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ABSTRACT

Let h%w be the N-dependent quantum Curie-Weiss spin-1/2 Hamiltonian defined on the Hilbert
space Hy = @7]:[:1 C. Since Hy is finite-dimensional, this Hamiltonian is a bounded operator.
Consider then the hA-dependent unbounded Schrédinger operator with a symmetric double well
potential, denoted by hj, and defined on L?([0,1]). We show that both operators are related,
in that the quantum Curie-Weiss Hamiltonian can be seen as a discretization of this Schrodinger
operator under the identification N = 1/h. Moreover, we show that the algebraic (unique) ground
state of h%w converges to a doubly degenerate classical state on C(B3) as N — o0, where C(B?)
is the commutative C*-algebra of continuous functions on the closed unit ball B3> < R3. This
involves a so-called deformation quantization of C(B?). We describe how the natural phenomenon
of spontaneous symmetry breaking (SSB), that does only play a role in the limit, can already be
detected for finite, but large N. Thereto, perturbation theory is used.
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Chapter 1

Introduction

1.1 Asymptotic emergence

Inspired by the book Foundations of Quantum Theory written by Landsman, I decided to immerse
myself into the area of higher-level theories H which are limiting cases of lower-level theories L.
For example, H is classical mechanics of a particle on the real line with phase space R? = {(p,q)}
and ensuing C*-algebra of observables given by Ay = Co(R?). Then L is quantum mechanics,
with a C*-algebra A, (h > 0) taken to be the compact operators By(L?(R)) on the Hilbert space
L?(R). Another example is the relation between statistical mechanics of finite quantum and infinite
quantum spin systems. Thus H is statistical mechanics of an infinite quantum spin system, given
by the quasi-local algebra being the infinite (projective) tensor product of B = M, (C) with itself,
and L is the N-fold (projective) tensor product of B with itself. The last example we give is the one
we use in this thesis. In this case H describes classical mechanics on the commutative C*-algebra
C(B?), with B3> = R? the closed unit ball, and L is given by the N-fold tensor product of My (C)
with itself, and hence describes statistical mechanics of finite quantum spin systems. The limiting
relationship between the two theories will be described by a continuous bundle of C*-algebras.
These theories all have in common that the limiting theory H has features that at first sight cannot
be explained by the lower-level theory L, because apparently L lacks a property inducing those
features in the limit to H. This is what we call asymptotic emergence, first introduced in [1], and
reformulated in terms of C*-algebras in [22].

In this thesis we will focus on the natural phenomenon of spontaneous symmetry breaking
(SSB). We will see that this is an emergent feature of H, since it does not occur in L. This is well
known for the example with H being classical mechanics on Cp(R?), and L quantum mechanics,
where the quantum system is described by Schrodinger operator with a symmetric double well
potential. We will see that this phenomenon is also an emergent feature for the pair (H, L), with
H describing classical mechanics on C(B?), and L a finite quantum spin system of spin up and
spin down particles. We make a link between the quantum Curie-Weiss model and this Schrodinger
operator and argue that, perhaps surprisingly, SSB is indeed compatible with both theories.

1.2 Classical Limit

The theory of quantum mechanics gives a description of systems containing tiny particles. However,
in principle it can also be applied to any physical system, in particular to systems of large objects.
We know from experience that if we apply a quantum-mechanical theory to such objects, the
outcome will be a classical state, which should be describable in the classical limit of quantum
mechanics. For example, consider the following Schrodinger equation for a particle with mass m in
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a potential well V:

K2 d2y

If we apply this equation to a particle with large mass, then according to the above, it should
reproduce classical mechanics. This can equivalently be achieved by letting A — 0 for fixed m. At
first sight, this seems strange, as h is a constant. However, many quantum systems can be linked to
a classical system by taking the limit 2 — 0. Such a classical system is well understood in most of
the cases, and therefore it is important to understand this limit. We will often refer to this classical
limit as A — 0 or N — o0, depending on the quantum system we consider. We will see that the
notion of a continuous bundle of C*-algebras and a deformation quantization play an important
role in understanding and computing this limit.

1.3 Schrodinger operator with a symmetric double well potential

My motivation for studying properties of quantum spin systems is originally based on the
Schrodinger operator describing a particle in a symmetric double well potential. This A-dependent
operator is given by hp = —hQ% + V(z), with V a symmetric double well function acting as
a multiplication operator. This Hamiltonian has been extensively applied in many branches of
physics and theoretical chemistry. For example, it has been used to study quantum tunneling of
the nitrogen atom in the ammonia molecule as in [4]. It has been also applied in studies to the
mean-field dynamics of Bose-Einstein condensates [35]. Moreover, time-independent behaviour of
the double well potential in the classical limit 7 — 0 has been studied [34]. This will be important
when comparing the ground states of the N-dependent quantum Curie-Weiss model to those of the
Schrodinger operator with symmetric double well in the semi- classical limit (i.e., N large, but finite)
with N = 1/h. We shall see that the quantum Curie-Weiss model can be seen as a discretization of
this Schrédinger operator.

1.4 The aim of this project

Initially, the goal of this thesis was to understand spontaneous symmetry breaking in some class of
quantum spin systems. Based on the symmetric double well potential that is quite well understood,
we wanted to give an analog of SSB for spin system models. As explained above, we need two
theories describing these spin systems: the higher-level theory H as a limiting case of a lower-level
theory L. For example the higher-level theory at N = o for the quantum Ising model is described
on the quasi-local algebra, whereas for the Curie-Weiss model this algebra is given by the classical
commutative C*-algebra C(B?), even though the lower-level theories are both described by the
same C*-algebras B(Ha, ), with Ha, = @, C2. The reason for this lies in the fact that the
quantum Ising Hamiltonian is a short-range model, whereas the Curie-Weiss Hamiltonian falls in
the class of homogeneous mean-field models and hence is long range. A very interesting result is
that there exists also a second higher-level limit for the quantum Ising model, but this time it is
associated with the classical C*-algebra C/(S? /2), with % = R3 the 2-sphere with radius 1/2. One
can show that its ground state, modulo a constant, is precisely the ground state for the classical
limit of the Curie-Weiss Hamiltonian, which in both cases is doubly degenerate and displays SSB,
but for finite N i.e., the lower-level theory, it does not display SSB. This is surprising, because both
models fall in different categories. Another question that one can ask oneself is how to construct
the classical Hamiltonian on S%/Q corresponding to the classical limit theory H of the underlying
lower-level theory L describing the quantum Ising model for finite N. A similar question can be
asked for the quantum Curie-Weiss Hamiltonian, where in this case the classical Hamiltonian is a
continuous function given on C(B3). Since the ground states of both (classical) limiting theories

8
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are the same modulo a constant, one might expect that there is a link between both models, even
though they fall in different categories (i.e., long range and short range). The same question can
be asked for the ground states of the infinite quantum Ising model and the classical quantum Ising
model. Both different limiting models have a doubly degenerate ground state that displays SSB, but
the first one is defined on a highly non-commutative C*-algebra, whereas the latter one is defined
on a commutative C*-algebra. This double degeneracy is also present in the limiting case (A — 0) of
the quantum harmonic oscillator, with limit algebra given by the commutative C*-algebra Co(R?).
These topics are therefore worth studying further and in connection with one another. We give a
short overview of the relevant quantum operators and their classical analogs:

J . .
hQWY = A Z o3(z)os(y) — B Z o1(x) (quantum Curie-Weiss model) (1.2)
T, yeEAN TEN
piine — Z (o3(x)os(z + 1) + Boy(x)) (quantum Ising model) (1.3)
JSEAN
d2
hy = —hQW + V(x) (quantum harmonic oscillator with double well potential.) (1.4)

Here Ay denotes a finite subset of Z consisting of N elements. Their classical analogs are in all
three cases continuous functions on some commutative C*-algebra, keeping in mind that the Ising
model has also a quantum analog on the quasi-local algebra. These analogs are given below.

1
WY (z,y, 2) = —522 — Bx (classical Curie-Weiss model) (1.5)

. 1
hiing () = —(5 cos?(#) + Bsin(f)) (classical Ising model) (1.6)
ho(p,q) = p> + V(q) (classical harmonic oscillator with double well potential.) (1.7)

As we have mentioned in all the cases above, using a deformation quantization map, one can show
that the algebraic ground state of the quantum Hamiltonian does not display SSB and converges to
a ground state of the corresponding classical function that does display SSB[H These actual ground
states states that show SSB are obtained by minimizing the above functions and are therefore given
by points in phase space and hence correspond to Dirac measures. The mystery to be resolved is
therefore how the classical ground states with SSB arise from the quantum ground states without
SSB.

In this project, we will concentrate on the quantum Curie-Weiss model and the quantum
harmonic oscillator in a symmetric double well potential with corresponding classical limits, and
try to give an insight of their properties and the way they are related. In particular, convergence of
the ground state will be discussed as well as the phenomenon of spontaneous symmetry breaking.

1.5 Outline of the thesis

The next (second) chapter discusses the notion of a ground state of a C*-dynamical system,
denoted by the tuple (A4, «). Here A denotes a C*-algebra that plays the role of a physical system
and consists of observables quantities to be interpreted as (unbounded) self-adjoint operators on
some Hilbert space. The dynamics is given by a (continuous) homomorphism « : R — Aut(A),
being the time evolution of the system that describes how observables evolve over time (Heisenberg
picture). We will link this general notion of a ground state to the one used in linear algebra, namely
the eigenvector(s) corresponding to the lowest eigenvalue. We show that the first general concept

!This does not hold for the eigenvectors or eigenfunctions themselves: they fail to converge on the limit algebra,
when N — o or A — 0.
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extends the one used in Linear Algebra. We then give the definition of spontaneous symmetry
breaking (SSB) and show that the quantum Schrédinger operator hy, (A > 0) describing a particle
in a symmetric double well does not display SSB, whereas its classical analog (viz. (1.7))) does.

In Chapter 3 we will state the quantum mechanical Curie-Weiss model (N < o), being an
operator on a 2V-dimensional Hilbert space. We argue that for each finite NV, this operator does
not display SSB. The prove of this follows from the uniqueness of the ground state (Chapter 5)
and a commutation relation with a unitary operator implementing the symmetry.

We show that the ground state must lie in the range of the symmetrizer operator, so that we
may diagonalize this operator with respect to a basis for this range, which is (N + 1)-dimensional.
We show that in the canonical symmetric basis for ran(S), the quantum Curie-Weiss operator
becomes a tridiagonal matrix of dimension N + 1, and is therefore relative easy to diagonalize with
a computer, compared to the one originally defined on the space ®7]1V=1 Cc? ~ C2".

Then in Chapter 4, we are going to make a link between the Curie-Weiss Hamiltonian, restricted
to ran(S) and scaled by a factor 1/N, and a Schrédinger operator with a symmetric double well
potential, depending on & = 1/N. We will see that in some approximation, this scaled compressed
Curie-Weiss Hamiltonian corresponds to a matrix representing a discretization of this Schrodinger
operator. This discretization gets better when N increases, but N has to be finite in order to
speak about a quantum system. Even though in the limit N — oo the Schrédinger operator is not
well-defined, the ground state eigenfunction still converges to some points minimizing the classical
Hamiltonian . These points in turn correspond to some Dirac measure on the commutative
C*-algebra Cy([0,1] x R). This involves the notion of a deformation quantization.

Uniqueness of the ground state of the Schrédinger operator hjp (A > 0) is achieved when
the potential satisfies some properties. The proof is based on an infinite-dimensonal version of
the Perron-Frobenous Theorem applied to e ## for t > 0. In Chapter 5, we state this theorem
and theorems and lemmas related, and prove them for the Hilbert space L*(R"). We discuss the
Perron-Frobenius theorem for non-negative irreducible matrices and see how this theorem is a
specific example of another more general theorem using unbounded operators on a o-finite measure
space. The latter one will be applied to our (compressed) Curie-Weiss matrix in order to prove
uniqueness of the ground state.

In Chapter 6, we explain the notion of deformation quantization applied to the quantum
Curie-Weiss model. We define such a map and show that the ground state of this quantum system
converges indeed to twofold degenerate Dirac measures on the algebra C(B?), even though the
limit of h%w as N — oo does not exists. These measures correspond to points in B® that are the
minima of the classical function hOCW, given by . Moreover, we will introduce the notion of
reduced density matrices and show that the above convergence is an example of taking some limit
of such matrices. Partially based on numerics, we prove that we have weak®— convergence (See
for details). The last part of this section introduces the Lipkin-Meshkov-Glick (LMG) model,
which can be seen as a generalization of the Curie-Weiss model.

Chapter 7 discusses a perturbation in the Curie-Weiss Hamiltonian. We make again the
link with the Schrodinger operator describing a particle in a symmetric double well. We show that
this perturbation is completely analogous to the asymmetric ’flea’ on the double well potential
studied in [34]. We argue that, due to the position of this flea, the ground state will localize in one
of the wells and therefore will converge to a pure state in the classical limit. This is in contrast with
the unperturbed Hamiltonian, where the ground state will a priori converge to a mixed classical
state.

10
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The final chapter provides an outlook stating some open problems and some suggestions for
further research.

11
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Chapter 2

Ground states and Spontaneous
Symmetry Breaking

In this section we study the concept of spontaneous symmetry breaking (SSB). For this, we need
an abstract mathematical framework to compute the right limits (see Chapter 6). We start with
the notion of a ground state of a C*-dynamical system. We show that this notion is compatible
with the one used in linear algebra, namely eigenvector(s) corresponding to the lowest eigenenergy.
Then, we give an example of a higher-level theory H describing classical mechanics on Cp(R?), seen
as a limiting case of a lower-level theory L describing a quantum system given by a Schrodinger
operator with a double well potential. We give a detailed proof that SSB does not occur in L, but
does occur in H.

2.1 General setting

The dynamics describes how observables evolve over time, so it says something about the underlying
physical system. Such a physical system is mathematically identified with a C*-algebra A. The
dynamics is then given by a continuousE] homomorpihsm a : R — Aut(A4), ¢t — a4, where we use
the notation oy = «(t). This map is also called the time evolution of the system. In the case that
A = B(H), we always have oy(a) = wauy for some family of unitaries u; = u(t), (t € R) (see
Appendix [A] for more details). A C*-algebra A with dynamics « is called a C* dynamical system,
denoted by (A, ). We give the definition of the ground state of a C*- dynamical system. This
definition can be found in [5, sec. 5.3.3 and 6.2.7] or [22, p.350].

Definition 2.1. Let A be a C*-algebra with time evolution, i.e., a continuous homomorphism
a: R — Aut(A). A ground state of (A, «) is a state w on A such that:

1. w is time independent, i.e., w(oy(a)) = w(a) Va e A Vt € R.
2. The generator h,, of the ensuing continuous unitary representation

t > uy = elthe (2.1)
of R on H,, has positive spectrum, i.e., o(hy) < Ry, or equivalently {1, hyy = 0 (¢ € D(hy,)).

We will give some comments to this definition below and explain where this Hamiltonian is coming
from.

We are given a C*-dynamical system (A,«) and a ground state w for this system. We can
apply the GNS-construction to A and w (see Appendix to obtain a unique triple (7, Hy, Qw),

'The continuity is explained in Appendix

13
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where 7, : A — B(H,,) is the GNS-representation of A, H,, is a Hilbert space, and £, is a cyclic
vector for 7,. In addition, for all « € A we have

w(a) = (Qu, 7 (a) Q). (2.2)

Now, since by part 1 of Definition for each t € R, the automorphism «; satisfies w o oy = w, we
can apply Theorem to obtain a family of unitaries {u,¢}; such that

To(u(a)) = uw e (a)ug (2.3)
and
U 1 = Qs (2.4)
where, u; is defined as
U 17T () Dy = T (e (a)) Qe (2.5)

The map u,,; is well-defined as follows from the proof of Theorem This is a general statement
in the theory of operator algebras. The next lemma states an important result about this family of
unitaries:

Lemma 2.2. The family {u,+}: of unitaries forms a continuous unitary representation of R on

He -

Proof. Since o : R — Aut(A4) is a continuous homomorphism, the map ¢t — ay is strongly
continuous, in that for each a € A, the map ¢ — «4(a) is continuous.

We have to show that the map

R x H, — Hey (2.6)
(t7 Q;Z)) = Uw,td}

is continuous. It suffices to show this for the dense subspace H,, = m,(A)Q, of H,,.
Then, given 1,4’ € H,, and t,t € R. Consider the norm difference

| N t—0r9 — |- (2.8)

||t ) — Uw,t’WH < H“w,t’

Put s = ¢t — /. For simplicity, assume that we can write ¢ = 7(a)Q, and ¢’ = 7(a’)Q,. In fact,
since ), is cyclic for m,(A), we can write ¢ as a limit of m(a,)f2, where (a,) is a net in A. A
similar result holds for ¢’. In this case we will need an €/3-argument to prove the lemma instead
of an €/2-argument which we use now.

Since by and (2.4), e sm(a)Qy = m(as(a))uw, Qe = T(as(a))Qw, it now follows that
e, s = @[] = [[(cs(a)) Q0 — 7(a") ]
< [Im(es(a)) 2 — (@) | + [ (a) — m(a') 2|
< [(as(a) = a)l| - [l + [1¢ — /]| (2.9)

If » — ¢/ and t — t/, then we see that the above expression (2.9) converges to zero. Since u,y is
bounded in norm, we conclude that the difference (2.8]) goes to zero and therefore we have showed
that (t,) — uy 1 is continuous. O

14
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Now we are in the position to apply Stone’s Theorem to obtain a Hamiltonian A, such that

Uy = € e (2.10)
where this Hamiltonian h,, is defined as
hutp = i lim ““%_W - % S:Oe*ishw. (2.11)
Then,
Uy ¢S = (2.12)
immediately implies that
heQu = 0. (2.13)
We also have
To(ar(a)) = e om (a)etthe, (2.14)

2.2 Two different notions of a ground state

We make a link between the notion of a ground state (Definition on the local algebra
Any = B(Hp), with Hpy a finite-dimensional Hilbert space of dimension N, and the notion of
a ground state on this algebra in the linear algebra setting, i.e, as an eigenvector or multiple
eigenvectors corresponding to the lowest eigenvalueﬂ Take a (self-adjoint) Hamiltonian h acting on
B(Hy). As Hy is isomorphic as a vector space to the finite-dimensional space CV, it follows that
there exists an ordered orthonormal basis {vg, vy, ...,vn} for Hy consisting of eigenvalues of h.

Consider then the lowest eigenvector vy corresponding to the Hamiltonian h € B(Hy). We
turn vg into a state on B(H ) by setting

wo(a) = <{vg,avy) (a € B(HN)). (2.15)

We claim that this state is a ground state in the sense of Definition We denote the the identity
operator of B(Hy) by 1 =idgs,). This is clearly a representation of B(Hx) on B(Hy). It follows
that we have a triple (1 : B(Hy) — B(Hn), Hn,vo), such that

wo(a) = (v, 1(a)vy) = {vg,avg)y (a € B(Hp)). (2.16)

Moreover, vy is cyclic for 1, as this operator acts as the identity on B(Hy) and the Hilbert space
is finite dimensional.

We are going to apply the GNS-construction to Ay and the state wg. In view of Theorem
we find a triple (7., Huwys Sy = [I]) where H,, is a Hilbert space, 7, a representation of
AN on H,,, such that Q,, is cyclic for m,,,, and we have

CU(](a) = <[I]> [a]> = <Qwo77Tw0 (a)Qwo>' (2'17)

By uniqueness of GNS-triples (see again Theorem [A.9), we know that a unitary map between both
Hilbert spaces H,, and Hy exists. In particular, both spaces are isomorphic as vector spaces. We

2This construction is general for any state on a C* algebra and makes use of the GNS-representation. In this
paragraph, we give a detailed proof for finite dimensions.

15



CHAPTER 2. GROUND STATES AND SPONTANEOUS SYMMETRY BREAKING

are now going to construct this unitary map that connects both GNS-triples.

Thus we need a bijective map:
U Huy — My (2.18)
such that
U, Uy = s, (051 € Hug)-
Moreover, we want
UlI] = UQu, = vo. (2.19)
Notice that for a € Ny, = {a € Ax | wp(a*a) = 0}, we have
0 = wo(a*a) = (vy, a*avy) = ||avy||?. (2.20)
Hence
[a] =[0] <= avg = 0. (2.21)
Write a € Ax as a = alvg){vg| + a(1 — |vo)Xvp|). Then [a] = [a|vg){vol|], since
a(1 — |vo){vo|)vo = a(vg — vg) = 0, (2.22)

so that the corresponding equivalence class is the zero class by the above. Hence, an ‘operator’ in
H., is determined by its value at vy.

Now we are going to define U. Take an orthonormal basis {[a;]} for H,,. Since this space
is finite-dimensional, it equals the space quotient space H,,,, explained in Appendix @ Then we
define

U:Hy — Hy (2.23)
[ai] = a; V. (2.24)
This map is well-defined by (2.21)). We will see that U is unitary. Note that the adjoint U* is given
by
U*: Hy,y — Huy (2.25)
V; > [CLZ'], (2'26)
which is well-defined as well since it defined on basis vectors of Hy. It follows that a;,vg = v;. How
is this possible?

Note that Ay = B(Hy) is a unital C*- algebra and wy is a state on Ay. As Qo = [I] is cyclic for
Twy, We have

T (AN) Qo = Hug) (2.27)
so that
U(Ttwo (AN)Q) = U(Hw,) = Hay, - (2.28)
Then for each v; € H, we have
v = U(Twy (@) Q) = UlaiQ, | = aivo. (2.29)

16
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Note that for arbitrary C*-algebras A, one needs to take the closure of the space 7, (AN)w,- The
result remains true when A does not have a unit. In that case, it has an approximate unit.

It is an easy exercise to see that U is an isometry:

U(lal), Ullaj])) = {aivo, ajuo) = wo(aia;) = {[ail, [a;]). (2.30)
It follows that U is injective. Since we already know that such a unitary map exists, both (finite)
dimensions of Hy and H,,, are equal. Therefore, injectivity implies surjectivity. This shows that
U is unitary.
Note that by construction:
U*(av) = Ty, (a)(U*v). (2.31)
In particular, for the bounded operatorﬁ h, we find
U* (™) = m,,, (e U* (v). (2.32)

We also have that U[I] = vy. Since agvy = v, we have by the above (ag — 1)vg = 0, so that
[agp — I] = [0], hence [ag] = [I]. Therefore, indeed,

U[I] = U[ao] = 9. (233)

Now, we are going to define a time evolution on all relevant spaces using again Theorem and
Theorem We define, for given h* = h € B(Hn),

on Hy; ug : v — ey (2.34)
on Ay = B(Hy); a; : a— e hgeith (2.35)
on Hyy; [a] = us([a]), (2.36)

such that us[I] = [I], and 7, (as(a)) = usmy, (a)uk. Recall that this ug is defined through

usla] = usmug (a)[I] = muy (as(a))[1] = [as(a)]. (2.37)

Note that the above is possible since for each t € R, the triple (7, © o, Huy, Qw,) is another GNS
triple (as follows from an easy computation).

By Lemma the family of unitaries us om H,, forms a continuous representation of R.
In particular, it is a strongly continuous one-parameter subgroup. We may therefore apply Stone’s
theorem to find a Hamiltonian h,,, on H,, such that

Us —

hepla] = i im o fa] = i i 1L 20, (2.38)

But [ay(a;)] = [e7""a;e™™], and e~ ae vy = e *ha ety = etroe*h a0, so that

[at(ai)] _ eit)\OU*(efith,Ui)
_ [ (emith=2o)y,)
_ R (e ity
_ i) % ()
= elthi=ho[q,]. (2.39)

3In infinite dimensions, this result is not true. Consider for example an unbounded Hamiltonian and the algebra
of compact operators.
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CHAPTER 2. GROUND STATES AND SPONTANEOUS SYMMETRY BREAKING

Then we obtain

[as(ai)] — [ai]

hwo [CLZ] =4 lim

s—0 S
g L] o]
5—0 S
= (A = o)[ai]. (2.40)

It is clear that h,, is positive precisely if Ay is the smallest eigenvalue.

One can show that the map a : R — Aut(Ap, ), t — oy defines a strongly continuous one-parameter
subgroup of automorphisms, i.e., a time evolution. Thus (A4, , @) is a C*-dynamical system (see
text preceding Definition [2.1]).

We still have to check that wg is invariant under a;. This is easy:

wo (o (a)) = (o, usaluy)*vo)
_ <€—ithv0’ ae—ithvo>
— e*it/\oe+it)\0<vo7av0>

= wop(a). (2.41)

Thus we have shown that, given a self-adjoint Hamiltonian A on Hpy, we can construct a
C*-dynamical system Ay = B(Hy), a time evolution o : R — Aut(Ay) and a time-independent
state wg. Moreover, we can construct a continuous unitary representation us on H, such that
(by Stone) there exists a Hamiltonian with positive spectrum. Hence wy is a ground state for the
dynamical system in the sense of Definition 2.1

Conversely, suppose we are given a state w on B(Hy ), with Hy a finite-dimensional Hilbert space,
and a one-parameter subgroup « : R — Aut(Ay), t — ;. This gives rise to a Hamiltonian h,,
and a cyclic unit vector €, such that h,€, = 0, as we have just seen. Then, using the same
definition of U, we have U, = vg. We can recover a Hamiltonian h on B(H,, ) by putting
hip = hU(¢) = U(hy(p)), where ¢ € D(h) such that ¢ = U(p) (¢ € D(h,)). Here, D(h) is defined
as D(h) = U(D(hy)), being the domain of h.

Then,

hvo = hU () = U(hy(Qw)) = U(0) = 0. (2.42)

The next step is to define a notion of spontaneous symmetry breaking for C*-dynamical systems.

2.3 Spontaneous symmetry breaking

In this thesis we use the standard notion of symmetry breaking in algebraic quantum theory taken
from [22 p.379]. Given a C*-algebra A, we denote the state space of A, by S(A), and its extreme
boundary by 0.S(A). The set of ground states of some given time-evolution «, then forms a compact
convex subset of S(A), denoted by Sp(A). The subscript 0 in Sy(A), historically corresponds to
temperature T = 0, or equivalently 8 = oo for 5 = 1/T. Moreover, we assume that

0.50(A) = So(A) N 8.S(A). (2.43)

This means that pure ground states (i.e., w € 0.S9(A)) are pure states as well as ground states (i.e.,
w € 0.5(A) and w € Sp(A)) . This is indeed the case for A = B(H), with H a separable Hilbert
space.
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Definition 2.3. Spontaneous symmetry breaking. (SSB)
Suppose we have a C*-algebra A, a time evolution «, a group G, and a homomorphism v : G —
Aut(A), which is a symmetry of the dynamics « in that

aroyg =750 (g9eG,teR). (2.44)

The G-symmetry is said to be spontaneously broken (at temperature T' = 0) if

(0eS0(A)Y = &, (2.45)

and weakly broken if (0.S0(A))E # 0.S0(A), i.e., there is at least one w € 0,S(A) that fails to be
G-invariant (although invariant extreme ground states may exist).

Here 7% = {we .| wory, = w Yg € G}, defined for any subset .7 € S(A), is the set of G- invariant
states in .. Assuming , then means that there are no G-invariant pure ground states.
This means also that if spontaneous symmetry breaking occurs, then invariant ground states are
not pure. In the next paragraph, we will give an important example.

2.4 Quantum mechanical symmetric double well model versus its
classical limit

In this section we first consider the quantum Hamiltonian that describes a particle in a symmetric
double well. We take G = Zy as our symmetry group. The goal is to show that its ground state
does not break the Zo-symmetry in the sense of Definition However, we will see that the
ground state in the classical limit system does break the Zs-symmetry.

Let us focus first on the quantum mechanical system. We take Bo(L?*(R)) as C*-algebra of
observables on the Hilbert space H = L2(R)E| Take m = 1/2 and put the symmetric double well
potential V(z) = 1\(2% — ¢?)? in the Hamiltonian

2

d
hp = JLZ@ +V(z). (2.46)

Here a = 3/v/X > 0, whilst +a denotes the position of the both minima in the potential, and £ is
a positive constant. The Hamiltonian is an unbounded operator, and is a map

hy, : D(hy) — L*(R), (2.47)

where D(hy) is a dense domain of L%(R).

As we have said, we want to show that spontaneous symmetry breaking (SSB) is typically
not happening in quantum mechanics, because the ground state is usually unique in finite quantum
systemsﬂ like for this one-particle system describing a particle in a symmetric double well. In
order to show that this quantum system does not display SSB, we show that for the group G = Zs,
a homomorphism 7 : G — Aut(By(L?(R))) and a time evolution a : R — Aut(Bg(L?(R))), such
that ~ is a symmetry of the dynamics, this G-symmetry is not spontaneously broken, in that

(0eSo(A)Y # . (2.48)

4The algebra Bo(L*(R)) denotes the C*-algebra of compact operators.
SThis is not always true: the ground state of the finite quantum Ising model without magnetic field interaction is
doubly degenerate.

19
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As said before, we take By(L?(R)) as our C*-algebra, and the group G = Zs is identified with the
set {1,—1}. We then define the homomorphism by

v {1, =1} — Aut(Bo(L*(R))),

11— Y1,

m(a) =a (2.49)
2.50)

-1~ V-1,

v-1(a) = Tat™, (a€ Bo(Lz(]R)))

ri LR - IR,

f=7(f), (feL*R)

7(f)(z) = f(-z) (zeR). (2.51)

We define a time evolution by

o : R — Aut(By(L?*(R))),
t— ay,

oy (a) = efntge=int, (2.52)

It follows that (Bo(L%(R)), ) is a C*-dynamical system. Now we show that the homomorphism is
a symmetry of the dynamics, i.e. that

Q0 Yg =Yg O Q. (2.53)
So we have to show:

g0 ae(f)(x) = arory(f)(x), VfeL’(R) zeR (2.54)

This is clear for g = 1, as 7 acts as the identity map, so that y; commutes with hj and hence also
with all powers of hy, and thus with e»t.

It is also clear for g = —1, as 7 obviously commutes with the second derivative operator (it takes
twice a minus sign) and also with the potential because of the quadratic term. So 7 commutes
with the Hamiltonian and hence with the exponential e*"f.

So indeed, we have a Zg-symmetry. It turns out that this Zs-symmetry is not spontaneously

broken, as we will show later in this paragraph. First, we need to define a ground state in the sense
of Definition 2.11

The ground state eigenfunction 1/}2 corresponding to this system is unique, as follows from
an infinite-dimensional version of the Perron-Frobenius Theorem. Furthermore, one can show
that the bottom of the spectrum of the quantum Hamiltonian hj is an eigenvalue. We will give a
detailed proof of both facts in Chapter 5. In view of Definition we convert 1/12 into a state on
the C* algebra A = By(L?(R)). An obvious choice is to turn it into a vector state:

wo(a) = (¥3,avy) (a € Bo(L*(R))). (2.55)

We claim that this state is a ground state in the sense of Definition and show that this is in
fact the ground state of the C*-dynamical system (A, ). Note first that the invariance of wp under
oy is obvious. We denote the identity operator of By(L?(R)) by 1 = idp, (z2®r))- This is clearly
a representation of A on H = L?*(R). It follows that we have a triple (1 = i

A, L*(R),vY), such that

wo(a) = Py, L(a)vpy = Wy, avpy (a € By(L*(R))). (2.56)

'dBo(LQ(R)) . A —
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We normalize 1/)}%0). It follows that 1/1,%0) is cyclic for 1. To see this, note first that 1 acts as the
identity on A = Bo(L*(R)). Then, given a ¢ € L*(R), put a = |<p><zp}(10)] e A. It follows that

ap” = . (2.57)
Therefore, indeed 1/1,(10) is cyclic for 1.

Similarly as for the finite-dimensional case, explained in we apply the GNS-construction
(see e.g. Theorem to A = Bo(L*(R)) and the state wg. From this construction, we find
another triple (7, Huy, w, = limy[en]), where H,,, is a Hilbert space, m,, : A — B(Hyy,) is the
GNS-representation of A on H,, and €, € H,, is a cyclic unit vector for WWOH We also have

wo(a) = (1], [a]) = (> T (@) Qg )- (2.58)

By Theorem we know that a unitary map U : L?(R) — H,, exists, and thus L?(R) is isomorphic
to Hy,- The next step is to define this U. The procedure is analogous to the finite-dimensional
case, except that one detail is diﬂ"erentm As L?(R) is separable, we can take an orthonormal basis
{t); }ien, starting with 19 = ¥9. Since L?(R) and H,, are isomorphic, the latter space is separable
as well. Then, since the vector space H,,, = T, (A)S, is a dense subspace of H,,, we first define
U on this subspace,

U:H,, — L*R) (2.59)
[ai] — aio. (2.60)

This map is well-defined because, if [a;] = [a;], then by definition of wy, it follows that (a; —a;)vo =
0, so that

U[az] = U[aj]. (2.61)
Then U is an isometry which follows from the computation:
(lad]; [a;]) = wolai'a;) = {aiho, ajiho) = <Ulai], Ula;]). (2.62)

Therefore, U extends linearly to H,, by continuity. Its image is then the closure of 1(a)g, which
is L2(R), since 1) is cyclic for 1. Thus U is surjective and hence, in view of (2.62)), unitary.

We will now show that the basis vectors v; are related to v, via

¥i = lim aMyy (ieN), (2.63)

where {az()‘)} A is a net in A. To show this, we use the fact that
Two (A) Qo = Huwgs (2.64)
so that

U (g (A) Qg ) = L2(R). (2.65)

6Since positive linear functionals are bounded, it follows that the equivalence class of the net {ex}x converges to a
cyclic unit vector Q,, in H,,,, where {ex}\ is an approximate identity for the non-unital algebra A.

"This general GNS-construction is true for any state defined on a C*-algebra. We give a detailed derivation for
this specific algebra and use some of its properties. For example, the fact that ¢§LO) is cyclic for 1 and wyg is pure, is a
result of the properties of Bo(L*(R)).
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Note that A = By(L%(R)) is not finite dimensional, so that we really need to take the closure of
H,,, in order to obtain H,,. We compute for each ¢, € L?(R):

P = U(h}\n Two (GEA))QwO) = li)r\nU(ﬂ—wo (GEA))Qwo) = hin U[QEA)] = h/I\n G(A)l/)O- (2'66)

7

This shows that (2.63) holds. In particular, by taking an approximate identity {ej}) for A =
Bo(L?(R)), it follows that

Uhy = U lim i (€3)$hwy = limexo = o. (2.67)

For the time evolution on all relevant spaces, we define, for given hj = h}

on L2(R); uyg : 1p v e'hnqp (2.68)
on A = By(L3(R)); oy : a — e thigeithn (2.69)
on Hy,; [a] — us([a)). (2.70)

Again, in view of Theorem the unitary operator ug is defined by
UsTwo (@) Ry = T (s(@) ) Qg - (2.71)

By Lemma the family of unitaries us on H,, forms a continuous representation of R. In
particular, it is a strongly continuous one parameter subgroup. We may therefore apply Stone’s
Theorem to find a Hamiltonian h,, on H,, such that

li s — D[a™)
= itim (0= D[]
S5— S

(2.72)

oo =ity
where ¢ € H,,, is of course given by the norm-limit:
o = lim [a™]. (2.73)
Take a basis vector ¢; € H,,, and compute
usp = limuy([af)
= lim[a, (af")]
_ li/{n Ty (e—ishhalQ)eishh)U*wo
_ hin I (efzshhaz(k)eishh%)
_ li/{n [T* eisho (efishh,azo\)wo)
= U*eisho(eishn hin CLEA)%)

= U* (efis(/\if)\o)wi)

— e—iS(Ai—Ao)¢i. (2.74)

We used that e_iShﬁag/\) ehn e By(L?(R)), since this algebra is an ideal. In the final last step we

applied (2.63)). We obtain

e—is(ki —Xo)

huntpi = i lim PP (A — o). (2.75)

S
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It is clear that h,, is positive precisely if Ag is the smallest element, being an eigenvalue as well,
of the spectrum of h;. But as we have already mentioned, it is true by a deep result based on
compactness of the resolvent operator (explained in Chapter 5) that indeed hy, admits an eigenvalue
at the bottom of its spectrum. Hence o(h,) < RT.

