗C ψ) : [m, n]H �→
∫

dλσ(m)(h) ϕ(mh)ψ(h−1n). (3.8)

Note that the right-hand side is well defined on[m, n]H rather than(m, n) because
of the invariance property (2.1) forH . This map was introduced by Mrˇcun [34] for
smooth étale groupoids; we have merely replaced the counting measure by a general
Haar system.

We now show that the map̃U leaves the kernel of the canonical projection

C∞c (M)⊗C C∞c (N)→ E(M)⊗̂C∗(H)E(N)

stable, thatŨ has dense range, and that accordingly the corresponding quotient mapU ,
extended by continuity, defines an isomorphism

E(M)⊗̂C∗(H)E(N)  E(M �H N) (3.9)

asC∗(G)-C∗(K) Hilbert bimodules.
A lengthy but straightforward computation shows that

〈Ũ (ϕ1⊗C ψ1, Ũ (ϕ2⊗C ψ2)〉E(M�HN)
C∗(K) ,

is equal to
〈ψ1, 〈ϕ1, ϕ2〉E(M)

C∗(H) · ψ2〉E(N)
C∗(K),

which by definition is equal to

〈ϕ1⊗C∗(H) ψ1, ϕ2⊗C∗(H) ψ2〉E(M)⊗̂C∗(H)E(N)

C∗(K) .

Hereϕ⊗C∗(H)ψ is the image ofϕ⊗Cψ in E(M)⊗̂C∗(H)E(N). In view of the definitions
of the various HilbertC∗-modules overC∗(K) involved, this computation implies that
Ũ quotients and extends to an isometryU from E(M)⊗̂C∗(H)E(N) to E(M �H N).

Moreover, using the fact thatM andN are manifolds, it is easily seen thatŨ has
a dense range inC∞c (M �H N) with respect to the inductive limit topology, so that it
certainly has a dense range for the topology induced onC∞c (M �H N) by the norm on
E(M �H N) as a HilbertC∗-module overC∗(K) (since the latter topology is finer than
the former). SinceC∞c (M �H N) is itself dense inE(M �H N) in the latter topology,
it follows that Ũ has dense range when seen as a map taking values inE(M �H N).
HenceU is an isometric isomorphism betweenE(M)⊗̂C∗(H)E(N) andE(M �H N) as
Banach spaces. Note that the first claim in this paragraph is not obvious in the general
locally compact case; this is one of the reasons why we have restricted ourselves to Lie
groupoids in this chapter.

Another elementary computation shows that

Ũ (ϕ ⊗C (ψ · g)) = Ũ (ϕ ⊗C ψ) · g (3.10)

for ϕ ∈ C∞c (M), ψ ∈ C∞c (N), andg ∈ C∞c (H). This implies that

U(ϕ ⊗C∗(H) (ψ · g)) = U(ϕ ⊗C∗(H) ψ) · g (3.11)
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for all ϕ ∈ E(M), ψ ∈ E(N), andg ∈ C∗(H). The reason for this is that a continuous
B0-linear map between two pre HilbertC∗ modules over a dense subalgebraB0 of B
extends to aB-linear map between the completions; this easily follows from the bound
‖ψB‖ ≤ ‖B‖ ‖ψ‖.

We conclude thatU is aC∗(K)-linear isometric isomorphism, and hence by Thm. 3.5
in [20] it is actually unitary (in particular, it now follows thatP is adjointable).

Finally, analogously to (3.10) one obtains the equality

Ũ (f · (ϕ ⊗C ψ) = f · Ũ (ϕ ⊗C ψ), (3.12)

wheref ∈ C∞c (G). This time, the passage of this property to the pertinent completions is
achieved through (3.7), which leads to the bound‖Aψ‖ ≤ ‖A‖ ‖ψ‖ for any adjointable
operator on a (pre) HilbertC∗-module. ThusU is C∗(G)-linear as well. This proves
(3.9).

HenceC∗ preserves composition of arrows, and Theorem 2 follows.��
Since Morita equivalence of Lie groupoids is isomorphism inLG, and Morita equiv-

alence ofC∗-algebras is isomorphism inC∗, we recover the known result that the map
G �→ C∗(G) preserves Morita equivalence [36,24].

