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Abstract

Let hCW
N be the N -dependent quantum Curie-Weiss spin-1{2 Hamiltonian defined on the Hilbert

space HN “
ÂN

n“1 C. Since HN is finite-dimensional, this Hamiltonian is a bounded operator.
Consider then the ~-dependent unbounded Schrödinger operator with a symmetric double well
potential, denoted by h~, and defined on L2pr0, 1sq. We show that both operators are related,
in that the quantum Curie-Weiss Hamiltonian can be seen as a discretization of this Schrödinger
operator under the identification N “ 1{~. Moreover, we show that the algebraic (unique) ground
state of hCW

N converges to a doubly degenerate classical state on CpB3q as N Ñ 8, where CpB3q

is the commutative C˚-algebra of continuous functions on the closed unit ball B3 Ă R3. This
involves a so-called deformation quantization of CpB3q. We describe how the natural phenomenon
of spontaneous symmetry breaking (SSB), that does only play a role in the limit, can already be
detected for finite, but large N . Thereto, perturbation theory is used.
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Chapter 1

Introduction

1.1 Asymptotic emergence

Inspired by the book Foundations of Quantum Theory written by Landsman, I decided to immerse
myself into the area of higher-level theories H which are limiting cases of lower-level theories L.
For example, H is classical mechanics of a particle on the real line with phase space R2 “ tpp, qqu
and ensuing C˚-algebra of observables given by A0 “ C0pR2q. Then L is quantum mechanics,
with a C˚-algebra A~ p~ ą 0q taken to be the compact operators B0pL

2pRqq on the Hilbert space
L2pRq. Another example is the relation between statistical mechanics of finite quantum and infinite
quantum spin systems. Thus H is statistical mechanics of an infinite quantum spin system, given
by the quasi-local algebra being the infinite (projective) tensor product of B “ MnpCq with itself,
and L is the N -fold (projective) tensor product of B with itself. The last example we give is the one
we use in this thesis. In this case H describes classical mechanics on the commutative C˚-algebra
CpB3q, with B3 Ă R3 the closed unit ball, and L is given by the N -fold tensor product of M2pCq
with itself, and hence describes statistical mechanics of finite quantum spin systems. The limiting
relationship between the two theories will be described by a continuous bundle of C˚-algebras.
These theories all have in common that the limiting theory H has features that at first sight cannot
be explained by the lower-level theory L, because apparently L lacks a property inducing those
features in the limit to H. This is what we call asymptotic emergence, first introduced in [1], and
reformulated in terms of C˚-algebras in [22].

In this thesis we will focus on the natural phenomenon of spontaneous symmetry breaking
(SSB). We will see that this is an emergent feature of H, since it does not occur in L. This is well
known for the example with H being classical mechanics on C0pR2q, and L quantum mechanics,
where the quantum system is described by Schrödinger operator with a symmetric double well
potential. We will see that this phenomenon is also an emergent feature for the pair pH,Lq, with
H describing classical mechanics on CpB3q, and L a finite quantum spin system of spin up and
spin down particles. We make a link between the quantum Curie-Weiss model and this Schrödinger
operator and argue that, perhaps surprisingly, SSB is indeed compatible with both theories.

1.2 Classical Limit

The theory of quantum mechanics gives a description of systems containing tiny particles. However,
in principle it can also be applied to any physical system, in particular to systems of large objects.
We know from experience that if we apply a quantum-mechanical theory to such objects, the
outcome will be a classical state, which should be describable in the classical limit of quantum
mechanics. For example, consider the following Schrödinger equation for a particle with mass m in

7



CHAPTER 1. INTRODUCTION

a potential well V :

´
~2

2m

d2ψ

dx2
`mV ψ “ εψ. (1.1)

If we apply this equation to a particle with large mass, then according to the above, it should
reproduce classical mechanics. This can equivalently be achieved by letting ~Ñ 0 for fixed m. At
first sight, this seems strange, as ~ is a constant. However, many quantum systems can be linked to
a classical system by taking the limit ~Ñ 0. Such a classical system is well understood in most of
the cases, and therefore it is important to understand this limit. We will often refer to this classical
limit as ~ Ñ 0 or N Ñ 8, depending on the quantum system we consider. We will see that the
notion of a continuous bundle of C˚-algebras and a deformation quantization play an important
role in understanding and computing this limit.

1.3 Schrödinger operator with a symmetric double well potential

My motivation for studying properties of quantum spin systems is originally based on the
Schrödinger operator describing a particle in a symmetric double well potential. This ~-dependent
operator is given by h~ “ ´~2 d2

dx2
` V pxq, with V a symmetric double well function acting as

a multiplication operator. This Hamiltonian has been extensively applied in many branches of
physics and theoretical chemistry. For example, it has been used to study quantum tunneling of
the nitrogen atom in the ammonia molecule as in [4]. It has been also applied in studies to the
mean-field dynamics of Bose-Einstein condensates [35]. Moreover, time-independent behaviour of
the double well potential in the classical limit ~Ñ 0 has been studied [34]. This will be important
when comparing the ground states of the N -dependent quantum Curie-Weiss model to those of the
Schrödinger operator with symmetric double well in the semi- classical limit (i.e., N large, but finite)
with N “ 1{~. We shall see that the quantum Curie-Weiss model can be seen as a discretization of
this Schrödinger operator.

1.4 The aim of this project

Initially, the goal of this thesis was to understand spontaneous symmetry breaking in some class of
quantum spin systems. Based on the symmetric double well potential that is quite well understood,
we wanted to give an analog of SSB for spin system models. As explained above, we need two
theories describing these spin systems: the higher-level theory H as a limiting case of a lower-level
theory L. For example the higher-level theory at N “ 8 for the quantum Ising model is described
on the quasi-local algebra, whereas for the Curie-Weiss model this algebra is given by the classical
commutative C˚-algebra CpB3q, even though the lower-level theories are both described by the
same C˚-algebras BpHΛN q, with HΛN “

ÂN
n“1 C2. The reason for this lies in the fact that the

quantum Ising Hamiltonian is a short-range model, whereas the Curie-Weiss Hamiltonian falls in
the class of homogeneous mean-field models and hence is long range. A very interesting result is
that there exists also a second higher-level limit for the quantum Ising model, but this time it is
associated with the classical C˚-algebra CpS2

1{2q, with S2
1{2 Ă R3 the 2-sphere with radius 1{2. One

can show that its ground state, modulo a constant, is precisely the ground state for the classical
limit of the Curie-Weiss Hamiltonian, which in both cases is doubly degenerate and displays SSB,
but for finite N i.e., the lower-level theory, it does not display SSB. This is surprising, because both
models fall in different categories. Another question that one can ask oneself is how to construct
the classical Hamiltonian on S2

1{2 corresponding to the classical limit theory H of the underlying
lower-level theory L describing the quantum Ising model for finite N . A similar question can be
asked for the quantum Curie-Weiss Hamiltonian, where in this case the classical Hamiltonian is a
continuous function given on CpB3q. Since the ground states of both (classical) limiting theories
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CHAPTER 1. INTRODUCTION

are the same modulo a constant, one might expect that there is a link between both models, even
though they fall in different categories (i.e., long range and short range). The same question can
be asked for the ground states of the infinite quantum Ising model and the classical quantum Ising
model. Both different limiting models have a doubly degenerate ground state that displays SSB, but
the first one is defined on a highly non-commutative C˚-algebra, whereas the latter one is defined
on a commutative C˚-algebra. This double degeneracy is also present in the limiting case p~Ñ 0q of
the quantum harmonic oscillator, with limit algebra given by the commutative C˚-algebra C0pR2q.
These topics are therefore worth studying further and in connection with one another. We give a
short overview of the relevant quantum operators and their classical analogs:

hCW
N “ ´

J

2|ΛN |

ÿ

x,yPΛN

σ3pxqσ3pyq ´B
ÿ

xPΛ

σ1pxq pquantum Curie-Weiss modelq (1.2)

hIsing
N “ ´

ÿ

xPΛN

pσ3pxqσ3px` 1q `Bσ1pxqq pquantum Ising modelq (1.3)

h~ “ ´~2 d
2

dx2
` V pxq pquantum harmonic oscillator with double well potential.q (1.4)

Here ΛN denotes a finite subset of Z consisting of N elements. Their classical analogs are in all
three cases continuous functions on some commutative C˚-algebra, keeping in mind that the Ising
model has also a quantum analog on the quasi-local algebra. These analogs are given below.

hCW
8 px, y, zq “ ´

1

2
z2 ´Bx pclassical Curie-Weiss modelq (1.5)

hIsing
8 pθq “ ´p

1

2
cos2pθq `B sinpθqq pclassical Ising modelq (1.6)

h0pp, qq “ p2 ` V pqq pclassical harmonic oscillator with double well potential.q (1.7)

As we have mentioned in all the cases above, using a deformation quantization map, one can show
that the algebraic ground state of the quantum Hamiltonian does not display SSB and converges to
a ground state of the corresponding classical function that does display SSB1. These actual ground
states states that show SSB are obtained by minimizing the above functions and are therefore given
by points in phase space and hence correspond to Dirac measures. The mystery to be resolved is
therefore how the classical ground states with SSB arise from the quantum ground states without
SSB.

In this project, we will concentrate on the quantum Curie-Weiss model and the quantum
harmonic oscillator in a symmetric double well potential with corresponding classical limits, and
try to give an insight of their properties and the way they are related. In particular, convergence of
the ground state will be discussed as well as the phenomenon of spontaneous symmetry breaking.

1.5 Outline of the thesis

The next (second) chapter discusses the notion of a ground state of a C˚-dynamical system,
denoted by the tuple pA,αq. Here A denotes a C˚-algebra that plays the role of a physical system
and consists of observables quantities to be interpreted as (unbounded) self-adjoint operators on
some Hilbert space. The dynamics is given by a (continuous) homomorphism α : R Ñ AutpAq,
being the time evolution of the system that describes how observables evolve over time (Heisenberg
picture). We will link this general notion of a ground state to the one used in linear algebra, namely
the eigenvector(s) corresponding to the lowest eigenvalue. We show that the first general concept

1This does not hold for the eigenvectors or eigenfunctions themselves: they fail to converge on the limit algebra,
when N Ñ8 or ~Ñ 0.
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CHAPTER 1. INTRODUCTION

extends the one used in Linear Algebra. We then give the definition of spontaneous symmetry
breaking (SSB) and show that the quantum Schrödinger operator h~ p~ ą 0q describing a particle
in a symmetric double well does not display SSB, whereas its classical analog (viz. (1.7)) does.

In Chapter 3 we will state the quantum mechanical Curie-Weiss model pN ă 8q, being an
operator on a 2N -dimensional Hilbert space. We argue that for each finite N , this operator does
not display SSB. The prove of this follows from the uniqueness of the ground state (Chapter 5)
and a commutation relation with a unitary operator implementing the symmetry.
We show that the ground state must lie in the range of the symmetrizer operator, so that we
may diagonalize this operator with respect to a basis for this range, which is pN ` 1q-dimensional.
We show that in the canonical symmetric basis for ranpSq, the quantum Curie-Weiss operator
becomes a tridiagonal matrix of dimension N ` 1, and is therefore relative easy to diagonalize with
a computer, compared to the one originally defined on the space

ÂN
n“1 C2 – C2N .