We have shown that given a self-adjoint Hamiltonian hj on L?(R?), we can make a C*-dynamical
system A = By(H), a time evolution o : R — Aut(A) and a state w such that this state is
time-independent. Moreover we can make a continuous unitary representation us on H,, such that
there exists (by Stone) a Hamiltonian which has positive spectrum. Hence wy is a ground state for
the given C'* -dynamical system.

So far, we have transformed the ground state eigenfunction wg of norm one into a ground
state in the sense of Definition implicitly using the fact that ¢2 is a vector state on the algebra
of compact operators, and hence is a pure state. Since we have already shown that we have a
Zo-symmetry, we are now in a position to use Definition We will show that the Zs-symmetry
is not spontaneously broken.

This is now an easy corollary: uniqueness of the ground state eigenfunction wg implies, of
course, that its corresponding vector state wg is unique as well. Therefore, we have

0eS0(Bo(L*(R))) = {wo}. (2.76)

It follows that wg o 74 = wo, for all g € Zo. We show this by contradiction: if there would exists
an element g € Zy such that wp o vy # wo, then we can find a compact operator a for which this
inequality holds. Note that g has to be —1, as g = 1 acts as the identity. Then

wo(7-1(a)) = (Wh,v-1(@)ep) = (T g, ar*gp) = |2 *(wp, avp) = wo(a), (2.77)

where we used the fact that wg is an eigenfunction of 7 as well since 7 commutes with hz, and the
ground state is unique. The number z is a scalar with absolute value equal to one. Therefore, we
have a contradiction. Hence we conclude

0eSo(Bo(L*(R)))Y = {wo} # &. (2.78)

Thus the G-symmetry is not spontaneously broken, because the ground state is unique.

Now we turn to the SSB classical mechanics. The ensuing Hamiltonian is given by

ho(p,q) = p° + V(q), (2.79)

where V' the double well potential as defined above. We take A = Cy(R?) as the C*-algebra of
observables on the phase space R?. As a homomorphism acting on the group G = Zs, we take

v Zy — Aut(C’D(R2)),
1= vy,
v1(f)(p, ) = f(£p, +q), (f € Co(R?, (p,q) € R*. (2.80)

We define a time evolution by

a: R — Aut(Cy(R?)),

t — ay,

a(f)(p.q) = F(0}°(p,q)), (f € Co(R?), (p,q) € R?). (2.81)
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Here gpi‘o denotes the (unique) maximal flow of the Hamiltonian vector field X", uniquely induced
by the classical Hamiltonian ho The point gp?o (p,q) denotes the starting point of the time
evolution. In order to apply Definition we first have to check that

Vg © ar(f) = a0 vg(f) (2.82)

Evaluating this at (p, ¢) € R? and using the definition of oy, we must show that
F@(p,9) = ()@ (p,q)),  and (2.83)
F@(=p, =) = 71 ()} (p, q))- (2.84)

It is clear that (2.83) is true by definition of 7;. For (2.84), if we denote (p/,¢') = ¢ (p,q), then
we need to show that

/

(—p', =) = ¢ (=p, —9), (2.85)
since then reads

Felo(=p,—q) = f(=0'.—d) = 7-1(H @, 4, (2.86)
which directly implies that -1 (f)(¢° (P, ) = f(#1° (~=p, —))-

To prove this, we define ¥ : R?> — R? by (p,q) — (-p,—q). So v_1 = 7*. It follows by
definition of the Hamiltonian that

h() o ’5/ = ho. (287)
We need a lemma in order to prove ([2.85)).

Lemma 2.4. Ift — (p(t),q(t)) is an integral curve for X", then also t — Vp(),q(t)) S an integral
curve for Xho,

Proof. Put z(t) = (p(t),q(t)). Then

(¥ 0 2)(t) = 3(2(t) = (=p(t), —q(t)) = —=(t). (2.88)
By assumption, we have
d
Xf&) = —a(b). (2.89)
It follows that
d d
h h ~
X Sooyty = X%y = pn ( - z(t)) = @(’y o 2)(t), (2.90)
where in the first step we used the invariance of hg under 7. O

We conclude that if (p/,¢') flows to (p,q) according to hg, then F(p’,¢') flows to ¥(p,q) again
according to hg. This is precisely what (2.85]) means.

So we know that the time evolution a; commutes with «, for all ¢ € G. Moreover, one can
easily show that the map « : R — Aut(Cy(R?)), t — oy defines a time evolution, using the fact

8The differentiable function ho : R? — R, defined on the symplectic manifold R?, determines a unique vector field
X" by defining for every vector Y on R?, dho(Y) = w(X"°,Y), where w is the standard one-form on R x R given
by the determinant.
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that the flow is a smooth map from R x Cy(R?) — Co(R?). It follows that (Cp(R?),a) is a C*-
dynamical system.

We still need to find a ground state in the sense of Definition such that it breaks the
symmetry in the sense of Definition as we have claimed in the beginning of this paragraph. For
classical systems (i.e. with A a commutative C*-algebra) this definition means that the integral
curve t +— x0(t) € R? of the Hamiltonian vector field X"0, satisfies

1. zo(t) = o for all t e R;
2. By (20) = 0, (2.91)

as we will see belowﬂ Condition 1 is equivalent to the statement dhgy = 0. Hence, extreme points
of hg correspond to ground states of this classical system. These are not necessarily the minima of
ho. In particular, Definition [2.1]is not applicable for classical systems since all extreme points are
considered as ground states. Nonetheless, we will only take the minima of hg as classical ground
state since it is well-known (from e.g. [22, sec. 10.1]) that only these points, corresponding to
the minima of the potential, form the actual ground state. Moreover, we will explain that the
Hamiltonian A, obtained from the GNS-construction, equals the zero operator, so that statement
2 above is empty. First, we show that the Zo-symmetry is broken by Dirac measures ua—r, i.e., that
there exists a g € G such that

1 (g () # 15 (f) (2.92)

We need the following lemma.
Lemma 2.5. ,uai s the doubly degenerate ground state of the classical Hamiltonian hg.

Proof. Note that by the above, the ground states are obtained by extremizing the classical
Hamiltonian, that is

Vho(p,q) = (2p, A(¢* — a*)q). (2.93)

This is zero if and only if p = 0 and ¢ € {0, £a}. As we have said, we ignore the point (0, 0), since it
is not a minimum. The minima instead are obtained if h,, > 0 and hy, > 0, which is achieved only
for p = 0 and ¢ = ta. Keep still in mind that this does not follow from Definition Thus the
ground states in the ‘classical’ sense are given by the points (0,a) and (0, —a). Now we use the fact
that for any locally compact space X, the states on Cy(X) bijectively correspond with complete
regular probability measures on X, according to

n(h) = | dutr) (2.94)

In particular, points (p, ¢) in phase space correspond with Dirac measures d(p,q)- Hence

WES) = 0.sa(f) = f

- d:U’(O,ia)(f) = f(ov ia)' (2'95)

We have to check that this is indeed a ground state a la Definition [2.1

We are working with the C* - dynamical system A = (Co(R?), o), where oy (f) = (¢)*(f) = fol®.
Moreover, it is clear that Dirac measures M% are pure states.

9Note that the equivalence between this definition and Definition is based on the fact the points in phase space
bijectively correspond with Dirac measures.
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Consider ,ua—r . Apply the GNS-construction to A to find a Hilbert space ,Hu% = A/ ~, with
f~0 < pg(f*f) =0. But, ug (f*f) = [f(0,+a)[?, hence f ~0 < f(0,+a) = 0[]

We claim that the corresponding Hamiltonian huf{’ obtained from the GNS-construction, is

the zero operator. Therefore, we consider the Hamiltonian vector field X" induced by the classical
Hamiltonian. It is easy to show that

Xho = (aa‘q/, —p) = <Aq(q2 —a?), —p>- (2.96)

Then, X"0(0,+a) = (0,0), i.e., the vector field vanishes at (0, +a). The flow (p(t),q(t)) such that
(p(t),q(t)) = X" (p(t),q(t)) and p(0) = 0 and ¢(0) = +a, at the point (0, +a) is simply given by
(0, ta), so that

15 (ar(f)) = ar(f)(0, £a) = f("5(0, £a)) = f(0, £a) = p5 (). (2.97)

Thus, both states ,ug are time independent. Moreover, in view of Definition again, the unitary
map ug is

us[f] = [as(£)] =[], (2.98)

as (0, ta) is stationary for X ho and use the equivalence relation. This implies that us = 1, so that
huoi = 0, which is clearly positive.

Therefore, the ground state of the classical Hamiltonian is doubly degenerate and can be
given by the Dirac measures ,u,g. O

Since the set of ground states S (Co(R?)) is a compact convex subset of the total state space
S(Co(R?)), it follows from the previous lemma that

S (Co(R?)) = {aud + Bug |+ B =1,a,8 > 0}. (2.99)

The extreme boundary is then clearly given by 0.5 (Co(R?)) = {ud, 1o }- Then, on the one hand
we have

o (v-1(f)) = fRQ dug f(—x, —y)dxdy = (0, Fa), (2.100)

but on the other hand, ug (f) = f(0, £a), which is clearly not equal to f(0, Fa) as a > 0.
Hence we conclude that 0,54, (Co(R?))% = (7, i.e. the Zy-symmetry is spontaneously broken.

Tn general, for A = Co(X), pure states are given by we,(f) = f(zo0). Therefore, H,, =~ Co(X)/Co(X;x0) ~ C

via [f] — f(y). Then, m,,(f) = f(y) as operator C — C. e
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Chapter 3

Curie-Weiss model

We will look at the quantum Curie-Weiss Hamiltonian, being an operator on the Hilbert space
Hy ~ @Y ,C2. Tt is extremely difficult to diagonalize this operator by hand and express its
eigenvectors and eigenvalues by a formula in terms of N. Since for N = 12 the matrix representation
of this operator will be already a 2'? dimensional matrix, even for a computer the diagonalization
process will not be possible anymore when N increases too much. In particular, the ground state
cannot be computed for say N = 100. Initially, this is a problem, because we want to say something
about the convergence of the ground state in the limit N — o0 as we shall see in Chapter 6. However,
we will see in this section that the ground state of the quantum Curie-Weiss Hamiltonian lies in a
subspace of dimension N + 1. Thus, we may diagonalize this N-dependent operator with respect to
a basis for this subspace. We will derive an expression for the matrix entries for this ‘compressed’
operator. Unfortunately, it still remains extremely difficult to prove an explicit N-dependent formula
for the ground state eigenvector or eigenvalue. Nonetheless, simulations can now be made, easily
up to IV = 5000. This will be a great advantage, since this allows us to diagonalize this matrix for
much larger N, so that we can get really an idea of the behaviour of the ground state. Moreover, as
we will see in Chapters 4 and 6, these simulations also lead us to the connection with a Schrédinger
operator and to the convergence of the ground state in the classical limit.

3.1 Properties of the Curie-Weiss model

Consider the Hamiltonian for the quantum Curie-Weiss model for ferromagnetism |22, p. 409], [6],
[18]:

J
hSY = AN > os(z)os(y) — B )| oilx), (3.1)

z,yeA N zeAN

where Ay is an arbitrary finite subset of Z?¢, J > 0 scales the spin-spin coupling, and B is an
external magnetic field. This model describes a chain of N spin-1/2 particles with ferromagnetic
coupling in a transverse magnetic field. In contrast to the quantum Ising model, the dimension of
this model does not influence the behaviour. This follows from the fact that with

SZAN . 2 oi(x), (3.2)

we can write the Hamiltonian (3.1]) as
J o A
hiy = —|An] <2(53N)2 + BS| N). (3.3)
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The Hamiltonian acts on the Hilbert space Hay = Qgeny Hy, where H, = C2. The operator oi(x)
acts as the Pauli matrix o; on H, and acts as the unit matrix 15 elsewhere. The local Hamiltonians
hy = h/c\xv define a time evolution on the C*-algebras

Ay = Apry = B(Hay) = ®geny M2(C) (3.4)
given by
aﬁN)(aN) = exp (ithy)an exp (—ithy). (3.5)

In contrast to the quantum Ising model, it can be shown |22} sec. 10.8] that (3.5) does not define a
time evolution on the quasi-local C*-algebra

A= U AN = ®B(Hm)a (3'6)

NeN z€Z

since the Hamiltonian is not of short range, in that there does not exist a natural number r € N
such that ®(X) # 0 only if |z —y| < r for all x,y € X, where X < A. However, it turns out that it
does define a time evolution on the commutative C*-algebra

AL = C(S(M,(C))). (3.7)

The Curie-Weiss chain has a Zs-symmetry given by 180-degree rotation about the x-axis, locally
implemented by the unitary operator u(z) = o;(x), which at each x € Ay yields (o1,09,03) —
(01, —02,—03), since the unitary operator u(x) = oy(z) satisfies 01007 = —o; for j # 1. This
symmetry is implemented by the unitary operator «™) on Hy defined by

u™N) = ®ep 01 (). (3.8)

It is not difficult to check that the relation [hy,u™)] = 0 or u™Mhy(uM))* = hy, holds. The
ensuing Zy-symmetry is then given by the automorphism v¥) on Ay defined by

A M (@) = uMau™)* (ae Ay). (3.9)
Since the Hamiltonian hy commutes with u(™), we (locally) have
ozEN) o) = 4 (M) o aEN). (3.10)

Since 72 = ida,, we have an action of the group Zs =~ {£1} on Ay, where the nontrivial (i.e.,
g = —1) is sent to v and the identity element (i.e., g = 1) to the identity id4,. By this
group acts on the set of ground states So(Apn) of Ay relative to the dynamics oY) These results
can also be found in [22, Chapter 10].

Corollary 10.23 from [22, p.411] discusses the classical dynamics on the Poisson manifold
S(M,,(C)), being the limit of the local Heisenberg dynamics agN) on Ay. In Chapter 6 we will give
the analog of the Zs-action on this manifold for n = 2. But for now, we only focus on the local

algebras Ay, = B(Hp, ).

In this thesis, we only consider the case that d = 1, with |[Ay| = N. We can apply the
Perron-Frobenius theorem to equation (3.1)) and find that for B > 0 each quantum mechanical

Hamiltonian hy has a unique ground state w](\(,)) (see for details). The local Hamiltonians hy
commute with the Symmetrizer operator, as we will see soon. Therefore, each hy is permutation
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invariant. Together with uniqueness, this implies that 1/)5\(,)) must share the invariance of hy under
permutations. Hence

N
¢§\?) = Z c(ny/N)ng, n-), (3.11)
ny=0

where |n+,n_) is the totally symmetrized unit vector in ®Y_C2?, with n* spins up and
n_ = N — ng spins down, and ¢ : {0,1/N,2/N,...,(N — 1)/N,1} — [0,1] is some function such
that >, c2(ny/N) =1, and ¢(ny/N) = c¢(n_/N).

For N < oo, and B > 0, one can show that the ground state 1&](\(,)) is Zso-invariant, since the
Curie-Weiss Hamiltonian commutes with «(™) and the ground state is unique. We will give a more
detailed explanation in Chapter 7. For N = o0 and 0 < B < 1, the model has a doubly degenerate
ground state that breaks the Zo-symmetry [22, Sec. 10.8] . A more precise analysis will be given
in Chapter 6. This result is also known for the quantum Ising model [22, Thm. 10.11].

In the remaining part of this section, we reproduce the function ¢ numerically using MATLAB and
study its behaviour as N increases. In order to do this, we again take a glance to the Hamiltonian
. Note that implicitly, with respect to the standard basis for H, = ®,]:7=1(C2, this Hamiltonian
is represented as a matrix since the spin Pauli matrices are represented in the standard basis for
C2. We denote this standard basis, consisting of 2V vectors, by . Recall from linear algebra that
B={en ®en, ® . @enyln,  ny=-1-

Consider the Symmetrizer operator S, defined as the projection onto the space of all totally
symmetric vectors. Thus, S is given by

S(v) = % > Lo(v), (3.12)

" geSn

where v is a vector in the N-fold tensor product and the linear operator L, acts on v € @7]:[:1 C?
by permuting the factors of v, thus v1 ® - - - - vy, = V5(1) ® - - @ Vs (). This operator is unitary
extended by linearity since L;1 = L¥ = L, 1.

A basis for the space of totally symmetric vectors is given by the vectors {|ny,n_) ny =
0,..,N, n, +n_ = N}, which spans a subspace. We denote this subspace by Sym®™ (C2). If we
write S with respect to the standard basis for the N-fold tensor product #H,, , denoted by [S5]s,
and then project onto the basis vectors of the subspace Sym™ (C?), it follows that in the basis for
Sym®™ (C?), S is the identity matrix. Hence by computing (n,n_|[S]sn’,,n"), we just transform
the matrix representation of S with respect to 5, to the matrix representation of S relative to the
basis vectors |ny,n_) for Sym” (C2). Since S acts as the identity operator on its range that is just
Sym™(C?), indeed the operator S written relative to the basis for Sym” (C?) equals the identity
matrix.

It is easy to see that the Hamiltonian (3.1)) commutes with this action, i.e., [h]CVW,LU] =0
for all o € S,. Then S also commutes with ASYV. As S acts as the identity on Sym™ (C?), this

subspace is invariant for S, and hence also for h%w. We argue that the ground state %@ of h](\jfw
lies in ran(S) = Sym” (C?). If this is not the case, then there would exists an element o; € S, such

that ngl/)g\?) # 1/)5\?). Moreover, ng¢§\?) cannot be a scalar multiple of 1/1](\(,)), since it is permuted.
Then ngw](\?) would also be a ground state, since h%Wngwj(\?) = Lo, h%w%(\?) = eoLojz/)g(,)), for

some number €. By uniqueness, the above implies that L, 1/11(\?) = Zg; ¢§\?)7 for some |z, j| = 1. This
is a contradiction.
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Hence, the ground state lies in the linear span of eigenfunctions of S, and we may indeed write
(3.11). Therefore, we can determine the coefficients of wj(\(,)) using this subspace by diagonalizing
the compressed (N + 1) x (N + 1)-matrix instead of the original 2"V x 2N¥-matrix. We can derive a
specific form of the matrix representation of hGW with respect to the basis [n4,n_) for Sym™(C?).
This will be given in the following theorem.

Theorem 3.1. In the basis {{ny,n_) | ny =0,1,...,N, ny +n_ = N}, the Hamiltonian (3.1]) is
a tridiagonal matrixz of dimension N + 1 given by

- 2‘;\]JV|(TL+ —n_)% on the diagonal,

(3.13)
— B\/m on the upper diagonal,

(3.14)
— By/(n— + 1)ny on the lower diagonal. (3.15)

Proof. As we have seen above, there are IV + 1 linearly independent totally symmetric basis vectors,
i.e., the subspace Sym® (C?) is (N + 1)-dimensional and there are 2"V standard basis vectors 5;
spanning the the space Ha, . Since each basis vector 3; € 8 consists of tensor products of e; and
ea, we know that there are (J,X ) basis vectors of 8 with k times the vector ey and hence (N — k)-
times the vector e;. This shows that we have a partition of 3, and hence N + 1 orbits ¢*. Each
orbit &% consists of (J,X )—basis vectors (; with the same number of occurrence of the vectors es and
e1. Therefore, we have a bijection between the number of orbits and the dimension of Sym® (C?).
The correspondence is made as follows:

OF & |N =k, k). (3.16)

Here k in |N — k, k) labels the number of occurrence of the vector ey in any of the basis vectors
Bi € B,and N —k in [N — k, k) labels the occurrence of the vector ey in 3;. Hence, N — k stands for
the number n of spins in the up direction, whilst the second position k£ = n_ denotes the number
of down spins.

Consider now such a symmetric basis vector |ni,n_). Using (3.12)), it is not difficult to
show that

1
(v,

|7’L+,7’L7> =

(y)
By s (3.17)
=1

where the subindex [ in 3, ; labels the basis vector 3, ; € 8 within the same orbit &"+. Since we

have ( T]L\i ) such vectors per orbit, the sum in the above equation indeed is from [ = 1, ..., ( é\i )

Now given two arbitrary vectors |n4,n_) and |n/_,n’ ), then in order to prove the theorem,
we have to compute the expression

(ng,n_ |V 0/ 0y, (ny,n’ =0,..,N) (3.18)

In the above expression we have used the well-known bra-ket notation. Hence, we have to compute
N N

(n+) ("/Jr)

1 1
D B al bR (Bu gy (gl =0, N) (3.19)
k=1

() /() |

1

a
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By linearity, we may compute this for

N N N
= Z o3(x)os(y) = (Z 0'3(56))(2 o3(y)), and
z,y=1 r=1 y=1
N
2,

(3.20)
separately. Note that
o3el = eq,
03€2 = —€2,,
gie; = ey,,
o€z = e€j. (3.21)
Fix N and ny, and put
I/Vl+ ={ye{l,..,N}| Bn, has e; on position y },
={ye{l,...,N}| Bn, has ey on position y }. (3.22)
Then
#W$++#Wg+=n+~|—(N—n+)=n+~|—n,=N. (3.23)
Both sets are clearly disjoint. We use this for the next computation. We start with hg\l,). Then we
compute
N N
S B 1B > =
(n+) (n;) =1 k=1
N N
1 1 (7L+) (”/Jr) N N
— = <5n+,l|<203 ><203 )Wn k)=
(n+) (n/‘") =1 k=1 r=1 y=1
N N
= <ﬁn+,l|< + > o3 >< DI+ D osly )/Bn B =
(n+) (nﬁr) =1 k=1 xeWl, W yeWwl, yew?,
7L+ 7L+ TL+
N N
— (ny = 1) Bry 11t ) =
(n+) (n’_*_) =1 k=1
(!, = )Xo, ) =
(n!y —n" )25%”,+ Op_ it - (3.24)

Here, we used the fact that the vectors |n4,n_) form a orthonormal basis for Sym” (C?). Hence,

1)

the matrix entries of hgv
on the diagonal.
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(2)

We compute the second term hjy’ in a similar way:

() G2)

/
+

Z 5n+,l |h§\27) |Bn/+,k> =

+

||M

k‘
,_.

3
: =
~—
/—\
3.
+
—~
2

)

iz

")

n

—_
—_
£~

<Bn+,l| Z 01 |ﬁn/+,k> =

~
gz
~—
/—\
3
+\
N
Iy
E
Il
—

—~

+\z

1N "Z) BW'( o+ Y Ul(m)>|ﬁn,+7k>:

) ( zeWl, zeW?2,
TL+ 7L+

(IN) (ljy) ((N VBl 1>+ ()Gl 1)) =
Vno(ny +1)0,, p o1ty (n— +15n+n Y1 (3.25)

We used the fact that the vectors 5n'+ 1 are orthonormal, that

11<N>n _
JE o )

+ =

n_(ng +1), (3.26)

with n/, —1 =n,, and that

@\/&T <év>n+ ny(no +1), (3.27)

(2)

, with n/, + 1 = ny. Hence the matrix entries of hy’ written with respect to the symmetric basis

vectors |n4,n_), are given by 4/n_(n4 + 1) on the upper diagonal and by 4/n4(n_ + 1) on the

lower diagonal.

We conclude that the Hamiltonian with respect to this basis is a tridiagonal matrix with
the desired entries. O

3.2 Numerical simulations

We have seen that the ground state of the N-dependent Curie-Weiss Hamiltonian h](s,W lies in
the symmetric subspace Sym” (C?). This followed from a one line proof using the fact that AW
commutes with the Symmetrizer operator S, and that the ground state of h%w is unique, which
we will prove in Chapter 5. As a result, we could diagonalize the operator originally defined on
®£LV:1 C2, with respect to a basis for Sym® (C?), which we have taken to be the canonical one. In
the previous paragraph, we have showed an explicit formula for the matrix entries of the operator
h%w represented with respect to this basis. In Chapter 4, we will argue that for 0 < B < 1 this
(N + 1)-dimensional matrix, which we denote by Jny1, can be linked to a Schrodinger operator
with a symmetric double well on L?([0,1]), for N sufficiently large, but finite. This will be one of
the most important results in this thesis. Since it is known [37], [14] that for a sufficiently high and
broad enough potential barrier the ground state of such a Schrodinger operator is approximately
given by two Gaussians, each of them located in one of the wells of the potential, we might expect the
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same result for Jy 1, for these values of N. In fact, the first two eigenfunctions of this Schrodinger
operator are approximately given by

ONN Ta(po) + T (o) .
= 7 ;
T —T_
V2
Here, T, is the translation operator over distance a (i.e., (Tyav0)(z) = @o(x *+ a)), where +a
denotes the minima of the potential well. The functions ¢,, are the weighted Hermite polynomials
given by ¢, (x) = e/ 2H,(x), with H,, the Hermite polynomials. We diagonalized the operator

Jn+1 and plotted the first two (discrete) eigenfunctions 1/)5\(,)) and 1/)%). For convenience, we scaled
the grid to unity. (See Figure [3.1 and [3.2).

Ground state eigenfunction
035 T T T

03r

025

04 05 0B

Figure 3.1: The ground state eigenfunction of hf,w, computed from the tridiagonal matriz Jy41 for

N =60, J=1and B=1/2.
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First excited state
0.4 T T T T T T T T T

03F B

02F B

01F B

EIRNS

03t i

_04 1 1 1 1 1 1 1 1 1
0 0.1 0z 03 04 05 06 07 g 09 1

Figure 3.2: The first excited state of hf,w, computed from the tridiagonal matriz Jy.1 for N = 60,
J=1and B=1/2.

From the above two plots, it is quite clear that both eigenvectors of h%w are approximately given
by . However, one has to beware of the following fact: since we do not know if the first excited
state is unique, it might happen that it does not lie in Sym’ (C?). As a result, it could happen
that the first excited state computed from the tridiagonal matrix Jy41, is not the same as the one
from the original Hamiltonian h](\J,W, and then Figure does not make any sense. Fortunately,
we have shown numerically up to N = 12, that the first excited state of h%w represented as a
matrix on the space C2" is indeed the same as the one corresponding to the tridiagonal matrix
Jn+1. Unfortunately, we could not check this for larger NV due to the limited power of the computer.

In Chapter 4, we will see that for 0 < B < 1 each of the two peaks of the ground state
eigenvector of the N-dependent Curie-Weiss Hamiltonian is indeed located in one of the wells of
some symmetric potential. However, due to numerical degeneracy of the ground state wj(\?) and
first excited state 1/11(\}) for about N > 80, these two states will form a linear combination, even
though mathematically the ground state is unique for any finite N. Assuming that 1&](\}) is indeed
in Sym™(C?), then for these relative large values of N, the new (numerical) degenerate ground
state eigenvector is given by the functions

NN

L=

7z

© _ (1)
N N

= 3.29
7 (3:29)
Using this result and equation (3.28)), it follows by a simple calculation that
X+ = Tapo;
X- = T apo. (3.30)

Of course, the functions ¢, (z) now have to be understood as functions on a discrete grid. This is
also exactly what we observe for the values N > 80: plotting the ground state and the first excited
state of hGW (B = 1/2 and J = 1) gives a Gaussian shaped curve, each located in one of the
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wells. For N = 60 < 80, we have seen in Figure [3.1] above that the ground state is doubly peaked
and therefore given by ¢](\([))7 rather than yx4. This makes sense, since the energy levels are not yet
degenerate even for the computer.
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Chapter 4

Curie-Weiss model as a discretized
Schrodinger operator

In the limit N — oo, the ground state of the local Curie-Weiss Hamiltonians h%w from (3.1,
defined on @gzl C? can be linked to the minima of a classical function hOCOW, defined by , on
the commutative C*-algebra C'(B?), with B3 = R? the closed unit ball. This is based on the idea of
deformation quantization, which we will explain in Chapter 6. It is, however, not well understood
how the operators h](\J,W itself converge to the function hSCW when N — o0, only convergence of
the ground state is understoodﬂ However, the Curie-Weiss model can also be linked to a specific
Schrodinger operator. This will be the topic of this chapter. For this, we consider the Curie-Weiss
Hamiltonian, restricted to the symmetric subspace Sym?” (C?). Representing this operator with
respect to the canonical basis |ni,n_) for this subspace yielded a N + 1-dimensional matrix. If
we denote this matrix by Jy.1, then it is also not so clear if the limit limy_, o Jyy1 exists, since
all entries are unbounded in N. When we scale this operator by N, it is easy to see that the
entries of Jyy1/N are bounded. We will see in that this scaled operator corresponds to a
matrix representing a discretization of a Schrédinger operator, where the dimension of this matrix
also depends on the same N. The spectral properties of Jyi1/N and the discretization matrix
will become more similar when N gets larger. However, as we will see, the connection with this
Schrodinger operator makes sense, only for finite IV, since for N = oo, the Schrodinger operator
is not defined. Nonetheless, we will see in that in the limit N — o (read: h = 1/N — 0),
the ground state eigenfunction of this Schrédinger operator converges to some Dirac measure,
corresponding to the minima of a classical function on the commutative C*-algebra C([0,1] x R).
This is again based on deformation quantization, as explained in Appendix [E|or [22, Sec. 10.1].

In the first paragraph we mention some general facts about the diagonalization of the N-dependent
Curie-Weiss Hamiltonian, written with respect to the canonical basis |n4,n_) for the symmetric
subspace Sym”™ (C?). Then we show that the spectrum of Jy 1 contains N + 1 distinct eigenvalues.
The next step is to give an idea of a possible proof showing that for finite, but large N, the
spectrum of this ‘compressed’ Curie-Weiss Hamiltonian becomes approximately twofold degenerate.
In §4.4] we show that the Hamiltonian is ‘almost’ linked to a classical orthogonal polynomial
(since for increasing N we observe numerically that the eigenvectors behave like weighted Hermite
polynomials, one might expect that for these values of N some classical orthogonal polynomials
would play a role.)

The next three paragraphs together explain how the operator Jyi1/N can be related to a
Schrodinger operator with a symmetric double well potential. For this double well, which is the
basis for SSB in the classical limit, we need B € [0,1). For convenience, we take B = 1/2.

!The dynamics of AW, however, does converge to the classical dynamics of A&V (See e.g. |22, Cor. 10.23]).
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In the last paragraph, we use the semiclassical WKB approximation in order to compute the
so-called energy splittings for the symmetric double well potential. The goal is to compare the
energy levels obtained from the matrix Jy11/N to those of the Schrédinger operator analog in the
semiclassical limit i.e., for large but finite N. In a naive way, when the barrier of the potential
is sufficiently high and broad, the double well could be seen as a pair of decoupled harmonic
oscillators. In this case the ground state is doubly degenerate and tunneling is not allowed, i.e.,
in the classical limit. However, in a semi-classical approximation, the particle can tunnel through
the barrier in the middle. This breaks the degeneracy and brings out the first excited state, with a
slightly higher energy than the ground state. The energy difference between both levels is known as
the ground state energy splitting. For an h-dependent Schrodinger operator, this energy splitting
depends on h. In our case, h plays the role of 1/N. We will derive a formula for this energy
splitting applied to a double well potential that corresponds to a Schrodinger operator and that is
extracted from our matrix Jy1/N, all explained in -

4.1 Unfolding the eigenfunctions of the quantum Curie-Weiss
Hamiltonian

Recall that the Hamiltonian for the Curie-Weiss-model on the N-fold tensor product of C? is given
by
J

hCW __ 7
N 2N

o3(z)o3(y) — B Y o1(x). (4.1)
z,yeAN TEA
In order to find the ground state of the Hamiltonian, we have seen that we can represent our
Hamiltonian with respect to the symmetric basis of Sym’¥ (C?), since the ground state lies in this
subspace. This reduces the problem to an eigenvalue problem of an (N + 1) x (N + 1)- matrix. In
Theorem [3.1| we have deduced an explicit formula for the matrix representation of the Curie-Weiss
Hamiltonian with respect to this symmetric basis. The crucial step is that the matrix represented
in this basis is tridiagonal. As we will see later in this chapter, this gives also the link with the
harmonic oscillator in a symmetric double well.

In order to compute the eigenvectors, we need to find the eigenvalues, which can be done
by finding the zeros of its characteristic polynomial. Therefore, we need to compute the
determinant of the matrix h]CVW — A\, where I is the identity matrix and A; the scalar to be
found. However, since we know that the ground state eigenvector lies in the symmetric subspace,
it suffices to diagonalize the tridiagonal Jy,1 with entries given by Theorem Hence, denoting
the ground state eigenvalue by Ag and using Theorem it follows that:

[— 5% (N —0)2 — Xo ~B+VN 0 0]
—BVN —5(N=2)2—Xg —B4/(N-1)(2) 0
Ins1 — Mol = 0 —B\/(N-1)(2) —35(N—4)%—-X 0 (4.2)
0 0 0
L : : : RN PO

We have to compute the determinant of this matrix and solve this for \g. We know from [26] that
the determinant of an arbitrary tridiagonal matrix A is given by det(A4) =

aq b1 e 0
c e 0 {(an —bn_lcn_1> <a2 —blcl> <a1 0)}
det = . (4.3)
Lo b 1 0 1 0 1 0/],
0 Cn—1 (279
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It can be verified that this determinant satisfies the recursion relation:

Jne1(A) = (ans1 — A) fa(N) _'bifnfl(A)
fl()\) = a] — )\
Jo(A) = 0. (4.4)

One can solve this recursion and find an expression for the determinant, i.e., for the characteristic
polynomial. However in our case things get complicated. The restricted Hamiltonian Jy4; has
entries that depend on N, and change when N changes. Consequently, we deal with a recursion
relation with non-constant coefficients, which in general is hard to solve. Computer simulations
have showed that most zeros of the characteristic polynomial are irrational. We did not succeed yet
to give a general solution for the N-depending zeros of this determinant. In particular, the ground
state energy cannot be exactly computed.

We can still get an idea of the way the N-dependent ground state eigenvector behaves. Of course,
this is now a function of the corresponding eigenvalue Ag. Applying the Gauss-Jordan algorithm, it
is easy to see that the coefficients in the corresponding eigenvector can be written as a continued
fraction of finite length that increases with increasing coefficient. The coefficients in the eigenvector
are given below. We let

1
N 2 N
n __ﬁ(n-i-_n—) A0
N
bn+ =-B (n—(n-i- + 1))7 (45)
where n, runs from 0 to N, and ny +n_ = N. Then the coefficients ¢l . in the eigenvector
N = (e, ..., cN) are given by
cév =1
1
N = *—Naévco
b
L[ n_ (00)?
Cy = —— c
2 biv i 1 a(])\[
L] n (b1)?
g = —— c
S N O
1 alY
N[ @
S R G I
- 2 »N 2
aNi(O)
1 aé\f

where the dots run to V. Since we have a free choice for cév , we put cév = 1. In particular, since the
ground state is Zs-invariant we only need to compute the first NV/2 equations for this eigenvector.
Moreover, these coefficients and hence the eigenvector ¢!V still depend on the eigenvalue, which we
do not exactly know. Even if we would know an analytic expression for the desired eigenvalue,
it still would be extremely difficult to understand mathematically how these coefficients behave,
especially if N increases, because the fraction increases with N. Furthermore, when we take the
scaled operator Jy1/N, its coefficients still depend on N, and it does not make computations much
easier. Therefore, it is important to consider the behaviour of ¢!V rather than trying to compute all
these coefficients analytically. This can be easily understood by computer simulations.
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4.2 The spectrum

Fortunately, we can say something about the spectrum, which will be stated in the theorem below.
The proof is based on [30].

Theorem 4.1. The spectrum of the N- dependent Curie-Weiss Hamiltonian, written with respect
to the symmetric basis |ny,n_) for the symmetric subspace Sym™ (C2), consists of N + 1 distinct
etgenvalues.

Proof. Recall that the Curie-Weiss Hamiltonian written in this basis is a N + 1- dimensional
tridiagonal matrix with entries —B4/(N — n.)(n+ + 1), on the lower diagonal, — % (ny. —n_)? on
the diagonal, and —By/(N —n_)(n_ + 1) on the upper diagonal. Here, we fix B = 1/2, and J = 1.
Again we denote this matrix by Jyy1. Since for every N the matrix Jy,1 is of finite dimension,
its spectrum is discrete, i.e. it consists of eigenvalues.