4. Functoriality of G �→ A∗(G)

The category on which the mapA∗ is going to be defined is as follows.

Definition 9. The category LGc has s-connected and s-simply connected Lie groupoids
as objects, and isomorphism classes of left principal bibundles as arrows. The arrows
and units are as in Definition 7.

In contrast with Definition 7, the class of objects is more restricted; this will be
necessary for our functor to preserve units. On the other hand, the bibundles need not
be right proper.

4.1. The category Poisson of Poisson manifolds and dual pairs. The definition of a suit-
able category of Poisson manifolds [26] is based on the theory of symplectic groupoids
(cf. [6,50] and refs. therein). The objects inPoisson are defined as follows.

Definition 10. A Poisson manifold P is called integrable when there exists a symplectic
groupoid :(P ) over P .

This definition is due to [6]. Using Thms. 5.2, 5.3, and A1 in [28] and Prop. 3.3 in [31], it
follows that ifP is integrable, then there exists ans-connected ands-simply connected
symplectic groupoid:(P ) overP , which is unique up to isomorphism [26].

The arrows inPoisson will be isomorphism classes of certain dual pairs. Given two
Poisson manifoldsP andQ, a dual pairQ← S → P consists of a symplectic manifold
S and Poisson mapsq : S → Q andp : S → P−, such that{q∗f, p∗g} = 0 for all
f ∈ C∞(Q) andg ∈ C∞(P ) [52,16]. In a complete dual pair the mapsp andq are
complete; a Poisson mapJ : S → P is called complete when, for everyf ∈ C∞(P )

with complete Hamiltonian flow, the Hamiltonian flow ofJ ∗f on S is complete as

well (that is, defined for all times). TwoQ-P dual pairsQ
qi← S̃i

pi→ P , i = 1,2, are
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isomorphic when there is a symplectomorphismϕ : S̃1 → S̃2 for which q2ϕ = q1 and
p2ϕ = p1.

Based on results in [6,8,54], it can be shown that for integrable Poisson manifolds
P andQ, with associated s-connected and s-simply connected symplectic groupoids
:(P ) and:(Q), there is a natural bijective correspondence between complete dual
pairsQ ← S → P and symplectic bibundles:(Q) � S � :(P ). In particular,

the canonical symplectic bibundle associated to the dual pairP
t← :(P )

s→ P is
:(P ) � :(P ) � :(P ). Accordingly, we say that a dual pair is regular when it is
complete and when the associated symplectic bibundle is left principal (it is not necessary
to impose properness of the right:(P ) action).

Let R be a third integrable Poisson manifold, with associated s-connected and s-
simply connected symplectic groupoid:(R), and letQ← S1 → P andP ← S2 → R

be regular dual pairs. The embeddingS1×P S2 ⊂ S1×S2 is coisotropic [21]; we denote
the corresponding symplectic quotient byS1�P S2. This is the middle space of a regular
dual pairP ← S1 �P S2 → R, which we regard as the tensor product of the given
dual pairs. An alternative way of defining this tensor product is to construct the groupoid
tensor product:(Q) � S1 �:(P ) S2 � :(R) of the associated symplectic bibundles
[53]. Thus we have

S1 �P S2 = S1 �:(P ) S2 (4.1)

as symplectic manifolds, as:(Q)-:(R) symplectic bibundles, and asQ-R dual pairs.
In any case, this tensor product is associative up to isomorphism, and the dual pair

P
t← :(P )

s→ P is a two-sided unit for�P , up to isomorphism [26].

Definition 11. The category Poisson has integrable Poisson manifolds as objects, and
isomorphism classes of regular dual pairs as arrows. The arrows are composed by the

tensor product �, for which the dual pairs P
t← :(P )

s→ P are units. Here :(P ) is
“the” s-connected and s-simply connected symplectic groupoid over P .

The original reason for the introduction of this category was not so much the subse-
quent functoriality theorem, but rather the fact that two Poisson manifolds are Morita
equivalent in the sense of Xu [54] iff they are isomorphic objects inPoisson [26]. In
particular, a Poisson manifold is integrable iff it is Morita equivalent to itself. Moreover,
we now have a classical analogue of the categoriesW∗ andC∗.