Then in Chapter 4, we are going to make a link between the Curie-Weiss Hamiltonian, restricted
to ranpSq and scaled by a factor 1{N , and a Schrödinger operator with a symmetric double well
potential, depending on ~ “ 1{N . We will see that in some approximation, this scaled compressed
Curie-Weiss Hamiltonian corresponds to a matrix representing a discretization of this Schrödinger
operator. This discretization gets better when N increases, but N has to be finite in order to
speak about a quantum system. Even though in the limit N Ñ 8 the Schrödinger operator is not
well-defined, the ground state eigenfunction still converges to some points minimizing the classical
Hamiltonian (1.7). These points in turn correspond to some Dirac measure on the commutative
C˚-algebra C0pr0, 1s ˆ Rq. This involves the notion of a deformation quantization.

Uniqueness of the ground state of the Schrödinger operator h~ p~ ą 0q is achieved when
the potential satisfies some properties. The proof is based on an infinite-dimensonal version of
the Perron-Frobenous Theorem applied to e´th~ for t ą 0. In Chapter 5, we state this theorem
and theorems and lemmas related, and prove them for the Hilbert space L2pRnq. We discuss the
Perron-Frobenius theorem for non-negative irreducible matrices and see how this theorem is a
specific example of another more general theorem using unbounded operators on a σ-finite measure
space. The latter one will be applied to our (compressed) Curie-Weiss matrix in order to prove
uniqueness of the ground state.

In Chapter 6, we explain the notion of deformation quantization applied to the quantum
Curie-Weiss model. We define such a map and show that the ground state of this quantum system
converges indeed to twofold degenerate Dirac measures on the algebra CpB3q, even though the
limit of hCW

N as N Ñ 8 does not exists. These measures correspond to points in B3 that are the
minima of the classical function hCW

0 , given by (1.5). Moreover, we will introduce the notion of
reduced density matrices and show that the above convergence is an example of taking some limit
of such matrices. Partially based on numerics, we prove that we have weak˚´ convergence (See
§6.2 for details). The last part of this section introduces the Lipkin-Meshkov-Glick (LMG) model,
which can be seen as a generalization of the Curie-Weiss model.

Chapter 7 discusses a perturbation in the Curie-Weiss Hamiltonian. We make again the
link with the Schrödinger operator describing a particle in a symmetric double well. We show that
this perturbation is completely analogous to the asymmetric ’flea’ on the double well potential
studied in [34]. We argue that, due to the position of this flea, the ground state will localize in one
of the wells and therefore will converge to a pure state in the classical limit. This is in contrast with
the unperturbed Hamiltonian, where the ground state will a priori converge to a mixed classical
state.
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The final chapter provides an outlook stating some open problems and some suggestions for
further research.
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Chapter 2

Ground states and Spontaneous
Symmetry Breaking

In this section we study the concept of spontaneous symmetry breaking (SSB). For this, we need
an abstract mathematical framework to compute the right limits (see Chapter 6). We start with
the notion of a ground state of a C˚-dynamical system. We show that this notion is compatible
with the one used in linear algebra, namely eigenvector(s) corresponding to the lowest eigenenergy.
Then, we give an example of a higher-level theory H describing classical mechanics on C0pR2q, seen
as a limiting case of a lower-level theory L describing a quantum system given by a Schrödinger
operator with a double well potential. We give a detailed proof that SSB does not occur in L, but
does occur in H.

2.1 General setting

The dynamics describes how observables evolve over time, so it says something about the underlying
physical system. Such a physical system is mathematically identified with a C˚-algebra A. The
dynamics is then given by a continuous1 homomorpihsm α : R Ñ AutpAq, t ÞÑ αt, where we use
the notation αt ” αptq. This map is also called the time evolution of the system. In the case that
A “ BpHq, we always have αtpaq “ utau

˚
t for some family of unitaries ut ” uptq, pt P Rq (see

Appendix A for more details). A C˚-algebra A with dynamics α is called a C˚ dynamical system,
denoted by pA,αq. We give the definition of the ground state of a C˚- dynamical system. This
definition can be found in [5, sec. 5.3.3 and 6.2.7] or [22, p.350].

Definition 2.1. Let A be a C˚-algebra with time evolution, i.e., a continuous homomorphism
α : RÑ AutpAq. A ground state of pA,αq is a state ω on A such that:

1. ω is time independent, i.e., ωpαtpaqq “ ωpaq @a P A @t P R.
2. The generator hω of the ensuing continuous unitary representation

t ÞÑ ut “ eithω (2.1)

of R on Hω has positive spectrum, i.e., σphωq Ă R`, or equivalently xψ, hωψy ě 0 pψ P Dphωqq.

We will give some comments to this definition below and explain where this Hamiltonian is coming
from.

We are given a C˚-dynamical system pA,αq and a ground state ω for this system. We can
apply the GNS-construction to A and ω (see Appendix A) to obtain a unique triple pπω,Hω,Ωωq,

1The continuity is explained in Appendix A.
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CHAPTER 2. GROUND STATES AND SPONTANEOUS SYMMETRY BREAKING

where πω : A Ñ BpHωq is the GNS-representation of A, Hω is a Hilbert space, and Ωω is a cyclic
vector for πω. In addition, for all a P A we have

ωpaq “ xΩω, πωpaqΩωy. (2.2)

Now, since by part 1 of Definition 2.1 for each t P R, the automorphism αt satisfies ω ˝ αt “ ω, we
can apply Theorem A.10 to obtain a family of unitaries tuω,tut such that

πωpαtpaqq “ uω,tπωpaqu
˚
ω,t (2.3)

and

uω,tΩω “ Ωω, (2.4)

where, ut is defined as

uω,tπωpaqΩω “ πωpαtpaqqΩω. (2.5)

The map uω,t is well-defined as follows from the proof of Theorem A.10. This is a general statement
in the theory of operator algebras. The next lemma states an important result about this family of
unitaries:

Lemma 2.2. The family tuω,tut of unitaries forms a continuous unitary representation of R on
Hω.

Proof. Since α : R ÞÑ AutpAq is a continuous homomorphism, the map t Ñ αt is strongly
continuous, in that for each a P A, the map t ÞÑ αtpaq is continuous.

We have to show that the map

RˆHω Ñ Hω (2.6)

pt, ψq ÞÑ uω,tψ (2.7)

is continuous. It suffices to show this for the dense subspace Hω “ πωpAqΩω of Hω.
Then, given ψ,ψ1 P Hω and t, t1 P R. Consider the norm difference

||uω,tψ ´ uω,t1ψ
1|| ď ||uω,t1 || ¨ ||uω,t´t1ψ ´ ψ

1||. (2.8)

Put s “ t ´ t1. For simplicity, assume that we can write ψ “ πpaqΩω and ψ1 “ πpa1qΩω. In fact,
since Ωω is cyclic for πωpAq, we can write ψ as a limit of πpaιqΩω where paιq is a net in A. A
similar result holds for ψ1. In this case we will need an ε{3-argument to prove the lemma instead
of an ε{2-argument which we use now.

Since by (2.3) and (2.4), uω,sπpaqΩω “ πpαspaqquω,sΩω “ πpαspaqqΩω, it now follows that

||uω,sψ ´ ψ
1|| “ ||πpαspaqqΩω ´ πpa

1qΩω||

ď ||πpαspaqqΩω ´ πpaqΩω|| ` ||πpaqΩω ´ πpa
1qΩω||

ď ||pαspaq ´ aq|| ¨ ||Ωω|| ` ||ψ ´ ψ
1|| (2.9)

If ψ Ñ ψ1 and tÑ t1, then we see that the above expression (2.9) converges to zero. Since uω,t1 is
bounded in norm, we conclude that the difference (2.8) goes to zero and therefore we have showed
that pt, ψq ÞÑ uω,tψ is continuous.
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Now we are in the position to apply Stone’s Theorem to obtain a Hamiltonian hω such that

uω,t “ e´ithω , (2.10)

where this Hamiltonian hω is defined as

hωψ “ i lim
sÑ0

uω,s ´ 1

s
ψ “ i

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

e´ishωψ. (2.11)

Then,

uω,tΩω “ Ωω, (2.12)

immediately implies that

hωΩω “ 0. (2.13)

We also have

πωpαtpaqq “ e´ithωπωpaqe
ithω . (2.14)

2.2 Two different notions of a ground state

We make a link between the notion of a ground state (Definition 2.1) on the local algebra
AN “ BpHN q, with HN a finite-dimensional Hilbert space of dimension N , and the notion of
a ground state on this algebra in the linear algebra setting, i.e, as an eigenvector or multiple
eigenvectors corresponding to the lowest eigenvalue.2 Take a (self-adjoint) Hamiltonian h acting on
BpHN q. As HN is isomorphic as a vector space to the finite-dimensional space CN , it follows that
there exists an ordered orthonormal basis tv0, v1, ..., vNu for HN consisting of eigenvalues of h.

Consider then the lowest eigenvector v0 corresponding to the Hamiltonian h P BpHN q. We
turn v0 into a state on BpHN q by setting

ω0paq “ xv0, av0y pa P BpHN qq. (2.15)

We claim that this state is a ground state in the sense of Definition 2.1. We denote the the identity
operator of BpHN q by 1 ” idBpHN q

. This is clearly a representation of BpHN q on BpHN q. It follows
that we have a triple p1 : BpHN q Ñ BpHN q,HN , v0q, such that

ω0paq “ xv0,1paqv0y “ xv0, av0y pa P BpHN qq. (2.16)

Moreover, v0 is cyclic for 1, as this operator acts as the identity on BpHN q and the Hilbert space
is finite dimensional.

We are going to apply the GNS-construction to AN and the state ω0. In view of Theorem
A.9, we find a triple pπω0 ,Hω0 ,Ωω0 ” rIsq where Hω0 is a Hilbert space, πω0 a representation of
AN on Hω0 , such that Ωω0 is cyclic for πω0 , and we have

ω0paq “ xrIs, rasy “ xΩω0 , πω0paqΩω0y. (2.17)

By uniqueness of GNS-triples (see again Theorem A.9), we know that a unitary map between both
Hilbert spaces Hω0 and HN exists. In particular, both spaces are isomorphic as vector spaces. We

2This construction is general for any state on a C˚ algebra and makes use of the GNS-representation. In this
paragraph, we give a detailed proof for finite dimensions.
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are now going to construct this unitary map that connects both GNS-triples.

Thus we need a bijective map:

U : Hω0 Ñ HN (2.18)

such that

xUϕ,UψyHN
“ xϕ,ψyHω0

pϕ,ψ P Hω0q.

Moreover, we want

U rIs “ UΩω0 “ v0. (2.19)

Notice that for a P Nω0 “ ta P AN | ω0pa
˚aq “ 0u, we have

0 “ ω0pa
˚aq “ xv0, a

˚av0y “ ||av0||
2. (2.20)

Hence

ras “ r0s ðñ av0 “ 0. (2.21)

Write a P AN as a “ a|v0yxv0| ` ap1´ |v0yxv0|q. Then ras “ ra|v0yxv0|s, since

ap1´ |v0yxv0|qv0 “ apv0 ´ v0q “ 0, (2.22)

so that the corresponding equivalence class is the zero class by the above. Hence, an ‘operator’ in
Hω0 is determined by its value at v0.