Observe that Jy 1 is real and symmetric and that the lower diagonal and upper diagonal elements

are non-zero. We show first that rank(Jy4+1) = N.

We show that if Jyy1v = 0 has two non-trivial solutions, they are multiples of each other.
Therefore, let v, w # 0 be two non-trivial solutions. Then we get the following N + 1 equations for
the vector components v; of v:

a1v1 + brvg = 0, (4.6)

biv; + a;11vi41 + biviie =0 (Z =1,2,...,.N— 1), (4.7)

byun + an+1VN+1 = 0. (4.
Similarly, we get such equations for w;. From the first equation, we see that vo = =31, which

exists, as by # 0. Similarly, the next N — 1 equations determine that v;1o = M, for

1 =1,2,...,N — 1. These equations determine the vector v, given the first component Zvl. It also
follows that if v1 = 0, then v = 0. The same holds for w. By assumption, vi,w; # 0. Define
c = 11‘)’—11 The first N equations for w; yield w; = cv;, for ¢ = 1,..., N + 1. Thus w = cv. We
conclude that, if there are non trivial solutions, they are multiples of each other. This proves also
that the dimension of the null space is at most one-dimensional and therefore, the rank is a least

N +1—1= N- dimensional.

Now let A be an eigenvalue of Jyyi. This means that there exists a non-trivial solution v
to the equation (Jy4+1 — Al)v = 0. Since the matrix Jy4; is real symmetric, its eigenvalues are
real, and therefore Jyi1 — Al is also real symmetric with non zero lower and upper diagonal
entries. It follows by the previous observation that the null space is at most one dimensional,
and since A is an eigenvalue, it is at least one-dimensional and thus one dimensional. Thus the
geometric multiplicity of A is one. In theory, it could be that its algebraic multiplicity of Jy i1 is
larger than one, but then the matrix is not diagonalizable. Since C' is normal, it is diagonalizable,
and therefore, its algebraic multiplicity is one as well. This holds for any eigenvalue. We conclude
that Jyy1 has N + 1 distinct eigenvalues. O

The same result holds of course for the scaled operator Jy41/N. This shows in particular that the
ground state of this tridiagonal matrix is simple, and hence unique. (This is what we already know
by the argumentation given in ) It also shows that if the excited states of hJ(\J,W are symmetric,
i.e., they lie in the symmetric subspace, so that they can be found by diagonalizing Jy 1, then they
are unique as well.
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4.3 Degeneracy

The original Curie-Weiss Hamiltonian h%w from Equation , defined on ®g:1 C?, does not
converge to some operator on the quasi-local algebra ®;'Zo:1 C%2. The compressed Curie-Weiss
operator Jyi1, is of course an operator on an (N + 1)-dimensional space. It is still not clear if
limy_,o Jy+1 exists, since all entries are unbounded in N. Nonetheless, for each finite N, the
operator is well defined, and hence we can diagonalize it in order to obtain information about the
spectrum and the eigenfunctions. We have already seen that the ground state of h%w is symmetric,
and can be found by diagonalizing Jxy 1. Note that we do not know this result for the excited states.

In this paragraph we argue that for sufficiently large but finite N, the lowest eigenvalues of
the spectrum of Jy; and hence of Jy41/N, become approximately two fold degenerate with a
fixed energy splitting. Of course, these arguments are based on numerical computations. We have
already deduced a formula for the characteristic equation of the operator Jy.1/N given by .
We can rewrite this formula in a more suitable form. This will be given in the next theorem.

Theorem 4.2. The characteristic polynomial of the scaled compressed Curie-Weiss Hamiltonian
JIN+1/N is given by

det(JN+1/N - )\1> =pn+1(N) = p%()\) (pgf+1()\) - b?V/ngq(/\))- (4.9)

Here py is the characteristic polynomial corresponding to the square matriz of dimension N /2 that
2
forms the left upper block in the matriz Jyy1/N. Similarly, the characteristic polynomial pn 4
N+

corresponds to the square matriz of dimension N/2 £ 1 that forms the left upper block in Jyy1/N.
The number by sy denotes the off-diagonal element of JNn+1/N on position N /2.

Proof. The proof of this theorem is based on [36].
Assume for convenience that N is even. Put

Aqy A12}
A= : 4.10
[A21 Az (4.10)
and
Bi1 B
B = . 4.11
[321 322} (4.11)

Here Ajp and By are square matrices of dimension N /2. Ay and Bj; are matrices of dimension
1, and Ajg, A2, B12 and Bg; are non-square matrices of dimension 1 x N/2 or N/2 x 1. Now, we
consider the following matrix of dimension N/2+ N/2+1= N + 1:

An Aqo 0
D= |Ay1 Ay + By 0 . (4.12)
0 Boy Bas

This matrix is called the 1— subdirect sum of A and B, denoted by D = A @®; B. We write
ase = Asg and b1y = Bi1, to display that these are matrices of order 1 x 1.

We shall deduce a formula for the characteristic polynomial corresponding to D. The determinant
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is a multilinear function of its columns, so we have

det(D — A1) = (4.13)
4.14)
[ A1 — A1 Ajz 0
det Aoy az + b1 — A1 Bis = (4.15)
0 By By — A1
(4.16)
_All - Al Aio 0 Al — A1 App 0
det Aoy agse — A1 0 + det Aoy b11 Bis . (4.17)
i 0 By By — A1 0 By1 By — A1

This leads to
det(D — A1) = (4.18)
det(A — Al)det(BQQ — )\1)+ (419)

b11 Bia ]

det(A11 — Al)det {321 Boy — M|

We apply this result to our matrix tridiagonal matrix Jyi1/N.

It follows that agss = b11 = 0,417 = Boyg € ME(R), and Ay = Ao = Bia = By are the
2
(N/2 x 1)- matrices with on the last entry the element —B4/(1 — 1/2)(1/2 + 1/N). It follows that

det(Jyi1/N — A1) = (4.21)
0 Bia
det(A11 — A1) (det(A — A1) + det [321 Boy — )\1} > (4.22)
Bis

0
Note that A and [321 Bay — A1

of the latter matrix is given by

] are both in € My (R). It is easy to see that the determinant
2

B? p
—7(1/2—# 1/N)det(A — A1). (4.23)
Here, Ae M ~_;(R) is the matrix A;q, but with the last row and column deleted.
2
We write

=3
|z

) 11 (A) = det(A — A1),
PN ()\) = det(A11 — )\1),
(A = det(A — A1), (4.24)

[

p

S

the characteristic polynomials of the matrices A, A1; and A respectively. Finally, we put

by = —B+/1/2(1/2 + 1/N). (4.25)

Then, in this notation, we have showed that

det(Jy+1/N — A1) = p%()\) (pg’ﬂ()\) - b?\f/ng1()‘))- (4.26)
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The eigenvalues are obtained by setting the above equation equal to zero. We know by Theorem
that all eigenvalues are distinct for each N, so that the characteristic polynomials factors completely.
However, it is still extremely difficult to find the exact eigenvalues, since we do not know the
functions px exactly. Moreover, it is a priori not clear how the zeros of py are related to the zeros
of pn 4. FOQrtunately, from numerical simulations, we do have a relation bzetween some of the zeros

of the different characteristic polynomials. This is stated in a conjecture below.

Conjecture 4.1. The smallest two zeros Ny and )\iNH of the characteristic polynomials py and
N S+ 2

2
pN ., respectively, defined above, satisfy the inequality
T+

|)\Z% - Z%i1| < ﬁv (Z =0, 1)7 (427)

for sufficiently large N, i.e. there is a natural number Ny and a real number C > 0 such that for
any K > Ny, we have

(i=0,1). (4.28)

Assuming this statement is true, we can use this result to say something more about (4.9). Setting
det(Jy4+1/N — A1) = 0, it follows that

Py (Npy 1 (V) = by jopx Mpar 1 (A). (4.29)

N4

By the previous theorem, we have Ay ~ for N sufficiently large en ¢ small. Since polynomials

i
Ny
2 2 =
are determined by its zeros, one might expect that for these values of N the polynomials pnx and
2
pn ., are approximately equal on an interval of the domain where these zeros are located.
T+

As b?v P ha 0 for any N, this will indeed confirm that the eigenvalues become approximately doubly
degenerate.

Keep still in mind that this approximation of degeneracy will never become an equality, since N
needs to be finite in order to speak about a proper quantum system, and hence about eigenvalues,
in the first place. As we have mentioned before, we will explain this in detail in Moreover, it
is not clear what the limit of such a polynomial will be.

4.4 Link with orthogonal polynomials

In this section we will use orthogonal polynomials to deduce some properties of our tridiagonal
matrix. We are given the N + 1-dimensional Curie-Weiss Hamiltonian, written with respect to
the canonical base for the subspace Sym®™ (C?) of @gzl C2 ~ C2". The corresponding matrix
representation was denoted by Jyi1. We again put B = 1/2 and J = 1.

If v is an eigenvector of Jyy1, then we can write Jyi v = Av with v = Zi]\;() wie; # 0,
where {e;} is the standard basis for CN¥*1. As the matrix is real and symmetric, the coefficients ;
are real. We denote the diagonal terms by b; and the off-diagonal terms by a;. In this notation we
have

JIni1€; = aj—16,—1 + bie; + ajr1€441, (430)
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and
N N
JIN+1 Z i€ = Z piJN1€; = (4.31)
i=0 i=0
N
Z pi(ai—1€i—1 + biei + ajy1€i41) = (4.32)
i=0
N
Z(uiﬂa@- + bifi + aipti—1)e;. (4.33)
i=0
It follows that
A = aifliy1 + bipy + ajpi—1 i =0,..., N, (4'34)

with o = 1 and p—; = 0. This is a three-term recurrence relation associated to the symmetric
tridiagonal matrix Jyy1. Since the diagonal entries are all real and the off-diagonal terms are all
strictly negative for each N, the corresponding infinite matrix Jy is a Jacobi matrixﬂ However, we
will always focus on the semiclassical regime, i.e., for large, but finite V. One can try to solve this
recurrence relation using discrete orthogonal polynomials {P;}Y ;. Then the above equation reads

)\Pl()\) = aif)l'Jrl()\) + blpz(A) + aiPi,l()\) 1=0,...,N, (435)

with Py(A\) = 1, and P_1(A\) = 0 and with A in the spectrum of Jy. If we normalize this relation,
we find that the above equation is equivalent to

APi(\) = Pyt (A) + biPi(A) + a2 Pi_1 (). (4.36)
Plugging in the expressions for b; and a; gives

AP(Y) = Prya(3) = 5(20 = NPR(Y

1

J(N + 1)) Pi (). (4.37)

Note that these coefficients are unbounded in N. The coefficients of the above normalized recurrence
relation look a bit like the ones from Krawtchouk as explained in [20] for p = 1/2, since his normalized
recurrence relation is given by

AP;(A) = Pisai(A) = [p(N — i) +i(1 = p)]Pi(A) —ip(1 = p)(N + 1 — i) P_1(N). (4.38)

Unfortunately, for p = 1/2, only the term in front of P;_;(\) will match the corresponding one in
our recurrence relation. The Askey scheme [20] has been checked and there is no known classical
orthogonal polynomial that solves our recurrence relation. So the approach through orthogonal
polynomials seems a dead end, but it was worth a try.

In the next paragraph, we are going to link the operator Jy41/N to a Schrodinger operator. Thus,
considering (4.37) for Jy41/N, gives:

LG 12RO - (- )

AP;(A) ZPi+1()\)—§(N— ) 1 N +N)N)

Pa(). (4.39)

This time, the coefficients are bounded, but there it still no classical polynomial from the Askey
scheme that solves this recurrence relation (4.39)).

2A Jacobi matrix A is an infinite symmetric tridiagonal matrix with real diagonal coefficients, and non-zero
off-diagonal coefficients that are all positive or all negative. The domain of the Jacobi matrix is defined as D(A) =
{x e ?| Az e (?}.
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For every finite N, each eigenvector of Jyy; is an element of RV*! and therefore one can

expand it in an orthonormal basis, say the standard one. If one can show that there exists
polynomials P;(\) such that the coefficients in this expansion are the same as the P;(\) for
¢ = 0,...,N, which is then equivalent to the fact that these polynomials solve the recurrence
relation, we are done.

We still don’t know yet how to find these polynomials. The problem relies on the fact that in the
normalized recurrence relation, there are two quadratic terms in ¢ which makes that we cannot
easily apply the Askey scheme.

4.5 Locally uniform discretization

In this section, we start giving the basic principles of discretization of a second order differential
operator. We will do this on a uniform as well as on a non-uniform grid. Moreover, we make a link
between symmetric tridiagonal matrices and a discretization of a Schrédinger operator. Secondly,
we apply these result to the Curie-Weiss Hamiltoniann, written with respect to the canonical
symmetric basis for the subspace Sym” (C?) of ®N | C? ~ C2". For reasons regarding SSB, we still
fix B =1/2 and J = 1 and keep these parameters fixed, unless specified otherwise. As before, we
denote this matrix by Jn41

Discretization is the process of approximating the derivatives in (partial) differential equations
by linear combinations of function values f in so-called grid points. The idea is to discretize the
domain, with N of such grid points, known as a grid. We give an example in one dimension.

O=[0,X], fi~f(z:), (i=0,.,N), (4.40)

with grid points z; = ¢A and grid size A = X/N. The symbol A is called the grid spacing. Note
this the grid spacing is chosen to be constant or uniform in this specific example. For the first order
derivatives (see also Appendix , we have

of . f@+Ax) — f(2)
e ® = Am T
. f@) - f(@ - Ax)
N Alglcrgo Ax
. f@+Ax)— f(z - Ax)
B Aligo 2Ax ' (441)

These derivatives are approximated with finite differences. There are basically three types of such
approximations:

af ~ fi—i—l - fl .
< 3x>i N T AL (forward difference)
of Ji — fi1 )
(ax>i N TAr (backward difference)
of\ . firn—fir .
<§x>i ¥ T oAR (central difference). (4.42)

It can be shown (Appendix that the central difference approximations are more accurate.
Therefore, we will focus on the central difference approximation method and apply this to the
second order differential operator d?/dx?. In the example above, the grid spacing was chosen to be
uniform. Consider this example again, now on the domain 2 = [0, 1] with uniform grid spacing
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A = 1/N. It can be shown (using (B.12])), that the second order derivative operator is approximately
given by

I~ U QAf; * i (i=1,..N), (4.43)

where we have thrown away the error term term O(h?) in (B.12)). It follows that we can write the
second derivative operator in matrix form

-2 1

= (4.44)

This matrix is the standard discretization of the second order derivative on a uniform grid
consisting of N points of length A - N, with uniform grid spacing A. In this specific case, we have
A =1/N. We denote this matrix also by 2z[---1 —21--]y.

Suppose now that we are given a symmetric tridiagonal matrix A of dimension N with
constant off- and diagonal elements,

b a
a b a O
A= (4.45)
O a b «a

We are going to extract a kinetic and a potential energy from this matrix. We write

b
A=al -1 o 1-]y=al -1 —21--]n + diag(b+ 2a), (4.46)

where the latter matrix is a diagonal matrix with the element b+ 2a on the diagonal. It follows that
A=T+YV, (4.47)

forT=al---1 —21--]n, and V = diag(b + 2a). In view of the above, the matrix 7' corresponds
to a second order differential operator. This matrix plays the role of , but with uniform grid
spacing 1/4/a on the grid of length N/y/a. Since the matrix V is a diagonal matrix, it can be
seen as a multiplication operator. Therefore, given such a symmetric tridiagonal matix A, we can
derive an operator that is the sum of a discretization of a second order differential operator and a
multiplication operator. The latter operator is identified with the potential energy of the system.
Hence, we can identify A with a discretization of a Schrédinger operator

The next step is to understand what happens in the case where we are given a symmetric
tridiagonal matrix with non-constant off- and on-diagonal elements. This is important as we will
see, since the Curie-Weiss Hamiltonian, written with respect to the canonical symmetric base for
the subspace Sym’ (C?) of c2 ~ @7]:7:1 C?, is precisely an example of such matrix. The question
we ask ourselves is if we can link such a matrix to a discretization of a Schrédinger operator as

3Strictly speaking we have to put a minus sign in front of T, as the kinetic energy is defined as fj%.
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well.

Let us first review the second order differential operator j—;. In most central finite difference
applications non-uniform grids are employed, allowing the grid to be more refined in regions where
strong gradients are expected. In that case the grid points x; (i = 1,...,N) are not uniformly
distributed over the domain. We define:

hj-i—% =Tj+1 — X5 (Z = 1, ,N) (4.48)

The length of the domain of discretization is then given by

N
dihir.
j=1

Using a central difference approximation, it can be shown (see Appendix [B| formula (B.16))) that
the second order derivative is given by the expression

"no_ 2fj—1 o 2f

f] - J
hi i(h; s +h. 1) h,_ih,

(4.49)

[NIES

2fj+1
h. 1(h» +hj+%)'

A A

(4.50)

NI
NI

Again, we have thrown away the error term O(h?), and we assumed that we may neglect the
relative small term h, 1= h;_ 1 in (B.16]). Like for (4.44]), we can also derive a matrix for the

second order derivative. This time the matrix entries are non-constant and they are given by
(B.17)), (B.19) and (B.18]).

Finally, suppose we are given a symmetric tridiagonal matrix B with non-constant off- and
on-diagonal elements. As for the uniform case, the question we asked ourselves was whether we can
link this matrix to a discretization of a Schrodinger operator. Note that we cannot easily apply
the same procedure as in the uniform case since, the matrix entries are not constant. Therefore,
we identify the matrix B with . It follows that

Bjj+1 = , (4.51)
hyea(hy g +hyt)
—2
j—3'i+3
B 2 (4.53)
-1 = : :
hjf%(hjfé + thr%)
We can compute the non-uniform grid spacing h]. +1 as follows. We put
2
Bjje1 _ M4
pi = =2 = . (4.54)
We derive from this combined with the above three equations that
2
A T E— 4.55
it Bjj(l+p)) (4.55)
From (4.53)), we also find
2
h2 = . 4.56
IV By (1py + 1) (4.56)
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From h(j—1)+1/2 = hj—1/27 it now follows that

1
pj—1 = —, or equivalently, (4.57)
Pj

Bjs1j = Bj-1,j-2, and Bjj1 = Bj-3, (4.58)

where we used the fact that that the matrix is symmetric. This means that the off-diagonal matrix
entries of B must have the form ¢, d, ¢, d,c,d,...,. If this is the case, then indeed we can identify B
with a discretization of a second order differential operator. This is clearly true for , since the
off-diagonal entries are all equal. Moreover, the potential energy is then obtained by subtracting
from the diagonal of B. The result is that such a tridiagonal matrix with this symmetry of
the off-diagonal elements can also be written as sum of a kinetic and a potential energy operator and
hence corresponds to a discrete analog of a one-dimensional Schrodinger operator in a potential well.

This closes the first part of this section. In the next part, we apply these result to our
tridiagonal matrix Jy,1. Our goal is to explain that Jyi1 locally approrimates a discretization
matrix of the form (for N large) corresponding to a Schrodinger operator that describes
a particle in a symmetric double well potential. This means that there exists a sub-block of
Jni+1 that has the form approximately given by the sum of %[ -1 =2 1-+] (for some h
to be determined) and a diagonal matrix playing the role of a potential. This implies that
the matrix Jy,1 applied to vectors that are nonzero on some subset W of the domainEL and
zero outside W, yields the same vectors as the discretization matrix applied to these vectorsﬂ
Indeed, the existence of such a sub-block explained above is equivalent to the existence of the
subset W of the domain of discretization on which this discretization is approximately uniform
(which meaning has been explained at the beginning of this section)ﬁ In §4.6) we will derive
an explicit formula for this discretization matrix. Moreover, we will see that to a very good
approximation even the spectral properties of both different matrices coincide and that this
approximation gets better with increasing N. In we finally explain how to link this matrix
to a Schrédinger operator on L2([0,1]). For the remaining part of this section we are going to
show the extremely important fact that grid spacing is approximately constant on some subset of
the domain of discretization. This observation is the basis of the link with the Schrodinger operator.

Thus consider the matrix Jyy1. This matrix is tridiagonal with non-constant off- and diagonal
entries. In view of the above, we therefore apply the non-uniform discretization process in order to
identify this matrix with a discretization of a second order derivative operator and a multiplication
operator. At first sight, for any finite N > 0, the matirix Jy;1 does not have off-diagonal elements
of the form ¢,d, c,d, c,d, ...,, let alone ¢, ¢, ¢, ¢, ...,. However, we will argue (details given in and
that the scaled matrix Jyy1/N locally approximates some discretization matrix a la (4.45)
corresponding to a Schrodinger operator describing a particle in a symmetric double well potential,
for large, but finite N. In order to show this, we see in this paragraph that in the limit N — oo
we have uniform discretization on some interval, even though the limit point at N = oo does not
exists. Making N large enough, this discretization will be already almost uniform and thus we
have an approximate kinetic energy with emergent Schrédinger operator.

We identify the subset W of the domain of discretization (which is some subset of R) with a subspace of the
vector space RY, where N denotes the number of grid points.

5Strictly speaking this is not true since the discretization is approzimately uniform, so that the off- and diagonal
matrix entries are not constant. They are only constant in an approximation.

SWe will stick to this notion of ‘locally approximation’ in the remaining part of this paragraph and chapter.
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We write T' = Jy11. Then as before, consider the ratios:

hj—ip  Tjyo .
Pj = hji/ = T’J.+ (] = 1""7N)7 (459)
j+1/2 -1

with non-uniform grid spacing h;i/,. We divide the original tridiagonal matrix Jy41 by N for
scaling. Thus, we consider Jy1/N. If we then compute the distances hjq /2, we see that they
are almost all of O(1), except at the boundaries. Since we then have approximately N distances
of each order 1, we will see later that the corresponding Schrédinger operator analog of the matrix
Jn+1/N will be an operator on a domain of length of order N

First, we compute the ratios p;:

’ Tj—l (N—]+1 —j+1 1+N]V '
1 1
A1+ v 1+Z =1+0(1/j) and (4.61)

1 1 1
1+1/(N—j)%1_2(1\7—j):1+0<]\7—j>’ (4.62)

we see that the ratio satisfies

Since

pj%1+0(1/j)+o<N1_j>, (4.63)

using the fact that that the big-O notation respects the product, that O(%ﬁ) < O(1/7), and also
11 1
OG5 x=) < Olz=)-

In the next paragraph, we will see from numerical simulations that to a good approximation the
ground state eigenfunction is a double peaked Gaussian with maxima centered in the minima of
some double well potential that we are going to determine. This potential occurs in a discrete
Schrodinger operator analog of the matrix Jy41/N for N large, i.e., in the semiclassical limit.

By these calculations, it follows that when we map the double well on the unit interval the two
minima of the symmetric double well are given by

hl + 4.64

5t 4f (4.64)
These minima are of order 1, and when we consider the potential on the original domain of order
N, the minima are (compared to N) of order

N(; + 1\@) = O(N). (4.65)
Furthermore, we showed by numerical simulations (Figure [4.1] below) that the width o of each
Gau551an—shapedl ground state of Jy 1 located at one of minima of the potential is of order v/ N, and
hence that each peak rapidly decays to zero, so that the ground state eigenfunction is approximately
zero at both boundaries. In particular, the domain where the peak is non-zero is of order v/N, as
we clearly observe from the figure. This is an approximation, since we neglect the (relatively
small) function values of the Gaussian that are more than O(v/N) away from the central maximum.
However, this approximation is reasonable, as the Gaussian decays to zero exponentially.

"We mean that if we plot the discrete points and draw a line through these points, then the corresponding graph
has the shape of a Gaussian.
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Width of ground state against dimension M on a log scale
348 T T T T

log(c)

i i i H
45 5 55 5 B.5 7 A8
log (M)

Figure 4.1: The width at half height of the ground state eigenvector of Jny+1 (B =1/2 and J =1)
against N, for N = 100 : 50 : 1500 on a log scale. The slope of the line is about 0.5, which means
that the width o goes like VN.

This observation (the plot above) is extremely important, as we will see now.

Let us first focus on the left-located Gaussian. For a point j in the domain of order N,
clearly j € O(N). Therefore, for N large enough,

pj ~1+O(1/N), (4.66)

since for these values of j < N — j we have O(ﬁ) < O(1/j). For the right-located peak, we have
N — j < j, so that in this case O(1/j) < O(ﬁ), and we find

pj ~ 1+0< > (4.67)

N—j
We will now show that on an interval of length of order v/ N, we indeed have uniform discretization.

We start with the peak on the left. Since the error per step that we make equals pj;, it
follows that the error on the interval of length of order o, equals p7 ~ (1+ %)" for j < N —j and
N large.

Denoting the off-diagonal element corresponding to the minimum xj, of the potential well
by Tj,, for the off-diagonal elements within a range of order o, we derive the next estimate:

1 o

1 o o
T3~ Tiosol = 113 = O( (14 )7 )Tl = Tl =004 )| < O (469

where we used (1 +1/N)? < 1+ C% and the fact that T}, is of order 1. Here, C' > 1 is a constant
independent of N.

Since the left peak of the Gaussian eigenfunction is approximatley non-zero within an interval of
length of order v/ N, we apply the above estimate to o ~ v/N. We see immediately that | Tjo — Tjo+o!
goes to zero. Therefore, on an interval of length of order v/N centered around the left minimum Zj,
of the potential, the off-diagonal elements become the same in the limit N — co. This means that
the grid spacing becomes constant and hence that we have locally uniform discretization of the
domain. By symmetry, the same is true for the peak located on the right of the well. We conclude
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that the tridiagonal matrix locally behaves like a kinetic energy (and therefore like a discretized
Schrédinger operator). This is an approximation, because we may only consider finite N. All this
will be explained in more detail in the next two paragraphs.

Furthermore, note that this result is independent of the location of the interval of order v/N.
However, since we observe numerically that the Gaussian-shaped ground state located in the
domain of order N attains its maxima at N (2 + 4 3) and exponentially decays to zero, the only
interval that might play a role is the one centered around these maxima. We come back to this
point in the next paragraph.

4.6 Link with a discrete Schrodinger operator

As we have already mentioned in the previous paragraph, our aim is to show that the matrix Jy41/N
locally approximates a discretization matrix corresponding to a Schrédinger operator describing a
particle in a symmetric double well. We started with the symmetrix tridiagonal matrix Jyy1/N
with non-constant entries. In order to link this matrix to a second derivative and a multiplication
operator, we needed to apply the non-uniform discretization procedure. The off-diagonal matrix
entries of Jy11/N do not have the form ¢, d, ¢, d,c,d, ..., for any finite N. Therefore, we could not
immediately identify this matrix with a second order derivative operator. However, we have seen
in the limit N — oo, that we have uniform discretization on some interval of the total domain
of discretization. Consequently, for sufficiently large, but finite N, this discretization becomes
approximately uniform. From this fact, we will extract a matrix of the form corresponding
to a Schrodinger operator on L2([0,1]). We now state the main results of this paragraph and
For this, we consider the matrix Hy, defined as

I:[N = TN + VN, (4.69)
where

Ty = —é[. 1 =21y (4.70)

and Vy a diagonal matrix given by

= 5212 -B(y /0 - D)L - D)) =18 @
2'N NN N N N’'N

We show that the matrix Jyi1/N locally approximates Hpy.1 for N large, but finite. Recall
that this means that there exists some subset of the total domain of discretization on which the
discretization is approximately uniform (with grid spacing approximately given by +/8), and gets
better with increasing N. This in turn means that the matrix Jy,1/N contains a sub-block of the
form approximately given by the sum of —7[ ‘1 —21--]ny41 and a diagonal matrix, given by
- We see in this section that to a very good approxmnatlon even the spectral properties of
both matrices coincide and get better with increasing N. In § we show that the matrix Hy is
a discretization of a Schrédinger operator on L?([0,1]), denoted by ho and defined as

—— + My, (4.72)
with Cy = N~2. The potential V (for B = 1/2 and J = 1) is then given by the continuous function

V) ~ 5y -1~ V-, yelo1] (173
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For h = %, we recognize the well-known Schrédinger operator (2.46|). It is now clear why N needs
to be finite: the case N = o0 (or h = 0) implies that the Schrodinger operator is no longer defined.

The next step is to show that the matrix Hyy; defined by can be indeed locally
approximated by Jyi1/N. As we have seen in the previous paragraph, for N large enough, we
locally have an approximate uniform discretization of the domain of discretization, using the fact
that some of the off-diagonal elements are approximately constant. Similar as for explained
in this implies that we can identify a sub-block of this matrix with a second order derivative
and hence with a kinetic energy 71" and a potential V. The latter operator is obtained by subtracting
the kinetic energy contribution to the diagonal from the diagonal of the original matrix Jy41/N.
Let us first focus on the kinetic energy. As explained in we want to identify this sub-block to
a kinetic energy operator of the form:

1

el =21 (4.74)
This matrix is the second-order derivative on a grid of length h-dim(sub-block), where the dimension
of this sub-block is approximately equal to v/N, as explained in the last part of The constant
h denotes the uniform grid spacing[f] This value can be determined using Appendix [B] or The

value of h is fixed by (B.22)), i.e.,

2
hjsrp = | =5 475
T \/ Tj5+1(1 + pj) (7

As we know, for large N, the values h;,1 are approximately constant on some specific subset of
2

the domain. This subset was located around the maxima of both Gaussian-shaped ground state

peaks. If we then denote the grid spacing at the central maximum of both Gaussians by A we

jo+3°

find numerically that h12'0+ 1 ~ 8, for N = 5000. This approximation gets better for increasing N.
2

Moreover, we observe also from numerical calculations that the approximation of the number 8 by

h? 412 becomes better for those values of hj,q/, that belong to the entire subset of O(+v/N), when
N gets larger. This verifies that the subdomain centered around zj, is uniformly discretized with
grid spacing h = v/8. We have shown that the matrix Jy1/N contains a sub-blockﬂ for which the
kinetic energy is approximately given by , for h = /8. Since we have seen that locally around
the maxima of both Gaussians the kinetic energy contribution to the diagonal approximately equals

2/h? ~ 1/4, it follows that the potential V is locally approximately given by
V ~ diag(JN+1/N) - 1/4. (476)

Hence, the matrix Jy41/N contains two sub-blocks that can be approximately written as sum
of a kinetic energy T and a potential energy V. We will see that the potential V approximately
equals the matrix Vy (defined by ) locally around both maxima of the Gaussians. By
definition of Hp, it then follows that the matrix Jyy1/N applied to vectors living on this
subset of the domain of order +/N on which the discretization is approximately uniform,
and are zero outside this set, approximately yields the same vectors as the matrix Hy 41 applied
to these vectors. This indeed shows that the matrix Hy,1 can be locally approximated by Jy1 /N.

The next step in the process of the analysis regarding the matrix Hy is to explain how the
potential Viy given by (4.71)) is obtained.

8Note that this result is in accordance with (4.47) for a = 1/h?, since the corresponding grid spacing is 1/y/a = h.
9By symmetry of the ground state, there are two subsets of order /N on which the discretization is uniform. As
a result, the matrix Jy+1/N contains two of such sub-blocks.

02



CHAPTER 4. CURIE-WEISS MODEL AS A DISCRETIZED SCHRODINGER OPERATOR

In order to find this matrix Vi, we start again with Jyi1/N. We apply the same procedure as
before, namely, we first compute the contribution of the ‘kinetic energy’ Ky to the diagonal of
Jn1 on the entire domain of discretization, using the formula

Kn(j,7) = — (j=1,...,N +1). (4.77)

We use quotation marks to indicate that Ky is not a kinetic energy, because the discretization is
not uniform globally. We just use this as a trick to compute Vy for the matrix Hy. As before,
we compute Vi by

Vv = diag(Jy+1/N) — Kn(5,5), (G=1,...,N +1). (4.78)

We are going to simplify - We start Wlth Jn+1. Write Kn(k,j) = K’k’j, Vn(k,j) = Vk,j and
JIn+i1(k, j) = Ji ;. Elaborating formula (4.77)) for Ky gives

Kjj=—(Jj -1+ Jij), (4.79)

where J; j1+1 are the off-diagonal entries of the tridiagonal matrix Jy1. Plugging in the expressions
for J; j+1, shows that the above equation is equal to

Kjj=BH(N—=5)(+N)++/(N—j+1)j). (4.80)
It follows that (4.78]) reads
Vij=Jjj— (=(Jjj-1+ Jjj+1))- (4.81)

One should mention that the above equation approximately equals formula since
TM ~ i, locally around the maxima of the Gaussians for N large enough. This is almost exact
when N is large enough, since on this subset we may indeed speak about uniform discretization
and thus a kinetic energy.

Plugging in he expressions for J; ; and T} j+1 gives

Vi = —g(2i = NP = B/ =)0+ 1 + /(N + 1)), (182

Using the identity j = 4 N , the above expression ) for the potential equals

V= N( - 502 - 17 B(\/(l—jzf)(]<,+]1,)+\/(1—]<,+]1,)]jv)> (4.83)

Then for Jy11/N, we see that the factor N in front of the above equatlons disappears. Wlth abuse
of notation, we put Vy = V/ N. Note that Vy is indeed given by (4.71)). Then using ) for the
kinetic energy, we define the (N x N)-matrix Hy by

Hy =Ty + Vy. (4.84)

This shows how the potential VN and therefore the matrix H n is constructed. As we will see in
this is in fact a discretization of the Schrodinger operator (4.72]).

We have to be careful with the domain of the matrix Jyy1/N. The length of the domain

10This follows from the fact that p; is not approximately equal to one for alli = 1,..., N + 1.
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is given by the sum of all distances h; /. Here, j runs from 0 to N. We computed this length
and this approximately gives 2. 4N, for N large enough. Therefore, each point z; in the domain
corresponds to the sum Zk L Py1j2- In particular, Y70 hyiq2 ~ 2.4N. However, as we have
just seen, the operator T and hence Hy are defined on a domain of approximate length of v/8N,
which is fortunately the same order as 2.4N.

Remark. Consider the Schrodinger operator with a symmetric double well potential, given
by - Recall from - 3.2| that for a sufficiently high and broad potential well, the ground state
of such a Schrédinger operator is approximately given by two Gaussians, each of them located in
one of the wells of the potential. This fact will be useful for the next observations.

We will now see that the Gaussian-shaped ground state of Jyy1/N, indeed localizes in both
minima of the potential well V. Therefore, we have made a plot of the scaled potential Vi from
equation on the domain of length 2.4N, for B = 1/2 and J = 1. See Figure below. We
immediately recognize the shape of a symmetric double well potential. The points in its domain
are given by z; = > _, hiy1jo for j = 0,...,N. Then we diagonalized the matrix Jy1/N and
computed the ground state eigenvector. We plot this together with the potential in Figure One
should mention that there is only one Gaussian peak visible, not two. As we have seen in this
was due to the (in)accuracy of the computer i.e., the first two eigenvalues are already degenerate.
Therefore, the system is completely decoupled and thus the computer randomly picks one of the
two Gaussians as ground state, even though we know from the Perron-Frobenius Theorem (Chapter
5) that the ground state is always unique for any finite N. We also observe that the maxima of the
Gaussian ground state peaks are precisely centered in the minima of these two wells (as should be
the case).

Ground state eigenfunction M gng potential v

025 T T T T
O
02r V(X) B
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0 . . . .
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domain
Figure 4.2: The scaled potential Vy and the ground state eigenfunction corresponding to Jyy1/N
for N = 1000. The potential is shifted so that its minimum s zero. The length of domain is
approximately equal to 2.4N as explained above. The parameters B = 1/2 and J = 1 are still fized.

From this figure, it is immediately clear that the ground state is localized in (one of the) minima
of the double well.

One might suggests that there would be some critical value of N for which the eigenvalues
are not yet degenerate for the computer. We have seen that this value of N is about N = 80. We
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made a similar plot for the ground state for N = 60, like Figure in We recognize the
well-known doubly peaked Gaussian shape, but now it is localized in both minima of the potential

well. This is displayed in Figure[4.:3] These figures show that there is a convincing relation between
the matrix Jy41/N and a Schrodinger operator describing a particle in a double well.