4.2. The map G �→ A∗(G) as a functor. A Lie groupoidG defines an associated
“infinitesimal” object, its Lie algebroidA(G) [37]; see [27,6,21] for reviews. The main
point is thatA(G) is a vector bundle overG0, endowed with an “anchor map”α :
A(G) → T (G0) and a Lie algebra structure on its space of sectionsC∞(G0, A(G))

that is compatible with the anchor map in a certain way.
It is of central importance to us that the dual vector bundleA∗(G) is a Poisson

manifold in a canonical way [6,7,9], which generalizes the well-known Lie–Poisson
structure on the dual of a Lie algebra. We look at the passageG �→ A∗(G) as a classical
analogue of the mapG �→ C∗(G).

Another important construction is that of the cotangent bundleT ∗(G) of G. This is
not merely a symplectic space (equipped, in our conventions [21,24], with minus the
usual symplectic form on a cotangent bundle, so that we writeT ∗(G)− when this aspect
is relevant), but a symplectic groupoid withT ∗(G)1 = T ∗(G1) overT ∗(G)0 = A∗(G)



110 N. P. Landsman

[6] (also see [50] for a review). For simplicity we will writeT ∗(G) for T ∗(G1), and
denote the source and target projections ofT ∗(G) by s̃ andt̃ , respectively.

Lemma 2. The s-connected and s-simply connected symplectic groupoid over A∗(G)

is T ∗(G̃), where G̃ is the s-connected and s-simply connected Lie groupoid with Lie
algebroid A(G) = A(G̃).

Proof. The existence of̃G is guaranteed by Prop. 3.3 in [31]. Since the Poisson structure
onA∗(G) is entirely determined by the Lie algebroid structure ofA(G), one hasA∗(G) =
A∗(G̃) as Poisson manifolds. It may be checked from its definition thatT ∗(G) is s-
connected and s-simply connected iffG is. ��

In view of this lemma, we will henceforth assume that all Lie groupoids are s-
connected and s-simply connected, and drop the tilde. Thus we have defined the map
A∗ : LGc → Poisson on objects.

In order to define this map on arrows, we recall a number of results from [24], which
we here combine into a lemma.

Lemma 3. Any bibundle G � M � H (cf. Definition 6) defines a symplectic bimodule

A∗(G)
JG
L←− T ∗(M)−

JH
R−→ A∗(H), (4.2)

with associated symplectic bibundle

T ∗(G)− � T ∗(M)− � T ∗(H)−. (4.3)

The explicit form of the “momentum map”JH
R is〈

JH
R (θm),

dh(λ)

dλ |λ=0

〉
σ(m)

=
〈
θm,

dmh(λ)

dλ |λ=0

〉
m

, (4.4)

whereθm ∈ T ∗m(M),σ(m) = h(0), andh(λ) ∈ t−1(σ (m)), so thaṫh(0) lies inAσ(m)(H)

andJH
R (θm) ∈ A∗σ(m)(H).

The associated right action ofT ∗(H) onT ∗(M) is given by〈
θm · (αh)−1,

dm(λ)

dλ |λ=0

〉
mh−1

=
〈
θm,

dm(λ)h̃(λ)

dλ |λ=0

〉
m

−
〈
αh,

dh̃(λ)

dλ |λ=0

〉
h

, (4.5)

wherem(0) = mh−1, andh̃(·) is a curve inH satisfyingh̃(0) = h andσ(m(λ)) =
t (h̃(λ)). As explained in [24], Eq. (4.5) is independent of the choice ofh̃ because of
the compatibility conditionJH

R (θm) = s̃(αh) under whichθm · (αh)−1 is defined; cf.
Definition 6. Explicitly, this condition readsσ(m) = s(h), along with〈

θm,
dmχ(λ)

dλ |λ=0

〉
m

=
〈
αh,

dhχ(λ)

dλ |λ=0

〉
h

, (4.6)

for all curvesχ(·) ∈ t−1(s(h)) subject toχ(0) = s(h). Note that these formulae for
right actions are not given in [24], but they may be derived from those for left actions,
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together with the formulaα−1 = −I ∗(α) for the inverse inT ∗(G) (whereI : G1 → G1
is the inverse inG) [6].