Now we are going to define U . Take an orthonormal basis traisu for Hω0 . Since this space
is finite-dimensional, it equals the space quotient space Hω0 , explained in Appendix A. Then we
define

U : Hω0 Ñ HN (2.23)

rais ÞÑ aiv0. (2.24)

This map is well-defined by (2.21). We will see that U is unitary. Note that the adjoint U˚ is given
by

U˚ : HΛN Ñ Hω0 (2.25)

vi ÞÑ rais, (2.26)

which is well-defined as well since it defined on basis vectors of HN . It follows that aiv0 “ vi. How
is this possible?
Note that AN “ BpHN q is a unital C˚- algebra and ω0 is a state on AN . As Ω0 “ rIs is cyclic for
πω0 , we have

πω0pAN qΩω0 “ Hω0 , (2.27)

so that

Upπω0pAN qΩω0q “ UpHω0q “ HΛN . (2.28)

Then for each vi P H, we have

vi “ Upπω0paiqΩω0q “ U raiΩω0s “ aiv0. (2.29)
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Note that for arbitrary C˚-algebras A, one needs to take the closure of the space πω0pAN qΩω0 . The
result remains true when A does not have a unit. In that case, it has an approximate unit.

It is an easy exercise to see that U is an isometry:

xUpraisq, Uprajsqy “ xaiv0, ajv0y “ ω0pa
˚
i ajq “ xrais, rajsy. (2.30)

It follows that U is injective. Since we already know that such a unitary map exists, both (finite)
dimensions of HN and Hω0 are equal. Therefore, injectivity implies surjectivity. This shows that
U is unitary.

Note that by construction:

U˚pavq “ πω0paqpU
˚vq. (2.31)

In particular, for the bounded operator3 h, we find

U˚peithvq “ πω0pe
ithqU˚pvq. (2.32)

We also have that U rIs “ v0. Since a0v0 “ v0, we have by the above pa0 ´ 1qv0 “ 0, so that
ra0 ´ Is “ r0s, hence ra0s “ rIs. Therefore, indeed,

U rIs “ U ra0s “ v0. (2.33)

Now, we are going to define a time evolution on all relevant spaces using again Theorem A.9 and
Theorem A.10. We define, for given h˚ “ h P BpHN q,

on HN ; ut : v ÞÑ eithv (2.34)

on AN “ BpHN q; αt : a ÞÑ e´ithaeith (2.35)

on Hω0 ; ras ÞÑ usprasq, (2.36)

such that usrIs “ rIs, and πω0pαspaqq “ usπω0paqu
˚
s . Recall that this us is defined through

usras “ usπω0paqrIs “ πω0pαspaqqrIs “ rαspaqs. (2.37)

Note that the above is possible since for each t P R, the triple pπω0 ˝ αt,Hω0 ,Ωω0q is another GNS
triple (as follows from an easy computation).

By Lemma 2.2, the family of unitaries us om Hω0 forms a continuous representation of R.
In particular, it is a strongly continuous one-parameter subgroup. We may therefore apply Stone’s
theorem to find a Hamiltonian hω0 on Hω0 such that

hω0rais “ i lim
sÑ0

us ´ I

s
rais “ i lim

sÑ0

rαspaiqs ´ rais

s
. (2.38)

But rαtpaiqs “ re
´ithaie

iths, and e´ithaie
ithv0 “ e´ithaie

itλ0v0 “ eitλ0e´ithaiv0, so that

rαtpaiqs “ eitλ0U˚pe´ithviq

“ U˚pe´itph´λ0qviq

“ U˚pe´itpλi´λ0qviq

“ e´itpλi´λ0qU˚pviq

“ eitλi´λ0rais. (2.39)

3In infinite dimensions, this result is not true. Consider for example an unbounded Hamiltonian and the algebra
of compact operators.
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Then we obtain

hω0rais “ i lim
sÑ0

rαspaiqs ´ rais

s

“ i lim
sÑ0

re´ispλi´λ0qais ´ rais

s

“ pλi ´ λ0qrais. (2.40)

It is clear that hω is positive precisely if λ0 is the smallest eigenvalue.

One can show that the map α : RÑ AutpAΛN q, t ÞÑ αt defines a strongly continuous one-parameter
subgroup of automorphisms, i.e., a time evolution. Thus pAΛN , αq is a C˚-dynamical system (see
text preceding Definition 2.1).

We still have to check that ω0 is invariant under αt. This is easy:

ω0pαtpaqq “ xv0, utaputq
˚v0y

“ xe´ithv0, ae
´ithv0y

“ e´itλ0e`itλ0xv0, av0y

“ ω0paq. (2.41)

Thus we have shown that, given a self-adjoint Hamiltonian h on HN , we can construct a
C˚-dynamical system AN “ BpHN q, a time evolution α : R Ñ AutpAN q and a time-independent
state ω0. Moreover, we can construct a continuous unitary representation us on Hω such that
(by Stone) there exists a Hamiltonian with positive spectrum. Hence ω0 is a ground state for the
dynamical system in the sense of Definition 2.1.

Conversely, suppose we are given a state ω on BpHN q, with HN a finite-dimensional Hilbert space,
and a one-parameter subgroup α : R Ñ AutpAN q, t ÞÑ αt. This gives rise to a Hamiltonian hω
and a cyclic unit vector Ωω such that hωΩω “ 0, as we have just seen. Then, using the same
definition of U , we have UΩω “ v0. We can recover a Hamiltonian h on BpHΛN q by putting
hψ “ hUpϕq “ Uphωpϕqq, where ψ P Dphq such that ψ “ Upϕq pϕ P Dphωqq. Here, Dphq is defined
as Dphq “ UpDphωqq, being the domain of h.
Then,

hv0 “ hUpΩωq “ UphωpΩωqq “ Up0q “ 0. (2.42)

The next step is to define a notion of spontaneous symmetry breaking for C˚-dynamical systems.

2.3 Spontaneous symmetry breaking

In this thesis we use the standard notion of symmetry breaking in algebraic quantum theory taken
from [22, p.379]. Given a C˚-algebra A, we denote the state space of A, by SpAq, and its extreme
boundary by BeSpAq. The set of ground states of some given time-evolution α, then forms a compact
convex subset of SpAq, denoted by S0pAq. The subscript 0 in S0pAq, historically corresponds to
temperature T “ 0, or equivalently β “ 8 for β “ 1{T . Moreover, we assume that

BeS0pAq “ S0pAq X BeSpAq. (2.43)

This means that pure ground states (i.e., ω P BeS0pAq) are pure states as well as ground states (i.e.,
ω P BeSpAq and ω P S0pAq) . This is indeed the case for A “ BpHq, with H a separable Hilbert
space.
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Definition 2.3. Spontaneous symmetry breaking. (SSB)
Suppose we have a C˚-algebra A, a time evolution α, a group G, and a homomorphism γ : G Ñ

AutpAq, which is a symmetry of the dynamics α in that

αt ˝ γg “ γg ˝ αt pg P G, t P Rq. (2.44)

The G-symmetry is said to be spontaneously broken (at temperature T “ 0) if

pBeS0pAqq
G “ H, (2.45)

and weakly broken if pBeS0pAqq
G ‰ BeS0pAq, i.e., there is at least one ω P BeS0pAq that fails to be

G-invariant (although invariant extreme ground states may exist).

Here S G “ tω P S | ω ˝γg “ ω @g P Gu, defined for any subset S P SpAq, is the set of G- invariant
states in S . Assuming (2.43), then (2.45) means that there are no G-invariant pure ground states.
This means also that if spontaneous symmetry breaking occurs, then invariant ground states are
not pure. In the next paragraph, we will give an important example.

2.4 Quantum mechanical symmetric double well model versus its
classical limit

In this section we first consider the quantum Hamiltonian that describes a particle in a symmetric
double well. We take G “ Z2 as our symmetry group. The goal is to show that its ground state
does not break the Z2-symmetry in the sense of Definition 2.3. However, we will see that the
ground state in the classical limit system does break the Z2-symmetry.

Let us focus first on the quantum mechanical system. We take B0pL
2pRqq as C˚-algebra of

observables on the Hilbert space H “ L2pRq.4 Take m “ 1{2 and put the symmetric double well
potential V pxq “ 1

4λpx
2 ´ a2q2 in the Hamiltonian

h~ “ ´~2 d
2

dx2
` V pxq. (2.46)

Here a “ β{
?
λ ą 0, whilst ˘a denotes the position of the both minima in the potential, and β is

a positive constant. The Hamiltonian is an unbounded operator, and is a map

h~ : Dph~q Ñ L2pRq, (2.47)

where Dph~q is a dense domain of L2pRq.

As we have said, we want to show that spontaneous symmetry breaking (SSB) is typically
not happening in quantum mechanics, because the ground state is usually unique in finite quantum
systems5, like for this one-particle system describing a particle in a symmetric double well. In
order to show that this quantum system does not display SSB, we show that for the group G “ Z2,
a homomorphism γ : G Ñ AutpB0pL

2pRqqq and a time evolution α : R Ñ AutpB0pL
2pRqqq, such

that γ is a symmetry of the dynamics, this G-symmetry is not spontaneously broken, in that

pBeS0pAqq
G ‰ H. (2.48)

4The algebra B0pL
2
pRqq denotes the C˚-algebra of compact operators.

5This is not always true: the ground state of the finite quantum Ising model without magnetic field interaction is
doubly degenerate.
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As said before, we take B0pL
2pRqq as our C˚-algebra, and the group G “ Z2 is identified with the

set t1,´1u. We then define the homomorphism by

γ : t1,´1u Ñ AutpB0pL
2pRqqq,

1 ÞÑ γ1,

γ1paq “ a (2.49)

(2.50)

´ 1 ÞÑ γ´1,

γ´1paq “ τaτ˚, pa P B0pL
2pRqqq

τ : L2pRq Ñ L2pRq,
f ÞÑ τpfq, pf P L2pRqq
τpfqpxq “ fp´xq px P Rq. (2.51)

We define a time evolution by

α : RÑ AutpB0pL
2pRqqq,

t ÞÑ αt,

αtpaq “ eih~tae´ih~t. (2.52)

It follows that pB0pL
2pRqq, αq is a C˚-dynamical system. Now we show that the homomorphism is

a symmetry of the dynamics, i.e. that

αt ˝ γg “ γg ˝ αt. (2.53)

So we have to show:

γg ˝ αtpfqpxq “ αt ˝ γgpfqpxq, @f P L
2pRq x P R (2.54)

This is clear for g “ 1, as γ1 acts as the identity map, so that γ1 commutes with h~ and hence also
with all powers of h~, and thus with eih~t.
It is also clear for g “ ´1, as τ obviously commutes with the second derivative operator (it takes
twice a minus sign) and also with the potential because of the quadratic term. So τ commutes
with the Hamiltonian and hence with the exponential eih~t.
So indeed, we have a Z2-symmetry. It turns out that this Z2-symmetry is not spontaneously
broken, as we will show later in this paragraph. First, we need to define a ground state in the sense
of Definition 2.1.