The double well shaped potential is a result of the choice B = 1/2. The value of the magnetic

field needs to be within [0,1) in order to get spontaneous symmetry breaking of the ground
state in the classical limit N — c. For B > 1 the Curie-Weiss model will not display SSB, not
even in the classical limit. In two different classical limits will be discussed. One of them

corresponds to the double well potential. Without going into details now, it is a fact that the
classical limit of a Schrédinger operator with a symmetric double well potential corresponds to
a doubly degenerate ground state that breaks the Zs-symmetry. For a single well potential, the
classical limit is non-degenerate and does not break the symmetry. As we will see soon, the matrix
Jn+1/N is a discretization of such a Schrédinger operator on L2([0, 1]). However, the parameter B
determines the shape of the well. For B > 1, the well will be a single potential. This is clear from
Figure [£.4] In view of the corresponding Schrodinger operator, the ground state in the classical
limit will not break the symmetry for a single potential well, and is therefore also compatible

with the Curie-Weiss model for B > 1. This result is also in accordance with the Quantum lisng
model [22, Thm. 10.11].

Ground state eigenfunction % and potential V
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Figure 4.3: The scaled and shifted potential Vi from the previous figure, and the ground state

eigenfunction corresponding to Jyi1/N for N 60. Also here, the length of domain is
approzimately 2.4N. The ground state (discrete) eigenvector is normalized to 1.
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Ground state eigenfunction W ang potential v
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Figure 4.4: The scaled and shifted potential Vi for B = 2 and J = 1, and the ground state
eigenfunction corresponding to Jyy1/N for N = 60. The single well is clearly visible. Also now,
the ground state eigenvector is normalized to 1.

We now turn back to the regime 0 < B < 1. One can compute the spectral properties of the
matrix Jyi1/N and compare them with those of the operator Hy. This will be the next step.
We will see that to a very good approximation the spectral properties of both matrices coincide
and get better with increasing N. We have programmed the matrix Hy in MATLAB. The matrix
has been diagonalized. The spectral properties have been compared to those of Jyy1/N. In the
table below, the first 10 eigenvalues denoted by A, are displayed for the operator Hy. The same
is done for the matrix Jy11/N. These eigenvalues are denoted by €,. The number N = 1000 is fixed.

Eigenvalues

n An €n

0 -0.6251 -0.6251
1 -0.6251 -0.6251
2 -0.6234 -0.6234
3 -0.6234 -0.6234
4 -0.6217 -0.6217
5 -0.6217 -0.6217
6 -0.6200 -0.6200
7 -0.6200 -0.6200
8 -0.6183 -0.6183
9 -0.6183 -0.6183

We see that these ten eigenvalues are exactly the same for both systems up to four decimals. Our
simulations showed that the eigenvalues differ from the sixth decimal for n = 0,1,2,3,4 and from
the fifth decimal for n = 5,...,9. It is also clear that all these eigenvalues are doubly degenerate, at
least up to four decimals.

We made a plot of the ground state eigenfunction of Hy as well. This function has been
compared to the ground state of Jy,1/N. Both graphs are displayed in Figure
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Ground state eigenfunctions
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Figure 4.5: Both ground states plotted on the domain of order N, for N=1000. U corresponds
to Hy and ®© to JIn+1/N.

In fact, since the ground state is already numerically doubly degenerate for N = 1000, the computer
picks a linear combination of the two eigenvectors, as already explained in This choice is kind
of random, since when one changes N, the computer might pick the left located peak as a ground
state as well. We forced the computer to take the right located peak for both operators in order to
compare. The table and the graph above show, at least numerically, that we have strong evidence
that the original tridiagonal matrix may is related to Hpy. This is a priori not directly clear since
Jn+1/N only contains two equal sub-blocks that approximate the sub-block of order V/N in the
matrix H N, given by
1 ) 1

~3 [-1 —2 1---]+d1ag(JN+1/N)—Z. (4.85)
The reason for this strong (numerical) result probably lies in the fact that the eigenvectors of both
operators only localize on the specific subset of order /N, centered around the two minima of the

well ]

We have computed the minimum of the potential, set it to zero, and subtracted this minimum from
the lowest eigenvalues. Then, these shifted eigenvalues live in a positive potential with minimum
equal to zero. For Jy;1/N and N = 1000, we now consider the eigenvalues ¢, of this matrix.
We have already seen above that the lowest eigenvalues of Jyi1/N become doubly degenerate.
Therefore, we identify these approximately doubly degenerate eigenstates with one single state that
we denote by n. It follows that each n corresponds to two (approximately) degenerate eigenvalues,
e.g., n = 0 corresponds to the ground state as well as the first excited state of Jyi11/N, n =1
corresponds to the second and the third excited state, and so on. This is displayed in the table
below.

1This has been numerically checked in see for example Figure
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Shifted eigenvalues for odd values of n

€n

0.000863
0.002591
0.004310
0.006013
0.007710

=W N = OB

Using this table, we deduce that the energy splitting is given approximately given by v/3/N, when

N large enough. The ground state (shifted) eigenvalue (which is approximately doubly degenerate)

is then given by Y ?V\/g, the first excited state (also approximately doubly degenerate) by %,

5/2v/3

the second excited state by =-— etc. Therefore, there is excellent numerical evidence that the
(approximately) doubly degenerate shifted spectrum of Jy1/N is given by

(n+1/2)V/3

N )

Note that the eigenvalues for N = oo appear to be all zero, and we will see in the next paragraph

that these are not even defined in this case. Moreover, observe that the values in both tables are

computed for fixed N. Therefore, also different values of N need to be considered. We will focus
on the ground state eigenvalue e(])V of the matrix Jy11/N. See the table below.

for N large enough. (4.86)

N eév for increasing N
N NelY

100 0.8473

1000 0.8633

2500 0.8653

5000 0.8655

Thus eév will approximate 1/27]\}/3 when N increases. This shows that (4.86]) indeed makes sense.

What do we learn from these simulations?

We started with the tridiagonal matrix Jy11/N. Using a central difference approximation on
a non-uniform grid, we showed that locally we had (an approximate) uniform discretization
precisely on a subset of order /N centered around the maxima of the Gaussian-like ground state
peaks. Therefore, locally, this matrix approximates a kinetic and a potential energy, meaning
that there exists a sub-block in the matrix Jy41/N that has the form approximately given by
T +V, as we explained in detail before. Using this fact, we constructed the matrix Hy. In fact,
we showed that Jy41/N locally approximates Hy. This in turn means that Jn+1/N applied to
those vectors living on a specific subset on which the discretization was uniform, and are zero
outside this set, yields the same vectors as Hy applied to these vectors. We have seen that
this set was centered around the maxima of the Gaussian-shaped ground state eigenvectors. In
the construction of Hy we computed the potential Vy that had the shape like a double well.
We found that the maxima of the doubly peaked Gaussian ground state correspond precisely
with the minima of a potential well. Moreover, we have convincing numerical evidence that
Jn+1/N is related to Hy, since also their spectral properties coincide to very good approximation.
If N increases, this approximation gets better. The spectral properties of Hpy behave like a
Schrodinger operator describing a particle in a symmetric double well. This lead us to the surmize
that Hy is the discretization of a Schrédinger operator. In E we give the precise connection
between Hy and the Schrodinger operator ho on L2([0,1]). Since Jyy1 is in turn related to
Hpy, we first say something more about these matrices. This will be the final part of this paragraph.
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For each finite N the matrix Hy is a finite-dimensional tridiagonal matrix, which can be
identified with an element of B(/{%/(N)), where the latter space is the space of linear operators on
the Hilbert space of all finite sequences of length N. It is easy to see that the coefficients of Hy
are bounded when N — o and 0 < 5 < N. Moreover, for each N € N, the off-diagonal entries of
Hy have the same sign. Therefore, one mlght expect that in the limit the matrix will be bounded
as well. Moreover, since for each finite N the matrix is self-adjoint, one might expect the same
result in the limit. The same result holds for Jy,1/N. Therefore, one could try to prove that both
matrices converge to so-called bounded self-adjoint Jacobi operators on £2(N). Based on the similar
spectral properties of both matrices, one could expect that that there exists a unitary operator
un41 such that Hy,1 and Jy41 /N become asymptotically unitary equivalent, in that:

J&i_ljﬂoo ||UN+1E[N+1U7V+1 — JIn+1/N|[n+1 = 0. (4.87)

Note that the operator norm depends on N as well and does not converge in general. The above
conjecture is not easy to prove, as it is purely based on numerical results. Furthermore, it is not
relevant what this limit will be, since we only have to consider finite N in the semiclassical limit, as
we will see soon. In any case, we have strong evidence that there is a relation between the matrices
Jn+1/N and Hyq that might be given by the above formula.

4.7 Link with a Schréodinger operator on L?(]0, 1])

In this section, we are first going to make a link between the matrix Hy and a Schrodinger operator
on a domain of order N, viewed as a subset of L?(R). We denote this operator by hi. Then we
scale hi to an operator defined on L2([0, 1]), which we denote by hy. This operator is the one we
mentioned in the beginning of §4.6 m viz. . We should remark that the fixed values of B = 1/2
and J = 1 used in the matrix entries for J N+1/N determine also H ~ and hence hg Thus, the
results derived in this section are based on these two parameters.

In §4.5] we explained how to approximate a second order differential operator with a discretization
matrix using a central difference scheme. We also showed that a symmetric tridiagonal matrix with
constant off- and diagonal entries can be identified with a discretization of a Schrédinger operator
on a uniform grid. We now apply this procedure to the matrix Hy and we are going to find the
corresponding Schrédinger operator that we denoted by hi. The matrix Hy corresponds to a
uniform grid spacing of /8 on a grid of length +/8N. Applying the method explained in §4.5| it

follows that we can identify Hy with the sum of a second order derivative dd > and a multiplication
operator my; ~acting on the space L2([0, Ly)):

- d?

hi1 = —de + my, - (4.88)

Here, my, is the operator that acts as multiplication by Vy. Tt is the continuous analog of the
matrix (4.83), but note that its domain still depends on N. The constant Ly denotes the length
of the interval which equals v/8N. hy is of course an unbounded operator. It is not clear how the
operator hy behaves when N increases, since the domain increases with N and so the potential
minima of Vy as well. Therefore, we will scale the interval by its length Ly, so that it becomes
fixed. Thus scaling this interval by its length gives an operator on an interval of order 1. We denote
this operator by hy. Note that the variable y € [0, 1] satisfies y = /Ly, so that dz/dy = Ly, and
hence d/dx = ﬁd/ dy. The Schrédinger operator on the unit interval is therefore given by

ho = —Cij + my, (4.89)
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with Cy = N~2. The potential V (for B = 1/2 and J = 1) is then given by the continuous function

V) ~ 5y -1~ VT, yelo1] (1.90)

As we have explained in the beginning of the previous paragraph, it is clear that for A = 1/N, we
recognize the well-known Schrédinger operator describing a particle in a symmetric double well
potential. We will see in that a far more sophisticated deformation quantization is needed to
pass from quantum mechanics (h > 0) to classical mechanics (h = 0).

It is also clear that Hy is a correct discretization of ilg: a matrix of dimension N on an
interval of order 1 gives a grid spacing A = 1/N. It follows that

1 d? 1 [-1 —=21--]n 1

1 & — I =21 4.91
SNZdy2 ©  8N2 A2 sl I (4.91)

and the latter matrix is precisely Tw from Hy.
Thus, a claim/conclusion that connects these operators is the followingjﬂ

Claim 4.7.1. The matriz Hy defined by (4.69) is a discretization of the Schréodinger operator hs
on an interval of order 1. The term ‘discretization’ refers to the one given by (4.91)).

We have seen in the previous paragraph that the approximation Hy by Jni1 /N gets better with
increasing NV, so that one should consider Hpy and thus hy for large N.

Remark. When one would start with a Schrodinger operator on some interval, then one
should beware of the following. Discretizing an operator on a finite grid means restricting the
original operator to some subspace and projecting this restricted operator onto that subspace. One
can take a basis for this subspace, and writing the operator with respect to this basis gives a finite
dimensional matrix. This matrix, then, will be a discretized analog of the original operator. This
result of course strongly depends on the subspace and the basis.

In our case, we have linked Hy to a Schrodinger operator on L?([0,1]). We have argued
that the matrix [---1 —2 1]y corresponds to the second order derivative operator —Cyd?/dy? on
an interval of order 1. In view of the above remark, there exists some finite-dimensional subspace
and a basis, so that its corresponding matrix is indeed of that specific form. However, finding this
subspace and basis is not really relevant anymore since we are given the discrete matrix Hy, from
which we derived a Schrodinger operator.

It is well known that the ground state of the operator ho for finite N looks approximately
like a doubly peaked Gaussian, where each peak is centered in one of the minima of the potential.
For infinite IV, these peaks will behave like delta peaks, but they are not eigenfunction anymore
since Hy is not defined for N = oo [34], [22, Sec. 10.1,10.2].

Moreover, numerical simulations (Figure show that the eigenfunctions of Hy live approximately
on a grid of order v/N points on he interval [0,1]. Using the above discretization, we then have an
order v/N steps of 1 /N each, so that in particular the ground state Gaussian has a width of 1/ V'N.
On the one hand, it is clear that this width will go to zero as N — 0. On the other hand, also the
unit interval depends on N, as the latter has to be discretized with N + 1 points. The grid spacing
of 1/N will go to zero when N — o0 too. Therefore, the total number of points in the ground state

12Note that this claim is based on the fact that the number N occuring in the factor 1/N in front of the derivative

# in (4.91)) is the same as the dimension of the discretization matrix [---1 —2 1--]n.
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peak living on a subset of order v/ N is given by

1/vVN
N - VN (4.92)

Even though the ground state will behave like a delta peak when N gets larger, when discretizing
the grid, the number of points in this peak increases with +/N. In fact, due to the discretization of
the grid we have a better approximation of the Gaussian ground state when N increases.

The equivalence between Jyi1/N and Hyyq for N large was originally obtained from a
discretization based on a central difference scheme using a non-uniform grid. Moreover, we have
seen that the operator Hy,1 can be linked to a Schrédinger operator on L2([0,1]).
Consider now this Schrodinger operator hs. For convenience, one can identify C with h?, for
h = 1/N small, so that the operator under this identification is given by
2 52

hg = —%% + V(x). (4.93)
It is also known (see e.g., or [12], |14]) that the lowest eigenstates of such a Schrédinger
operator are approximately degenerate when the barrier of the double well potential is sufficiently
high enough. For such a potential, we have seen that these states approximately behave like a
linear combination of weighted Hermite polynomials centered in both minima of the potential.
These polynomials are in general given by

on(z) = e_xz/QHn(a:), n=0,1,2,.. (4.94)

Thus for this type of potential, the ground state in particular is approximately given by two
Gaussians, each localized in one of the minima. The spectrum of this operator consists of
eigenvalues and the lowest eigenvalues are approximately doubly degenerate and equidistant in this
semiclassical approach. This relies on the assumption that we can approximate both wells with a
parabola (see for a justification of this assumption).

It can then be shown that the eigenvalues of hy are approximately given by
Ent ~ (n+1/2)hw FhCe 1%, (n=0,1,2...). (4.95)

where ¢ an integral with positive integrand, and C' > 0. In the case for hs, we have a factor 1 /N
which now plays the role of & in . Hence, as expected, we find that also now e V¢ ~ 0, if N
large. As a result, the lowest eigenstates indeed become approximately doubly degenerate as we
have already seen from the tables in We will give a detailed analysis in

We conclude this paragraph by recalling the following statement.

The most important property linking the quantum Curie-Weiss model to a Schrédinger operator is
the existence of a subspace, namely Sym™ (C?), so that the matrix representation of the operator
h%w restricted to this subspace became a tridiagonal matrix Jyy1/N that could be seen as a
discretiation H ~n+1 of a Schrodinger operator hy. One should still prove the correct asymptotic
equivalence between this matrix Jy41/N, and the matrix H nNa+1, for N large, but finite. This
then, in combination with Theorem , should really prove a semi-classical equivalence
between Jy11/N and the Schréodinger operator hs. Unfortunately, we were not able to prove this
mathematically.
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4.8 Double well with WKB

In the previous paragraph, we have argued that we can view our matrix Jy1/N as a discretization
Hy of the Schrodinger operator Hs, when N sufficiently large. We have already mentioned
some properties about the spectrum and the lowest eigenstates corresponding to this Schrodinger
operator.

In this section we use the WKB-approximation method applied to a double well potential to deduce
these results. Most of the work done in this section is based on [34]. We consider the following
situation, displayed in Figure

Figure 4.6: Symmetric double well with turning points £x1 and +x2 and minima ta. The figure is
taken from [34)].

We are going to determine the energy levels below the potential, i.e., the energies for which

E < V(0) holds. From the results obtained in Appendix |C] it can be shown that the wave function
for this classical forbidden area (—z1 < x < z1), below the potential, takes the following form:

YV ()

Izlo)(:n)| {2 cos 6 exp <;,L Lxl \p(x’)|d:r’> + sin f exp ( - ;Lxl p(ac’)|d:r’>}, (4.96)

where —x1 < x < x1. Here, D is the coefficient corresponding to the WKB solution on the interval
(1'2, OO)

Since the potential is symmetric, it commutes with the parity operator. Moreover, the energy levels
in the potential well are non-degenerate, as we will see in Chapter 5. Thus, we automatically have
that the energy eigenfunctions need to be parity eigenfunctions. Hence we only need to consider the
even Y VEB and odd Y WEB wave functions. In the former case %@z)XVKB(O) = 0, and in the latter
case WVEB(0) = 0. For the antisymmetric (odd) case, the property ¥*WKB(0) = 0 implies that

‘f(x)‘ [2 cos f exp (;.L fl Ip(ar’)\da:’> + sinf exp ( - ;JOII |p(a:’)\dx'>] — 0, (4.97)
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which in turn implies
tan = —2e~# %o P(@)ld’
— _26—% §2L Ip(a)|da’
= 27, (4.98)
where we used the fact that p is even, as well as

1

=1 f Ip(a')d (4.99)

For the symmetric (even) case , we have ¥ (x1) = )(—x1), so that we find

1

D (sin fe 1 Sy P! +2cos e oo lp(zl”dx,)’ (4.100)

Vvl

D
(sinf + 2cos @) =
VIpl

which by definition implies

D (sin@ + 2 cos 0) _ D (sin fe~? + 2 cos 9€¢> . (4.101)

VIpl p|

Hence
1—e ¢
tan@ = 2m
=2e 9. (4.102)
From this we conclude that

—¢ _ +2 .
tanf

(4.103)

Solving these equations exactly is not possible analytically in most cases,. If we assume that the
potential barrier is very high and broad, we we can get an idea of the general behaviour of the
system. Since ¢, which is the integral over the magnitude of imaginary momentum and represents
the phase, is going to very large in such a case, it follows that e~? is very small. Therefore, by
definition of the tangent function, § must be very close to (n + 3)r. With this in mind, let us write
0= (n+ %)’N + ¢, where € << 1. Then it follows that:

1
tan (n + 5)77 + e~ +2e?
— cot (—nm —€) ~ +2¢*

— —cote~ +2¢%

1
= €~ $526_¢. (4.104)
Thus the quantization condition simplifies to
1 1
O~ (n+=)rF e ?. (4.105)
2 2
In a first approximation, we see immediately that
1
0= (n+ 5)71 (4.106)
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This can also be understood since tunneling through a very high and broad barrier is almost
impossible, and hence the physically particle will be localized in one of the two wells. In this case,
we know that the allowed energies correspond to those of a single well potential, for which the
quantization condition is precisely given by [2]. In this case, both the even and the odd
wave function have the corresponding energy level of the single well potential, which we denote
by Eflo) (n =0,1,2,...). For the harmonic oscillator in a single well, these energies are given by

5O — (n + 1/2)Aw. For a double well with a high and broad barrier, it therefore makes sense to
write

EVER - EO 4 AE,; (n=0,1,2,..), (4.107)
where AF, + is assumed to be much smaller than ET(LO)

The next step is to find an expression for the energy splitting of the ground state AFEj ..

Again, we assume that the potential barrier is very high and broad, and suppose that 1/1(()0) is the
WKB wave function corresponding to the ground state in the classical forbidden region (—z1 < z1),
located in the right well. This corresponds to (C.17)), for D = 0. Then, we may write

(0) ’\’70 exX 1 : CC/ IL'/
o) > <o e (1 [ ota). (4.108)

We can compute its derivative. It follows by the chain rule that

o,y (Ip@)] | p()
o= (1 |50

where we neglect the second term, since we assume that the system is in a semi-classical state for
which ((C.14]) holds. We then use Herring’s formulaE for an expression for the energy splitting
AFE, + in terms of 1/17(10):

>1][)((]0)($) ~ |p($)”¢(()0)({£), (4‘109)

2
ABE,+ = ¢;—m¢,§0) (0)2 (0). (4.110)

Using Herring’s formula and (4.108)), it follows that
B,
AEO,i = ~|—*C . (4.111)
m

Thus, our task is to determine C'. First we make another assumption. We assume that the potential
V in the area (z1,z2) can be approximated by a quadratic potential in a neighborhood of its
minimum at x = a, like the case of a harmonic oscillator. Since we focus on the area (x1,x2), we
consider

1
V(z) ~ §mwg(x —a)?, (4.112)

where the constant wy is given by wg = 1/V”(a)/m, with a the position of the minimum of the well
on the right site, and V' the original potential.

13We will soon see that this is indeed the case for the ground state energy splitting AFEq +.
1 This formula is named after Herring, who derived it in the analysis of a problem relating the H3 molecular
ion [15], |16].
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Assuming (4.112), this implies that both the ground state wave function and the ground
state energy match those of the harmonic oscillator:

1
EY ~ 5o, (4.113)

1/4 e
v (z) ~ (wﬁo) o (@), (4.114)

We also assume that this approximation of the wave functions is valid in the whole region (—z1,x1).
Then, in order to determine C, we have to compare (4.108) and (4.114). Therefore, we need to

compute |p(z)| in the region (—z1,z1). Using V(z1) = EOO), we compute

Ip()] = \/2m (veo - £)
_ \/2m (V(m) - V(x1)>

1/2
= mwy ((a —2)* —(a— x1)2) . (4.115)
Now, we define yp = a — 1. Again using V(z1) = Eéo), it follows that yg is approximately equal to
h
Yo X A ——. (4.116)
wo

For a barrier that is sufficiently high and broad, we may neglect the term y3 in computing |p(z)|
for the ground state on (—xj, 1), since on this interval we have a —x >> a — x;. It follows that

(0) C 1 [
hy (1)  ——=———=—=exp| 7 | Ip(W)ldy+ ®(z) ], (4.117)
muwo(a — x) i Jo
where @ is given by
1 (%
Ba) =~ | Ipwldy (1115)
X1
- -2 f [(a —y)? — (a—z1)*]"?dy (4.119)
mwo(a —x)? 1 2(a — x) 1 ve
N D og [ ) 4 ). 4.12
o +20g< " +4+O (a— a7 (4.120)
Comparing (4.108) with (4.117)), it follows that
2,2\ /4
o - [M%% e ot lp@)ldy. (4.121)
4dre

Then formula (4.111)) reads

AEo+ =+

( f " \/ 2m[V )]dy> (4.122)

This procedure can also be applied for higher energy levels. All one needs to do is match the WKB
wave function in the classically forbidden region (—z1,x1) to the n'® harmonic oscillator state and
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use Herring’s formula to find AE,, 1. We can also see that the splitting becomes large if the energy
increases or the barrier decreases in height and width, since the integral in the last expression
decreases in that case. The energy splitting will disappear for a very high and broad barrier.

Now, we are going to compute the lowest eigenenergies numerically using the formula we
have just derived. We take the double well potential corresponding to the Schrédinger operator R
on L?([0,1]), as derived in Still keep in mind that this operator is derived from the matrix
Jn41/N for B = 1/2 and J = 1. For N large enough, we could approximate the potential by a
continuous function, in that

~ 1
Vy) ~ -5 2y - 1)? =/ -y)y, yelo,1]. (4.123)
We have to determine the minima a and the mass m in order to compute w = w We have

already seen that the minimum of the above potential is attained at = 1/2 4+ 1/2+/3. This can be
easily shown by computing the derivative. It is also elementary to show that the second derivative
of the above function equals

" o 1
Viy) = TS 4, (4.124)

so that V”(£a) = 12. As we have seen, we put 2 = 1/N in (4.93). In order to find the mass, we
compare the factor % in hy from (4.89) with the factor in front of the derivative in (4.93)). We see

that m = 4. It follows that wg = «/%@') = 1/% = +/3. Thus hwy = V3/N.

Now, consider the formula we derived before,
ENEP = (n+1/2)hwo + AEpy, (n=0,1,2,..) (4.125)

where wy = V3 and AE, + given by (4.122). We compare it to the lowest eigenenergies of the
operator Hpy, which was a discretization of the Schrodinger operator hge. It is immediately clear

that the first term (n + 1/2)hwp equals %, exactly as we found before. In order to compute
the second term AFE, 1, we compute

Tl o1
_flif \/Qm[V(x/) — Eéo)]dx’ — _1 mwO[(a _ .%',)2 _ (a _ 1'1)2]1/2de

— hJ .
2mwy (! N2 211/2 3./
=—— [(a—2")* — (a —x1)*]*dx
0
2mwq [0
= hof [y* — y3]dy

2mwy 1 Yo
- — 2(y\/y2 — 3 — yg log <y+ \ Y2 —%))

a

mwo
= h{(—a«/cﬂ—yé—i—yélog <a+q/a2—y(2))> —y%logyo].

(4.126)

Since we assume that yg =~ 4 /miwo, and m,wy and a are parameters from the potential, we are

able to compute the above equation, and hence the WKB-ground state energy E(Y}/ iKB. For these
parameters, we find that (4.126)) equals

— —6N. (4.127)
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fuwo

Moreover, note that the prefactor 3 e in (4.122)) for our parameters is approximately equal to

o

0 0.296/N. 4.12
N 96/ (4.128)

As |p(x)| = \/Qm[V(x/) - Eéo)] is positive, the exponential of the equation (4.126)) is bounded by
1. Thus, we know that

AEp+ <

4.129
We see that for NV sufficiently large, the ground state energy splitting is about zero. In fact, it goes
even faster to zero since we have to take the exponential factor into account as well. It follows that
the ground state energy splitting for our potential behaves like

029 gy

AEO 4+ =~ N e . (4130)

Even for N = 1, the above equation is already in the order 1074,

We give a summary.

We have seen that for i increasing but finite IV, the spectrum of the operator Jyi1/N approximates
the one of the matrix Hy, playing the role of a discretization of the Schrodinger operator hy. For
N = 1000, the (shifted) ground state of the operator Jy1/N was, up to five decimals, equal to the
number 0.8633/N. For this relative large value of IV, this number was the same as the (shifted)
ground state eigenvalue corresponding to Hy (see tables in . If one compares this number
to (for n = 0 in (4.122)) derived from the WKB-approximation for N = 1000, then it is
clear that for this value of N, to a very good approximation both energy levels are completely
degenerate, and are given by 3 \f On the one hand, the approximation of Hy by Jyi1 /N gets
better for relative large values of N, and we have seen that the ground state eigenvalue becomes
numerically two-fold degenerate, already for N ~ 80. For these and larger values of N, the energy
splitting has been computed and and is of order < 1072°. Accordingly, it is reasonable
to speak about a degenerate ground state as we indeed have observed numerically. Moreover for
N = 80, the shifted ground state eigenvalue is approximately given by 0.842/N. On the other
hand, the value of N = 80 is still relatively small when one wants to give a better approximation of

% ~ 0.866, even though the ground state may be numerically degenerate. In order to find a better

V3

approximation of 3%, one should increase N much more. Note that for values of N < 80, we have
seen that the energy levels of Jy11/N are non-degenerate. In this regime the WKB-approximation
is definitely not applicable, since for say N = 60, according to this approximation the energy
splitting is already in the order of 107'6°, so that we may speak about degenerate eigenvalues, even
though we know that the eigenvalues of Jy11/N of Hy are not degenerate.

Therefore, applied to our double well potential, the WKB approximation does not match
one to one for the value of & = 1/N. It can only be used as an indication of the energy splitting
of the lowest eigenenergies, not as a quantitative tool to predict the absolute values of the
eigenenergies.

67



68



Chapter 5

Perron-Frobenius Theorem

In this section we provide machinery in order to prove the Perron-Frobenius Theorem, in finite and
infinite dimensions. First, we discuss a version of the Perron-Frobenius Theorem in the setting of
linear algebra, i.e. we state this theorem for matrices. Then, we give an overview and a prove an
important theorem that extends the Perron-Frobenius Theorem in infinite dimensions. Moreover,
we apply this theorem to the IN-dimensional spin system given by the Curie-Weiss Hamiltonian.
Finally, we will apply it to some class of Schrodinger operators, since we have seen in Chapter
4 that these play an important role as continuous analog of our scaled Curie-Weiss Hamiltonian,
represented with respect to the canonical base for sym® (C2).

5.1 Perron-Frobenius theorem for N-dimensional matrices

We start with some definitions and basis facts.

Definition 5.1. A square matriz is called non-negative if all its entries are non-negative. It is
called strictly positive if all its entries are strictly positive.

Definition 5.2. A non-negative matrix a is called irreducible if for every pair indices i and j there
exists a natural number m such that (a™);; is not equal to zero. If the matriz is not irreducible, it
15 said to be reducible.

Definition 5.3. A directed graph is a graph G = (V, E) with vertices V and edges E such that the
vertices are connected by the edges, and where the edges have a direction. A directed graph is also
called a digraph.

Definition 5.4. A digraph is called strongly connected if there is a directed path x to y between any
two vertices x,y.

We use the notion of the directed graph or digraph of a square N-dimensional matrix a, denoted
by G(a). We say that the digraph of a is the digraph with
V={1,2,..,N},
E = {(i,7)| ai; # 0}.

There is a relation between irreducibility of a matrix and connectedness of the corresponding
digraphﬂ

Lemma 5.5. A non-negative matrixz square a is called irreducible if and only if the digraph of a is
strongly connected.

!These basis facts are take from www.transo.com.tw/shwu/note/ AMN _07.ppt
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Proof. =) Given a square non-negative matrix a, and m € N,. If (a™);; # 0 for some pair (¢, j),
then there exists a direct path in G(a) of length m from vertex i to vertex j. Compute, using matrix
multiplication:

@)ij = D, Giinligig e Qg (5.1)

1<io<....<im

If (a™)i; # 0, then there exists 1 < 49,143,...,%, < m such that a;, - Giyis - - - a4,,; # 0. Hence
(i,12), (i2,43), ..., (im,7) € E. Thus there is a direct path of length m from vertex i to vertex j.
This is precisely the definition of a strongly connected digraph. Hence irreducibility of a implies
that the digraph of a is strongly connected.

<) Assume that a is reducible. Then the set of vertices V' can be partitioned into two
non-empty sets Vi and V5 in such a way that there is no path from any vertex in V; to some vertex
in V5. Therefore, if ¢ is a vertex in V; and j a vertex in V5, there is no direct path from i to j, and
thus a is not strongly connected. O

We will now prove a theorem that connects strong connectedness of the digraph of a non-negative
square matrix to permutation matriceﬂ These permutation matrices will play an important role
when proving that our 2V¥-dimensional Hamiltonian is irreducible.

Theorem 5.6. The graph of a square non-negative matrix a is strongly connected if and only if
there exists no permutation matriz p such that

p lap = [%} . (5.2)

Here N and R are square matrices and 0 is the matriz with all entries zero. This holds if and
only if there does not exists a non-empty proper subset I < {1,2...,n} such that for all i € I, and
j€{1,2...,n}\I we have a;; = 0.

Proof. We show first that if the last assertion not holds, then necessarily there exists a permutation
matrix p such that holds.

Therefore, suppose there exists I < {1,2...,n} such that a;; =0ifie I and j e {1,2...,n}\I.

Let I = {ix41,...,0n} and I¢ = {iy,...,ix}. Define o : {1,2...,n} — {1,2...,n} by o(m) = i,,VYm €
{1,2...,n}. Then o is a permutation and for i =k + 1,..,n and j = 1, ..., k, we have

(p, 'aps)ij = Ag(i)o(j) = Qigi; = 0. (5.3)

A | A

0 T4 }, where Ai1 and Agy are a square matrices of
22

Hence (p,lap,) takes the form [

dimension k£ and n — k respectively.

Now we prove other direction, again by contraposition. Suppose there is a permutation
matrix p, such that

A | A2 ] (5.4)

-1 .
(pa apff) - [ 0 A22

where A1 and Ags are square matrices, for some 1 < kK <n. Thenfori=%k+1,...,nand j =1,...k,
we have (p,'aps)ij = ag(i)o(j) = 0. Let I = {o(k+1),..,0(n)}. Then the complement of I, denoted
by I¢, is the set I¢ = {o(1),...,0(k)}. Clearly, by construction ase = 0.

2 Again, these facts are take from www.transo.com.tw/shwu/note/ AMN_07.ppt.
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The next step is to show that the graph G(a) is strongly connected if and only if the last
statement in the proposition holds.

Suppose G(a) is not strongly connected. Then G(a) has at least 2 strongly connected components.
So there is a I < {1,...,n} such that (i,5) ¢ E for all i € [ and j € I°. This means that a;; = 0 for
all i € I and j € I°. Thus the last assertion does not hold.

For the other direction, suppose there is a a proper subset I < {1,...,n} such that a;jc = 0. Then
it is obvious that there is no path in G(a) form vertex i to vertex j for all i € I and j € I°. Thus
the graph G(a) is not strongly connected. O

Now, we come to the Perron-Frobenius Theorem. It turns out that there are two versions of this
theorem: one for strictly positive matrices, and the other for irreducible matrices. We will use the
version for irreducible matrices since, as we shall see, the Curie-Weiss Hamiltonian —h]CVW represented

with respect to the standard base for ®2f:1 C? is a non-negative and irreducible matrix of dimension
2N,

Theorem 5.7. Let a be an N x N real-valued non-negative matriz, and denote its spectral radius
by r(a) = X . If a is irreducible, then A = r(a) an eigenvalue of a, which is positive, simple, and
corresponds to a strictly positive eigenvector.

In fact, the theorem also provides more results, but for us the statement above is enough. Note that
this theorem is based on properties of a matrix. In fact, given some operator on a finite dimensional
space, when specifying a basis and representing the operator with respect to that basis, the result
will be a matrix. The matrix obtained is of course strongly dependent of the choice of the basis.
Nonetheless, the Perron-Frobenius Theorem is valid if there exists a basis such that the matrix
representation of the operator in this basis satisfies the assumptions of the theorem.

As we have said above, later in this chapter we will prove that our Curie-Weiss Hamiltonian -h%w,
written with respect to the canonical basis for the N-fold tensor product, is a 2~-dimensional
matrix that is non-negative and irreducible. So we could apply the above Perron-Frobenius Theorem
immediately to —h%w. When multiplying —h%w by —1, the eigenvalues will change sign and we find
instead that the smallest eigenvalue (i.e. the ground state) of h%,w is simple and corresponds to a
strictly positive eigenvector. However, we will follow another approach and generalize this theorem
to infinite dimensions. We will give a proof of equivalent statements of simplicity and positivity
of an eigenvector based on a general setting for a o- finite measure space. Then as a special case,
we apply one of these equivalent statements to the matrix exponential e~ th™ (t > 0) in order to
conclude that the ground state of h%w is a strictly positive eigenvector, corresponding to a simple
eigenvalue, and is therefore unique.

5.2 Perron-Frobenius theorem for L?-spaces

In this section we consider a self-adjoint operator h that is bounded below and has an eigenvalue
at the bottom of its spectrum. In particular, we will prove equivalent conditions stating that the
eigenspace corresponding to this lowest eigenvector is one-dimensional and that the eigenvector is a
strictly positive function, in a realization of the underlying Hilbert space as an L?-space. We start
with some definitions taken from [33].