The explicit form ofJL will shortly be needed not forG � M � H , but for a
second bibundleH � N � K; hence we state it for the latter. The momentum map
JH
L : T ∗(N)→ A∗(H), then, is given by [24]

〈
JH
L (ηn),

dh(λ)

dλ |λ=0

〉
ρ(n)

= −
〈
ηn,

dh(λ)−1n

dλ |λ=0

〉
h

, (4.7)

whereηn ∈ T ∗n (N), ρ(n) = h(0), andh(λ) ∈ t−1(ρ(n)); recall thatρ : N → H0 is the
base map of theH action onN .

The associated left action ofT ∗(H) onT ∗(N) is given by

〈
αh · ηn, dn(λ)

dλ |λ=0

〉
hn

=
〈
ηn,

dĥ(λ)−1n(λ)

dλ |λ=0

〉
n

+
〈
αh,

dĥ(λ)

dλ |λ=0

〉
h

, (4.8)

wheren(0) = hn, andĥ(·) is a curve inH satisfyingĥ(0) = h andρ(n(λ)) = t (ĥ(λ)).
The condition under whichαh · ηn is defined isJH

L (ηn) = s̃(αh), which readsρ(n) =
s(h), along with

−
〈
ηn,

dχ(λ)−1n

dλ |λ=0

〉
n

=
〈
αh,

dχ(λ)

dλ |λ=0

〉
h

, (4.9)

for χ as specified after (4.6). This completes the exposition of Lemma 3.

Theorem 3. The map A∗ : LGc → Poisson, defined on objects by A∗0(G) = A∗(G)

and on arrows by

A∗1([G � M � H ]) = [A∗(G)← T ∗(M)− → A∗(H)],
is a functor.

Proof. The object mapA∗0 is well defined between the given categories by Lemma 2.
Turning to the unit arrows, we note that the construction in Lemma 3 maps the canonical
bibundleG � G � G into the symplectic bimodule

A∗(G)
t̃← T ∗(G)− s̃→ A∗(G).

To see this, recall that̃s andt̃ are the source and target maps of the symplectic groupoid
T ∗(G)−. The lemma follows because, as already remarked in [24],s̃ andt̃ as defined in
[6] coincide with the momentum mappingsJG

R andJG
L defined by Lemma 3, applied to

the canonical bibundle. It is here that the assumption of s-connectedness and s-simply
connectedness is essential.

We now turn to the composition of arrows. LetG � M � H andH � N � K be
regular bibundles, with associated symplectic bimodulesA∗(G)← T ∗(M)− → A∗(H)

andA∗(H)← T ∗(N)− → A∗(K), respectively (cf. Lemma 3). We will prove that the
tensor product

A∗(G)← T ∗(M)− �A∗(H) T
∗(N)− → A∗(K) (4.10)
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of these symplectic bimodules is isomorphic to the symplectic bimodule

A∗(G)← T ∗(M �H N)− → A∗(K) (4.11)

associated with the bibundleG � M �H N � K.
We omit all suffixes “−” (as inS−), unless strictly necessary. By (4.1) and (3.1) we

have

T ∗(M) �A∗(H) T
∗(N) = (T ∗(M) ∗A∗(H) T

∗(N))/T ∗(H) (4.12)

asA∗(G)-A∗(K) symplectic bimodules. By (3.1), one has

T ∗(M �H N) = T ∗((M ∗H0 N)/H), (4.13)

so we start by proving that

(T ∗(M) ∗A∗(H) T
∗(N))/T ∗(H)  T ∗((M ∗H0 N)/H) (4.14)

as symplectic manifolds. To do so, we first show that

T ∗((M ∗H0 N)/H)  (T ∗(M) ∗A∗(H) T
∗(N))/ ∼ (4.15)

as manifolds, where∼ is an equivalence relation defined as follows. For(θm, ηn) ∈
T ∗(M)∗A∗(H) T