The ground state eigenfunction ψ0
~ corresponding to this system is unique, as follows from

an infinite-dimensional version of the Perron-Frobenius Theorem. Furthermore, one can show
that the bottom of the spectrum of the quantum Hamiltonian h~ is an eigenvalue. We will give a
detailed proof of both facts in Chapter 5. In view of Definition 2.1, we convert ψ0

~ into a state on
the C˚ algebra A “ B0pL

2pRqq. An obvious choice is to turn it into a vector state:

ω0paq “ xψ
0
~, aψ

0
~y pa P B0pL

2pRqqq. (2.55)

We claim that this state is a ground state in the sense of Definition 2.1, and show that this is in
fact the ground state of the C˚-dynamical system pA,αq. Note first that the invariance of ω0 under
αt is obvious. We denote the identity operator of B0pL

2pRqq by 1 ” idB0pL2pRqq. This is clearly
a representation of A on H “ L2pRq. It follows that we have a triple p1 ” idB0pL2pRqq : A Ñ

A,L2pRq, ψ0
~q, such that

ω0paq “ xψ
0
~,1paqψ

0
~y “ xψ

0
~, aψ

0
~y pa P B0pL

2pRqqq. (2.56)
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We normalize ψ
p0q
~ . It follows that ψ

p0q
~ is cyclic for 1. To see this, note first that 1 acts as the

identity on A “ B0pL
2pRqq. Then, given a ϕ P L2pRq, put a “ |ϕyxψ

p0q
~ | P A. It follows that

aψ
p0q
~ “ ϕ. (2.57)

Therefore, indeed ψ
p0q
~ is cyclic for 1.

Similarly as for the finite-dimensional case, explained in §2.2, we apply the GNS-construction
(see e.g. Theorem A.9) to A “ B0pL

2pRqq and the state ω0. From this construction, we find
another triple pπω0 ,Hω0 ,Ωω0 “ limλreλsq, where Hω0 is a Hilbert space, πω0 : A Ñ BpHω0q is the
GNS-representation of A on Hω0 , and Ωω0 P Hω0 is a cyclic unit vector for πω0 .6 We also have

ω0paq “ xrIs, rasy “ xΩω0 , πω0paqΩω0y. (2.58)

By Theorem A.9, we know that a unitary map U : L2pRq Ñ Hω0 exists, and thus L2pRq is isomorphic
to Hω0 . The next step is to define this U . The procedure is analogous to the finite-dimensional
case, except that one detail is different.7 As L2pRq is separable, we can take an orthonormal basis
tψiuiPN, starting with ψ0 “ ψ0

~. Since L2pRq and Hω0 are isomorphic, the latter space is separable
as well. Then, since the vector space Hω0 ” πω0pAqΩω0 is a dense subspace of Hω0 , we first define
U on this subspace,

U : Hω0 Ñ L2pRq (2.59)

rais ÞÑ aiψ0. (2.60)

This map is well-defined because, if rais “ rajs, then by definition of ω0, it follows that pai´ajqψ0 “

0, so that

U rais “ U rajs. (2.61)

Then U is an isometry which follows from the computation:

xrais, rajsy “ ω0pa
˚
i ajq “ xaiψ0, ajψ0y “ xU rais, U rajsy. (2.62)

Therefore, U extends linearly to Hω0 by continuity. Its image is then the closure of 1paqψ0, which
is L2pRq, since ψ0 is cyclic for 1. Thus U is surjective and hence, in view of (2.62), unitary.

We will now show that the basis vectors ψi are related to ψ0, via

ψi “ lim
λ
a
pλq
i ψ0 pi P Nq, (2.63)

where ta
pλq
i uλ is a net in A. To show this, we use the fact that

πω0pAqΩω0 “ Hω0 , (2.64)

so that

Upπω0pAqΩω0q “ L2pRq. (2.65)

6Since positive linear functionals are bounded, it follows that the equivalence class of the net teλuλ converges to a
cyclic unit vector Ωω0 in Hω0 , where teλuλ is an approximate identity for the non-unital algebra A.

7This general GNS-construction is true for any state defined on a C˚-algebra. We give a detailed derivation for
this specific algebra and use some of its properties. For example, the fact that ψ

p0q
~ is cyclic for 1 and ω0 is pure, is a

result of the properties of B0pL
2
pRqq.
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Note that A “ B0pL
2pRqq is not finite dimensional, so that we really need to take the closure of

Hω0 in order to obtain Hω0 . We compute for each ψi P L
2pRq:

ψi “ Uplim
λ
πω0pa

pλq
i qΩω0q “ lim

λ
Upπω0pa

pλq
i qΩω0q “ lim

λ
U ra

pλq
i s “ lim

λ
a
pλq
i ψ0. (2.66)

This shows that (2.63) holds. In particular, by taking an approximate identity teλuλ for A “

B0pL
2pRqq, it follows that

UΩω0 “ U lim
λ
πω0peλqΩω0 “ lim

λ
eλψ0 “ ψ0. (2.67)

For the time evolution on all relevant spaces, we define, for given h~ “ h˚~

on L2pRq; ut : ψ ÞÑ eith~ψ (2.68)

on A “ B0pL
2pRqq; αt : a ÞÑ e´ith~aeith~ (2.69)

on Hω0 ; ras ÞÑ usprasq. (2.70)

Again, in view of Theorem A.10, the unitary operator us is defined by

usπω0paqΩω0 “ πω0pαspaqqΩω0 . (2.71)

By Lemma 2.2, the family of unitaries us on Hω0 forms a continuous representation of R. In
particular, it is a strongly continuous one parameter subgroup. We may therefore apply Stone’s
Theorem to find a Hamiltonian hω0 on Hω0 such that

hω0ϕ “ i lim
sÑ0

us ´ I

s
ϕ “ i lim

sÑ0

limλpus ´ Iqra
pλqs

s
. (2.72)

where ϕ P Hω0 is of course given by the norm-limit:

ϕ “ lim
λ
rapλqs. (2.73)

Take a basis vector ϕi P Hω0 , and compute

usϕi “ lim
λ
uspra

pλq
i sq

“ lim
λ
rαspa

pλq
i qs

“ lim
λ
πω0pe

´ish~a
pλq
i eish~qU˚ψ0

“ lim
λ
U˚pe´ish~a

pλq
i eish~ψ0q

“ lim
λ
U˚eisλ0pe´ish~a

pλq
i ψ0q

“ U˚eisλ0pe´ish~ lim
λ
a
pλq
i ψ0q

“ U˚pe´ispλi´λ0qψiq

“ e´ispλi´λ0qϕi. (2.74)

We used that e´ish~a
pλq
i eish~ P B0pL

2pRqq, since this algebra is an ideal. In the final last step we
applied (2.63). We obtain

hω0ϕi “ i lim
sÑ0

e´ispλi´λ0qϕi ´ ϕi
s

“ pλi ´ λ0qϕi. (2.75)
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It is clear that hω is positive precisely if λ0 is the smallest element, being an eigenvalue as well,
of the spectrum of h~. But as we have already mentioned, it is true by a deep result based on
compactness of the resolvent operator (explained in Chapter 5) that indeed h~ admits an eigenvalue
at the bottom of its spectrum. Hence σphωq Ă R`.

We have shown that given a self-adjoint Hamiltonian h~ on L2pR2q, we can make a C˚-dynamical
system A “ B0pHq, a time evolution α : R Ñ AutpAq and a state ω such that this state is
time-independent. Moreover we can make a continuous unitary representation us on Hω0 such that
there exists (by Stone) a Hamiltonian which has positive spectrum. Hence ω0 is a ground state for
the given C˚ -dynamical system.

So far, we have transformed the ground state eigenfunction ψ0
~ of norm one into a ground

state in the sense of Definition 2.1, implicitly using the fact that ψ0
~ is a vector state on the algebra

of compact operators, and hence is a pure state. Since we have already shown that we have a
Z2-symmetry, we are now in a position to use Definition 2.3. We will show that the Z2-symmetry
is not spontaneously broken.

This is now an easy corollary: uniqueness of the ground state eigenfunction ψ0
~ implies, of

course, that its corresponding vector state ω0 is unique as well. Therefore, we have

BeS0pB0pL
2pRqqq “ tω0u. (2.76)

It follows that ω0 ˝ γg “ ω0, for all g P Z2. We show this by contradiction: if there would exists
an element g P Z2 such that ω0 ˝ γg ‰ ω0, then we can find a compact operator ã for which this
inequality holds. Note that g has to be ´1, as g “ 1 acts as the identity. Then

ω0pγ´1pãqq “ xψ
0
~, γ´1pãqψ

0
~y “ xτ

˚ψ0
~, ãτ

˚ψ0
~y “ |z|

2xψ0
~, ãψ

0
~y “ ω0pãq, (2.77)

where we used the fact that ψ0
~ is an eigenfunction of τ as well since τ commutes with h~, and the

ground state is unique. The number z is a scalar with absolute value equal to one. Therefore, we
have a contradiction. Hence we conclude

BeS0pB0pL
2pRqqqG “ tω0u ‰ H. (2.78)

Thus the G-symmetry is not spontaneously broken, because the ground state is unique.

Now we turn to the SSB classical mechanics. The ensuing Hamiltonian is given by

h0pp, qq “ p2 ` V pqq, (2.79)

where V the double well potential as defined above. We take A “ C0pR2q as the C˚-algebra of
observables on the phase space R2. As a homomorphism acting on the group G “ Z2, we take

γ : Z2 Ñ AutpC0pR2qq,

˘ 1 ÞÑ γ˘1,

γ˘1pfqpp, qq “ fp˘p,˘qq, pf P C0pR2, pp, qq P R2. (2.80)

We define a time evolution by

α : RÑ AutpC0pR2qq,

t ÞÑ αt,

αtpfqpp, qq “ fpϕh0t pp, qqq, pf P C0pR2q, pp, qq P R2q. (2.81)
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Here ϕh0t denotes the (unique) maximal flow of the Hamiltonian vector field Xh0 , uniquely induced
by the classical Hamiltonian h0.8 The point ϕh0t pp, qq denotes the starting point of the time
evolution. In order to apply Definition 2.3, we first have to check that

γg ˝ αtpfq “ αt ˝ γgpfq (2.82)

Evaluating this at pp, qq P R2 and using the definition of αt, we must show that

fpϕh0t pp, qqq “ γ1pfqpϕ
h0
t pp, qqq, and (2.83)

fpϕh0t p´p,´qqq “ γ´1pfqpϕ
h0
t pp, qqq. (2.84)

It is clear that (2.83) is true by definition of γ1. For (2.84), if we denote pp1, q1q “ ϕh0t pp, qq, then
we need to show that

p´p1,´q1q “ ϕh0t p´p,´qq, (2.85)

since then (2.84) reads

fpϕh0t p´p,´qqq “ fp´p1,´q1q “ γ´1pfqpp
1, q1q, (2.86)

which directly implies that γ´1pfqpϕ
h0
t pp, qqq “ fpϕh0t p´p,´qqq.

To prove this, we define γ̃ : R2 Ñ R2 by pp, qq ÞÑ p´p,´qq. So γ´1 “ γ̃˚. It follows by
definition of the Hamiltonian that

h0 ˝ γ̃ “ h0. (2.87)

We need a lemma in order to prove (2.85).

Lemma 2.4. If t ÞÑ ppptq, qptqq is an integral curve for Xh0, then also t ÞÑ γ̃ppptq,qptqq is an integral

curve for Xh0.