Definition 5.8. Let a be an operator on some Hilbert space H. Then it is called bounded from below
if there is a constant ¢ such that

laz,z) = c||z|[* (for all z € H) (5.5)

71



CHAPTER 5. PERRON-FROBENIUS THEOREM

It follows that
laz,z) = c||z|]? <= (x,(a —cl)z) =0 (for all z € H), (5.6)
which implies that H — ¢l = 0, so that H > ¢l in the sense of operator ordering.

Definition 5.9. Let (X, du) be a o-finite measure space. A function 1 € L*(X,du) is called positive
if Y is non-negative almost everywhere and is not the zero function. ¥ is called strictly positive if
Y(x) > 0 almost everywhere. A bounded operator a on L? is called positivity preserving if av is
positive whenever Y is positive. The operator a is called positivity improving if ay is strictly positive
whenever 1 is positive. Finally, a is called ergodic if and only if it is positively preserving and for
any ¥, ¢ € L* that are both positive, there is some natural number n > 0 such that (¢,a™)) # 0.

Remark.

We remark that by definition the zero function is not positive. So if a is positivity preserving,
then av is not the zero function for any positive function ). Moreover, every positivity improving
function is ergodic: A function 1 € L?(X,du) is strictly positive if and only if {(¢,%) > 0 for all
positive functions ¢. Thus, a bounded operator a on L?(X,dpu) is positivity improving if and only
if (¢, arp) > 0 for all positive functions ¢, € L?(X,du). This brings us to the first theorem of this
section, also stated in [33] p.204]:

Theorem 5.10. Let h be a self-adjoint operator that is bounded from below. Let € = inf o(h).
Then et is positivity preserving for all t > 0 if and only if (h — X\)~' is positivity preserving for
all A < e.

Proof. First note that e=** and (H — \)~! are bounded operators whenever A ¢ o(h). We use the
following formulas

(h— XNty = J N eMe Mypdt (¢ € D(R)) (5.7)
0
and
_ . th\ ™"
o= tim (1450) 0 (e 22(X,au) (5.5)

These formulas can be proven using the theory of semigroups, or, as h is required to be self-adjoint,
by functional calculus.

We can rewrite the above equation (5.8) as

—th, _ 1 Ty 3y-1 "

ey = iy (G007 v, (5.9)
where A = —%. So if (h — A)~! is positivity preserving for all A < ¢, then for any ¢ > 0 and n
large enough, clearly we have A= —% < ¢, so that also for all £ > 0 and large n the expression

t

n
(?(h — )\)_1> is positivity preserving, hence e " is positivity preserving.

On the other hand, if e™* is positivity preserving for all ¢ > 0, then from (5.7), it follows
that (h — \)~! is positivity preserving. O

The above theorem will be used in order to prove the main theorem (Theorem below), which
proves positivity of the ground state. This theorem is a combination of [33, Thm. XIII.43] and |33,
Thm. XIII.44].
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Theorem 5.11. Let h be a self-adjoint operator on L?(X, du) that is bounded from below. Suppose
et is positivity preserving for all t > 0 and that ¢ = inf o(h) is an eigenvalue of h. Then the
following are equivalent:

(a) € is a simple eigenvalue of h with a strictly positive eigenvector.

(b) e~ is ergodic for some t > 0.

(¢c) L®(X) U {e~™"} acts irreducibly for some t > 0, i.e., no non trivial closed subspace is left
invariant by both e~ and every bounded multiplication operator.

(d) (h— \)~1 is ergodic for some \ < e.

(e) (h— \)~1 is positivity improving for all A < e.

(f) et is positivity improving for all t > 0.

Before we proof all equivalent statements, we say something about the application of this theorem
to the Curie-Weiss Hamiltonian and the quantum mechanical double well Hamiltonian as given
by in the previous chapter. In the next paragraph we are going to prove that the Curie-Weiss
Hamiltonian —h%w, represented with respect to the canonical basis for ®sz1 C2, has a strictly
positive matrix exponential for all ¢ > 0, and that h]CVW satisfies the assumptions of Theorem .
Then we can indeed apply the equivalence between statements (a) and (f) from this theorem to
our Curie-Weiss matrix in order to conclude that this Hamiltonian has a unique strictly positive
eigenvector corresponding to the simple eigenvalue €. In fact, it is enough to prove the equivalence
(a) < (f), rather then all other other statements. But in the literature, this equivalence is not
directly proven and is often based on other lemmas. In this thesis, all these lemmas are added in
one single theorem in order to compare the equivalent statements easily.

Moreover, this theorem shows also that the Perron-Frobenius Theorem in the linear algebra setting
(Theorem ((5.7))) follows as a special case of this more general theorem, which holds for a much
bigger class of operators than only the non-negative irreducible matrices.

Furthermore, in We will see how the uniqueness of the ground state of the (unbounded) quantum
mechanical double well Hamiltonian can be proved using this theorem.

Proof. (a) = (b).

Since € is a simple eigenvalue of h, it follows that e~ is a simple eigenvalue of e~ for all t > 0.
Clearly, e~ is the largest eigenvalue corresponding to e~**. Put b = e */||e”*"||. Then, by
functional calculus, b is positive and we have b < ||b]| = 1. Let {Pq} be the spectral projections
for b. Consider the map f,(z) = 2™ on [0,1]. Then f,, — x1 pointwise, with x; the characteristic
function in 1. By the measurable functional calculus applied to the self-adjoint element b, we have

€

fn(b) — f(b) strongly. (5.10)

But f(b) = x1(b) is just the spectral projection p¢;y for b. This is the projection onto the kernel of
b — 11, i.e the eigenspace for 1. By assumption, 1 = ||b|| is a simple eigenvalue for b. It follows by
hypothesis that pg;y = (¥, )1 for some strictly positive ¢». Then for any positive x and ¢, we have

Tim (6,57 = (6,48, X) > 0, (5.11)

where we used the fact that strong convergence implies weak convergence. Hence there exists a
natural number n such that (¢, (e=)"x) = ||e7?"||"(¢, b"x) > 0. Thus e~ is ergodic.

(b) = (c).

Suppose by contraposition that ¢ does not hold. Then we can find a non-trivial left-invariant
subspace S for L®(X) u {e ™). Let f € S and put h = f/|f| € L*®(X). Then
Ifl = |fI?/Ifl = hf € S. Similarly, for g € S*, it follows that |g| € S*. Now, pick f € S,
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and g € St such that f,g # 0. Since e *" leaves S invariant, we have that e=™"|f| € S for all n,
hence

(gl e 1y = 0 (5.12)

th

for all n. Thus e™*"* is not ergodic.

(¢) = (a).

By hypothesis, € is an eigenvalue. Let 1) be the eigenvector of e~ corresponding to e 7. Suppose
first that ¢ is real-valued. Then as || + v > 0, we know that e~ (|¢)| + ) = 0, since e is
positivity preserving. Hence

0 < eyl < e ™y. (5.13)
It follows that

e Yl = (ol e ) =yl le Pl = ey = ey, (5.14)

In the first step, we used Cauchy-Schwarz and the fact that e is the largest eigenvalue of the

self-adjoint operator e~ ", which equals its spectral radius, just being this eigenvalue. In the second
and third steps, we used the positivity preserving property of e~ applied to the positive function
el — |e7™yp| and to |e7Hap| — ehep. In the last step we used e t1p = e~'p. So all the
inequalities become equalities.

Now, if |etp| < e ™pp|, then e | — |e7yp| > 0, so that it follows that
{apl, e ) > (||, |e |, which is a contradiction by the above. As a result, e || = ey,
so || is also an eigenvector. We show that || is strictly positive.

Let S = {f € L*(X,du)| fY = 0 a.e.}. Then S is clearly a closed subspace and is left
invariant by L*(X). Let S; = {g€ S| g > 0}. Then for f € S,

Tl = (f el = e [l = 0. (5.15)

The last step in the above equality follows from the observation:

ol = fX Tl| = fX 1Flll = jX o] =0, (5.16)

where the first equality follows by definition of the inner product, the second by positivity of f, and
the last equality from the fact that f € S;. Then it follows that

L(e_thf)ltbl = el = e IS [l = 0, (5.17)

where used in the first step that e " f is positive.
Since also |¢| is positive, the product (e~ f)|+| is positive, and since the integral of this function is
zero, it follows that (e~ f)[+)| = 0 almost everywhere. Furthermore, for any f € L?(X) any z € X,

(f)(x) = 0 if and only if (f|4|)(x) = 0. So, (e~ f)1b])(z) = 0 if and only if ((e~*" f)2p)(z) = 0.

We conclude that e * f € S, thus e " leaves S, invariant. Since
S = S+ - S+ + Z(S+ - S+), (518)

et leaves S invariant. By hypothesis (¢), S = {0} or § = L?(X). But since ¢ ¢ S,and ¥ # 0
(because it is an eigenvector), it follows that S = {0}. Then |¢)| > 0 a.e.
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Thus any real eigenvector with eigenvalue e~* is nonzero a.e., and satisfies e **|¢)| = [e™||¢)|.

Thus [¢)| — 1 is an eigenvector with eigenvalue e~ or it is identically zero, so that || — 1 is
either almost everywhere vanishing or almost everywhere nonvanishing. This means that every real
eignvector with eigenvalue e~ is almost everywhere strictly positive (in the case that |¢)| — ¢ =0
a.e) or almost everywhere strictly negative (in the case that [¢)| — ¢ # 0 a .e.)

If e~ had two real different eigenvectors with eigenvalue e~*¢, we can assume that they are linearly
independent (because eigenvectors are unique up to scalar multiplication). Then the operator
would also have two orthogonal eigenvectors, which follows from the Gram-Schmidt process for
the eigenspace. Both eigenvectors can be chosen positive a.e, since if for example one of the
real eigenvectors is strictly negative a.e, then multiplying it by —1 gives an a.e. strictly positive
eigenvector. But this is impossible by definition of the L?-inner product. We conclude that e~*"
has only one real eigenvector of eigenvalue e ¢ and this eigenvector is strictly positive a.e.
Finally, let 1) be an arbitrary eigenvector with eigenvalue e~%. Since e~ is a positive operator,
it maps positive functions into positive functions, so by linearity it takes real functions into real
functions. Thus A(Re(y)) = Re(Av). Since ¢(z) = Re(¢)(z) + ¢ - Im(¢)(z), where Re(¢)) and
Im(¢)) are both real, it follows that both Re(¢)) and Im(1)) are real eigenvectors with eigenvalue
e~t. We conclude that 9 is a complex multiple of the unique real (strictly positive) eigenvector.
Hence e~ % is a simple eigenvalue corresponding to a strictly positive eigenvector.

(b) = (d).
From the proof of Theorem [5.10] we can write

(h—XN)"t= JOOO eMehdt (X < e). (5.19)

We must show for a fixed A < ¢, that for all positive functions f, g € L%, we have (f, (h—\)""g) # 0
for some n > 0 and that (h — A)~! is positively preserving. We start with the last assertion.
Suppose e~ is ergodic from some ¢ > 0. Since, by assumption, e " is positively preserving for all
t > 0, it follows by Theorem that (h — A)~! is positively preserving for all A < e.

Now we prove the ergodic property for (b — A\)~!. By assumption, e~ is ergodic for some
t > 0. So for all positive functions f, g, there is an n > 0 such that (f,e™""g) > 0. Put s = nt > 0.
Notice that (f,e™*"g) is continuous, so {f,e *"¢> > 0 on some interval containing s. Thus for any

A<e
Q0
e e (5.20)
0
Now, for this n we compute

Folh =Ny =(h =N (h= X)) =

Jm (b= N e ghd (5.21)
0

This integral is strictly positive if ((h — A)™"F1f e7tg) is strictly positive on some interval.
By the above, for all positive functions f,g, the expression {(f,e*"g) > 0 on an interval
containing s, so we are done if we show that (h — A\)™"*1f is positive, since in this case, there
would exists an 7 such that ((h—\)""*1 f, e~™h g% > 0, which by continuity holds also on an interval.
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So we need to show that (h — \)~"*! is positively preserving. But
(=N gy = (i (h =X (h =) g) =

foo e (h— N2 f e gV, (5.22)
0

By the same argument as above, we show that (h — \)~"*? is positivity preserving. This process
can be repeated n — 2 times, so that it follows that we just have to prove that (h— \)~! is positivity
preserving. But this statement was already proven by . Hence (h — \)7"*! is positivity
preserving. We conclude that (f, (h — X\)™"g) > 0. Thus (h — A\)~! is ergodic.

(d) = (b).

Assume (h — \)~! is ergodic for some A\ < e. We need to show that there is a ¢ > 0 such that for
all positive f, g there is some n > 0 such that {f,e "¢} # 0. By assumption, e~ is positivity
preserving for all t > 0. So (f,e *"g) > 0 for all t > 0. As before, compute

00]
0% (L h=N)"g) = | =N e g (5.23)
0
This inner product in the integrand is equal to

((h =N e gy = (b= X" f, (= N7 "g)) =
Joo €>\y<(h _ )\)—n+2f’ e—yhe—xhg>d$ _

0
0
f eN(h— A\) T2 f e @Hh S gy (5.24)
0
Iterating this process, we find that
o0 ee}
0% (=N Ty = [ [ e g i, (529
0 0

If for all t > 0 the expression {f,e "¢} equals 0, then also the above integral is zero and we have a
contradiction. So there is a t > 0 such that (f,e *"¢) > 0, and by continuity, this inequality holds
on an interval so that the integral is strictly positive. Then take n = 1, and we have shown that
e~ th is ergodic.

(d) = (e)
Let f and g be positive. Since e" is ergodic, {f,e™*"¢) > 0 for some > 0. But s — {(f,e *"g) is
continuous in s, so {f,e”*"¢)> > 0 on some interval containing s. Thus for all A < ¢,

(fy(h=N"tg) = LOO e’\5(<f, e*Shg>ds > 0. (5.26)

(@) — (f)

Let f and g be positive and put B = {t > 0 | {f,e"*"g) > 0}.

The map t — (f, e *Hg) is analytic on (0,00), which means that every zero of this map is an
isolated point. But (0, 00)\B is precisely the set of zeros of this map in (0, 00). So for any z € (0, )
there exists an € > 0 such that for any y € (0,0)\B, y # z, we have |z — y| > ¢.

If # would be a limit point of (0,00)\B, then for any ¢ > 0 there exists a y € (0,00)\B,
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such that |z — y| < . Such a point x has to be in the closure of (0,00)\B, but by definition, it
cannot be in (0,00)\B itself. Since every isolated point is not a limit point and every limit point is
not an isolated point, by the previous observation, it now follows that the closure of (0,00)\B is a
subset of [0,00)\B. Hence z € ([0,00)\B)\((0,00)\B) < {0}. The conclusion is that if (0,00)\B has
a limit point, it is equal to one. In particular, B contains arbitrary small numbers. Thus, if we can
show that ¢ > s and s € B implies that ¢ € B, we can conclude that b = (0, o).

Fix s € B. Then (f,e"""g) > 0, so that f(-)(e"*"g)(-) is not identically zero. Put w = min(f,e~*"g).
Then w is not identically zero since f is positive and also e~*"¢ is not identically zero because e~"
is positively preserving and ¢ positive. It follows that for any 7 > 0,

(fre™ (e g)) = (f e wy = (e, w)
> (e, w) = e 2w|? > 0. (5.27)
We have used that w is positive and that e "™"2 is positively preserving to conclude that
e~ ™2 £ 0. Thus s € B and 7 > 0 imply that s + 7 € B.

() = (d)
This follows from the remark before Theorem [5.101

(f) = (b)
Again, this follows by the same remark. O

5.3 Perron-Frobenius theorem and the Curie-Weiss model

The general theorem from the previous paragraph can of course also be applied to (some class) of
matrices, by taking X as a discrete space with counting measure. We will prove that the matrix
exponential et of the Curie-Weiss Hamiltonian —hj(s,w is positivity improving for all ¢ > 0. For
this, we need a lemma that connects irreducibility of a non-negative square matrix to its matrix
exponential. The proof of this lemma is based on [11].

Lemma 5.12. If a is non-negative matriz, then it is irreducible if and only if the matrix exponential
e is strictly positive in the sense of Definition [5.1].

Proof. Take a € Ry such that 1/« is greater than the spectral radius of a. Then we know that
(1 — aa)~! =: S exists, and S is given by the Neumann series

S =1+aa+a?d®+a’ad® + .. (5.28)

This follows since this sum of the Neumann series on he right hand side exists and it is easy to see
that (1—aa)S =1 = S(1—aa). Now, for any i, j € R, the matrix entry 5; ; is a sum of non-negative
terms and if S is strictly positive, then there must be a lowest power m; ; of S such that a7 > 0,
since the identity matrix is not strictly positive. By the previous definition, if this is true for all
1,7, then a is irreducible.
Conversely, if a is irreducible, then for all indices ¢ and j, there must be a power m of a such that
(a™);; > 0. This implies that for all ¢ and j there must be terms in S; ; that are non-zero.
Now, we apply this to e®. This matrix exponential is defined by the power series
2 3
ea=1+a+%+%+... (5.29)

The above argument applies for S = e®. Hence a is irreducible if and only if e® is strictly positive. [
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Now, we are in a position to prove a statement about our Hamiltonian —h%w. This statement will

depend on the basis in which we represent the operator. We will take the standard basis of C2, also

extended to a basis of the tensor product @7]:[:1 C2.

Theorem 5.13. The Curie- Weiss Hamiltonian —h%w from (3.1)), represented in the standard basis
N 2 . . . .

for &,,_, C*, is non-negative and irreducible.

Proof. Since all constant factors in —h%W are strictly positive, we only have to consider both terms

containing sums. We show that

Z os(x)os(y) + Z o1(x) (5.30)
z,yeA N TEAN

2

is non-negative. Consider the standard basis {ey, e2} for C? over C. Then {e,, ®...®en,, Yor=1.. =1

is the standard basis for ®7]1V:1 C2. Note that the spin-Pauli matrix o3 maps e; to e; and e to —eao,
whereas 01 maps e; to ez and eg to e;. Note that 01(2) =1® .. ®1®0o1 ®1...® 1, where o1 acts
on the " position and similarly for o3(x). It follows for all z,y € {1, ..., N} that

o3(x)(en; ® ... Qeny) =

1(en,) ® ... ® 1(en, ,) ®0s(en,) ® 1(6n;c+1) ®...® l(eny) =

ten, ®...®e€ny), if en, =
(5.31)

—en, X...Q e”N)’ if Cny =

_ o o =

We have o3(y)o3(z)(en;, ® ... ® eny) = *(én, ® ... ® ey, ), where the minus sign appears only
if e,, # en,. We conclude that the standard basis for the N-fold tensor product is a set of
eigenvectors for o3(y)os(x) with eigenvalues +1. Thus we know that >, .\ 0o3(z)os(y) is a
diagonal matrix with respect to this standard basis.

The entries are all non-negative.

This can easily be seen by the following argument. Given an arbitrary basis vector
e = (en, ® ... ®eny), let A be the set of indices of this vector containing e;, and B the
set of indices containing es. Let a = #A, and b = #B, so that a + b = n. Then o3(z)o3(y)e
has a negative eigenvalue —1 if and only if x € A and y € B, or x € B and y € A. In the sum
ryehy 93()03(y)e, this gives ab + ba = 2ab minus signs. So there are n? — 2ab plus signs. We
must have, independently of a and b, that n? — 2ab > 2ab, and then we are done, since the diagonal
term can be never strictly negative. Plugging in a + b = n gives n? — 4a(n — a) > 0 if and only if
n? — 4an + 4a® = 0. The parabola a — n? — dan + 4a? attains its minimum in a = n/2, which is
given by n? — 45n + 4(%)2 = (. So indeed, there are at least as much plus signs as minus signs so
that the corresponding diagonal term is non-negative.

The other term ) Ay 01 () does not contain any negative entries at all, so if we apply this to any
basis vector {ep, ®...Qen, }, we get a non-negative matrix. It follows that the (5.30) is non-negative.

Now we show that the matrix corresponding to the Curie-Weiss Hamiltonian is irreducible.
Note that irreducibility of a matrix does not depend on the basis in which the operator is
represented, since similar matrices define equivalent representations which preserve irreducibility.
We use Theorem [5.6| to show by contradiction that the matrix —h%W is irreducible.

So suppose there exists a permutation matrix p such that

P (=hG")p = [%] : (5-32)
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Now —h%w is symmetric, since all o1 and o3 are symmetric. It follows that L = 0. Moreover,
zi=p ! Z o3(z)os(y)p (5.33)
I,yEAN

is again a diagonal matrix and y := ) . Ay 01 (z) commutes with any permutation operator since it
is a sum over all spin flips. It follows that the only off-diagonal terms in p_l(—h%W)p are coming
from the part ZzeAN o1(z). But if we take the 2/V/2-th basis vector, i.e. e := (e1 ®e2 ® ... ® e3)
in the ordered basis as defined before, then o1(l)e = (e2 ® €2 ® ... ® e3). Thus in this matrix
representation, the last basis vector contributes. Hence we see that in the matrix pfl(—hgw)p
on position (2/V,2V/2) there is always a 1. We can repeat this process for the vector that has the
vector eg only in two positions. So there is also a 1 at position (2 —1,2/2 — 1), and so on. In
the last step we see that there is a 1 at position (2N/2 +1,1), It follows that the blocks N and R
can never be square. This is a contradiction.

We have showed that the non-negative matrix —h%w is irreducible. Thus the Curies-Weiss
Hamiltonian is a non-negative irreducible matrix. O

We are going to use Theorem [5.11f and Lemma [5.12} By the previous proposition, we may apply
Lemma 0 the Curie- Weiss Hamiltonian —h%w. Then e~ %" is strictly positive. Then clearly
for any t > 0, also e~th&" is strictly positive. Furthermore, it is positivity improving. To see this,
we must show that for any to non-zero positive vectors f, g € L?(X,du), we have

(e > 0, (5.34)

Since our space X is a discrete space consisting of 2V points, the corresponding measure is simply
the counting measure. Hence the inner product is just the standard inner product on C2". Moreover
it suffices to show the above inequality for (standard) basis vectors e;, where 1 < i < 2V, So we are
done if we show that for all ¢ and 7,

Z ei(k) (e ™" ;) (k) > 0. (5.35)

The above equation means that (e %" e;)(i) > 0, which is saying that all entries of the matrix are

strictly positive. So this means that for all ¢ > 0, et s positivity improving, which is exactly
what we just have shown.

It remains to show that —h]({,W is bounded from below. But this is obvious, since any matrix
is bounded from below. In order to apply Theorem , inf U(h%W) must be an eigenvalue.
But this is trivial in a finite dimensional Hilbert space. The positivity improving Curie-Weiss
Hamiltonian satisfies all the assumptions of Theorem , so that we may conclude that the
lowest eigenvalue is simple, with a strictly positive eigenvector.

It also follows that Theorem can be applied to —a, for any non-negative irreducible
self-adjoint matrix a, since then e!® (¢ > 0) is strictly positive, and automatically every matrix is
bounded from below by its spectral radius and the bottom of the spectrum is always an eigenvalue.
Thus for these matrices, the eigenvalue corresponding to the ground state will be simple and
the ground state eigenvector is strictly positive. Of course, Theorem does not hold only
for matrices, and can therefore be seen a generalization of this version of the Perron-Frobenius
Theorem, given in Theorem

79



CHAPTER 5. PERRON-FROBENIUS THEOREM

5.4 Application to Schrodinger operators

We have seen in Chapter 3 that the scaled compressed Curie-Weiss Hamiltonian %h%w [symM (C2)>
written with respect to the canonical base for sym™ (C?), was a tridiagonal matrix of dimension
N+1. In Chapter 4, we have argued that this scaled matrix was related to an unbounded Schrodinger
operator describing a particle in a symmetric double well potential. Therefore, we will also explain
how the Perron-Frobenius Theorem for matrices can be generalized to some class of unbounded
operators on an infinite Hilbert space. In this section we prove a general theorem stating that
the Schrodinger operator with a locally integrable potential V' bounded from below such that
lim, o V(x) = o0, has has a non-degenerate strictly positive ground state. The proof of this
statement is partially based on Theorem and on other theorems that we will prove in this
chapter. In particular, the harmonic oscillator with a symmetric double well potential one the real
line will be an example. However, we will prove the theorem for the Hilbert space L?(R"™), with n
an arbitrary natural number. It is not so easy to prove this statement for arbitrary n. Therefore,
in Appendix [D] we give some important definitions and basis facts about unbounded operators.
Using the machinery from this appendix, we can start with the theorems regarding the Schrodinger
operator with some class of potentials. We consider potentials that are bounded from below and
such that limj, . V() = c0. The main theorem of this section is:

Theorem 5.14. Let V € L} (R™) be positive and suppose that limy, ., V(z) = 0. Then —A+V
has a non-degenerate strictly positive ground state.

The notation —A + V' is explained by . It denotes the closure of the operator A + V. The
above theorem can be found in [33] Thm. XII1.47]. However, the proof is quite short. We try to
give a more detailed version of it. The proof we provide basically consists of three steps. The first
step we is to show that the spectrum of the operator H = —A + V is discrete. We need a couple
of theorems in order to prove this. The first theorem involved is based of the compactness of the
resolvent operator:

Theorem 5.15. Let V € L} (R"™) be bounded from below and suppose that V(z) — o0 if |z| — 0.
Then H = —A +V, defined as a sum of quadratic forms, is an operator with compact resolvent.

This statement can be proven using the min-max principle, as given in [33, Thm. XIII.1]. However,
we give a more direct proof based on the following theorem:

Theorem 5.16. Let V € L} (R") be bounded from below and suppose that V(z) — o0 if |x| — 0.

loc

Then the injection of H{,(R™) into L*(R™) is compact.

To prove this theorem, we need the following two lemmas and a corollary. These can be found
in [7, section 4.1]. The proofs involve Sobolev spaces H® with a real parameter s. More information
about these spaces can be found in Appendix @ or in [9].

Lemma 5.17. Let V be a real measurable function on R™ such that:
(a) V(x) tends to 0 if v — oo;
(b) multiplication by V is a continuous mapping from H*(R™) to L*(R"™), for a particular s > 1.

Then multiplication by V is a compact mapping from H'(R™) to L2(R™), for all t > s.

Proof. Let ¢ € D(R™) be a test function with ¢ = 1 for |z| < 1, and ¢i(x) = ¢(z/k) with k € N.
Let Ty, be the mapping from H*(R") to L?*(R") defined by:

Tru(z) = e (z)V(z)u(z) (zeR"), (5.36)
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being the composition of the mapping: u € H'(R") — p,u € H*(R") and multiplication by V. It is
a general fact that u € HY(R") — @pu € H*(R") is compact and, by assumption, multiplication by
V is continuous, so that T} is therefore compact. Furthermore, for all v € H*(R™)

1/2
T — V| =]|(1 — o) V| = ( j - @kWuPda:) (5.37)
x|>
1/2
<A suppn [ V@)l [Y2 < A suppago sl V@) . (5.38)

Here, A is a constant given by the supremum of |1 — | times the length of the (compact) interval
where ¢ # 0. When k£ — oo, for all [z| > k we clearly have ¢ — 0, as it is a test function.
Since t > s we know that H' = H* = H' so that ||u||z is finite, since its norm can be bounded
by ||u||gt. Now, by taking k — o0, we see that the sequence of compact operators T} converges,
for the norm topology in B(H'(R?), L?(R?)), towards the operator of multiplication by V', which is
therefore compact. O

Lemma 5.18. Let p be a real measurable function on R™ such that:

(a) 1/p € Li,.(R");
(b) multiplication by p is a compact mapping from H*(R™) to L*(R"), for some s > 0.

Then the space V' defined by:

u(r)|?
V={ue H*R"): f ’\p((x;|’2 dr < oo}, (5.39)

equipped with the norm:

u(z)|? 1/2
lully = (Nl + [ (53 o) (5.40)

is contained in L*(R™) with compact injection.

Proof. We have to show that the inclusion operator ¢ : H¥(R") — L?(R"™) is compact in that the
image (1(ug))r of any weakly convergent sequence (ug)r € V converges in L2- norm. Therefore,
given such a weakly convergent sequence (uy)x in V', without loss of generality we may assume that
(ug)r is bounded by one and that it converges to 0. Thus, we have the following setting: (ug)y is a
sequence of elements uy € V such that

HukHv <1, ug—0 in V weakly if k — oo. (5.41)

Since ||uk||3; < ||uk||v, the space V is contained in the space H*(R"™), with continuous injection, we
deduce that the sequence (ug)y satisfies

HukHHs <1, ur—0 in Hs(Rn) weakly if k — oo. (5.42)

From the compactness of multiplication by p : H*(R") — L?(R"), we have

llpuk||p2 — 0 if k — oo. (5.43)
By hypothesis: ||ug||y < 1 implies that { |7|L;’€|‘22 dx < 1, whence by Cauchy-Schwarz inequality:
1/2 1/2
J|uk|2dx = qukukd:n < <j|puk|2dm) <J|uk|2dm> , (5.44)
p p
hence
llurll72 < llpusll Lz, (5.45)
which shows that ||ug||z 2 — 0 if & — co0. This proves the lemma. O
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This brings us to the following corollary.

Corollary 5.19. Let V € L} (R™) be bounded from below and suppose that V (z) — o0 if |z| — oo.
For all given o > 0, the space W = W, defined by,

W ={ye HY(R"): (1+ V)% e L*R")}, (5.46)

with norm
ual | = (”(HV( )2 u(z) +Z| deD (5.47)

Then, W is a Hilbert space in L?(R™) with compact injection.

Proof. Consider the mapping p(x) = (1 + V(z))~®. Then p € L*(R"), so that p is a continuous
mapping from H1(R") to L?*(R"). Moreover, p(z) — 0 if |x| — c0. By Lemma multiplication
by p is a compact mapping from H'(R") to L?(R"). Furthermore, 1/p = (1+V (x )) e L (R"). We
can apply Lemmato conclude that W is a Hilbert space in L?(R™) with compact injection. [

We are now in the position to prove Theorem We know that the potential is bounded below
by some constant —C'. It is shown in [13] that the domain of the self-adjoint extension is always
contained in the form domain Q(H) := H;(R") given by

HE(R™) = {ue WH(R™) |(V + C)Y%u e L2(R™)}. (5.48)

This set is nothing more than the space V' of Corollary for a = 1/2 and 1 replaced by C. Of
course, the latter is just a rescaling and does not change the result. By the same corollary, it now
follows that Q(H) is compactly embedded in L?(R"). This proves Theorem

This brings us the the next result:

Corollary 5.20. Let us assume that the injection of H,(R") into L*(R") is compact. Then H =
—A +V has compact resolvent.

Proof. For H = —A +V and \ ¢ o(H), the operator Ry(H) = (M — H)™! is a bijection with
continuous inverse A\l — H. Furthermore, the inclusion map ¢ : H,(R") — L?*(R") is compact
by assumption, and if we restrict it to the domain of H, it is still compact. Now use that the
composition of a compact map with a continuous map is compact. Therefore, Ry(H) is compact,
and we conclude that H has compact resolvent. O

We apply this corollary to —A + V' and conclude that this operator has compact resolvent. Hence
Theorem ([5.15]) has been proven. We need one lemma more to finish step 1.

Lemma 5.21. An operator with compact resolvent has purely discrete spectrum and therefore has
a complete set of eigenfunctions.

Proof. Let a be an operator with compact resolvent. Then we know by assumption that b := Ry(a)
is compact for \ ¢ o(a). We show first that b=! has discrete spectrum. Note that 0 ¢ o(b), therefore
we may apply the spectral theorem for compact operators to conclude that o(b) consists of countably
many non-zero eigenvalues with no accumulation point in C. Since 0 # X is an eigenvalue of b if
and only if \ is an eigenvalue of b~!, we know that o(b~!) consists only of eigenvalues which follows
from the following observation. If A € p(b), then b~ — A~! is bounded and invertible, since

b—A=\"t bl (5.49)
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so that we have
(b= AH = —Xb-N)"1b (5.50)

Thus A~ € p(b~'). We have showed that o(b™!) = {A7': XA e o(b)}. Asb~! = a — A, the above
observation implies that a has a discrete spectrum. ]

The same result is valid for the operator —A + V| since the above corollary holds for the closure
as well. This proves step 1.

The second step proofs an important fact about strong resolvent convergence of the operator
—A + V. There is another theorem needed that shows essentially self-adjointness of the operator
H = —A +V on some domain. The two theorems are given below and can be found in [32, Thm.
X.28] and [31, Thm. VIII.25a).

Theorem 5.22. Let V € L%oc with V' = 0 pointwise. Then —A + V is essentially self-adjoint on
Cy(R™).

Proof. Put H = —A + V. It is clear that H is symmetric, hence closable (with closure H = H**).
Since V(z) — +o0 if [2] — o0 and V is bounded from below, we have seen that the corresponding
domain of H is always contained in the form domain Q(H) := H{,(R") given by

HE(R™) = {ue WH(R") |(V + C)Y%u e L*(R™)}. (5.51)

Note that —A + V + 1 is a strictly positive symmetric operator. Therefore, in view of |32, Thm.
X.26], it suffices for self-adjointness of H to show that

(—FA+V+1)*u=0 = u=0, (5.52)

for u € L2(R™) (in the sense of distributions). But —A + V is given with domain C§°(R™), which is
dense in L2(R™), so that the above statement is equivalent to

(~A+V+1Du=0 = u=0 (ue L*R")). (5.53)

Note that u € L*(R") and V € L} _(R™) imply that Vu e L}, (R"). Moreover, u € L}, .(R"), so that

loc

we conclude from the above equality that Au € L], (R"). By Kato’s inequality, we have
Alu| = Re[(sgn(u))Au] = Re[(sgn(w))(V + Du] = |u|(V + 1) = 0. (5.54)

In particular, Alu| = 0. Let j5; be an approximation identity, and w = |u|, w® = w * 5°. It follows
from a simple calculation that Aw® = w * Aj% € L?(R™). Hence, w’ € D(A). Then,

W, Aw®))y 2 = —(V(w’), V(w))r2 <0, (5.55)

with equality only if w® = 0. But Aw’ = Alu| * js = 0 in distributional sense, hence Aw® > 0
pointwise. It follows that w’ = 0. Using the fact that js is an approximation of the identity, it
follows that § — 0 implies that w® — w. Therefore, w = 0, and hence u = 0. O

The next theorem gives a result about strong resolvent convergenceﬂ

Theorem 5.23. Let {ay}_; and a be self-adjoint operators and suppose that D is a common core
for all a,, and a. If an,p — ap for each p € D, then a, — a in the strong resolvent sense.

3This notion of convergence is explained in Appendix |§| (see Definition (D.17))).
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Proof. Let ¢ € D, and put C = (a — i)D. Note that C is dense in H, since the deficiency index of
Tp is zero, which follows from the fact that a is essentially self-adjoint. Then for each ¢ € D, we
put ¢ = (a — i) € C. Note that (a, —i)~! and (a —i)~! exists as 7 is imaginary and hence is not
in the spectrum of a and a,, (since these are self-adjoint). Then:

[(an =)™ = (a =)'y = (5.56)

(an —1)"Ha—i)p—p = (5.57)

(an — 1) Hap — i@ — anp + anp) — p = (5.58)

(an —1)"Ha—an)p+ ¢ —¢ = (5.59)

(an —9)"H(a — an)p. (5.60)

By the uniform boundness principle applied to the bounded operators (a, — i)}, it follows that

the (a, —i)~! are uniformly bounded. Since (a — a,)¢ — 0, we can now conclude that the above
equation goes to zero if n — oo0. Since D is dense, we can conclude that

(an—i) Lo = (a—i)"Lp VYpe. (5.61)

By virtue of |31, Thm. VIIL.19], we conclude that we have strong resolvent convergence: a, —
a, (n — o). O
Then, let V e L (R™) be positive and suppose that limy,_,q V(z) = 0. Put V,, = min{V,n}.
Then A +V,,—A+V,—A and —A + (V — V,,) are essentially self-adjoint on Cy(R™) by Theorem
Moreover, for any ¥ € Co(R"), we clearly have V1) — Vb in L? as Cp(R") is dense in L?(R").
Then, by Theorem applied to a, = —A+V, and a = —A+V, and to b, = —A+ (V —V,)
and b = —A, we have the necessary strong resolvent convergence.