∗(N) (i.e.,σ(m) = ρ(n) andJH
R (θm) = JH

L (ηn)), h ∈ s−1(σ (m)), and
(θ ′

mh−1, η
′
hn) ∈ T ∗(M) ∗A∗(H) T

∗(N), we say that(θ ′
mh−1, η

′
hn) ∼ (θm, ηn) iff for each

pair of vectorsṁ(0) ∈ Tmh−1(M) andṅ(0) ∈ Thn(N) such that

σ∗(ṁ(0)) = ρ∗(ṁ(0)), (4.16)

there exists a curveh(·) in H with h(0) = h andt (h(λ)) = σ(m(λ)) = ρ(n(λ)) (the
latter equality may be imposed for convenience because of (4.16)), such that〈

θ ′
mh−1,

dm(λ)

dλ |λ=0

〉
mh−1

+
〈
η′hn,

dn(λ)

dλ |λ=0

〉
mh−1

=
〈
θm,

dm(λ)h(λ)

dλ |λ=0

〉
m

+
〈
ηn,

dh−1(λ)n(λ)

dλ |λ=0

〉
n

. (4.17)

To prove (4.15), note that for any (possibly singular) smooth foliation� of a manifold
Q with smooth leaf spaceQ/� one has an isomorphism

C∞(Q/�, T ∗(Q/�))  C∞(Q, T (�)00), (4.18)

where the right-hand side consists of all 1-formsω onQ that satisfyiξω = 0 (forming
T (�)0 ⊂ T ∗(Q)) andiξ dω = 0 (definingT (�)0), for all ξ ∈ C∞(Q, T (�)). This is
well known for regular foliations (cf. [32]), and the proof is the same in the singular
case (it merely depends on the smoothness of the leaf space). These conditions may be
rewritten asiξω = Lξω = 0 (whereL is the Lie derivative), or asiξω = 0 for all vector
fields ξ as above andϕ∗ω = ω for all diffeomorphismsϕ of Q that are generated by
suchξ . The isomorphism (4.18) is then given byα ↔ π∗α, whereπ : Q → Q/� is
the canonical projection. In addition, one has

C∞(Q, T (�)00)  C∞(Q/�, T (�)0/ ∼), (4.19)
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where the equivalence relation∼ on T (�)0 is defined byβ ′ ∼ β iff β ′ = ϕ∗β for
some diffeomorphismϕ as specified above. The isomorphism (4.19) associates a section
q �→ β(q) with a section[q]� �→ [β(q)]∼. Hence the ensuing isomorphism

C∞(Q/�, T ∗(Q/�))  C∞(Q/�, T (�)0/ ∼) (4.20)

is given byα ↔ [π∗α]∼.
We apply this toQ = M ∗H0 N , where� is the foliation by the orbits of the diagonal

H action. The condition of lying inT (�)0 then hasT ∗(M)∗A∗(H) T
∗(N) as its solution

set, and the equivalence relation∼ defined for� is precisely the one imposed by (4.17)
and preceding text. This proves (4.15).

Next, we show that the equivalence relation∼ on T ∗(M) ∗A∗(H) T
∗(N) coincides

with �, defined as follows. We say that(θ ′
mh−1, η

′
hn) � (θm, ηn) iff there existsαh ∈

T ∗h (H) satisfying

s̃(αh) = JH
R (θm) (4.21)

(and therefore alsõs(αh) = JH
L (ηn)), such that foreach pair of vectorsṁ(0) ∈

Tmh−1(M) and ṅ(0) ∈ Thn(N) (not necessarily satisfying (4.16)), there exist curves
ĥ(·) andh̃(·) in H subject toĥ(0) = h̃(0) = h, t (h̃(λ)) = σ(m(λ)), t (ĥ(λ)) = ρ(n(λ)),
for which one has〈
θ ′
mh−1,

dm(λ)

dλ |λ=0

〉
mh−1

+
〈
η′hn,

dn(λ)

dλ |λ=0

〉
mh−1

=
〈
θm,

dm(λ)h̃(λ)

dλ |λ=0

〉
m

+
〈
ηn,

dĥ−1(λ)n(λ)

dλ |λ=0

〉
n

+
〈
αh,

dĥ(λ)

dλ |λ=0

〉
h

−
〈
αh,

dh̃(λ)

dλ |λ=0

〉
h

.