Proof. Put zptq “ ppptq, qptqq. Then

pγ̃ ˝ zqptq “ γ̃pzptqq “ p´pptq,´qptqq “ ´zptq. (2.88)

By assumption, we have

Xh0
zptq “

d

dt
zptq. (2.89)

It follows that

Xh0
pγ̃˝zqptq “ Xh0

´zptq “
d

dt

ˆ

´ zptq

˙

“
d

dt
pγ̃ ˝ zqptq, (2.90)

where in the first step we used the invariance of h0 under γ̃.

We conclude that if pp1, q1q flows to pp, qq according to h0, then γ̃pp1, q1q flows to γ̃pp, qq again
according to h0. This is precisely what (2.85) means.

So we know that the time evolution αt commutes with γg for all g P G. Moreover, one can
easily show that the map α : R Ñ AutpC0pR2qq, t ÞÑ αt defines a time evolution, using the fact

8The differentiable function h0 : R2
Ñ R, defined on the symplectic manifold R2, determines a unique vector field

Xh0 , by defining for every vector Y on R2, dh0pY q “ ωpXh0 , Y q, where ω is the standard one-form on R ˆ R given
by the determinant.
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that the flow is a smooth map from R ˆ C0pR2q Ñ C0pR2q. It follows that pC0pR2q, αq is a C˚-
dynamical system.

We still need to find a ground state in the sense of Definition 2.1 such that it breaks the
symmetry in the sense of Definition 2.3, as we have claimed in the beginning of this paragraph. For
classical systems (i.e. with A a commutative C˚-algebra) this definition means that the integral
curve t ÞÑ x0ptq P R2 of the Hamiltonian vector field Xh0 , satisfies

1. x0ptq “ x0 for all t P R;

2. hω0px0q ě 0, (2.91)

as we will see below.9 Condition 1 is equivalent to the statement dh0 “ 0. Hence, extreme points
of h0 correspond to ground states of this classical system. These are not necessarily the minima of
h0. In particular, Definition 2.1 is not applicable for classical systems since all extreme points are
considered as ground states. Nonetheless, we will only take the minima of h0 as classical ground
state since it is well-known (from e.g. [22, sec. 10.1]) that only these points, corresponding to
the minima of the potential, form the actual ground state. Moreover, we will explain that the
Hamiltonian hω0 obtained from the GNS-construction, equals the zero operator, so that statement
2 above is empty. First, we show that the Z2-symmetry is broken by Dirac measures µ˘0 , i.e., that
there exists a g P G such that

µ˘0 pγgpfqq ‰ µ˘0 pfq (2.92)

We need the following lemma.

Lemma 2.5. µ˘0 is the doubly degenerate ground state of the classical Hamiltonian h0.

Proof. Note that by the above, the ground states are obtained by extremizing the classical
Hamiltonian, that is

∇h0pp, qq “ p2p, λpq
2 ´ a2qqq. (2.93)

This is zero if and only if p “ 0 and q P t0,˘au. As we have said, we ignore the point p0, 0q, since it
is not a minimum. The minima instead are obtained if hpp ą 0 and hqq ą 0, which is achieved only
for p “ 0 and q “ ˘a. Keep still in mind that this does not follow from Definition 2.1. Thus the
ground states in the ‘classical’ sense are given by the points p0, aq and p0,´aq. Now we use the fact
that for any locally compact space X, the states on C0pXq bijectively correspond with complete
regular probability measures on X, according to

µpfq “

ż

X
dµpfq. (2.94)

In particular, points pp, qq in phase space correspond with Dirac measures δpp,qq. Hence

µ˘0 pfq :“ δp0,˘aqpfq “

ż

R2

dµp0,˘aqpfq “ fp0,˘aq. (2.95)

We have to check that this is indeed a ground state à la Definition 2.1.

We are working with the C˚ - dynamical system A “ pC0pR2q, αq, where αtpfq “ pϕ
h0
t q

˚pfq “ f˝ϕh0t .
Moreover, it is clear that Dirac measures µ˘0 are pure states.

9Note that the equivalence between this definition and Definition 2.1 is based on the fact the points in phase space
bijectively correspond with Dirac measures.
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Consider µ˘0 . Apply the GNS-construction to A to find a Hilbert space Hµ˘0
“ A{ „, with

f „ 0 ðñ µ˘0 pf
˚fq “ 0. But, µ˘0 pf

˚fq “ |fp0,˘aq|2, hence f „ 0 ðñ fp0,˘aq “ 0.10

We claim that the corresponding Hamiltonian hµ˘0
, obtained from the GNS-construction, is

the zero operator. Therefore, we consider the Hamiltonian vector field Xh0 induced by the classical
Hamiltonian. It is easy to show that

Xh0 “

ˆ

BV

Bq
,´p

˙

“

ˆ

λqpq2 ´ a2q,´p

˙

. (2.96)

Then, Xh0p0,˘aq “ p0, 0q, i.e., the vector field vanishes at p0,˘aq. The flow ppptq, qptqq such that

p 9pptq, 9qptqq “ Xh0ppptq, qptqq and pp0q “ 0 and qp0q “ ˘a, at the point p0,˘aq is simply given by
p0,˘aq, so that

µ˘0 pαtpfqq “ αtpfqp0,˘aq “ fpϕh0´tp0,˘aqq “ fp0,˘aq “ µ˘0 pfq. (2.97)

Thus, both states µ˘0 are time independent. Moreover, in view of Definition 2.1 again, the unitary
map us is

usrf s “ rαspfqs “ rf s, (2.98)

as p0,˘aq is stationary for Xh0 and use the equivalence relation. This implies that us “ 1, so that
hµ˘0

“ 0, which is clearly positive.

Therefore, the ground state of the classical Hamiltonian is doubly degenerate and can be
given by the Dirac measures µ˘0 .

Since the set of ground states S8pC0pR2qq is a compact convex subset of the total state space
SpC0pR2qq, it follows from the previous lemma that

S8pC0pR2qq “ tαµ`0 ` βµ
´
0 | α` β “ 1, α, β ě 0u. (2.99)

The extreme boundary is then clearly given by BeS8pC0pR2qq “ tµ`0 , µ
´
0 u. Then, on the one hand

we have

µ˘0 pγ´1pfqq “

ż

R2

dµ˘0 fp´x,´yqdxdy “ fp0,¯aq, (2.100)

but on the other hand, µ˘0 pfq “ fp0,˘aq, which is clearly not equal to fp0,¯aq as a ą 0.
Hence we conclude that BeS8pC0pR2qqG “ H, i.e. the Z2-symmetry is spontaneously broken.

10In general, for A “ C0pXq, pure states are given by ωx0pfq “ fpx0q. Therefore, Hωx0
» C0pXq{C0pX;x0q » C

via rf s ÞÑ fpyq. Then, πω0pfq “ fpyq as operator CÑ C.
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Chapter 3

Curie-Weiss model

We will look at the quantum Curie-Weiss Hamiltonian, being an operator on the Hilbert space
HN » bNx“1C2. It is extremely difficult to diagonalize this operator by hand and express its
eigenvectors and eigenvalues by a formula in terms of N . Since for N “ 12 the matrix representation
of this operator will be already a 212 dimensional matrix, even for a computer the diagonalization
process will not be possible anymore when N increases too much. In particular, the ground state
cannot be computed for say N “ 100. Initially, this is a problem, because we want to say something
about the convergence of the ground state in the limit N Ñ8 as we shall see in Chapter 6. However,
we will see in this section that the ground state of the quantum Curie-Weiss Hamiltonian lies in a
subspace of dimension N ` 1. Thus, we may diagonalize this N -dependent operator with respect to
a basis for this subspace. We will derive an expression for the matrix entries for this ‘compressed’
operator. Unfortunately, it still remains extremely difficult to prove an explicitN -dependent formula
for the ground state eigenvector or eigenvalue. Nonetheless, simulations can now be made, easily
up to N “ 5000. This will be a great advantage, since this allows us to diagonalize this matrix for
much larger N , so that we can get really an idea of the behaviour of the ground state. Moreover, as
we will see in Chapters 4 and 6, these simulations also lead us to the connection with a Schrödinger
operator and to the convergence of the ground state in the classical limit.

3.1 Properties of the Curie-Weiss model

Consider the Hamiltonian for the quantum Curie-Weiss model for ferromagnetism [22, p. 409], [6],
[18]:

hCW
ΛN

“ ´
J

2|ΛN |

ÿ

x,yPΛN

σ3pxqσ3pyq ´B
ÿ

xPΛN

σ1pxq, (3.1)

where ΛN is an arbitrary finite subset of Zd, J ą 0 scales the spin-spin coupling, and B is an
external magnetic field. This model describes a chain of N spin-1{2 particles with ferromagnetic
coupling in a transverse magnetic field. In contrast to the quantum Ising model, the dimension of
this model does not influence the behaviour. This follows from the fact that with

SΛN
i “

1

|ΛN |

ÿ

xPΛN

σipxq, (3.2)

we can write the Hamiltonian (3.1) as

hCW
ΛN

“ ´|ΛN |

ˆ

J

2
pSΛN

3 q2 `BSΛN
1

˙

. (3.3)
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The Hamiltonian acts on the Hilbert space HΛN “ bxPΛNHx, where Hx “ C2. The operator σipxq
acts as the Pauli matrix σi on Hx and acts as the unit matrix 12 elsewhere. The local Hamiltonians
hN ” hCW

ΛN
define a time evolution on the C˚-algebras

AN ” AΛN “ BpHΛN q “ bxPΛNM2pCq (3.4)

given by

α
pNq
t paN q “ exp pithN qaN exp p´ithN q. (3.5)

In contrast to the quantum Ising model, it can be shown [22, sec. 10.8] that (3.5) does not define a
time evolution on the quasi-local C˚-algebra

A “
ď

NPN
AN “

â

xPZ
BpHxq, (3.6)

since the Hamiltonian is not of short range, in that there does not exist a natural number r P N
such that ΦpXq ‰ 0 only if |x´ y| ď r for all x, y P X, where X Ă Λ. However, it turns out that it
does define a time evolution on the commutative C˚-algebra

A
pcq
0 “ CpSpMnpCqqq. (3.7)

The Curie-Weiss chain has a Z2-symmetry given by 180-degree rotation about the x-axis, locally
implemented by the unitary operator upxq “ σ1pxq, which at each x P ΛN yields pσ1, σ2, σ3q ÞÑ

pσ1,´σ2,´σ3q, since the unitary operator upxq “ σ1pxq satisfies σ1σjσ
˚
1 “ ´σj for j ‰ 1. This

symmetry is implemented by the unitary operator upNq on HN defined by

upNq “ bxPΛNσ1pxq. (3.8)

It is not difficult to check that the relation rhN , u
pNqs “ 0 or upNqhN pu

pNqq˚ “ hN , holds. The
ensuing Z2-symmetry is then given by the automorphism γpNq on AN defined by

γpNqpaq “ upNqapupNqq˚ pa P AN q. (3.9)

Since the Hamiltonian hN commutes with upNq, we (locally) have

α
pNq
t ˝ γpNq “ γpNq ˝ α

pNq
t . (3.10)

Since γ2 “ idAN , we have an action of the group Z2 – t˘1u on AN , where the nontrivial (i.e.,
g “ ´1) is sent to γ and the identity element (i.e., g “ 1) to the identity idAN . By (3.10) this
group acts on the set of ground states S0pAN q of AN relative to the dynamics αpNq. These results
can also be found in [22, Chapter 10].