The third step is based on a link giving a connection between the operators Hy = —A and
H = —A + V. Two theorems are needed. The first theorem taken from |33, Thm. XIII.45], is the
most important one: it lifts some properties of Hy to H. The second one is given by a lemma and
proves that the properties in question are true for Hy.

Theorem 5.24. Let H and Hy be semz’boundedﬁ self-adjoint operators on L?(M,du) where
(M,dp) is a o- finite measure space. Suppose that there exists a sequence of bounded multiplication
operators V,, such that Hy + V,, converges to H in the strong resolvent sense and so that H — V,
converges to Hy in strong resolvent sense. Suppose, moreover, that H — V, and H + V, are
uniforormly bounded from below. Then

(a) et s positively preserving if and only if e=*10 is positively preserving.

(b)  {e ™} U L®(M,dy) acts irreducibly on L*(M,du) if and only if {e~"0} U L®(M,dp)
acts irreducibly on L*(M,dy).

Proof. Note that the Trotter product formula states that for A and B are self-adjoint operators and
A + B is essentially self-adjoint on D(A) n D(B), then we have

S nli_l;r&)(eitA/neitB/n)n _ e’i(A-i—B)t‘ (562)

Moreover, if A and B are bounded from below, then

. hngo(eftA/neftB/n)n _ eft(A+B)t' (563)

4This definition is explained in Appendix @ (see Definition (D.14])).
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Now, we use the last equality and the continuity of the functional calculus to obtain:

e H =5 lim (s— lim (e_tHO/me_tV"/m)”>. (5.64)
n—oo m—00
and
e tHo — g lim <s— lim (etH/meHV"/m)”). (5.65)
n—aoo m—0o0
Since eTtVn/m ig positivity preserving, we see that (a) holds. Moreover, by the above two formulas

and the fact that e*!V»/"™ e L% (M), any subspace left invariant by e 70 and L® (M) is left invariant
by e and vice versa. Thus no nontrivial closed subspace is left invariant by both e~* and every
bounded multiplication operator, if and only if no nontrivial closed subspace is left invariant by
both e~*H0 and every bounded multiplication operator. This proves that {e~t0} U L® (M, du) acts
irreducibly on L?(M, du) if and only if {e7*} U L*®(M, du) acts irreducibly on L?(M, dpu) O

Since the above theorem is based on a proof using the Trotter product formula, which works for
self-adjoint operators, we really need Hy and Hy+V to be self-adjoint. Therefore, we must take their
closure, because we know that both operators on the domain Cy(R™) are essentially self-adjoint.
Thus, using Theorem with a, = A+ V,,a= -A+V, b, = —-A+(V—-V,) and b = —A,
where V,, = min{V,n}, we have strong resolvent convergence. Moreover, if we can show that the
operator e *Ho is positivity improving, we can indeed apply Theorem to conclude that for
H = —Hy + V, the exponential et is positivity preserving. This will be the next step. We are
going to show that for Hy = —A, the operator e 10 is positivity improving. It follows then by the
remark under Theorem [5.11} that it is also ergodic and positivity preserving.

Lemma 5.25. Given Hy = —A, the operator e~"110 is positivity improving for all t > 0.

Proof. From [32, p.57], we know that Hy = F!\2F and f(Hy) = F 1f(\?)F, where f is any
bounded measurable function. It follows that the operator e iHot = F~le=NtF for Im(t) < 0.
Theorem IX.29 in [32] states that given f € L®(R"), if either (a) f € L?(R") or (b) f € LY(R"),
then

(f(=iV)e)(x) = (2m) "/ ff(x —yey)dy, (pe L*(R")), (5.66)

and the integral converges for all z in case (a) and for almost all = in case (b).

—_—

Here, by f(—iV), we denote the operator ¢ — (fp). With the notation f, we mean the

Fourier transform F(f) of f. Similarly, the notation f means the inverse Fourier transform F~1(f)

of f.
It follows that for o € C and Re(«) > 0, we have
e N e LP(R™) A L3(R™). (5.67)

Therefore, we can apply (5.66) to e~*@ and we obtain

—lz—y|?

(00 ) () = (4ma) ™ f e py)dy (o € LARY)), (5.68)

where we used the fact that ]-'_l(e_vo‘) = (204)_"/26_9”2/40‘.

Now, we are in the position to prove the lemma. We have to show that

@, e %) 12 >0, (5.69)
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. . . . . —lz—y|?
for all positive functions 1 and ¢ in L2(R"). By formula (5.68) this is obvious, as (4ra) ™2e™ 1
is strictly positive. For ¢ > 0, we put ¢ = «, and the statement is of course still true. ]

From now on, we will use the notation Hj to indicate the operator —A, and H to indicate the
operator —A + V.

As we have just mentioned, it follows that the operator e ‘0 is positivity preserving and

ergodic. By Theorem (b) = (c), we have now that L®(R") u {e~*0} acts irreducibly on
L2(R™).

We give a short summary of the steps used as preparation to apply the main Theorem

b.14
(1) We showed that the spectrum of H = —A + V is discrete.

(2) Then we proved that we have strong resolvent convergence so that Hy and H satisfy
the assumptions of Theorem with bounded multiplication operators given by V,, = min(V,n).

(3) It has been shown that e *H0 is positivity preserving and that L®(R") u {e tH0} acts
irreducibly on L?(R"). Thus, by Theorem this hold for e * as well.

In order to prove that the ground state is strictly positive and non-degenerate, we use Theorem
applied to our Schrodinger operator H. We know that —A + V is essentially self-adjoint, so
that H = —A 4+ V is self-adjoint. It is clearly bounded from below:

(=A+ V), ¥y = (A, )y + (Vap, ¥y = O[] (5.70)

We used that V' is bounded from below, and that —A is positive (which follows by Green’s identity).
Moreover, by scaling the potential we can make —A+V positive. Then, also H = —A + V is positive
as follows from the next theorem, also stated in Appendix [D] as Theorem [D.13}

Theorem 5.26. A positive, densely defined, symmetric operator, has a unique positive self-adjoint
extension, called the Friedrichs extension.

Since the operator —A + V' is positive, densely defined, and symmetric, the above theorem applies.
Since the —A + V is essentially self-adjoint, the extension equals its closure, and it now follows that
—A + V is positive and thus its spectrum is contained in the positive real axis. In particular, this
operator is bounded from below. Since we know by step 1 that the spectrum is discrete, we can now
conclude that the bottom of the spectrum of H is an eigenvalue. Hence, by (a) <= (c) in Theorem
5.11| it suffices to show that e~* is positivity preserving and that L®(R™) U {e~*1} acts irreducibly.
We know these facts for e #0 and hence, we may apply Theorem to conclude that et is
positivity preserving and that L®(R") u {e~*} acts irreducibly on L?(R"™). We conclude that the
ground state of H is non-degenerate and strictly positive. This completes the proof of theorem [5.14

Consider now the Schriodinger operator with a symmetric double well potential V defined
on a domain of L%(R). Then, it is easy to see that V is in L (R), and that V(z) — o as |z| — o0,
by definition of the potential function. Moreover, the potential is bounded below and can always

be scaled in order to make it positive. Thus Theorem is applicable.

Then finally, consider our Schrodinger operator hy = —% + V(y) with symmetric potential

V given by V(y) = f%(Qy —1)2 — /(1 — y)y. We apply Theorem with d = 1 and A = [0, 1]
and V the function given above which is clearly continuous on A. The Dirichlet boundary
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conditions are given by V(0) = V(1) = —1/2. By Theorem it follows that the spectrum is
discrete. The potential is bounded from below and can be translated to make it positive. By a

similar argument as for the operator H, also —j—; + V(y) is positive and has a discrete spectrum,
and hence it admits an eigenvalue at the bottom of its spectrum. Furthermore, Theorems [5.22

5.23] |5.24 and Lemma [5.25| are applicable for the self-adjoint operators —j—; +V(y), Hy = —-&

dy?
and e~*fo. In Theorem I%l one can take V;, = min(V, max(V') — %(V)) in order to get strong
resolvent convergence. Thus, by Theorem it follows that the ground state of ho is unique and
strictly positive. As expected from numerical simulations and the equivalence established between
the scaled quantum Curie-Weiss Hamiltonian Jy1/N and the discretization matrix Hpyq (see
Chapter 4), this result is in accordance with the fact that the ground state of Jyi1/N is unique

and strictly positive.
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Chapter 6

Classical limit

We have proved in Chapter 3 that the ground state eigenvector w](\(,)) can be found by diagonalizing
the Curie-Weiss Hamiltonian represented with respect to the canonical base of Sym® (C?). This
compressed’” Hamiltonian was also denoted by Jyi1. We have seen in Chapter 4 that the scaled
compressed Curie-Weiss Hamiltonian, denoted by Jy41/N, could be viewed as a discretization of a
particular Schrodinger operator, which we denoted by hg. Under this identification, it was not clear
what the limiting object limy_,o Jy+1/N would be, since the corresponding Schrédinger operator
hs is not defined for N = oo Therefore, this correspondence only holds semi-classically, in the
sense that N needs to be large, but finite. As a result, we could not take the limit of the ground
state eigenvector ¢§3)7 at least not naively. The reason for this lies in the fact the limiting system
N — oo describes a classical theory and rather than a quantum system. The link between the two
theories is based on a deformation quantization, in this specific case called Berezin quantization. In
order to compute limits, it turns out that we have to transform the ground state eigenvector first
into a vector state and then apply this state to the deformation quantization. This method has been
extensively studied in [22]. We will discuss this more in detail in Regardless of the connection
with the Schrodinger operator together with its corresponding classical limit, the Curie-Weiss model
also has a classical limit on another algebra, namely on the commutative C*-algebra C(B?), with
B3 c R3 the closed unit ball. Again, the relationship between quantum theory and classical theory
is described by a deformation quantization map. In the first paragraph of this chapter, we will define
this map and give a proof partially based on numerical simulations, showing that the vector state
associated to the ground state eigenvector @05\?) of the Curie-Weiss Hamiltonian h%w and applied
to some deformation quantization, does converge to some probability measure on B3. We will
see that the use of the deformation quantization map plays a crucial role in computing this limit.
Hence this map plays a key role in connecting the two different theories (which are individually
well-understood).

6.1 Determination of the classical limit

Recall from that the local dynamics defined on B(Hy) ~ @7]:7:1 M5 (C?) is given by

o (a) = ™5 e N (a e B(Hy)) (6.1)
where h%w is the Curie-Weiss Hamiltonian (3.1)) defined on the Hilbert space Hy = ®7]1V:1 C? ~

C2". We have seen that the quantum Curie-Weiss model does not converge to a global dynamics
on the quasi local C*- algebra A = X),., B(H), where H = H, is identified with C2. However,

!Naively (in quantum mechanics) one cannot take the limit N — oo (for i = 1/N). The limit can however be
taken via a detour: deformation quantization. In this case we will see the surprising result that the closed unit ball
B3 c R? plays a role.
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its dynamics does converge to a global dynamics on the commutative C*-algebra C(S(B)), where
B = M;(C) is the single site algebra.

It can be shown by Theorem from Appendix [E] that

A = C(S(M(C))); (6.2)
A = B(Hay), (6.3)

form a continuous bundle of C*- algebras whose continuous cross-sections are the quasi-symmetric
sequences, in this case specified via the symmetrization maps:

Sutw : B(Hay) — B(Hay) (N > M), (6.4
As a special case for Hp,, = @n_, C? so that B(Ha,,) = Ma(C)®M we have for N > M:
Sy Ma(C)2M — My (T8N, (6.5)

Regarding (a1/5r) € B(Ha,,) as an element (a’l/M) of B(Ha,,) via the canonical embedding A, —
Ap,,, we finally define Sy n by

Smn(ain) = Sn(aypy)- (6.6)

Here the canonical symmetrizer Sy : B(Hay) — B(Ha,) is defined a la (E.21)) and (E.22) in
Appendix [E]

We use the notion of deformation quantization (Appendix in order to compute the limit

N — o of the N-dependent vector state associated to the ground state eigenvector ¢§\?) of the

system. We shall see that the limit will be a probability measure u H© on the Poisson manifold
N

S(M>(C)) = B3. For this, we use the Riesz Representation Theorem, stating that given a compact
Haussorff space X, complete regular finite probability measure spaces (X, X, i) uniquely determine
a state w : C'(X) — C and vice versa. Given the measure space (X, X, i), then p defines a state w

by

w(f) = | dnt. (6.7)

The converse is more complicated and involves some measure theory. The construction can for
example be found in [22, Thm. B.15]. We apply this to X = B? with w being a vector state as we
will see below.

Denote the deformation quantization map by Qn : C(B?®) — B(Hy), where N > 0 is a
natural number. Assume first that Qu is given. Then define

. N :
u? () = lim WM Qu(F) (e C(BY), (6.8)
provided this limit exists . Here, wéN) is the vector state on B(H ) associated to the ground state

¢§\[f))7 (or more generally to any unit vector in Har) given by

WM (ayn) = @0 ayn by (a1,n € B(Hw). (6.9)

We do not a priori know Qn(f) for all f on B3. Fortunately, in view of (E.27), for a fixed M we
do have that each b e Ma(C)®M induces a function f; : S(M2(C)) = B3 — C given by

fr(w) = lim W™ (Syn(d) (we S(My(C))), (6.10)

N—o0
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where Sy : Ma(C)®M — My(C)®V is the symmetrization map, defined for N > M by (6.5). The
above definition makes sense as Sy n(b) is symmetric, and hence quasi-symmetric. Recall from
(E.28)) that w? € S(M(C)®N) is defined as

Wb ®- - ®by) = w(by) - wby). (6.11)
It follows that
fo(w) = ™M (b), (6.12)

since N > M and states map the identity element of the operator algebra to the unit element of
C. Moreover, fp is continuous as well.

We define Q) on these functions f; induced by b, by

Qn(fo) = Sm,n (D). (6.13)

It can be checked that @y can indeed be linked to deformation quantization of X = B3 in the sense
of Definition This follows from the fact that the map 0 — f and 1/N — Qn (N > 0) is a
continuous section of the bundle since, by definition of the symmetrization map these clearly form
a quasi-symmetric sequence. It is a bit more difficult to check that the Dirac-Groenewold-Rieffel
condition is satisfied [23]. However, strictly speaking, since the map @y has only been
defined for these induced functions f;, on B3, we cannot speak about a deformation quantization.
Nonetheless, we will see below that even this partial construction yet provides a very interesting
result.

For this, we fix M = 1. Then we want to get an indication of what the limit Méoo) could be. Since
the Pauli matrices together with the identity form a basis for Ms(C), we can just compute Qn (fs,),
where i = 1,2, 3. Denoting M»(C) by B and recall formula from Appendix

N
1
Sin(oi) = N Z 1p® - -0i) ®1p - Blp. (6.14)
k=1

Here k denotes the k™ position in the tensor product. It follows that
1 (foi) = T W, 1 (08
im0 (@ 1n- 3 ©
]\;l—inoo <¢N 7(Uz®1B Rlp + +1p® 1B®Uz)'¢N >’HN
. N, o 0
= ]\}linoo N<¢](V)7 (Ui ®1lp--- ®1B)¢](V)>HN

- (1)
= ]\}I_Ifloo Tree {7¢(0) : O'Z':|. (6.15)

N

In the final last step, we used the fact that zp](\(,)) is a symmetric vector, so that

WV, (0 ®@1p - ®1p) Y\ oy = = WY, (1@ 15 -+ @) iy -

In the last step we also realize that the inner product equals the trace of the one-particle reduced

density matrix associated with the many-particle vector wj(\(,]) called 'y(l)

(0> times the spin-Pauli
YN

matrix o;. A rigorous formalism of this can be found in [25].
The beautiful thing about this link with the reduced density matrix is that the problem
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reduces to the computation of the trace of a 2 x 2-matrix. However, we still need to determine

'yqulgé). By definition of the one-particle reduced density matrix, the four matrix elements of 71;20)

are given by

1 0 0
(v;&))) = DX @&l Xuwle; ® &) (6.16)
N /g k
Here {&;} is an orthonormal basis for Hy_1, and {e;}?_; is the standard orthonormal basis for C2.
In order to compute ,u(()oo)( fs;), it is necessary to compute the matrix 71(/;1(2”' For this, we
N
take the standard orthonormal basis for Hy_1 = C2"™". First consider (71(/)1(2))> . It follows that
N /11
2N71
1 0
(49) = 3 Kka@ e (6.17
N /11 k=1
Since w](\g) is symmetric, we can write
(0) -
wN = Z C'n+|n+7n*>7 (618)
TL+:0
where ny +n_ = N, and |ny,n_) are the symmetric basis vectors (see also §3.1)). These were given
by
. (i)
R4, = —— Bri s (6.19)
(n,) =1

: N . : . :
where, 3, ; are basis vectors for Hy = C?" containing n- times the vector e € C? in the [ basis
vector 3y, ;1 of Hy.

Lemma 6.1. We have the following identity for the matrix elements of 71(/;1(2” :
N

() - NZO i 32;*) ("N =% aa- (6:20

ny =0

" N-1 .2 s ,
n4
= —_— . 6.21
<’Yw(o)>22 Z: 1 N +cn ( )
For the off diagonal matrixz elements we have:
1) _{~D
<7¢5\?)> 1,2 <7¢§3)>2,1

NZl Cni+1 Cny (N — 1>
12, Ny1/2
=0 (o) TG TN T

N-1
-y %(m +1)VE(N —ny )2 (6.22)
n+=0
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Proof. Let Ay, = {£ € Hy_1| e2 occurs k times in £}. Then #A; = (lel). We compute

<’YS§§)> Z Ke1 ® &, Z Z \/—)Cmﬁmﬁl

£keAk ny= =0 [=1
00
- N
n4=0 (n+) e
N—-1 n
+
= > .- ~)- (6.23)
’I'L+:O

In the second step, we used the fact that e; ® § and f3,, ; are both basis vectors for 2" and
that the inner product is orthonormal with respect to these vectors. The last step follows form the
identity

(N—l) "
n4 =+
=1-—. 6.24
n4

Similarly, one can prove that

N-1 N-1 2

(1) n -1 2 _ Cny My 9
n+:l ’I’L+:].

It is a bit more difficult to derive a formula for the matrix elements <7(1(2))> and <71(/)1) ) . As
1,2 2,1

before, consider Ay = {£ € Hy_1| e2 occurs k times in ¢}. Compute

(fvfj&)) = (o1 © 6, W 2 @ 60
k

I CLUEPELIRE

_Z<e2®§k7 Z Z 1N Cn+/8n+,l><€1 ®§k Z Z

cn+/6n+, >
ny=0 [=1 (n+) ny=0 1 n+) l
o a v )
<€ ® Eks Cn+ﬁn+, ><6 ®¢E Cn+5n+, >
Z 2 ® &k MZ:O z—Z; (ﬁ) 1{e1 kné o %J !

{ m( ) (o) T

o TG T

N—-2 N-1

_ 2 Cni+1 Cny N-—-1
N ny

1/2 1/2
n4+=0 (n+ +1) (Ti\_/;_)

-1
B Z Cn++1 cn+ n. + 1)1/2(N—n+)1/2- (626)

n+0
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The last step follows from an easy computation that uses the identity

(o~ )1/12(N)1/2 <Nn: 1) — (e £ DY — )V (6.27)

n4+1 ny

By symmetry, using the fact that ¢](\(,)) is real-valued, it follows that <7(1(2))> = ('7(1(2))> .
YN /1,2 YN /21

This proves the lemma. ]

We have simplified the matrix elements of 71(;(& . We are going to prove that 71(;(2,)
N N
(1)

in the trace class sense to vy ’, which is given by

w1 /1+£+/1- B2 B B
Yoo _2< 3 T VIsB? (0<B<1,J=1). (6.28)

The question is: could we have expected this specific matrix?

converges weakly-

The answer is not so difficult, since we know the numerical ground state eigenvector wj(\?) of the
compressed Curie-Weiss Hamiltonian. We can compute the coeflicients easily up to N = 5000
using MATLAB. Since this vector is given with respect to the canonical symmetric base for the
subspace Sym’¥ (C2), we have to express S1 y(0;) € Hy in terms of the symmetric basis vectors in

order to compute the expression <¢§\?), Si, N(O’i)wg\(f])>symN(C2) numerically (¢ = 1,2,3). This result

in turn will be used to find fyéé).

The following lemma is used to derive an explicit matrix representation for Sy n(o;) (i = 1,2,3),
when we represent this operator with respect to the canonical basis for Sym® (C?).

Lemma 6.2. In the canonical basis for Sym” (C?), the operator Si n(03) is given by a diagonal
matriz with entries on the diagonal

1-=, (i=0,..,N) (6.29)

In this basis, the operator Si n(o1) has non-zero entries only on the upper and lower diagonal, both
given by

VilN = (i —1)/N, i=1,..,|(N+1)/2], (6.30)
and for i = |(N +1)/2| +1,...,N + 1, we have
V(i = [(N + 1)/2](N — ((N +1)/2] = 1))/N. (6.31)

Here |x| denotes the floor function. Thus the lower diagonal equals the upper diagonal, and the
entries are repeated in opposite direction at |(N + 1)/2].

In this basis the operator Si n(o2) only has non-zero entries on the upper and lower diagonal. The
lower diagonal is given by the lower diagonal of S n(o1) multiplied with i and the upper diagonal
by the upper diagonal of S n(o1) multiplied with —i.

Proof. This follows by computing the expressions
(e, |Sinl@dne,n) (i =1,2,3), (6.32)

with |ny,n_) given by (6.19). We omit this computation, as it is similar to the proofs of Theorem
B.1] and Lemma [6.1] O
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Using the above lemma, we are finally in the position to compute <w](\(,)),SLN(Gi)w](\(,))>SymN(C2),

(1 = 1,2,3) and show at least numerically that we expect convergence of 'y(l)

R
entries (’y&?) as given before by (6.28)).
i,

Of course, this inner product is nothing but the scalar inner product on Sym’ (C?) =~ CN*HL Tt is
very easy to compute this inner product numerically. It is not obvious that this will converge as
N — o0, but as we shall see below that, it does though.

to the specific matrix

We use identity (6.15) and the expressions for Si n(0;) that we deduced above and compute

Tre2 {71(;(2)) : O'i] =<¢§3)7 S1,N(0i)¢§\?)>symN (c2)
N

N+1

= 3 oGS ) 6): (6.33)

This sum is computed up to N = 5000 (¢ = 1,2,3). The results are given in Figure below.

DBOOCODCOO ooo o je.e.ole o] (ol e e o] oo

0EF
0.4r

0Zr

02t
04t
06}

-08F
o] o0 QOO0 O O 000D OO Do0D 00 [0

1 1 1 1 1 1 1 1 1 ]
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 6.1: The above inner (6.33) from above has been computed for i = 1,2,3, starting from
N =100 up to N = 5000. The blue circles correspond to i = 3, the red asterisks to ¢ = 1, and the
light blue diamonds to i = 2. We took B =1/2 and J =1 in the Curie- Weiss Hamiltonian (3.1)).

The above figure shows that the blue circles that correspond to ¢ = 3 are equally and randomly
spread over the numbers approximately equal to J_r\/g/ 2. This means that the limiting function is
double degenerate. It also shows that we have convincing numerical evidence that

(1) 1
Tree _'ij(\(])) '0'1_ - 2 (6.34)
Tree [+ 0 6.35
c2|7 o 02| =Y (6.35)
| UN ]
[ T 3
Trez |41, - o3 —>i£. (6.36)
KOG 2
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Now we are in the position to 'guess’ what 7§§) will be.

Since the limiting - matrix is still a 2 x 2- matrix, we can write

'yc%) = aogls + ai101 + as0o9 + asos. (6.37)

We know from the above numerical computations that

[ 1
Tree 'yc%) oLl =3, (6.38)

Trgs [0 03| = 0
C2| VYo" " 02 ) (639)

] 3
Tres |7 o3| = i\g. (6.40)
(6.41)
Moreover, we have

Tree [7%) . 01] = Tre2 [(aolz + a101 + ag09 + asos) -01} = 2a;. (6.42)

Similarly, we find that Tree {%%) . 02] = 2ag and Tree [’yg) : 03} = 2a3. Combining this and the

above numerical observations, we have

1 3
%(301) =1+ 301 + 002 + \503, (6.43)

as indeed hypothesized for B = 1/2. In general, for 0 < B < 1 and J = 1, similar computations
can be done and one can show completely analogously that

1
fy(%) =§(1 + Boy + 002 £ /1 — B203)
_L(1Evi-B B (6.44)
2 B 1FvV1-B2)’ '
as postulated before by (6.28)).
This proof, inspired by numerical computations, shows that
s (f1) =1 (6.45)
15 (fr) =B (6.46)
1§ (f2) =0 (6.47)
15 (fry) = /1 B2. (6.48)
We will use the isomorphism S(My(C)) = B3, explicitly given by
w(m,y,z) (a) = TI‘(,O(.’L‘, Y, Z)CL) ((:Uu Y, Z) € BSa ac MQ(C))7 (649)
114z -y
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For b =o0; (i =1,2,3), we use the above isomorphism and equation ([6.12)) to compute

fﬂz‘ (w(w,y,z)) = w(w,y,z)(ai) = Tl"(p(:L‘, Y, Z)Uz) = fai (l’,y, Z) (6'51)
It follows that
filzy,z) =1 (6.52)
f01(x¢y7z) = T (653)
fo2 (l‘, Y, Z) =Y (654)
fos(@,y,2) = (6.55)

Denoting the point (B, 0, ++/1 — B2) by x4, we then have

f1( +) =1 (6.56)
for(z1) = B; (6.57)
foo(z1) = 0; (6.58)
Foslas) = +4/1— B2, (6.59)

It is known [22, Sec. 10.8] (and easy to verify) that the classical Curie-Weiss Hamiltonian on B3,
given by

1
WY (z,y, 2) = —§z2 — Bz, (6.60)

has a doubly degenerate ground state for 0 < B < 1, given by

zy = (B,0,+/1 — B?). (6.61)

In view of the proof of Lemma in Chapter 2, we know that the points x4 correspond to Dirac
measures [Lai (or, equivalently, to pure states), given by:

() = B eviomn () = | diposyiom (D) = 1B0.5VT-BY) (feCBY). (662)

B3
From the above equation, using f, for b = o; (i = 1,2,3), we recover precisely equations ((6.46))-
. In fact, we have numerically proven that for a specific choice of the deformation quantization
acting on the functions f, coming from a matrix b € M>(C), namely Qn(fp) = S1,n5(b), the limit
defined in exists and is precisely the doubly degenerate ground state that corresponds to
the classical Hamiltonian hSW (for 0 < B < 1 and J = 1). The ensuing Zo-symmetry on B3 is
simply given by the map (z,y,z) — (z,—y,—z). From a similar argument as given in the text
under Lemma one can show that the degenerate (pure) ground states jig on C(B?) are not
Zo-invariant, so that the symmetry is spontaneously broken.

This is completely in accordance with the link between the Curie-Weiss model and the corresponding
Schrodinger operator. We have seen in that for 0 < B < 1 we obtained a double well potential
such that in the classical limit the ground state was doubly degenerate and displayed SSB, even
though these ground states were defined on a different algebra from the one we just considered,
namely C(B3). This will become clearer in

Remark.

We haven’t made a clear distinction between convergence of the delocalized eigenvectors wj(\(,)) and
gZJ N » or the localized eigenvectors — (¢ N T @b N ) For the double well, it known that the delocalized
wave functions converge to a mixed state on the corresponding classical algebra. The localized
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wave functions, which define pure states as well, converge to pure states on this algebra [22], [34].
The latter states indeed correspond to Dirac measures. As for the double well, we can expect a
similar result for the Curie-Weiss model. However, we could not check this for the delocalized
eigenvectors @D](\?) and 1/)5\}), since due to numerical inaccuration these already localize for N ~ 80.
As a result, we expect convergence to a pure classical state. Fortunately, we already found this
correct outcome.

6.2 Convergence of the reduced density matrix

In this section we say more about the convergence of the matrix ’y(l) to the matrix fy(%). It is

v
extremely difficult to prove this analytically, since the ground state eigenvector wj(\?) is only given
numerically, being a solution of the characteristic equation corresponding to the smallest eigenvalue.

We have seen in Chapter 4 that for large but finite N, the compressed (scaled) Hamiltonian
that we denoted by Jyi1/N was in some sense equivalent to a discretization of the Schrodinger
operator hy on L?([0,1]) describing a particle in a one-dimensional symmetric double well.

We have also seen that the lowest eigenfunctions of such a Schrodinger operator with a symmetric
double well potential are approximately given by linear combinations of the weighted Hermite
polynomials (see §3.2). In particular, for N large enough, the ground state was approximately
given by a linear combination of Gaussians

Ta(po) + T (o)
\/2
where the symbol +a indicates the position on both minima of the symmetric double well potential
and Ty, is the translation operator over distance +a, i.e., (Thq90)(z) = wo(z £ a).

: (6.63)

In our previous discussion in Chapter 4 it was not clear what the limiting object imy_,o0 Jn+1/N
would be, since the corresponding Schrodinger operator he was not defined for N = 0. As a
result we could not just take the limit N — oo of the ground state eigenvector w](\(,)). We will
see in that the so-called Berezin quantization is involved when computing the classical limit
of this Schrodinger problem. Nonetheless, we have already seen that the use of the deformation
quantization map defined in the beginning of the previous paragraph enables us to speak about
the limit , which will be different than the one for the Schrodinger operator. This limit was a
probability measure on the compact space B3, at least defined for special functions f.

In we argued that, when discretizing the grid, the number of points in this peak increases with
VN, so that the in fact we get a better approximation of this Gaussian, as we also have observed
numerically. The next step is then to fit the numerical vector components c,, to Gaussians.
Following this approach, one can try to use these Gaussians rather then only the numerical values
Cn, in order to compute the limit N — o0 of equation . The idea is to prove things more
analytically using these Gaussian functions, rather then only numerical values.

We are going to fit our numerical ground state eigenvector ¢§3) to a Gaussian Gg\?) using
MATLAB. This time for simplicity, we take the operator Jy,1 rather than the scaled one,
since the eigenvectors do not change by a scaling constant. We will show analytically that, using

M (1)

these fitted Gaussians instead of the numerical vector ¢§3)7 the matrix 750 indeed converges to vs,’.
N

2Note that for any finite N the ground state eigenvector, seen as the original eigenvector of the Curie-Weiss model
or as the eigenvector of the discretization matrix H ~ of the Schrodinger operator i~z2 is well-defined and independent
of the type of classical limit we take, which depends only on the deformation quantization. However, inspired by
Chapter 4, we know that the ground state looks like a Gaussian, and thus we will fit wg\?) to a Gaussian.
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1

The mixed ground state ﬁ(Tacp + T_q¢) is never seen numerically for N > 80, as explained in

Chaper 3 and 4. Hence we fit wj(\(,)) to T4qp. By symmetry, we can restrict to only T,p. We fit the

ground state eigenvector w](\?) on the discrete grid [0 : A : 1] (with uniform grid spacing A = 1/N)
to the Gaussian in the most general form:

Gg\(;) (z) = agel~(@=b)/e1)?) (6.64)

A plot of this fit is displayed in Figure [6.2

+  data
fitted curve H

0osr b
0.06 B
0.04 B

002k B

_DDE 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 s 07 LRSI VA= 1

Ed

Figure 6.2: The ground state eigenvector 7,/)](\(,)) fitted to the above Gaussian for N = 5000.

As we have seen, the eigenvector will be numerically degenerate, so that we indeed observe
one peak instead of two. For this value of N = 5000, we find the following values for the fit
parameters:

Fit parameters

parameters || value

ay 0.1449
b1 0.06702
c1 0.007597

Of course, these parameters depend on N. However, the position of the maximum indicated by by
tends to converge to a fixed value being 0.0670 ~ B(1—+/1 — B2), for B = 1/2. This result is purely
based on numerics. By symmetry, the other maximum is then given by 1 — b, = B(1 + +/1 — B?).
When one compares these two values to the double well as given in (4.90]), they indeed correspond
to both minima of this potential, given by B(1 —+/1 — B2) and 1 — B(1 — +/1 — B2). The other
parameters are more difficult to handle since the amplitude and the width of the Gaussian depend
on N, and we may not speak about the limit of the single Gaussian. However, we can always try

to prove that ’yél()o) converges to matrix %%) as N — oo, (but N # oo, which is undefined). This

N
will be the next step.
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We have deduced the entries of (’yi}%) for LZJ](\(,]). The same formulas of course holds for
0,3

N

the fitted Gaussian Ggg). We find on the grid [0: 1/N : 1]:

N-—1 n
(v%) ~H+Z_O<G53> (n/N)A(1 = 52) (6.65)
N-1 N—
= Y GV (ne/N))? Z Ve /N)2E . (6.66)
n4+=0 +=0

Using the fact that w](\?) is normalized, also the fitted Gaussian GE\O,) will be normalized to a good
approximation. So when we take N large enough, the first term converges to 1. An outline of a
proof of convergence is as follows. Consider the first term. The function

1 N-1 0
5 2 (@Y (/N (6.67)
ny =0

is the Riemann sum for the function (Gg\?) (7))? over the interval z € (0,1). Hence, for N large, the
original sum behaves like

2 Nalx/ﬂcl —b 0—b1
NJ d 4 [ i \f01/2) il \/501/2)} (6.68)

However, the function (GE\?) (z))? is almost zero outside the interval (0, 1) since the Gaussian function
decays exponentially. For N = 5000, the value at the boundary is of the order 107%5. Thus, it is
reasonable to integrate over the whole real axis to find that

0
N f (G (y))2dy = Na3v2re1)2 ~ 0.9993 ~ 1. (6.69)
—o0

Here, we used that SO_OOO( N)( )?dy = mcl

Now consider the second term. Using n; = %, for large N, the function

N— N-1 n
Z ¥ (/N == 3 TG (ny/N))? (6.70)
+=0 ny =0

corresponds to the integral over the interval (0, 1) given by

1
N f y(GO (y))*dy. (6.71)
0

As before, already for N = 5000 the function value of the exponential Gg\?) on the boundary is of the

order 107#%, so that multiplication by the function 3 does change this order, as the latter function
increases more slowly to infinity than the exponential decreases to zero. Hence we can take the
integration domain to be the whole real line. That gives

N f Py = Natvar o ~ ~br. (6.72)
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This shows that for N = 5000, we find that (still using B = 1/2 and J = 1)

(Vw ) ~1—b ~ B(1+V1-B). (6.73)
1,1

a

Completely similarly to the previous one, we get

N-1 (~(0) 2
(G (ny/N)*n
(7(;20)) v Y N 1+/ GV )R, (6.74)
N 272 TL+:1

Using Gg\?)(l))2 ~ 0, we find that

(7(1) > ~ b ~ B(1—+/1- B2). (6.75)
2,2

a¥

This brings us to the final two equations <’y(1()0>) = (’y(l()o)> , where again we used the fitted
Gy /12 GN' /a1

)

Gaussian for 1/1](\(,)) .

Unfortunately, these equations are more difficult to handle since they involve the function

Ve +1y/N-ny (0)
N

. We can rewrite the product Gy’ (n4 + 1)G§3) (ny) in terms of one single Gaussian.
For j € [0:1/N : 1], by completing the square we find that

GS\(I)) (G + 1)G§\(/)) (5) :age(*(((ﬁrl)*bl)/cl)2)6(*((]'*51)/01)2)

4b; o \ 2 (2 _4by o
2 |- N2 A2 o2 N2 N
9 N2 71\4712 g\ N2 N 1 8/N2
1€ e .