(4.22)

We stress that̂h andh̃ do, andαh does not depend on the vectorsṁ(0) andṅ(0). The
full right-hand side of (4.22) is independent of the choice ofĥ andh̃; cf. the comment
following (4.6).

First, � implies∼ (i.e.,A � B → A ∼ B), for if (4.16), and henceσ(m(λ)) =
ρ(n(λ)), holds, one may chooseh = h̃ = ĥ, and the final line in (4.22) drops out,
implying (4.17).

To prove the converse, we note that, since the bibundleG � M � H is regular, the
mapσ : M → H0 is a surjective submersion, so that

Tm(M)  T σ
m (M)⊕ Tσ(m)(H0).

HereT σ
m (M) is the kernel ofσ∗ : T (M)→ T (H0) atm. This induces the decomposition

Tm(M)⊕ Tn(N)  T
σ=ρ
(m,n)(M ×N)⊕ Tσ(m)(H0), (4.23)

whereT σ=ρ
(m,n)(M × N) is the kernel ofσ∗ − ρ∗ at (m, n). Explicitly, the decomposition

of a given vector according to (4.23) reads

(ξ1, ξ2, ζ ) = (ξ1, ρ∗(ζ ), ζ )+ (0, ξ2− ρ∗(ζ ),0),
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whereξ1 ∈ T σ
m (M), ξ2 ∈ Tσ(m)(H0), andζ ∈ Tn(N). Now, in order to verify (4.22)

given (4.17), we examine the two possible cases allowed by (4.23). A dimension count
shows that one can always chooseαh so as to satisfy (4.22) onTσ(m)(H0). This is because
in a Lie groupoid one has [27,21]

Th(H)  T t
h(H)⊕ Tt(h)(H0),

and the condition (4.21) constrainsαh only onT t
h(H), leaving its value onTt(h)(H0)

free. On the other hand, if (4.16) holds, so that(ṁ(0), (ṅ(0)) lies inT σ=ρ
(m,n)(M×N), and

we assume (4.17), then (4.22) is satisfied for anyαh, as one may choosẽh = ĥ = h.
Hence∼ implies�, and we have shown that these equivalence relations coincide.

Comparing (4.22) with (4.5) and (4.8), and using (4.15), it is clear that (4.14) holds at
the manifold level. But it is almost trivial that the identification we have made preserves
the symplectic structure, so that (4.14) is valid for symplectic manifolds as well.

Finally, we need to verify that the symplectomorphism (4.14) is compatible with
theA∗(G)-A∗(K) symplectic bimodule structure that both sides have. This is, indeed,
obvious from the explicit structure of the pertinent Poisson maps. For example, denoting
the appropriate Poisson map fromT ∗(M)− �A∗(H) T

∗(N)− toA∗(G) by Ĵ G
L , we have

Ĵ G
L ([θm, ηn]) = JG

L (θm), so that

〈
Ĵ G
L ([θm, ηn]), dγ (λ)

dλ |λ=0

〉
= −

〈
θm,

dγ (λ)−1m

dλ |λ=0

〉
. (4.24)

Here[θm, ηn] is the equivalence class of(θm, ηn) under either theT ∗(H) orbits or under
the null foliation with respect to the inclusionT ∗(M)− ∗A∗(H) T

∗(N)− ↪→ T ∗(M)− ×
T ∗(N)−; these coincide by (4.12).

On the other hand,̃JG
L : T ∗(M �H N)− → A∗(G) is given by

〈
J̃ G
L (F[m,n]H ),

dγ (λ)

dλ |λ=0

〉
= −

〈
F[m,n]H ,

d[γ (λ)−1m, n]H
dλ |λ=0

〉
. (4.25)

It is trivial from the explicit form of the isomorphism (4.14) described above that
(4.24) is duly transferred to (4.25).

This completes the proof of the isomorphism between (4.10) and (4.11), and therefore
of Theorem 3. ��

Since Morita equivalence of s-connected and s-simply connected Lie groupoids is
isomorphism inLG’, and Morita equivalence of Poisson manifolds is isomorphism in
Poisson, we recover the known result [24] that the mapG �→ A∗(G) preserves Morita
equivalence.
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