Corollary 10.23 from [22, p.411] discusses the classical dynamics on the Poisson manifold

SpMnpCqq, being the limit of the local Heisenberg dynamics α
pNq
t on AN . In Chapter 6 we will give

the analog of the Z2-action on this manifold for n “ 2. But for now, we only focus on the local
algebras AΛN “ BpHΛN q.

In this thesis, we only consider the case that d “ 1, with |ΛN | “ N . We can apply the
Perron-Frobenius theorem to equation (3.1) and find that for B ą 0 each quantum mechanical

Hamiltonian hN has a unique ground state ψ
p0q
N (see §5.3 for details). The local Hamiltonians hN

commute with the Symmetrizer operator, as we will see soon. Therefore, each hN is permutation

28



CHAPTER 3. CURIE-WEISS MODEL

invariant. Together with uniqueness, this implies that ψ
p0q
N must share the invariance of hN under

permutations. Hence

ψ
p0q
N “

N
ÿ

n`“0

cpn`{Nq|n`, n´y, (3.11)

where |n`, n´y is the totally symmetrized unit vector in bNn“1C2, with n` spins up and
n´ “ N ´ n` spins down, and c : t0, 1{N, 2{N, ..., pN ´ 1q{N, 1u Ñ r0, 1s is some function such
that

ř

n`
c2pn`{Nq “ 1, and cpn`{Nq “ cpn´{Nq.

For N ă 8, and B ą 0, one can show that the ground state ψ
p0q
N is Z2-invariant, since the

Curie-Weiss Hamiltonian commutes with upNq and the ground state is unique. We will give a more
detailed explanation in Chapter 7. For N “ 8 and 0 ă B ă 1, the model has a doubly degenerate
ground state that breaks the Z2-symmetry [22, Sec. 10.8] . A more precise analysis will be given
in Chapter 6. This result is also known for the quantum Ising model [22, Thm. 10.11].

In the remaining part of this section, we reproduce the function c numerically using MATLAB and
study its behaviour as N increases. In order to do this, we again take a glance to the Hamiltonian
(3.1). Note that implicitly, with respect to the standard basis for HΛN “ b

N
n“1C2, this Hamiltonian

is represented as a matrix since the spin Pauli matrices are represented in the standard basis for
C2. We denote this standard basis, consisting of 2N vectors, by β. Recall from linear algebra that
β “ ten1 b en2 b ...b enN u

2
n1,...,nN“1.

Consider the Symmetrizer operator S, defined as the projection onto the space of all totally
symmetric vectors. Thus, S is given by

Spvq “
1

N !

ÿ

σPSn

Lσpvq, (3.12)

where v is a vector in the N -fold tensor product and the linear operator Lσ acts on v P
ÂN

n“1 C2

by permuting the factors of v, thus v1 b ¨ ¨ ¨ ¨ bvn ÞÑ vσp1q b ¨ ¨ ¨ b vσpnq. This operator is unitary
extended by linearity since L´1

σ “ L˚σ “ Lσ´1 .

A basis for the space of totally symmetric vectors is given by the vectors t|n`, n´y| n` “

0, ..., N, n` ` n´ “ Nu, which spans a subspace. We denote this subspace by SymN pC2q. If we
write S with respect to the standard basis for the N -fold tensor product HΛN , denoted by rSsβ,
and then project onto the basis vectors of the subspace SymN pC2q, it follows that in the basis for
SymN pC2q, S is the identity matrix. Hence by computing xn`, n´|rSsβn

1
`, n

1
´y, we just transform

the matrix representation of S with respect to β, to the matrix representation of S relative to the
basis vectors |n`, n´y for SymN pC2q. Since S acts as the identity operator on its range that is just
SymnpC2q, indeed the operator S written relative to the basis for SymN pC2q equals the identity
matrix.

It is easy to see that the Hamiltonian (3.1) commutes with this action, i.e., rhCW
N , Lσs “ 0

for all σ P Sn. Then S also commutes with hCW
N . As S acts as the identity on SymN pC2q, this

subspace is invariant for S, and hence also for hCW
N . We argue that the ground state ψ

p0q
N of hCW

N

lies in ranpSq “ SymN pC2q. If this is not the case, then there would exists an element σj P Sn such

that Lσjψ
p0q
N ‰ ψ

p0q
N . Moreover, Lσjψ

p0q
N cannot be a scalar multiple of ψ

p0q
N , since it is permuted.

Then Lσjψ
p0q
N would also be a ground state, since hCWN Lσjψ

p0q
N “ Lσjh

CW
N ψ

p0q
N “ ε0Lσjψ

p0q
N , for

some number ε0. By uniqueness, the above implies that Lσjψ
p0q
N “ zσjψ

p0q
N , for some |zσj | “ 1. This

is a contradiction.
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Hence, the ground state lies in the linear span of eigenfunctions of S, and we may indeed write

(3.11). Therefore, we can determine the coefficients of ψ
p0q
N using this subspace by diagonalizing

the compressed pN ` 1q ˆ pN ` 1q-matrix instead of the original 2N ˆ 2N -matrix. We can derive a
specific form of the matrix representation of hCW

N with respect to the basis |n`, n´y for SymnpC2q.
This will be given in the following theorem.

Theorem 3.1. In the basis t|n`, n´y | n` “ 0, 1, ..., N, n` ` n´ “ Nu, the Hamiltonian (3.1) is
a tridiagonal matrix of dimension N ` 1 given by

´
J

2|ΛN |
pn` ´ n´q

2 on the diagonal,

(3.13)

´B
a

n´pn` ` 1q on the upper diagonal,

(3.14)

´B
a

pn´ ` 1qn` on the lower diagonal. (3.15)

Proof. As we have seen above, there are N`1 linearly independent totally symmetric basis vectors,
i.e., the subspace SymN pC2q is pN ` 1q-dimensional and there are 2N standard basis vectors βi
spanning the the space HΛN . Since each basis vector βi P β consists of tensor products of e1 and
e2, we know that there are

`

N
k

˘

basis vectors of β with k times the vector e2 and hence pN ´ kq-
times the vector e1. This shows that we have a partition of β, and hence N ` 1 orbits Ok. Each
orbit Ok consists of

`

N
k

˘

-basis vectors βi with the same number of occurrence of the vectors e2 and

e1. Therefore, we have a bijection between the number of orbits and the dimension of SymN pC2q.
The correspondence is made as follows:

Ok Ø |N ´ k, ky. (3.16)

Here k in |N ´ k, ky labels the number of occurrence of the vector e2 in any of the basis vectors
βi P β, and N ´ k in |N ´ k, ky labels the occurrence of the vector e1 in βi. Hence, N ´ k stands for
the number n` of spins in the up direction, whilst the second position k “ n´ denotes the number
of down spins.

Consider now such a symmetric basis vector |n`, n´y. Using (3.12), it is not difficult to
show that

|n`, n´y “
1

b

`

N
n`

˘

p Nn`q
ÿ

l“1

βn`,l, (3.17)

where the subindex l in βn`,l labels the basis vector βn`,l P β within the same orbit On` . Since we

have
`

N
n`

˘

such vectors per orbit, the sum in the above equation indeed is from l “ 1, ...,
`

N
n`

˘

.

Now given two arbitrary vectors |n`, n´y and |n1`, n
1
´y, then in order to prove the theorem,

we have to compute the expression

xn`, n´|h
CW
N |n1`n

1
´y, pn`, n

1
` “ 0, ..., Nq (3.18)

In the above expression we have used the well-known bra-ket notation. Hence, we have to compute

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

xβn`,l|h
CW
N |βn1`,ky pn`, n

1
` “ 0, ..., Nq (3.19)
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By linearity, we may compute this for

h
p1q
N “

N
ÿ

x,y“1

σ3pxqσ3pyq “ p
N
ÿ

x“1

σ3pxqqp
N
ÿ

y“1

σ3pyqq, and

h
p2q
N “

N
ÿ

x“1

σ1pxq (3.20)

separately. Note that

σ3e1 “ e1,

σ3e2 “ ´e2, ,

σ1e1 “ e2, ,

σ1e2 “ e1. (3.21)

Fix N and n`, and put

W 1
n` “ ty P t1, ..., Nu| βn` has e1 on position y u, and

W 2
n` “ ty P t1, ..., Nu| βn` has e2 on position y u. (3.22)

Then

#W 1
n` `#W 2

n` “ n` ` pN ´ n`q “ n` ` n´ “ N. (3.23)

Both sets are clearly disjoint. We use this for the next computation. We start with h
p1q
N . Then we

compute

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

xβn`,l|h
p1q
N |βn1`,ky “

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

xβn`,l|

ˆ N
ÿ

x“1

σ3pxq

˙ˆ N
ÿ

y“1

σ3pyq

˙

|βn1`,ky “

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

xβn`,l|

ˆ

ÿ

xPW 1
n1
`

`
ÿ

xPW 2
n1
`

σ3pxq

˙ˆ

ÿ

yPW 1
n1
`

`
ÿ

yPW 2
n1
`

σ3pyq

˙

|βn1`,ky “

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

pn1` ´ n
1
´q

2xβn`,l|βn1`,ky “

pn1` ´ n
1
´q

2xn`, n´|n
1
`, n

1
´y “

pn1` ´ n
1
´q

2δn`,n1`δn´,n1´ . (3.24)

Here, we used the fact that the vectors |n`, n´y form a orthonormal basis for SymN pC2q. Hence,

the matrix entries of h
p1q
N represented with respect to the |n`, n´y-vectors are given by pn1` ´ n

1
´q

2

on the diagonal.
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We compute the second term h
p2q
N in a similar way:

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

xβn`,l|h
p2q
N |βn1`,ky “

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

xβn`,l|
N
ÿ

x“1

σ1pxq|βn1`,ky “

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

p Nn`q
ÿ

l“1

p Nn1
`
q

ÿ

k“1

xβn`,l|

ˆ

ÿ

xPW 1
n1
`

`
ÿ

xPW 2
n1
`

σ1pxq

˙

|βn1`,ky “

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

ˆˆ

N

n`

˙

n´xβn`,l|βn1`´1,ky `

ˆ

N

n´

˙

n`xβn`,l|βn1``1,ky

˙

“

a

n´pn` ` 1qδn`,n1`´1 `
a

n`pn´ ` 1qδn`,n1``1. (3.25)

We used the fact that the vectors βn1`,l are orthonormal, that

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

ˆ

N

n`

˙

n´ “
a

n´pn` ` 1q, (3.26)

with n1` ´ 1 “ n`, and that

1
b

`

N
n`

˘

1
b

`

N
n1`

˘

ˆ

N

n´

˙

n` “
a

n`pn´ ` 1q, (3.27)

, with n1` ` 1 “ n`. Hence the matrix entries of h
p2q
N written with respect to the symmetric basis

vectors |n`, n´y, are given by
a

n´pn` ` 1q on the upper diagonal and by
a

n`pn´ ` 1q on the
lower diagonal.

We conclude that the Hamiltonian with respect to this basis is a tridiagonal matrix with
the desired entries.