=a

(6.76)

The function

N

2

—1
1 0 0
5 2 VN =i /ng 16 (s + 1)/N)GR (g /N) (6.77)
ny=0
is the Riemann sum for the function above function on the interval (0,1). Hence for N large, this
behaves like the integral

(=2 4512
1 2_'N2 N

4b
1 2bq 2% 1 2 Tl %
9 NZTN P f ) LA S
e
0

2
L N2 ) v/N — Nyy/Ny + 1dy. (6.78)

This integral indicates the expectation value of the function /N — Nyy/Ny + 1 over the interval
(0,1) that corresponds to the density function given by the Gaussian

4bq 2 2
2 N N2
%)
2 ! N2 . (6.79)
We computed (’Yé,l()o)) for N = 5000, obtaining
N /12

B
<7(1<)0)> ~ 0.2501 ~ 1/4 = —. (6.80)

OGN /12 2
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1 (1)

We conclude that using these Gaussians, the matrix ' ;) converges to 7o’
N

G
This result, inspired by numerical evidence as well as by the link between our system and
the harmonic oscillator, is based on the fact that we could fit the ground state eigenvector @Z;J(\(,]) to
a Gaussian GS\?), for N large enough. We have already shown numerically that 71(/,1(2))

N
fyc(,é). However, using these Gaussians instead, we showed that the same result is true and is not
based on pure numerical computations.

converges to

We still need to understand in which sense we have convergenceﬂ We claim that the convergence
of states is in the sense of the weak™ topology defined by the duality Bi(H) = Bo(H)*. This means
that given a sequence (T,), € B1(H) of trace-class operator{] and a T € By (H), we havd|

T, —» T (weak*) <= VJcompact: Tr(JT,) — Tr(JT) (n — o). (6.81)

In our case H = C?, so that the Pauli spin matrices together with the identity matrix form a basis
for M>(C), as we have also seen before. Therefore, showing that

Tre2 (’yf:(%)) 0;) — Trez ('yéé) 0;) (6.82)
N
proves that
71(:(2» — %%) (weak™*). (6.83)
N

This is exactly what we have just shown.

6.3 Two classical limits

In the previous two paragraphs, we have shown that the vector state associated to the ground state
eigenvectorﬁ @Z)g\? converges to a doubly degenerate Dirac measure on B3. We needed a deformation
quantization map in order to make this work. In Chapter 4, we linked our compressed Curie-Weiss
Hamiltonian to a Schrodinger operator with a symmetric double well potential. Also the ground
state of this Hamiltonian has a classical limit, as we will explain briefly below.

We know from the example in Appendix [E] that there exists a deformation quantization of
R?, called Berezin quantization: QF : Co(R?) — By(L?(R)), and defined by equation (E.I5).
Consider then the Hamiltonian hj with a symmetric double well potential, defined on L?(R). It
has been shown that using Berezin quantization, the localized wave functions of this Hamiltonian
converge to some double degenerate Dirac measure on R? [22], [34]. These Dirac measures are
given by

J;R d/J'(J)_rf = f(07 ia)? (684)

3The space B (H) is the set of trace-class operators, and the space Bo(H)* denotes the dual space of the compact
operators. Here, the symbol = stands for isometric isomorphism, given by the map B1(#H) — Bo(H)*, u — Tr(u) (u €
Bi(H)). A proof of this result can for example be found in [22].

1A trace-class operator is an operator a such Tr(|a|) is finite.

"Let X be a normed vector space. A net () of functionals in X* converges to a functional ¢ € X* in the weak®
topology if px(a) — ¢(a) Va € X. In this case B1(H) = Bo(H)* under the map u — Tr(u-). Then weak® convergence
of a net (ux) € Bi1(H) to an operator u € B;(H) is equivalent to saying Tr(uxa) — Tr(ua) Ya € Bo(H).

SThis holds only for the localized eigenvectors. Due to numerical degeneracy, the ground state 1/}5\(,)) will be
automatically localized for N > 80, so that the classical limit will be indeed a pure state.
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where +a denotes the position of the left and right minimum of the potential. Lemma [2.5 showed
that these measures break the Zs-symmetry in sense of Definition [2.3] Moreover, in a snmlar way,
we can define the Berezin quantization of [0, 1] x ]RE] We then get

QF : Co([0,1] x R) — By(L*([0,1])), (6.85)

defined by as well. If we now consider the Schrédinger operator ho from equation ,
then one can analogously show that its (vector) state associated to the ground state eigenfunction
1/}§\?), now corresponding to hs, converges to a symmetric sum of Dirac measures on [0,1] x R. These
measures then correspond to the points (B(1 £ +/1 — B?),0), where B(1 &+ +/1 — B?) are precisely
the minima of the potential double well. The proof of this is similar to the one for the Curie Weiss
model (explamed in , with one detail different. We are given the discrete eigenvector 1/1 N that
corresponds to Hy, i.e., the discretization of hy. We should approx1mate the integral (E.15) - by a

sum, and put & = 1/N. Then it is a matter of computlng <¢N ,QI/N(f)wN >, given by equation

-. Since for N sufficiently large, our vector wN behaves like a delta-peak concentrated in
both minima of the well, it is obvious that (E.16]) will converge to the function f(B(1++/1 — B2),0).

On the one hand, using the deformation quantization QY of B? defined in §6.1, we have a
classical limit of the ground state associated to the eigenvector w](\(,)), originally corresponding to
the Curie-Weiss Hamiltonian. On the other hand, making the identification with the Schrédinger
operator and using the Berezin quantization of [0,1] x R, it follows that the same ground state,
but now applied to this map, has a classical limit as well. Both different classical limits therefore
consist of a doubly degenerate ground state that break the Zs-symmetry (in the regime 0 < B < 1).

6.4 The Lipkin-Meshkov-Glick (LMG) Model

In this section we consider the Lipkin-Meshkov-Glick Model which is a generalization of the
Curie-Weiss model under some transformation.

The Lipkin-Meshkov-Glick Model, or LMG model, was first proposed to describe phase transitions
in atomic nuclei [24]. We will focus on the spontaneous symmetry breaking, which has already
been studied by for many years in this model, see for example [3]. Recently, it was found that the
LMG model is relevant to many other quantum systems, such as cavity QED [27].

The Hamiltonian of a general LMG model is given by
A
hEME = N(Sf +S3) — BSs, (6.86)

where S; = >} 0;(x)/2 is the total spin operator summing over all N spins, and o; is the ith spin
Pauli matrix. We are interested in A < 0, standing for a ferromagnetic interaction, v € (0, 1]
describing the anisotropic in-plane coupling, and B is the magnetic field along z direction with
B > 0. Also recall that for A = —1 it is well known that a quantum phase transition occurs
at B = 1 |17]. Note that the LMG-model is just the Curie-Weiss model for v = 0, and the
transformation o1 — o3 and o3 — o7.

We will focus on the regime 0 < B < 1 with A = —1.

"The set [0,1] denotes the configuration space, i.e., the space of all possible ‘positions’ of the system. The set
R is the momentum space, i.e., the space of all possibile ‘momenta’ of the system. The cotangent bundle of the
configuration space T*Q = [0,1] x R is called the phase space, incorporating all possible positions and momenta of
the system.
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CHAPTER 6. CLASSICAL LIMIT

First consider v = 1, called the isotropic case. Based on [17], it has been shown that the
eigenenergies of the isotropic Hamiltonian are given by

E(S,M) = —%[S(S +1)— M?* - BM. (6.87)

Moreover, the ground state localizes at Sy = N /2 and
BN
5 for N
My — [BzNJ, o or N even (6.88)
|5 + 5] — 35, for N odd

Here, |-| denotes the floor function.

Observe that the Hamiltonian h5M® commutes with the Symmetrizer operator, for any v € [0, 1].
We want the ground state to be in the range of the Symmetrizer operator in order to diagonalize
the matrix with respect to the canonical base for Sym™(C?). As we have seen many times
before since both operators commute, a sufficient condition for the ground state being in the
range of the Symmetrizer is uniqueness. For the Curie-Weiss model, this is shown by the
Perron-Frobenius Theorem. When we write the LMG Hamiltonian with respect to the standard
basis for ®nN:1(C2 > (C2N, its corresponding matrix is not positive definite. In fact, it has strictly
positive as well as strictly negative entries. Therefore, the Perron-Frobenius Theorem is not
applicable to this matrix. However, based on numerical intuition, the ground state will be in the
range of the Symmetrizer even though it might be not unique as we will see. We have diagonalized
the LMG Hamiltonian up to N = 15, by writing the Hamiltonian with respect to the standard
basis for C2" and comparing the ground state eigenvalue to the one obtained when diagonalizing
the matrix with respect to the symmetric basis for Sym® (C2). We observed that for these values
of N the ground state eigenvalues are the same for both (independent) diagonalization processes.
Therefore, we may conclude that at least for these values of N, the ground state indeed lies in this
subspace, and therefore is symmetric.

It is not difficult to show that the matrix entries of h%VMG
basis are located on the diagonal and given by

written with respect to the symmetric

B(”Jr—”—).

1
ngn— WM nin_) = —1(2(N +2n_ny)) - 5

(6.89)
Assuming for a moment that the ground state eigenvector lies in this subspace, then clearly it will be
a (canonical) basis vector, since the Hamiltonian represented in this subspace is a diagonal matrix.
Therefore, in order to compute this eigenvector we just have to solve the following equation for n:

1 B —n_
B(N/2,Mp) = —3(2(N +2n_n..)) - (”+2") (6.90)
It is not difficult to show that for any N there are two solutions for n,:
N
nl =N-— [ZJ; and (6.91)
N N
2
_ N A 92
=5t | 1 | (6.92)

This also shows that the ground state is double degenerate when n}r # n%r We conclude that if the
ground state eigenvector lies in the symmetric space, it is given by n}r or 712+ and could therefore
be degenerate in contrast to the finite quantum Curie-Weiss model.

104



CHAPTER 6. CLASSICAL LIMIT

Consider now the anisotropic case, for v # 1. In contrast to the anisotropic LMG model, it
it has been proved that the ground state of the isotropic LMG model in the limiting mean field
is infinitely degenerate [§]. It has also been explained in [8] that for v € [0,1) and A = —1 the
ground state of is non-degenerate for any finite N, and hence unique. Again, this does
not easily follow from the Perron-Frobenius theorem applied to the matrix written with respect
to the standard basis. Since we still know that the anisotropic Hamiltonian commutes with the
Symmetryzer, it follows that for any finite IV the ground state of the anisotropic LMG model
(A = —1) lies in the range of the symmetrizer operator. Without loss of generality, this allows us
to diagonalize the anisotropic LMG Hamiltonian (A = —1) with respect to Sym(C?). Similar to
Theorem [3.3] we deduce a formula for the matrix entries for this Hamiltonian.

Lemma 6.3. In the symmetric basis, the LMG-Hamiltonian h]LVMG giwen in equation (6.86]) for

~v€[0,1) and X\ = —1 is a tridiagonal matriz with diagonal entries given by
1 B
—7 (- +1) +n_(ny + 1)1 +7) = o (ny —n-), (6.93)

and on the second upper and second lower diagonal we have

V0 + 2y + DY)~ (1) (6.94)

Thus the only non-zeros entries are located on the diagonal and on the second upper and lower
diagonal, i.e the elements (i,7 + 2) and (i + 2,7).

Proof. The proof is similarto the proof of Theorem for the Curie-Weiss Hamiltonian, and is
therefore omitted. O

The next step is to define a deformation quantization map that we can apply to the ground states
of the anisotropic LMG Hamiltonian (A = —1) in order to compute limits. We took the same
deformation quantization map as for the Curie-Weiss model, i.e., Qn(fy) = Si n(b), where b €
M3(C?), where the classical C*-algebra is still given by C(B3). We apply this map to the same
functions f as before, and similarly as in we define the limit of the vector state associated to
the ground state 9058) of this Hamiltonian. Of course, we first assume that this limit exists. Thus,
we need to compute the limit of the expression

@0, 51 n (o)W, (i =1,2,3) (6.95)

What do we expect?

It has been shown in the same paper [8] that for v € [0,1) and A = —1, the ground state in the
thermodynamical limit is twofold degenerate, still assuming that 0 < B < 1.

We will compute the limit of the above expression numerically, and check that this is indeed the
case. After this, we show that the ground state of the corresponding classical Hamiltonian lies on
the boundary S? of B3, and is given by the points

zy = (21— B20,B). (6.96)
In fact, these points are precisely obtained as the limits of the corresponding localized eigenstates.

To see this, consider the following expression:

© 4,0 © 4,0

<§0N\/§ N ,sl,N(az-)‘pNﬁ Ny (i=1,2,3), (6.97)

where @5\1[) denotes the first excited state. In contrast to (6.95)), the above expression takes the inner
product with the localized eigenvectors. The ground state of this Hamiltonian is non-degenerate
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for any finite N, and we observe for N up to 5000, that the ground state and the first excited are
still not numerical degenerate for the computer. This is in contrast to the Curie-Weiss model. The
reason for this probably lies in the fact that the roles of o3 and o1 are switched in the Curie-Weiss
model so that numerical degeneracy can already occur for smaller values of N. We computed the
above inner product up to N = 5000. We did the same for the functions . Both results
are displayed in Figure [6.3] and Figure

ogft ** + e T e R e e
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Figure 6.3: The inner product (6.97), computed for i = 1,2,3, starting from N = 100 up to
N = 5000. The blue circles correspond to i = 3, the red asterisks to i = 1, and the light blue
diamonds to i = 2. We took B =1/2, A\ = —1 and v = 1/2 in the LMG Hamiltonian.

Similar to the Curie-Weiss Hamiltonian, but now for ¢ = 1, the above figure shows that the
red asterisks that correspond to ¢ = 1 are randomly and equally spread over the numbers i@.
This means that the limiting function is double degenerate. The result should hold for any
v € [0,1). In the same point of view as for the Curie-Weiss model, we can show that for the

functions f,, defined by (6.53)) up to (6.55)), we obtain

+v/1 - B2, if i=1;
fo.((£V1—B2,0,B)) = { 0. if i=2; (6.98)
B, if i=3.

Hence the limit of corresponds to the points z+ and thus to Dirac measures, or, equivalently,
to pure states. Keep in mind that these points can only be recovered for the functions
fUi (Z = 17273)'
. <p(0)+<p(l) . . .

Note that the function % denotes the localized wave functions, which of course define
pure states as well. We have shown numerically that these states converge to pure classical states,
exactly as expected and as already known for the double well potential.

In the Curie-Weiss model, we took the ground state eigenvector ng?). We saw that the ground
state was already numerically twofold degenerate for finite IN. Due to this degeneracy, the

(0) 4 (1)
computer already takes the combination w so that we indeed find Dirac measures. These

Dirac measures or pure states are identified with the classical limit of these localized wave functions.
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If one takes the ground state gog\e) or the first excited state 905\1,), and computes the limit of

(6.95), then we may expect that this limit is defined by the mixed ground state given by

1

o (ke + po). (6.99)
For the numerics, this means that we should find the point 3(z4 + z_) = (0,0, B), since for this
model we do not have numerical degeneracy and therefore no mixing of ground and first excited
state. For both the ground state and the first excited state we performed this computation (still
for the matrices ;) and we recovered precisely the point (0,0, B), as depicted in Figure
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Figure 6.4: The inner product (6.95)), computed for i = 1,2,3, starting from N = 100 up to

N = 5000 for both 4,053) and @%). The blue circles correspond to i = 3, the red asterisks to 1 = 1,
and the light blue diamonds to i = 2. We took B = 1/2, A\ = —1 and v = 1/2 in the LMG
Hamiltonian.

Again, this should hold for any 7 € [0,1). We will now show that the corresponding classical (pure)
ground state is indeed given by the point in phase space equated by .

Lemma 6.4. For ye (0,1),A = —1 and B € [0, 1), the classical LMG-Hamiltonian on the unit ball
B3 given by

1 B
haay, 2) = =5 (2% + ) = 52, (6.100)

has a pure doubly degenerate ground state, which is given by

z+ = (+v/1 — B2,0, B). (6.101)

Proof. We apply the method of Lagrange multipliers to these ground statesﬁ We set

L(xvyvx) = hIoéMG($7y7 Z) - H(Q(«T,y, Z) - 1) (6102)

8 According to Definition and the explanation in the classical ground states are obtained by extremizing
the classical LMG-Hamiltonian. According to this definition all extrema are classical ground states. As we know for
the classical Curie-Weiss model |22, p.411] and the classical Hamiltonian with double well |22} p.372], this is not true:
only minima are considered to be classical ground states. In spirit of these examples, we assume this to be true for
the LMG-model as well. We therefore ignore the other extrema and only focus on the minima.
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Here, g(z,y,2) = 22 + y? + 22. Taking derivatives of L with respect to x,%, z,  and setting them
equal to zero yields

B
z=——; (6.103)
Ap
1
y=0 or y= —17 (6.104)
1
p=—g orr= 0; (6.105)
— (P22 -1)=0. (6.106)

It follows that u = —%, as v # 1 so that y = 0 and then z = B. The minimum is obtained for x # 0

so that z = ++/1 — B2, O

In the same view as given in the text just below the proof of Lemma the Zo-symmetry is
spontaneously broken in this limit. Since the above results hold in particular for v = 0, our findings
regarding the Curie-Weiss model are explained in this context, since the change of o3 — o7 and
01 — o3 result in a switch of position 1 and 3 of the vector . Under this transformation, this
shows that the Curie-Weiss model is a particular case of the more general LMG model that includes
the parameter v for non-zero values of v as well.

108



Chapter 7

Perturbation in the Curie-Weiss
model

In this section we introduce a perturbation in the quantum Curie-Weiss model hJCVW such that the
delocalized ground state as displayed in Figure localizes already for finite IV, but this time it
does not do so as a result of numerical degeneracy. We compare the ground state of the perturbed
Hamiltonian to the unperturbed one and again make the link with the Schrédinger operator, as
explained in Chapter 4. We will see that the perturbation produces a small asymmetric flea on the
double well potential corresponding to this Schrédinger operator. The delocalization or collapse of
the ground state to the left or the right side of the potential barrier is a result of where exactly this
flea is put. We will introduce the notion of explicit symmetry breaking and compare this to the
definition of spontaneous symmetry breaking.

7.1 Peturbation in Hamiltonian

Consider again the Hamiltonian for the quantum Curie-Weiss-model:

AW = —2‘;&]]\[‘ Z os(xz)os(y) — B Z o1(x), (7.1)

z,yeA N TEAN

where Ay is an arbitrary finite subset of Z consisting of N elements, J > 0 scales the spin-spin
coupling, and B is an external magnetic field. Recall that this local Hamiltonian acts on the
Hilbert space Hay = QgpeayHy, where H, = C2. We have seen in §3.1| that this Hamiltonian is
represented with respect to the standard basis for Hx, as the spin Pauli matrices are represented
in the standard basis for C2. We labeled this standard basis consisting of 2%V vectors by 3, where

B={en, ®en, ®...® enN}?n,...,nN=1'

These local Hamiltonians define a time evolution on the local algebras Ap, = B(HAN),
given by

CW -1 CW
—ithy

a,gN)(aN) = "N aye (7.2)

We have seen that for each finite N, and each B € R, this Hamiltonian has a Zo-symmetry given by
180-degree rotation around the z-axis, locally implemented by the unitary operator u(z) = o1(z),
so that at each x € Ay gives (01,02,03) — (01, —02, —03) since 0,00} = —o; if i # j. Hence u(x)
sends o3(z) to —o3(z), o2(x) to —o2(x), but o1(x) to o1(z). The Zo-symmetry was implemented
by the unitary operator u¥) on Hay given by

(N)

U = @genyo1(x). (7.3)
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CHAPTER 7. PERTURBATION IN THE CURIE-WEISS MODEL

It is easy to see that u¥) commutes with the Hamiltonian for every finite N. Therefore, if the
ground state eigenvector is non-degenerate, it is an eigenvector of u(N) as well, and therefore its
corresponding vector state is Zs-invariant. We will see this below.

We also remarked that the ensuing Zg-symmetry on B(H,,, ) is given by the automorphism AN

A M (@) = uMa(uM)*, (7.4)
It follows that we have the local property
agN)oygN) :fyéN)oagN) (teR,g€Zy ~{£1}). (7.5)

Thus, in view of Definition we have a symmetry of the dynamics. We have shown in that
for each finite N and B > 0 the ground state of the Hamiltonian is unique. For N = oo, and
0 < B < 1, the ground state is doubly degenerate and breaks the Zs-symmetry, as explained in
Chapter 6 or in [22, Sec. 10.8].

Transform the ground state eigenvector ¢](\(/)) into a vector state by

0 0
W (a) = W, ey, (ae Apy) (7.6)
This state is clearly pure, since 7,/1](\(,)) is a unit vector and Ap, = B(Ha,). For g =1and g = —1, it
is easy to check that w(()N) = w(()N) 0 7y, since u® ¢§\?) = 21/1](8) for some z € T, using [u,AGV] = 0

and the fact that the ground state is non-degenerate because it is unique. Thus the state w(])V is
Zs- invariant. This in combination with (7.5)) shows that the Zs-symmetry is not spontaneously
broken in the sense of Definition 2.3

We are going to define a ’flea’-like perturbation that does not commute with the unitary
operator v but does commute with the Symmetrizer S. We will give a condition on this flea so
that the ground state of the perturbed operator remains unique and therefore lies in the range of
S. The perturbation will be defined in a way such that the ground state localizes for finite IV, but
not as a result of numerical degeneracy. In view of the double well potential displayed in Figure
we show that this localization can be forced towards the left or right side of the potential
barrier, depending on where the flea is put.

Recall from that the Symmetrizer S, which is a projection onto the space of all totally
symmetric vectors, is given by

S() = 35 3 Lov), (77)

o€eSy

with v is a vector in the N-fold tensor product and L, is given by permuting by permuting the
factors of v, thus v1 ® - - - ® v,, — Vo(1) ® * + * @ Vg(n)- As we have seen, a basis for the space of
totally symmetric vectors is given by the vectors {|ni,n_)| n, = 0,..., N}, which spans the subspace
Sym® (C?), as mentioned in the beginning of paragraph §3.1]

In order to define a perturbation, again we may pick a basis for Hx, and define the perturbation
on a basis for Ha, . Since the original Hamiltonian was defined on the standard basis 3, we do the
same for the perturbation. In the proof of Theorem in we have seen there is a bijection
between the number of orbits and the dimension of Sym” (C?). The identification was made as
follows:

OF & |N =k, k), (7.8)
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where k in |[N — k, k) labels the number of occurrences of the vector ez in any of the basis vectors
Bi € B, and N —k in |N — k, k) labels the occurrence of the vector e; in f3;, so that N — k stands for
the number of spins in the up direction whilst the second position k denotes the number of down
spins. By definition of the Symmetrizer S, any basis vector 8 € 3 in the same orbit €* will be
mapped under S to the same vector in Sym” (C?), which equals

@)
> Br- (7.9)
=1

V@

Here [ in Sy, labels the basis vector 3 € 8 within the same orbit & k. So for each orbit %, we have
(]IX) vectors fB. Hence for each | = 1, ..., (]IX) the image S(B,) under S, is always the same. It is
the coordinate vector written with respect to 5. It turns out that the perturbation we are going
to define will be very similar to the Symmetrizer operator. Of course, since we have expressed our
original Curie-Weiss Hamiltonian with respect to this |n4,n_) - basis, we need to do the same for
the perturbation we are going to define now.

Since we have a partition of our 2V-dimensional basis B into N + 1 orbits, we define a
perturbation as follows: we fix k € {0,..., N} as well as some real number \; dependent of k. We
denote the perturbation by ka. Then by definition of this perturbation any basis vector 3y, in the

corresponding orbit ¢* will be mapped to

ka : By, — )\kS(ﬁkl), (l =1,.., <JZ>> (7.10)

All other 2V — (]IX ) basis vectors [3; will be sent to S(8;). The parameter A\ is a real number that
denotes the strength of the perturbation. When we transform the matrix [V/\k] g in the - basis to
the matrix written in the |ny,n_) - basis, it is obvious that it becomes a diagonal matrix with the
value A at entry (k,k).

If we can show that ka commutes with S and that the ground state eigenvector of the
perturbed Hamiltonian h%w + ka is unique, then we may conclude that the ground state lies
in the subspace Sym” (C?). The reason for this is the same as for the unperturbed Curie-Weiss
Hamiltonian: proving these properties makes that this eigenvector lies in the ran(S) = Sym® (C?),
so that we may diagonalize this Hamiltonian represented as a matrix that can be written with
respect to the symmetric subspace, which will be a tridiagonal matrix of dimension N + 1 as well.
This makes computations much easier, and we can compare both systems, i.e. the unperturbed one
and the perturbed one. Similarly as for the Curie-Weiss model, a sufficient condition for uniqueness
of the ground state of the perturbed matrix, originally written with respect to the standard basis
for Ha, , is non-negativity and irreducibility, so that we can apply Lemma and Theorem
This depends, of course, on the parameter A\. We will come back to this later.

In order to show that the commutator relation is zero, i.e., [S, Vf] = 0, it suffices to show

this for a basis. We check it for the standard basis 8 of the N-fold tensor product. Fix a basis
vector 3; in OF. If we take any basis vector 8; not in &%, then by definition

VX (8i) = S(B))- (7.11)
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If we take any vector §3; in the orbit ¢, then

VES(8;) = Vi 1 8
A ( ) A\/@Z:I l
. @)
=—— > V¥ B)
V(3 =
(%)
S W TC)
J =
= AS?(B))
= AS(5). (7.12)

since S(f3;) lies in the orbit &% and thus is a linear combination of all other (]Z ) vectors in this orbit.

On the other hand, if we take any basis vector ; not in &%, then again as before,
SVX(Bi) = S*(8i) = S(8:) (7.13)

since V¥ acts as the Symmetrizer on vectors in ran(S) = Sym® (C2) that are not equal to j3;. If we
take any vector 3; in 0% then,

SV (Bi) = SAS(Bi) = AS(Bi). (7.14)
We see that for all basis vectors 3; € 8 we have [S, Vf](ﬂ,) = 0.

The last step is to show that the Hamiltonian —(h%w + V/\k), written with respect to the
standard basis 3 for Hj ,, is a non-negative and irreducible matrix. Since the off-diagonal elements
are completely determined by the unperturbed Hamiltonian and are never zero, the matrix can
never be decomposed into two blocks, so that it remains irreducible. Non-negativity is achieved
when

i(zm —N)? =\,

> 0. 1
o 0 (7.15)

+

This depends of course on k = ny and hence on the orbit 6™+ where we have put the perturbation.
Any VAn * satisfying this inequality guarantees non-negativity. If we assume that this is satisfied,
nt

then together with the fact that h%w + an commutes with S, we can conclude in the same spirit
as that the ground state of the perturged Hamiltonian is unique, and therefore indeed lies in
ran(S) = Sym®™ (C?). Finally, knowing now that we may diagonalize the perturbed Hamiltonian with
respect to the symmetric basis |ny,n_), we use the fact that the sum of two linear transformations
written with respect to a basis individually equals the sum of both linear transformations if this
total sum is written with respect to the basis, i.e.:

[hj(sfw]|n+,n7> + [V)\kk]|n+,n7> = [h%W + V)\kk]\n%nf)' (7'16)

Therefore, since we may diagonalize h](\J,W + ka in the symmetric basis |ni,n_), the above
observation ensures that it suffices to diagonalize the sum of the individual matrices
represented in this basis, i.e., the tridiagonal matrix [h](f,w]m Ly (viz. (3.1)) and the perturbation
matrix [VAkk]‘n+7n_>.
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Recall that in the ground state w](\(,)) of the unperturbed Hamiltonian h%w was approximately
given by two Gaussians (for N large), each of them located in one of the wells of the potential, and
was given by

Tu(po) + T—a(po)
7% .

In fact, this is true for any finite NV, since the ground state is unique, as we have proven in §5.J]
However, due to numerical degeneracy of the ground state and the first excited state for about
N = 80, these two states will form a linear combination x4 given by . By a simple calculation,
we found that for these relative large values of N, the (numerical) degenerate ground state is given
by

vy =

(7.17)

X+ = Tha(p0), (7.18)

where the functions ¢g(x) have to be understood as functions on a discrete grid. For N < 80, we
observed that a plot of the ground state displayed a doubly peaked Gaussian, as expected from
(7.17). This made sense, since the energy levels in the latter case are not degenerate, not even for
the computer.

As we have mentioned we wanted to show that, due to the perturbation, the (unique) ground
state localizes for finite N. We have just argued that this happens already for N > 80, but this
was a result of numerical inaccuracy/degeneracy. The question is then if our perturbation forces
the ground state to localize for finite N in such a way that it will be not a result of numerical
degeneracy. The answer is yes. It depends on the parameter \,,, with n, denoting the ntf- position
in the diagonal matrix of the perturbation. Completely analogously as in Chapter 4, we can extract
the potential corresponding to the perturbed Hamiltonian h%w + V/\]‘;+7 written with respect to

the symmetric base. We scaled this Hamiltonian by 1/N and translated the potential so that its
minima are set to zero. We have made a plot of this potential (Figure . For convenience, we
scaled the domain to the unit interval. Moreover, we plotted the ground state of this Hamiltonian
and the one corresponding to the unperturbed one (Figure . We observe a localization of the
ground state in the right sided well. Simulations showed that the eigenvalues of the perturbed
Hamiltonian are non-degenerate, so that the ground state is indeed unique, also for the computer.
Hence, the localization is not a result of numerical degeneracy. We did a similar simulation for
the flea but now located on the right site of the barrier (Figure . We see a localization of the
ground state to the left side of the barrier (Figure .
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Perturbed potential \/‘;
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Figure 7.1: The perturbed potential energy computed from the tridiagonal matriz hgw + ka for

N =60, \y =0.5, k=7, J =1 and B = 1/2. This potential has a ‘flea’ on the left side of well due
the perturbation V/\kk.

Ground state eigenfunctions computed for the unperturbed and the perturbed system.

0.45
04r (o
uJunper‘[urbed
035F (o
uJper‘[urbed
0.3

0251

03 04 05 08

Figure 7.2: The corresponding ground state (in red) of the perturbed Hamiltonian h]CVW + ka 18
already localized for N = 60, A\, = 0.5, k =7, J =1 and B = 1/2. For these values of A\, and k,
still condition is satisfied. The localization takes place on the right side of the well, since the
flea lifts the potential on the left side.
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Perturbed potential \/‘;
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Figure 7.3: The perturbed potential energy computed from the tridiagonal matriz hgw + ka for

N =60, \p =05, k=17,J =1 and B = 1/2. This potential has a ‘flea’ on the right side of the
well due the perturbation ka.

Ground state eigenfunctions computed for the unperturbed and the perturbed system.
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Figure 7.4: The corresponding ground state (in red) of the perturbed Hamiltonian h]c\*fw + VAk 18
already localized for N = 60, A\ = 0.5, k=N —7, J =1 and B = 1/2. For these values of \i, and
k, condition 1s still satisfied. Localization takes place on the left side of the barrier, since the
flea lifts the potential on the right side.

Our conclusion is that due to this ‘flea’-like perturbation, the ground state will localize in one of
the wells depending on where the flea is put. This localization may be understood from energetic
considerations. For example, if A, > 0 such that condition is satisfied and the perturbation
is located on the right, then the relative energy in the left-hand part of the double well is lowered,
so that localization will be to the left. This result matches exactly the work done in [34], where the
Schrédinger operator with a symmetric double well was studied rather than quantum spin systems.

The last topic of this section is to relate these results to symmetry breaking. Given the
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perturbed Hamiltonian hGW + ka such that ((7.15) is satisfied, we know that the unique ground

state lies in Ran(S) = Sym’(C?). However, we do not have a Zs-symmetry of the system since
this perturbed Hamiltonian does not commute with the unitary operator u) = ®N o1 (z)
implementing this Zs-symmetry:

Lemma 7.1. The unitary operator u™) = ®N_,01(x) does not commute with ka, and therefore
the ground state of the perturbed Hamiltonian hf,W + Vf s not Zo-invariant.

Proof. Tt is easy to see that «™) maps any vector in the orbit &* to vectors in &N~*: fix a basis
vector By, € 0%, (k=0,..,Nandl=1,.., (]IX)) Then

VAkkﬁkz = M\eS(Br, )
N (Br,) = o1(en,) ® - - - @ a1(eny)- (7.19)

Here, e, = ((1)) or (?) Since By, € 0%, then by definition of the o1, we have u(N)(Bkl) e ONF,

Now compute:
@WNVE)(B) = @VVE ) (en, @+~ @ eny) = MS(0(en) ® - @ leny)).  (7:20)
On the other hand:
(V8 u™)(Br) = (VE ™) (en, ® -+ @ eny) = An-iS(0(en,) © -+ @ a(eny)).  (7.21)

Hence, as soon as Ay_x # Ak, the above two equations are not equal, so that ka does not commute
with «®). But this is satisfied, since A\y_x = 1 and A, # 1.

We will now prove the last assertion by contradiction. Denote 12](\9) to be the (unique) ground state
eigenvector of AW + ka. Transform it into a (pure vector) state:

0
V(@) = @, ad ). (7.22)
Assume this state is Zo-invariant. Then, in particular for the non-trivial element v = —1 € Zso, we
have
~ (0 (0 (0 (0 0
& (1-1(@) = (™) 50, a™) 50y = G, adb (. (7.23)

By uniqueness of the ground state, this would imply that u(N )LZ)](\(,)) = ZQ/)](\(,)) for some z with |z| =1,
and hence also that [AGWV + V/\kk,u(N )] = 0, which is a contradiction with the first part of the proof.
Therefore, the ground state of the perturbed Hamiltonian is not Zs-invariant. This completes the
proof the lemma. O

From this lemma, it follows also that there is no symmetry of the dynamics in the sense of Definition
2:3] Therefore, we cannot speak about spontaneous symmetry breaking of the ground state. Since
the perturbation forces the ground state to localize in one of the wells, in the classical limit
the ground state will be a pure state. This is in contrast to the case without perturbation: in
theory the (doubly peaked) ground state will converge to a mixed ground state if N — OOE We
call this phenomena explicit symmetry breaking meaning that due to a small perturbation of the
Hamiltonian, the ground state will localize already for finite IV, with a pure state being its classical
limit. The direction of localization to either the left or the right side of the potential barrier can be
controlled by the perturbation.

'Keep still in mind that the unperturbed Hamiltonian does not give this result, since the eigenvectors already mix
due to the numerical degeneracy of the computer. Therefore, the classical limit is pure as well.
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When one considers the Schrodinger operator with a double well potential, symmetric around
x = 1/2, and defined on the Hilbert space L?([0, 1]), the ensuing Zy symmetry is given by reflection
around x = 1/2 given by 7/5(f)(x) := f(1 — z). If one adds an asymmetric flea on the potential as
displayed in the figure above, then it is clear that the Schrodinger Hamiltonian does not commute
anymore with 7/, so that completely analogously to the above observation, we do not have a
symmetry of the dynamics and hence no SSB, even though the ground state still remains unique,
because the uniqueness theorems in §5.4] remain applicable to the potential. It has been shown
in [34] that the ground state localized exactly a same way as we just have shown. Therefore, our
findings concerning the (explicit) symmetry breaking of the ground state of the Curie-Weiss model
completely match the Schrédinger operator analog.

Remark.

We have seen the the ground state of the unperturbed Curie-Weiss model has a classical limit as
a state on C(B3). This should be a mixed state, like for the LMG-model. However, we have seen
that due to numerical degeneracy of the ground state, the ground state eigenvector localizes already
for finite N > 80, so that the classical limit is a pure state. This ‘numerical symmetry breaking’
therefore has the same effect as explicit symmetry breaking for the perturbed Hamiltonian. The
disadvantage is that we cannot take N too big (like NV = 5000) in order to check that we have a
mixed classical limit, as expected from |22, Sec. 10.1].
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Chapter 8

Discussion and further research

Let us summarize our findings and see what can be said regarding spontaneous symmetry
breaking of quantum spin systems and their classical limits. Although the only spin system we
have studied in detail was the quantum Curie-Weiss model, we can conclude some important
results. Probably the most important result is the link we have made between the quantum
Curie-Weiss Hamiltonian and a Schrédinger operator with a symmetric double well potential.
We have shown that the scaled quantum Curie-Weiss Hamiltonian restricted to the symmetric
subspace Sym?” (C?) was an approximation of a discretization of a Schrodinger operator with
a symmetric double well potential, defined on L?([0,1]). Using the fact that this Schrodinger
operator has a classical limit with corresponding ground state given by Dirac measures, we
might conclude the same for the spin system. We have also seen in Chapter 6 that the ground
state of the quantum spin Hamiltonian has another classical limit, this time defined on C(B3).
Both limiting cases have in common that the ground state is doubly-degenerate and breaks
the Zs-symmetry spontaneously, at least in the regime 0 < B < 1. Subsequently, we showed
in Chapter 7 that due to a small perturbation this Zs-symmetry can already be explicitly
broken for finite IV, resulting in a pure ground state in the classical limit. This form of explicit
symmetry breaking due to a small perturbation has also been studied from a similar perspective
for the Schrodinger operator with a symmetric double well potential [22], [34]. We have seen
that this was completely in accordance with our findings regarding the quantum Curie-Weiss model.