3.2 Numerical simulations

We have seen that the ground state of the N -dependent Curie-Weiss Hamiltonian hCW
N lies in

the symmetric subspace SymN pC2q. This followed from a one line proof using the fact that hCW
N

commutes with the Symmetrizer operator S, and that the ground state of hCW
N is unique, which

we will prove in Chapter 5. As a result, we could diagonalize the operator originally defined on
ÂN

n“1 C2, with respect to a basis for SymN pC2q, which we have taken to be the canonical one. In
the previous paragraph, we have showed an explicit formula for the matrix entries of the operator
hCW
N represented with respect to this basis. In Chapter 4, we will argue that for 0 ă B ă 1 this
pN ` 1q-dimensional matrix, which we denote by JN`1, can be linked to a Schrödinger operator
with a symmetric double well on L2pr0, 1sq, for N sufficiently large, but finite. This will be one of
the most important results in this thesis. Since it is known [37], [14] that for a sufficiently high and
broad enough potential barrier the ground state of such a Schrödinger operator is approximately
given by two Gaussians, each of them located in one of the wells of the potential, we might expect the
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same result for JN`1, for these values of N . In fact, the first two eigenfunctions of this Schrödinger
operator are approximately given by

ψp0q –
Tapϕ0q ` T´apϕ0q

?
2

;

ψp1q –
Tapϕ0q ´ T´apϕ0q

?
2

. (3.28)

Here, T˘a is the translation operator over distance a (i.e., pT˘aϕ0qpxq “ ϕ0px ˘ aq), where ˘a
denotes the minima of the potential well. The functions ϕn are the weighted Hermite polynomials
given by ϕnpxq “ e´x

2{2Hnpxq, with Hn the Hermite polynomials. We diagonalized the operator

JN`1 and plotted the first two (discrete) eigenfunctions ψ
p0q
N and ψ

p1q
N . For convenience, we scaled

the grid to unity. (See Figure 3.1 and 3.2).

Figure 3.1: The ground state eigenfunction of hCW
N , computed from the tridiagonal matrix JN`1 for

N “ 60, J “ 1 and B “ 1{2.
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Figure 3.2: The first excited state of hCW
N , computed from the tridiagonal matrix JN`1 for N “ 60,

J “ 1 and B “ 1{2.

From the above two plots, it is quite clear that both eigenvectors of hCW
N are approximately given

by (3.28). However, one has to beware of the following fact: since we do not know if the first excited
state is unique, it might happen that it does not lie in SymN pC2q. As a result, it could happen
that the first excited state computed from the tridiagonal matrix JN`1, is not the same as the one
from the original Hamiltonian hCW

N , and then Figure 3.2 does not make any sense. Fortunately,
we have shown numerically up to N “ 12, that the first excited state of hCW

N represented as a

matrix on the space C2N is indeed the same as the one corresponding to the tridiagonal matrix
JN`1. Unfortunately, we could not check this for larger N due to the limited power of the computer.

In Chapter 4, we will see that for 0 ă B ă 1 each of the two peaks of the ground state
eigenvector of the N -dependent Curie-Weiss Hamiltonian is indeed located in one of the wells of

some symmetric potential. However, due to numerical degeneracy of the ground state ψ
p0q
N and

first excited state ψ
p1q
N for about N ě 80, these two states will form a linear combination, even

though mathematically the ground state is unique for any finite N . Assuming that ψ
p1q
N is indeed

in SymN pC2q, then for these relative large values of N , the new (numerical) degenerate ground
state eigenvector is given by the functions

χ` “
ψ
p0q
N ` ψ

p1q
N?

2
;

χ´ “
ψ
p0q
N ´ ψ

p1q
N?

2
. (3.29)

Using this result and equation (3.28), it follows by a simple calculation that

χ` – Taϕ0;

χ´ – T´aϕ0. (3.30)

Of course, the functions ϕnpxq now have to be understood as functions on a discrete grid. This is
also exactly what we observe for the values N ě 80: plotting the ground state and the first excited
state of hCW

N (B “ 1{2 and J “ 1) gives a Gaussian shaped curve, each located in one of the
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wells. For N “ 60 ă 80, we have seen in Figure 3.1 above that the ground state is doubly peaked

and therefore given by ψ
p0q
N , rather than χ`. This makes sense, since the energy levels are not yet

degenerate even for the computer.
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Chapter 4

Curie-Weiss model as a discretized
Schrödinger operator

In the limit N Ñ 8, the ground state of the local Curie-Weiss Hamiltonians hCW
N from (3.1),

defined on
ÂN

n“1 C2 can be linked to the minima of a classical function hCW
8 , defined by (1.5), on

the commutative C˚-algebra CpB3q, with B3 Ă R3 the closed unit ball. This is based on the idea of
deformation quantization, which we will explain in Chapter 6. It is, however, not well understood
how the operators hCW

N itself converge to the function hCW
8 when N Ñ 8, only convergence of

the ground state is understood1. However, the Curie-Weiss model can also be linked to a specific
Schrödinger operator. This will be the topic of this chapter. For this, we consider the Curie-Weiss
Hamiltonian, restricted to the symmetric subspace SymN pC2q. Representing this operator with
respect to the canonical basis |n`, n´y for this subspace yielded a N ` 1-dimensional matrix. If
we denote this matrix by JN`1, then it is also not so clear if the limit limNÑ8 JN`1 exists, since
all entries are unbounded in N . When we scale this operator by N , it is easy to see that the
entries of JN`1{N are bounded. We will see in §4.6 that this scaled operator corresponds to a
matrix representing a discretization of a Schrödinger operator, where the dimension of this matrix
also depends on the same N . The spectral properties of JN`1{N and the discretization matrix
will become more similar when N gets larger. However, as we will see, the connection with this
Schrödinger operator makes sense, only for finite N , since for N “ 8, the Schrödinger operator
is not defined. Nonetheless, we will see in §6.3 that in the limit N Ñ 8 (read: ~ “ 1{N Ñ 0),
the ground state eigenfunction of this Schrödinger operator converges to some Dirac measure,
corresponding to the minima of a classical function on the commutative C˚-algebra Cpr0, 1s ˆ Rq.
This is again based on deformation quantization, as explained in Appendix E or [22, Sec. 10.1].

In the first paragraph we mention some general facts about the diagonalization of the N -dependent
Curie-Weiss Hamiltonian, written with respect to the canonical basis |n`, n´y for the symmetric
subspace SymN pC2q. Then we show that the spectrum of JN`1 contains N ` 1 distinct eigenvalues.
The next step is to give an idea of a possible proof showing that for finite, but large N , the
spectrum of this ‘compressed’ Curie-Weiss Hamiltonian becomes approximately twofold degenerate.
In §4.4 we show that the Hamiltonian is ‘almost’ linked to a classical orthogonal polynomial
(since for increasing N we observe numerically that the eigenvectors behave like weighted Hermite
polynomials, one might expect that for these values of N some classical orthogonal polynomials
would play a role.)
The next three paragraphs together explain how the operator JN`1{N can be related to a
Schrödinger operator with a symmetric double well potential. For this double well, which is the
basis for SSB in the classical limit, we need B P r0, 1q. For convenience, we take B “ 1{2.

1The dynamics of hCW
N , however, does converge to the classical dynamics of hCW

8 (See e.g. [22, Cor. 10.23]).
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In the last paragraph, we use the semiclassical WKB approximation in order to compute the
so-called energy splittings for the symmetric double well potential. The goal is to compare the
energy levels obtained from the matrix JN`1{N to those of the Schrödinger operator analog in the
semiclassical limit i.e., for large but finite N . In a naive way, when the barrier of the potential
is sufficiently high and broad, the double well could be seen as a pair of decoupled harmonic
oscillators. In this case the ground state is doubly degenerate and tunneling is not allowed, i.e.,
in the classical limit. However, in a semi-classical approximation, the particle can tunnel through
the barrier in the middle. This breaks the degeneracy and brings out the first excited state, with a
slightly higher energy than the ground state. The energy difference between both levels is known as
the ground state energy splitting. For an ~-dependent Schrödinger operator, this energy splitting
depends on ~. In our case, ~ plays the role of 1{N . We will derive a formula for this energy
splitting applied to a double well potential that corresponds to a Schrödinger operator and that is
extracted from our matrix JN`1{N , all explained in §4.5 - §4.7.

4.1 Unfolding the eigenfunctions of the quantum Curie-Weiss
Hamiltonian

Recall that the Hamiltonian for the Curie-Weiss-model on the N -fold tensor product of C2 is given
by

hCW
N “ ´

J

2N

ÿ

x,yPΛN

σ3pxqσ3pyq ´B
ÿ

xPΛ

σ1pxq. (4.1)

In order to find the ground state of the Hamiltonian, we have seen that we can represent our
Hamiltonian with respect to the symmetric basis of SymN pC2q, since the ground state lies in this
subspace. This reduces the problem to an eigenvalue problem of an pN ` 1q ˆ pN ` 1q- matrix. In
Theorem 3.1 we have deduced an explicit formula for the matrix representation of the Curie-Weiss
Hamiltonian with respect to this symmetric basis. The crucial step is that the matrix represented
in this basis is tridiagonal. As we will see later in this chapter, this gives also the link with the
harmonic oscillator in a symmetric double well.

In order to compute the eigenvectors, we need to find the eigenvalues, which can be done
by finding the zeros of its characteristic polynomial. Therefore, we need to compute the
determinant of the matrix hCW

N ´ λiI, where I is the identity matrix and λi the scalar to be
found. However, since we know that the ground state eigenvector lies in the symmetric subspace,
it suffices to diagonalize the tridiagonal JN`1 with entries given by Theorem 3.1. Hence, denoting
the ground state eigenvalue by λ0 and using Theorem 3.1, it follows that:

JN`1 ´ λ0I “

»

—

—

—

—

—

–

´ J
2N pN ´ 0q2 ´ λ0 ´B

?
N 0 . . . 0

´B
?
N ´ J

2N pN ´ 2q2 ´ λ0 ´B
a

pN ´ 1qp2q . . . 0

0 ´B
a

pN ´ 1qp2q ´ J
2N pN ´ 4q2 ´ λ0 . . . 0

0 0 . . . . . . 0
...

...
...

. . .

fi

ffi

ffi

ffi

ffi

ffi

fl

N`1

(4.2)

We have to compute the determinant of this matrix and solve this for λ0. We know from [26] that
the determinant of an arbitrary tridiagonal matrix A is given by detpAq “

det

»

—

—

—

—

–

a1 b1 . . . 0

c1
. . .

. . . 0
...