We started this thesis by mentioning the concept of asymptotic emergence. We saw that
the natural phenomenon spontaneous symmetry breaking (SSB) is an example of what we called
an emergent feature. We considered the pair (Hi, L1), with H; classical mechanics on C(B?), and
L1 the quantum Curie-Weiss spin chain on a finite line. Another example for which SSB is an
emergent feature is the pair (Hs, Lo), with Ho quantum mechanics on Bo(L?(R)) and Lo classical
mechanics of a particle on a subset of the real line. In fact, based on the connection between the
pertinent Schrodinger operator and the quantum Curie-Weiss model, these pairs are related. There
should be more research to get a better understanding about this relation, since our findings are
partly based on numerical simulations. For example, we were not able to prove mathematically
that the ground state eigenfunction of the compressed Curie-Weiss Hamiltonian localizes on a
subset of order v/N. Apart from that, another important omission is that we do not know if the
excited states of the Curie-Weiss Hamiltonian defined on ®nN:1 C? are in the symmetric subspace
or not. We only know this for the ground state. Therefore, considering the tridiagonal matrix,
we may not a priori conclude that for example the first excited state of this matrix corresponds
also to the first excited state of the original Curie-Weiss Hamiltonian. As a result, when passing
to the classical limit from the (scaled) tridiagonal matrix, we should beware of convergence of
the first excited state. However, numerical results have shown that the desired classical limit,
starting from the quantum ground and first excited state, was in fact obtained. In view of the
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pair (Hi,L1), we defined a deformation quantization. Although this map was only defined for
some class of functions, not for all functions on C(B?), this definition was sufficient to pass to the
classical ground states. It is still not so clear how to define this map on the whole algebra C(B?).
Moreover, in view of Theorem the construction of this map is not unique, i.e., different choices
can lead to quasi-symmetric sequences which converge to the desired limit. In addition, the proof
of weak*-convergence of the reduced density matrices involved was partly based on numerical
simulations, since we were not able to give an explicit expression for the ground state eigenvector.

More research is needed to understand better the connection between such pairs (H,L).
We have mentioned some interesting topics regarding this relation in the beginning of this thesis.
For example, it is not so clear how to construct a classical Hamiltonian corresponding to H from
the underlying quantum Hamiltonian belonging to L. A useful theorem that connects at least
the classical dynamics to quantum dynamics for spin systems can be found in |22, Thm. 10.22]
and [22, Cor. 10.23]. We have seen in the introduction of this thesis that the quantum Ising
model has both a classical and a quantum limit. Both (different) limits have a doubly-degenerate
ground state that displays SSB, like for the classical Curie-Weiss model. This non-trivial result is
definitely a very interesting topic for further research. However, the disadvantage of the quantum
Ising model is that its Hamiltonian represented with respect to the canonical basis for ®711V:1 C?
has alternating positive and negative entries so that the Perron-Frobenius theorem cannot be
applied to this matrix, and hence uniqueness of the ground state does not follow easily, like for
the Curie-Weiss model. Moreover, this model takes only nearest neighbour interactions so that it
does not commute with the Symmetrizer operator. Thus, in order to compute the ground state, we
cannot restrict ourselves to this subspace and numerical simulations seem pretty hopeless. Inspired
by the connection between the quantum Curie-Weiss Hamiltonian and the Schrodinger operator
with a symmetric potential, the general question is if there are more quantum spin systems that
can be related to Schrodinger operators with some potential. Like for the quantum-Curie-Weiss
model, the crucial property is the existence of a subspace of @le C? and a basis such that the
spin Hamiltonian, written with respect to this basis of the subspace, is a tridiagonal matrix. It is
a priori not clear if such a subspace also exists for other quantum spin Hamiltonians. A complete
new research project relating quantum spin systems to Schrodinger operators can therefore be
launched.

In short, lots of interesting topics regarding asymptotic emergence are still not well understood
and can therefore be the subject for new research.
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Appendix A

(*-algebras

C*-algebras play a central role in modeling the quantum (and even the classical) systems in which
we are interested. Therefore, we outline some basic concepts related to C*-algebras that can be
found in [28], [29]. We begin with some definitions.

Definition A.1. An involution on an algebra A is a conjugate-linear map a — a* on A, such that
a** = a and (ab)* = b*a* for all a,b e A. The pair (A, =) is called a *-algebra.

Definition A.2. A homomorphism from an algebra A to an algebra B is a linear map ¢ : A — B
such that p(ab)e(a)p(b) for all a,be A. If ¢ : A — B is a homomorphism of =-algebras A and B,
and ¢ preserves adjoints, that is p(a*) = @(a)* (a € A), then ¢ is called a * — homomorphism.
If in addition ¢ is a bijection, then it is a * — isomorphism. An automorphism of a #-algebra A
is a x-isomorphism ¢ : A — A. The set of all automorhpisms of A is denoted by Aut(A). This set
forms a group under composition. If A is unital and u is unitary in A, then

a — uau® (a € A), (A1)

is an automorphism of A. Such an automorphism, given by conjugation with a unitary, is called
inner. In general, not every automorphism of a C*-algebra is inner (except,for example when

A= B(H)).

Definition A.3. A Banach * —algebra is a =-algebra A together with a complete submultiplicative
norm (i.e., |lab|| < ||al|-||b]|) such that ||a||* = ||a|]| (a € A). If, in addition, A has a unit such that
I|11|] = 1, we call A a unital Banach % —algebra. A C*-algebra is a Banach x-algebra such that

la*all = [lal[* (a € 4). (A.2)

Now, we introduce the concept of the dynamics of a physical system. They describe how observables
(i.e., elements of the C*-algebra) evolve over time. A natural approach is to look at the time
evolution of the observables, ¢t — a(t). This is called the Heisenberg picture. The time evolution
induces a one-parameter subgroup of automorphisms ¢ — «; of the observable algebra.

Definition A.4. The dynamics of a C*-algebra A is given by a continuous homomorphism
a:R — Aut(A); (A.3)

t— Qg (A4)

where we use the notation oy = «(t). Continuity here means strong continuity, in that for each
a € A, the map t — ay(a) from R to A is continuous (so that the map R x A — A given by
(t,a) — ay(a) is continuous, as usual for group actions).
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To make the connection between the abstract C*-algebraic picture and the physical world, it is
necessary to have a way to describe expectation values of measurement outcomes. This naturally
leads to the notion of a state on a C*-algebra. Using such states there is then a canonical way, the
GNS construction, to represent the system on a Hilbert space.

Definition A.5. A linear map ¢ : A — B between two C*-algebras A and B is said to be positive if
©(A1) € p(BT). Here, AT and B™ denote the sets of self-adjoint elements with positive spectrum.

Definition A.6. A state w: A — C is a positive linear functional of norm 1. We denote by S(A)
the set of states of A.

Definition A.7. Let A be a C*-algebra and H be a Hilbert space. A representation of A on H is
a #-homomorphism m: A — B(H).

it is a basic result that for representations m of C*-algebras, one automatically has ||7(a)|| < ||a]|
for all @ € A. It follows that the representation is automatically continuous with respect to the
norm topology.

Definition A.8. A representation m : A — B(H) is called non — degenerate if the set w(A)H is
dense in H. It is called cyclic if there exists some vector Q2 € H such that w(A)Q is a dense subset
of H. Such an § is called a cyclic vector.

We are now in the position to state the GNS construction, named after Gel’fand, Naimark and Segal.

With each positive linear functional, there is an associated representation. Suppose that w
is a positive linear functional on a C*-algebra A. Define the set

N, ={a€ A] w(a*a) = 0}. (A.5)

It is not difficult to see that IV, is a closed left ideal of A. We can therefore form the quotient vector
space H,, = A/N,, and write [a] for the equivalence class of a € A in this quotient. This means that
[a] = [b] if and only if a = b + ng for some ng € N,,. We can define a map on H, x H,:

H, xH,—C; (A6)

(a+ Ny, b+ N,) — w(a®b). (A.7)
It can be shown that this map is a well-defined inner product on H,. By taking the completion
with respect to this inner product we obtain the Hilbert space H,,.

Next we define the representation 7, by defining the action of 7, (A) on the dense subset H, of
H,,. Let [b] € H,, then we define

Tw: A — B(H,) (A.8
mw(a)[b] = [ab]. (A9
It is easy to check that this is well-defined. Moreover, we have
1o (@)[b][* < {[ab], [ab]) = w(b*a*ab) < [alPw(b*b) = [al[* - [|[b]l|x., (A.10)
where || - ||is the norm on the C*-algebra. Therefore, 7, (a) is bounded on a dense subset of #H,,. It

is not difficult to check that =, is linear on this dense subset, hence it can be uniquely extended to
a bounded operator on H,,, which we again denote by m,. From the definition of =, it is easy to
check that this map is a *-homomorphismﬂ If we define Q,, = [I], it is clear that €, is cyclic for
m,. Moreover, for each a € A:

Qs 7 (@) ) = (1] [a]) = w(a). (A.11)

'Tf necessary, we add a unit I to A, or we take an approximate identity {ex} for A. In the latter case, it is easy to
show that the equivalence class of the net {ex} converges to some cyclic unit vector in H,,.
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If w is a state, then it can be shown that €2, has norm 1, and is therefore a cyclic unit vector.

This brings us to the first theorem.

Theorem A.9. Let A be a C*-algebra and w a state on A. Then there exists a triple (my, Hu, ),
where Hy, is a Hilbert space and m, a representation of A on H,, such that , is a cyclic unit
vector for m,, and in addition we have

w(a) = (Q, mo(@)) (a € A). (A.12)

This triple is unique in the sense that if (w,H, V) is another such triple, there is a unitary U :

H,, — H such that UQ =V and 7(a) = Un,(a)U* for all a € A.

Proof. The first part of the theorem is given above. It remains to be shown that the construction
is essentially unique. Suppose that (7, H, V) is another such triple. Define U : H,, — H by setting

Uny(a)Q, = 7(a)¥ (a€ A). (A.13)

This is a linear map of a dense subspace of H,, onto a dense subspace of H, using that ¥ is cyclic
by assumption. Moreover, for each a,b € A we have

{Ury(a)Qu, Urty (b)Quy = (m(a) ¥, m(b)¥) = w(a*b) = (m,(a)Quw, Tw(D) Q). (A.14)

This shows that U is well defined as well as isometric, so that it extends to H, by continuity. It
then follows that its image is the closure of w(A)W, which is H. Thus U is surjective and hence
unitary. Moreover, we compute

Uny(a)m,(0)2 = Uny(ab)Q2 = m(ab)¥ = 7(a)m(b)V = 7(a)Um, (b)S2. (A.15)
We conclude that Uy, (a) = m(a)U (a € A) on the dense space m,,(A)Y,, and hence everywhere. [

Note that automorphisms preserve all the algebraic relations of the algebra. Hence they are a
natural tool to model symmetries. There is an important corollary that follows from the uniqueness
of the GNS representation. If « is an automorphism of A and w is invariant under the action of this
automorphism (e.g., a ground state of a physical system is invariant under some symmetry), then
« is implemented by a unitary in the GNS representation. The precise statement is as follows:

Theorem A.10. Let A be a C*-algebra and o an automorphism of A. Suppose that w is a state
on A such that wo « = w. then there is a cyclic representation (m,, Hy, Q) such that

w(a) = (Qu, Tw(a) ), (A.16)
and a unitary U € B(H,,) such that 7, o a(a) = Uny,(a)U* and U, = €.

Proof. Let (m,, Hu, ) be the GNS representation for the state w. Note that (m, o a, Hy,, Q) is
another GNS triple:

Qy,mu(a(a))y) = w(a(a)) =w(a) (ae A). (A.17)

Moreover, €, is again cyclic since « is an automorphism. By uniqueness of the GNS triple (Theorem
A.9), there is a unitary operator U such that 7, o a(a) = Umy)U*. This U is defined by

Urto(a)Q = mo(a(a))Qe. (A.18)
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This definition is well-defined. To see this, denote [a] = 7, (a)f2, and [a'] = 7, (a’)Q, both elements
of H,. If [a] ~ [d'], then a = a’ + N,,, so that a — a’ € N,,. It follows that
Tw(a(a))Qy — T, (a(a)Q, = [ala — a)I]. (A.19)
We have to prove that
Tw(a(a))Qy, = m,(a(ad’)Qy. (A.20)

Hereto, we show that (A.19) is zero, by proving that a(a — a’) € N,,. We compute

w(a(a —d)*ala—d)) =wlala—d)*(a—d)) =wla—ad) (a—d) =0, (A.21)
using that « is a automorphism, the invariance of w under o and that a —a’ € N,,. By definition of
w, we have

0 = [[[e(a — a")I]|P?, (A.22)
which implies immediately that
[a(a —a')I] = 0. (A.23)
We conclude that
Tw(a(a))Qy = 7o (ala’))Qy. (A.24)
Therefore, U is well-defined and this is exactly the unitary we were looking for. O
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Discretization

This information provided in this appendix is based on [21] and [19]. These results have been used

in {5,

Recall from calculus that the following approximations are valid for the derivative of single-variable
functions f(x). The first one is called the forward difference approximation and is an expression of
the form

flz+h) - f(x)

f(z) = Y +O(h) (h>0). (B.1)
The backward difference approximation is of the form
fla) = L8 = i(x —M om0 (B.2)

Furthermore, the central difference approximation is
oy fle+h)—flz—h)

The approximations are obtained by neglecting the error terms indicated by the O-notation.
These formulas can be derived from a Taylor series expansion around x,

+0(h?) (h>0). (B.3)

2
f(@+h) = f(x) + hf'(x) + %f”(:v) o=, ) (B4)
n=0 """
and
_ / h2 " o - nhn (n)
fla+n) = f(z) =hf(e) + 5 [(2) + ... = (1) @), (B.5)
n=0 ’

where f(") is the n'® order derivative of f. Subtracting f(z) from both sides of the above two
equations and dividing by h respectively —h leads to he forward difference respectively the backward
difference. The central difference is obtained by subtracting equation from equation and
then dividing by 2h.
The question is how small A has to be in order for the algebraic difference w (for in this
case the forward difference approximation) to be good approximation of the derivative. It is clear
from the above formulas that the error for the central difference formula is O(h?). Thus, central
differences are significantly better than forward and backward differences.
Higher order derivatives can be approximated using the Taylor series about the value x
0 n
fletomy = 3 B poo ) (B.)

n=0
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and

fo—2m) = 3 (-1 2 o ) (B.7
n=0 '

A forward difference approximation to f”(x) is then

flx+h)=2f(x+h)+ f(x)

% + O(h), (B.8)
and a centered difference approximation is for example
-2

hQ

Now we discretize the kinetic and potential energy operator. For simplicity, consider the
one-dimensional case. We first discretize the interval [0,1] using a uniform grid of N points
x; = th,h = %,z’ =0,1,...,N. It follows that f(x)+— f(z;) =: f;. The Taylor series expansion of a
function about a point x; becomes

(kh)"

n!

forn = fi+ Y, (=1)" F (@), (B.10)
n=0

"

where k = +1,+2, ..., + N. Analogously as above, we can find central difference formulas for f]’, i

namely

y_ —ficit fin

f o +0(h?) (B.11)
](/ _ fj*l - 2};2] + fj+1 + O(h2). (B.12)

The approximations are again obtained by neglecting the error terms.

Using this uniform grid with grid spacing h = 1/N, it follows that the second derivative operator
in one dimension is given by the tridiagonal matrix iT12[ -1 =2 1-+-]x and the potential which
acts as multiplication, is given by a diagonal matrix. With the notation %[ 1 =21 )N, we
mean the N-dimensional matrix

Now suppose that the values of the kinetic energy operator T are non-uniformly dependent
of the positions in space. Then one needs to use a non-uniform grid in order to get a good
description of the second derivative. We use the central difference approximation and approach f
by a Taylor series.

Denote x; by the 4% grid point and fy = f(x3). Then the Taylor series of f at x; can be written as

fm gy Y, BT o (B.13)
m=1 :
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If we let hj +1 = Tj41 — Tj, then similarly as above, for a three-point finite-difference formula i.e.,
2
only fiv1, fi, fi—1 are used, we find that

2 3
fior = fi+hy i+ hjff;’ + hjgéf}?’) .. (B.14)
and similarly for hj_% =xj_1—xj,s0 that z; —x;_1 = —hj_%, we find
h? RS |
fimt=fi=h o fj+ =52 - J6_§f](3) ¥ (B.15)

Both expressions can be used to eliminate f]’- to derive an expression for the second derivative:

2f. 92f. 9f. h..1—h, 1
fg/‘/ _ f] 1 _ f] + fJ'H 4 It J73 f]@) + (’)(hQ). (B.16)
hj_%(hj_%+hj+%) hj—%hj-i-% hj+%(hj_%+hj+%) 3
This is the central difference approximation for the non-uniform grid. If we assume that h i+l —h o1
2 2
is small, we may neglect the last term, and we get precisely that
2 T (B.17)
=41 :
hy(hiy +hyi)
—2
T =T, (B.18)
i—3'its
2 T (B.19)
=Tjj+1- :
Py (g hiey)
Therefore we find that the ratio, say p;, equals
Ty hj_;
pjo?i:h 2, (B.20)
g1 j+i
Thus h o1 = pih il We derive from this combined with the above three equations that
2 2
2
h? | = , B.21
3 Tiieapi(1+p)) (B21)
2
or h? = (B.22)

T2 Tyl +pj)
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Appendix C

Semiclassical WKB approximation

In this Appendix, we review some important results of the semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation. We give a short overview of the most important results needed for
The information in this appendix is taken from [34] and [2].

A particle of a mass m satisfies the Schrodinger equation given by

7

_ =[E — . 1
o a2 [E—V(x)]y (C.1)
This equation is equivalent to
Cl2¢ p2
T _ﬁw’ (C.2)

where the momentum p is given by

2m(E —-V(x)), E=V(x
oo = {V2IE V@) (z) s
tiy/2m(V(z) — E), E <V(x).
The generalized de Broglie-wavelength is given by
h
ANz) = —, CA4
@)= s (C.4)

where h is the Planck constant. It turns out that there are three cases: the case E > V(x), called
the classically allowed region; the case E < V(x), called the classically forbidden region; and finally
the case £ = V(x), consisting of turning points.

We start with the first case. In general the wave function ¢ has a position = dependent on
the phase ¢(x). It is therefore given by

() ~ Aer#@), (C.5)
with A a normalization constant. Substituting this into (C.1|) gives
ihe® + (p1)? = p?. (C.6)

For h small, we can expand ¢(x) in terms of &, assuming ¢(z) is a polynomial. We find

2
pl) = gola) + hpr(x) + o oale) + . (1)
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Substituting (C.5|) into (C.6)), and comparing to (C.7)) up to the second order, we find the equations:

(i) =%, (C.8)
200 0f" — il =0, (C.9)
oM 4 (o2 ()2 = 0. (C.10)

Using that E > V(z), so that p(z) is a real, the solution to the first equation is

pola) = + | " pw)dy, (1)

where we have a free choice for the lower bound of the integral, since any constant can be absorbed
in A. Hence we can solve the second equation:

p1(x) = 5 log(p(r). (C12)

The solution to the third equation is then given by
/ T / 2
_p(w)_J <p(y)>
p2(T) =+ | prly dy. C.13
W= Fop) ) P\ () (€49)

If |Apa(x)/2 << 1], then the power series (C.7)) can be terminated after two terms. This can only
hold if

2
—. 14
<= (C.14)

P (z)
2p*(x)
This is the case when to potential V' (x) varies slowly as a function of position, or when & — 0.

If we assume ((C.14)), then we may truncate the power series after two terms. Plugging in our
solution for g and @1, we find the WKB approzimation for the wave function:

A
p(z)

etn S p)dy, (C.15)

The general solution under these semiclassical assumptions is

)(w) ~ 1( )<Ae25’”p<y>dy + BeéVp(y)dy). (C.16)
p(x

For the second case, the classical forbidden region, we have E < V(x), so that p(z) is imaginary.
Similarly as above, one can deduce that the general solution of the wave function (under this

assumption (C.14)) is

o(x) = 1( )(ce%f” Py | pe-t T Ip(wdy). (17)
p(x

As we have argued, the approximations to the wave functions for the two previous cases, only make
sense if (C.14)) holds. However, close to the classical turning points, we see that p(x) approximates
zero. Therefore, there is some area where ((C.14) is not valid, and hence the WKB approximation

derived above is not applicable there. First, we should remark there are two kinds of turning points.
In the figure below, x; is a left-hand turning point and zs is a right-hand turning point.
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Figure C.1: A general potential well. The particle has energy E. The turning points are indicated
by x1 and xo, the three different areas by 1, 2 and 3. This picture has been taken from [2].

In order to find the WKB wave functions around these turning points, one needs to use a different
approach. We won’t derive these functions but refer to [34]. The wave function around the

right-hand turning point is given by

m [20008 (é §, [p(y)ldy + 1) + Dsin <;L {2 Ip(y)ldy + Zﬂ o <

|;(x)| Cexp—3 5o |p(y)ldy + Dexp—; §7° Ip(y)!dy], if 2> a9,

U(z) ~ (C.18)

A similar result holds for the left-hand turning point.
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Appendix D

Schrodinger operators

We provide the preliminaries for the theory of unbounded operators, as used in We just state
some definitions and basic facts. In particular, we introduce the term Schrédinger operator. This
appendix is based on [31] and [32].

Definition D.1. Let T be a mapping from a Hilbert space H1 into a Hilbert space Ha. The graph
of T, denoted by I'(T'), is defined as

F(T) = {(Cli,y) | (%,y) €HixHa y= Tx} (D.1)

The graph of T is thus a linear subset of H1 x Ha, which is a Hilbert space Hi1 ® Ha with inner
product

((Y1,01), (%2, p2)) = (1, ¥2) + {1, p2). (D.2)

Definition D.2. An operator T : Hi — Ha is said to be closed if the graph T'(T) is a closed subset
Of 7‘[1 X 7‘[2.

Definition D.3. Let 71 and T be operators on H. if I'(Th) o I'(T'), then T is said to be an
extension of T, and we write Ty > T. FEquivalently, Ty > T if and only if D(T1) > D(T), and
T1(p) =T(p) for all p € D(T). Here, D(T) is called the domain of T

Definition D.4. An operator T is closable if it has a closed extension. Every closable operator has
a smallest closed extension, called its closure, which we denote by T.

Definition D.5. The domain of an operatorT' on a Hilbert space H is a linear subspace H, denoted
by D(T). If the domain is dense in H, we say that T is densely defined. Unless specified otherwise,
we will always suppose that the domain is dense.

Definition D.6. An unbounded linear operator T' from Hy to Ha is a pair (D(T'),T) consisting of
a domain D(T) < Hi and a linear map T : D(T) < H1 — Ha.

Remark : unbounded operators may be bounded according to our terminology.

Definition D.7. Let T be a densily defined operator on a Hilbert space H. Let D(T*) be the set of
© € H for which there is a n € H with

T, ) =<Pymp,  for all +p e D(T). (D.3)

For each such ¢ € D(T*), we define T*(p) = n. T* is called the adjoint of T. By the Riesz Lemma,
o€ D(T*) if and only if KT, 2| < C|[]. for all € D(T).
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Definition D.8. Let T be a closed operator on a Hilbert space H. A complex number X\ is in
the resolvent set p(T) if NI — T is a bijection of D(T') onto H with a bounded inverse. If \ €
p(T), R\(T) = (\I — T)~! is called the resolvent of T at \.

Definition D.9. A densely defined operator T on a Hilbert space is called symmetric (or
Hermitian) if T < T%*, that is D(T) < D(T*) and T = T*¢ for all ¢ € D(T). Equivalently,
T is symmetric if and only if

<T907 ¢> = <907 TI/]>7 Jor all o, € D(T) (D4)

Definition D.10. T is called self-adjoint if T = T*, that is if and only if T is symmetric and
D(T) = D(T*).

A symmetric operator is always closable since D(T*) o D(T) is dense in H. If T is symmetric,
T* is a closed extension of T, so the smallest closed extension T** of T' must be contained in T.
Thus for symmetric operators we have T' < T** < T*. For closed symmetric operators, we have
T =T** < T*, and for self-adjoint operators we have T = T** = T*,

From this, one can easily see that a closed symmetric operator T is self-adjoint if and only if T* is
symmetric.

Definition D.11. A symmetric operator T is called essentially self-adjoint if its closure T is
self-adjoint. If T is closed, a subset D < D(T) is called a core for T if T |p =T.

One can show that if T is essentially self-adjoint, then it has only one self-adjoint extension, namely
its closure. The converse is also true.

Definition D.12. A densely defined symmetric operator T, on a domain D(T) is called positive if

TY,p) =20 (¢ € D(T)). (D.5)
The following theorem will be useful when proving properties of the closure operator.

Theorem D.13 (Friedrichs). A positive, densely defined, symmetric operator a, has a ungiue
positive self-adjoint extension, called the Friedrichs extension. When a is essentially self-adjoint,
this extension (of course) equals the closure of a.

Definition D.14. A quadratic form is a map q : Q(Q) x Q(q) — C, where Q(q) is a dense linear
subset of H called the form domain, such that Q(;W) is conjugate linear and Q(p,) is linear for

0,0 € Qa). If Qo) = Q(v,¢), we say hat q is symmetric. If q(p,¢) = 0, for all p € Q, q is
called positive, and if q(¢, 0) = —M]||p||?, for some M, we say q is semibounded.

Definition D.15. A Schrédinger operator is a self-adjoint operator H on a dense domain D(H)
of the Hilbert space H = L*(R™), such that H can be written as the sum of the minus the
Laplace-operator (Laplacian) and multiplication with a given real function V', also called the
potential. Thus V' is seen as the (pointwise) multiplication operator with V.

A priori, the function V is not continuous or bounded, but it needs to be at least locally integrable.

An example of a Schrédinger operator in one dimension is the operator hs given by (4.72).

Definition D.16. An operator T : D(T) < H1 — Ha has compact resolvent at A if R\(T') is a
compact operator, i.e., the closure of R\(T)(B) is a compact subset of Ho, where B is the closed
unit ball. .

Definition D.17. Let T, be self-adjoint operators, n = 1,2, .... Then T, is said to converge to T
in the norm resolvent sense if Rx(T,) — Ry in norm for all X\ with Im()\) # 0. T, is said to
converge to T' in the strong resolvent sense if Rx(T,,) — Rx(T) strongly for all X\ with Im(\) # 0.
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Remark.

It can be shown in [31, Thm. VIIL.19] that for a sequence A, of self-adjoint operators and for a
point A\g € C, if Im(\g) # 0 and Ry,(An)p — Ry, (A)p for all ¢ € H, then A, — A is the strong
resolvent sense.

In order to prove some theorems in we need the notion of a Sobolev space, see also [9].

Definition D.18. Let Q be an open subset of R™. Let k € N and p € [1,0]. The Sobolev space
WHP(Q) is defined to be the set of all functions f on Q such that for every multi-index o, with
la| < k, the mized partial derivative

olol

() - Y J
P = e (D)

exists in the weak sense and is in LP(Q), i.e., ||f(¥)||L» < 0. That is, the Sobolev space W*P () is
defined as

WhP(Q) = {ue LP(Q) | Duwe LP(Q), ¥ |a| < k). (D.7)

For p = 2, we use the notation H* = W2, It can be shown that H* is a Hilbert space for all k € N
with inner product

lu, vypge = Z (D%, D*v)p2. (D.8)

la|<k

There exists also Sobolev space spaces with non-negative real parameter. Assume 0 < s < o0 and
u e L2(R™). Then, we define the space H*(R™) by

H*(R") = {ue L*(R")| (1 +[y*)a e L*(R")}, (D.9)

where we denote the Fourier transform of any u € L*(R™) by 4. For non-negative integer s, we
make H*(R™) into a Hilbert space with norm

[lullms = 1T+ [y]*)al] - (D.10)
The spaces H*(L?(R™)) are called fractional Sobolev spaces.

The next theorem describes when the domain of the Schrédinger operator is bounded. It can be
found in [12, p.43]

Theorem D.19. Let A be a cube in R, and V a continuous function on A. Then the Schrodinger
operator H = —A + V., acting on the space L*(A) with Dirichlet boundary conditions, has purely
point spectrum, accumulating at co.
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Appendix E

Deformation quantization

In this appendix we will give the basics of the notion of a continuous bundle of C*-algebras and
a deformation quantization, including an example. A rigorous treatment can be found in |22, Def.
C.121], [22, Def. 7.1], and |22 pp. 250-252]. The main results of this appendix have been used in
chapter 6.

Definition E.1. Let I be a locally compact Hausdorff space. A continuous bundle of C*-algebras
over I consists of a C*-algebra A, a collection of C*-algebras (Ap)ner with norms || - ||n, and
surjective homomorphisms @y : A — Ay for each h € I, such that:

1. The function h— ||pr(a)||n is in Co(I) for all a € A.

2.The norm for any a € A is given by

lal| = supner|len(a)lln- (E.1)
3. For any f € Cy(I) and a € A, there is an element fa € A such that for each he I,

en(fa) = f(R)en(a). (E.2)

A continuous (cross-) section of the bundle in question is a map h — a(h) € Ay, (h e I), for which
there exists an a € A such that a(h) = pp(a) for each he I.

For the definition below, we will assume that the space I is taken to be a subset of the unit interval
[0,1] that contains 0 as an accumulation point (so one may have for example I = [0,1] itself, or

I = (1/N) U {0}).

Definition E.2. A deformation quantization of a Poisson manifold X consists of a continuous
bundle of C*-algebras (A,{p : A — Ap}rer) over I, along with maps

Qh:A0—>Ah (77,6[), (E3)

where Ag is a dense subspace of Ag = Co(X), such that:
1. Qg is the inclusion map flo — Ap;
2. Each map Qy, is linear and satisfies Qn(f*) = Qn(f)*.

3. For each f € Ay, the following map is a continuous section of the bundle:

0—f
h— Qn(f) (h>0)

W
Ot~
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4. For all f,g € Ay one has the Dirac-Groenewold-Rieffel condition:

i i
lim || [@1(/), Qu(9)] ~ @u({f, 9}l = 0. (E6)
it follows from the definitions of a continuous bundle that continuity properties like

%E%”Qh(f)” = || fllo0; (E.7)
%ii% 1Qn(f)Qr(g) — Qu(fg)ll =0,

are automatically satisfied. if X is compact, so that 1x € Cy(X), and we require Qp(lx) = 1g,
with 1z the unit of the C*-algebra Aj.

We give an example without proof for the case n = 1. We put

Ag = Co(T™(R)); (E.9)
Ap, = Bo(L*(R)), (k> 0), (E.10)

where we identity the cotangent bundle 7%(R) ~ R?, carries the canonical Poisson structure given
by

2 (0f og Of dg
=3 (-2, (E11)

where (p, ¢) € R? The C*-algebra Ap, is the space of compact operators on the Hilbert space L?(R).
A deformation quantization of R? that is positive in the sense that

20 = Quf)=0, (fedyc A (E.12)

exists under the name Berezin quantization, denoted by Qf . For this we need the notation of a
coherent state. For each (p,q) € R?, and h > 0, define a unit vector qb%p 9 e 12 (R) by

¢(p (1)( ) (ﬂ.h)—n/4€—ipq/2heipx/ﬁe—($—‘1)2/2h. (E13)

This is called a coherent state. Writing z = p + iq, the transition probability between two coherent
states is

z —|z—2' 2
(oD, o7 [P = el (B.14)
Then we define QF : Co(T*R) — By(L?*(R)), by

QB(f) = f B (o, I X0 (E.15)

The integral is understood in the sense that for 1, ¢ € L?(R), we have

wo(QB(f)) = (0. QE () = f B 1o, g0, 6P DN . (E.16)

In particular, for each unit vector ¢ we may write

QR = | duot. (B.17)
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where jiy, is the probability measure on 7%(R) with density

BY (p,q) = [P )2, (E.18)

called the Husimi function of 1 € L?(R); in other words, u,; is given by

dpdq
dpiy = %B}f(n q)- (E.19)

In general, ¢ depends on A as it corresponds to a h-dependent Schrédinger operator. For example,

¥y can be the ground state eigenfunction. We say that the wave-functions v, have a classical limit
if

o T (E:20)
h—0 JTRr2 R2

for any f € Co(T*(R)), where g is some probability measure on T*(R) =~ R2.

In the remaining part of this appendix, we introduce the notion of (quasi) symmetric sequences
and show how they play a role in continuous bundles of C*-algebras. For this, we first explain how
to link an element of BM to an element of BY, with B the N-fold tensor product of B, and B a
unital C*-algebra describing a single quantum spin system. The case B = M3(C) will be used in
this thesis. We define Sy to be the permutation group of N objects acting on B in the obvious
way, i.e., by linear and continuous extension of

a]E,N)(b1®-"®bN) =by(1) ® - ® by, (E.21)

where B; € B, and p € Sy. This yields a Symmetrizer operator Sy : BY — B, defined by

1
SN =75 > ol (E.22)
" peSn

It can be shown that S¥ is continuous. For N > M, we then define
Sun:BM - BY (E.23)
by linear (and if necessary continuous) extension of
Sun(ain) = Sn(ayy ®1p---1p)  (an € BY), (E.24)
with N — M copies of the unit 15 € B ,s0 as to obtain an element of BY. Clearly, Snny = Sn. In

particular Sy : B — BV gives the average of b over N copies of B:

N
1
Sin(b) = N Z 1p®- by ®1p -+ Rlp. (E.25)
k=1

Finally, we give the definition of symmetric and quasi-symmetric sequences. They play a role in
the continuous bundle of C*-algebras A(()c) = C(S(B)) and Agc/)N = BV, with B the N-fold tensor
product of the unital C*-algebra B.

Definition E.3. We say that a sequence (al/N)NeN, with ay/y € BN is symmetric, when there
exists an M € N and a1y € BM such that for each N = M one has

ayn = Su,n(ayn)- (E.26)
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This implies that a;/y; = Sy (ay/ar). For each symmetric sequence we define a function ag : S(B) —
C by

ap(w) = lim wN(al/N), (E.27)

n—0o0

where w € S(B), and w¥ € S(BY) is defined by a linear and coninuous extension of
wN(b1®- : ®bN) :w(b1)®- . -w(bN). (E.28)

Continuity of w? is guaranteed by [22, C.98]. It can be shown, using the fact that the sequence is
symmetric, that the above limit exists from which it follows that ag € C(S(B)).

We now return to the general case.

Definition E.4. A sequence (aj/n)nen as above is quasi — symmetric if for each N € N one has
ayn = Sn(ain) and for any e > 0 there is a symmetric sequence (ay/y) and some M € N such
that |lay/n — ayn|| < e for all N > M.

This brings us to an important theorem.

Theorem E.5. For any unital C*-algebra B, the C*-algebras

AY) = o(5(B)):; (E.29)
Ay =BY, (E-30)

~ N
where BY is the N-fold projective tensor power X),naeBs are the fibers of a continuous bundle A of

C*-algebras over I = (1/N)u{0} whose continuous cross-sections are the quasi-symmetric sequences

(a1/n) with limit ag given by (E.27).

The proof is very technical and will be omitted (See e.g. |22, Thm. 8.4]). In any case, it can be
shown that we have deformation quantization of S(B) in the sense of (E.2) |22, Thm. 8.4].
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