. . .
. . . bn´1

0 . . . cn´1 an

fi

ffi

ffi

ffi

ffi

fl

“

„ˆ

an ´bn´1cn´1

1 0

˙

¨ ¨ ¨

ˆ

a2 ´b1c1

1 0

˙ˆ

a1 0
1 0

˙

11

(4.3)
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It can be verified that this determinant satisfies the recursion relation:

fn`1pλq “ pan`1 ´ λqfnpλq ´ b
2
nfn´1pλq

f1pλq “ a1 ´ λ

f0pλq “ 0. (4.4)

One can solve this recursion and find an expression for the determinant, i.e., for the characteristic
polynomial. However in our case things get complicated. The restricted Hamiltonian JN`1 has
entries that depend on N , and change when N changes. Consequently, we deal with a recursion
relation with non-constant coefficients, which in general is hard to solve. Computer simulations
have showed that most zeros of the characteristic polynomial are irrational. We did not succeed yet
to give a general solution for the N -depending zeros of this determinant. In particular, the ground
state energy cannot be exactly computed.
We can still get an idea of the way the N -dependent ground state eigenvector behaves. Of course,
this is now a function of the corresponding eigenvalue λ0. Applying the Gauss-Jordan algorithm, it
is easy to see that the coefficients in the corresponding eigenvector can be written as a continued
fraction of finite length that increases with increasing coefficient. The coefficients in the eigenvector
are given below. We let

aNn` “ ´
1

2N
pn` ´ n´q

2 ´ λN0 ;

bNn` “ ´B
a

pn´pn` ` 1qq, (4.5)

where n` runs from 0 to N , and n` ` n´ “ N . Then the coefficients cNn` in the eigenvector

cN “ pcN0 , c
N
1 , ..., c

N
N q are given by

cN0 “ 1

cN1 “ ´
1

bN0
aN0 c0

cN2 “ ´
1

bN1

„

aN1 ´
pbN0 q

2

aN0



c1

cN3 “ ´
1

bN2

„

aN2 ´
pbN1 q

2

aN1 ´
pbN0 q

2

aN0



c2

cN4 “ ´
1

bN3

„

aN3 ´
pbN2 q

2

aN2 ´
pbN1 q

2

aN1 ´
pbN0 q

2

aN0



c3

...
... ,

where the dots run to N . Since we have a free choice for cN0 , we put cN0 “ 1. In particular, since the
ground state is Z2-invariant we only need to compute the first N{2 equations for this eigenvector.
Moreover, these coefficients and hence the eigenvector cN still depend on the eigenvalue, which we
do not exactly know. Even if we would know an analytic expression for the desired eigenvalue,
it still would be extremely difficult to understand mathematically how these coefficients behave,
especially if N increases, because the fraction increases with N . Furthermore, when we take the
scaled operator JN`1{N , its coefficients still depend on N , and it does not make computations much
easier. Therefore, it is important to consider the behaviour of cN rather than trying to compute all
these coefficients analytically. This can be easily understood by computer simulations.
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4.2 The spectrum

Fortunately, we can say something about the spectrum, which will be stated in the theorem below.
The proof is based on [30].

Theorem 4.1. The spectrum of the N - dependent Curie-Weiss Hamiltonian, written with respect
to the symmetric basis |n`, n´y for the symmetric subspace SymN pC2q, consists of N ` 1 distinct
eigenvalues.

Proof. Recall that the Curie-Weiss Hamiltonian written in this basis is a N ` 1- dimensional
tridiagonal matrix with entries ´B

a

pN ´ n`qpn` ` 1q, on the lower diagonal, ´ J
2N pn` ´ n´q

2 on

the diagonal, and ´B
a

pN ´ n´qpn´ ` 1q on the upper diagonal. Here, we fix B “ 1{2, and J “ 1.
Again we denote this matrix by JN`1. Since for every N the matrix JN`1 is of finite dimension,
its spectrum is discrete, i.e. it consists of eigenvalues.
Observe that JN`1 is real and symmetric and that the lower diagonal and upper diagonal elements
are non-zero. We show first that rankpJN`1q ě N .

We show that if JN`1v “ 0 has two non-trivial solutions, they are multiples of each other.
Therefore, let v, w ‰ 0 be two non-trivial solutions. Then we get the following N ` 1 equations for
the vector components vi of v:

a1v1 ` b1v2 “ 0, (4.6)

bivi ` ai`1vi`1 ` bivi`2 “ 0 pi “ 1, 2, ..., N ´ 1q, (4.7)

bNvN ` aN`1vN`1 “ 0. (4.8)

Similarly, we get such equations for wi. From the first equation, we see that v2 “
´a1v1
b1 , which

exists, as b1 ‰ 0. Similarly, the next N ´ 1 equations determine that vi`2 “
´bivi´ai`1vi`1

bi
, for

i “ 1, 2, ..., N ´ 1. These equations determine the vector v, given the first component v1. It also
follows that if v1 “ 0, then v “ 0. The same holds for w. By assumption, v1, w1 ‰ 0. Define
c “ w1

v1
. The first N equations for wi yield wi “ cvi, for i “ 1, ..., N ` 1. Thus w “ cv. We

conclude that, if there are non trivial solutions, they are multiples of each other. This proves also
that the dimension of the null space is at most one-dimensional and therefore, the rank is a least
N ` 1´ 1 “ N - dimensional.

Now let λ be an eigenvalue of JN`1. This means that there exists a non-trivial solution v
to the equation pJN`1 ´ λIqv “ 0. Since the matrix JN`1 is real symmetric, its eigenvalues are
real, and therefore JN`1 ´ λI is also real symmetric with non zero lower and upper diagonal
entries. It follows by the previous observation that the null space is at most one dimensional,
and since λ is an eigenvalue, it is at least one-dimensional and thus one dimensional. Thus the
geometric multiplicity of λ is one. In theory, it could be that its algebraic multiplicity of JN`1 is
larger than one, but then the matrix is not diagonalizable. Since C is normal, it is diagonalizable,
and therefore, its algebraic multiplicity is one as well. This holds for any eigenvalue. We conclude
that JN`1 has N ` 1 distinct eigenvalues.

The same result holds of course for the scaled operator JN`1{N . This shows in particular that the
ground state of this tridiagonal matrix is simple, and hence unique. (This is what we already know
by the argumentation given in §3.1.) It also shows that if the excited states of hCW

N are symmetric,
i.e., they lie in the symmetric subspace, so that they can be found by diagonalizing JN`1, then they
are unique as well.
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4.3 Degeneracy

The original Curie-Weiss Hamiltonian hCW
N from Equation (3.1), defined on

ÂN
n“1 C2, does not

converge to some operator on the quasi-local algebra
Â8

n“1 C2. The compressed Curie-Weiss
operator JN`1, is of course an operator on an pN ` 1q-dimensional space. It is still not clear if
limNÑ8 JN`1 exists, since all entries are unbounded in N . Nonetheless, for each finite N , the
operator is well defined, and hence we can diagonalize it in order to obtain information about the
spectrum and the eigenfunctions. We have already seen that the ground state of hCW

N is symmetric,
and can be found by diagonalizing JN`1. Note that we do not know this result for the excited states.

In this paragraph we argue that for sufficiently large but finite N , the lowest eigenvalues of
the spectrum of JN`1 and hence of JN`1{N , become approximately two fold degenerate with a
fixed energy splitting. Of course, these arguments are based on numerical computations. We have
already deduced a formula for the characteristic equation of the operator JN`1{N given by (4.4).
We can rewrite this formula in a more suitable form. This will be given in the next theorem.

Theorem 4.2. The characteristic polynomial of the scaled compressed Curie-Weiss Hamiltonian
JN`1{N is given by

det

ˆ

JN`1{N ´ λ1

˙

” pN`1pλq “ pN
2
pλq

ˆ

pN
2
`1pλq ´ b

2
N{2pN

2
´1pλq

˙

. (4.9)

Here pN
2

is the characteristic polynomial corresponding to the square matrix of dimension N{2 that

forms the left upper block in the matrix JN`1{N . Similarly, the characteristic polynomial pN
2
˘1

corresponds to the square matrix of dimension N{2˘ 1 that forms the left upper block in JN`1{N .
The number bN{2 denotes the off-diagonal element of JN`1{N on position N{2.

Proof. The proof of this theorem is based on [36].
Assume for convenience that N is even. Put

A “

„

A11 A12

A21 A22



, (4.10)

and

B “

„

B11 B12

B21 B22



. (4.11)

Here A11 and B22 are square matrices of dimension N{2. A22 and B11 are matrices of dimension
1, and A12, A21, B12 and B21 are non-square matrices of dimension 1 ˆN{2 or N{2 ˆ 1. Now, we
consider the following matrix of dimension N{2`N{2` 1 “ N ` 1:

D “

»

–

A11 A12 0
A21 A22 `B11 0
0 B21 B22

fi

fl . (4.12)

This matrix is called the 1´ subdirect sum of A and B, denoted by D “ A ‘1 B. We write
a22 “ A22 and b11 “ B11, to display that these are matrices of order 1ˆ 1.

We shall deduce a formula for the characteristic polynomial corresponding to D. The determinant
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is a multilinear function of its columns, so we have

detpD ´ λ1q “ (4.13)

(4.14)

det

»

–

A11 ´ λ1 A12 0
A21 a22 ` b11 ´ λ1 B12

0 B21 B22 ´ λ1

fi

fl “ (4.15)

(4.16)

det

»

–

A11 ´ λ1 A12 0
A21 a22 ´ λ1 0
0 B21 B22 ´ λ1

fi

fl` det

»

–

A11 ´ λ1 A12 0
A21 b11 B12

0 B21 B22 ´ λ1

fi

fl . (4.17)

This leads to

detpD ´ λ1q “ (4.18)

detpA´ λ1qdetpB22 ´ λ1q` (4.19)

detpA11 ´ λ1qdet

„

b11 B12

B21 B22 ´ λ1



. (4.20)

We apply this result to our matrix tridiagonal matrix JN`1{N .

It follows that a22 “ b11 “ 0, A11 “ B22 P MN
2
pRq, and A21 “ A12 “ B12 “ B21 are the

pN{2ˆ 1q- matrices with on the last entry the element ´B
a

p1´ 1{2qp1{2` 1{Nq. It follows that

detpJN`1{N ´ λ1q “ (4.21)

detpA11 ´ λ1q

ˆ

detpA´ λ1q ` det

„

0 B12

B21 B22 ´ λ1

˙

. (4.22)

Note that A and

„

0 B12

B21 B22 ´ λ1



are both in P MN
2
`1pRq. It is easy to see that the determinant

of the latter matrix is given by

´
B2

2
p1{2` 1{NqdetpÃ´ λ1q. (4.23)

Here, Ã PMN
2
´1pRq is the matrix A11, but with the last row and column deleted.

We write

pN
2
`1pλq “ detpA´ λ1q,

pN
2
pλq “ detpA11 ´ λ1q,

pN
2
´1pλq “ detpÃ´ λ1q, (4.24)

the characteristic polynomials of the matrices A,A11 and Ã respectively. Finally, we put

bN{2 “ ´B
a

1{2p1{2` 1{Nq. (4.25)

Then, in this notation, we have showed that

detpJN`1{N ´ λ1q “ pN
2
pλq

ˆ

pN
2
`1pλq ´ b

2
N{2pN

2
´1pλq

˙

. (4.26)
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The eigenvalues are obtained by setting the above equation equal to zero. We know by Theorem 4.1
that all eigenvalues are distinct for each N , so that the characteristic polynomials factors completely.
However, it is still extremely difficult to find the exact eigenvalues, since we do not know the
functions pN

2
exactly. Moreover, it is a priori not clear how the zeros of pN

2
are related to the zeros

of pN
2
˘1. Fortunately, from numerical simulations, we do have a relation between some of the zeros

of the different characteristic polynomials. This is stated in a conjecture below.

Conjecture 4.1. The smallest two zeros λiN
2

and λiN
2
˘1

of the characteristic polynomials pN
2

and

pN
2
˘1 respectively, defined above, satisfy the inequality

|λiN
2

´ λiN
2
˘1
| ď

C

N2
, pi “ 0, 1q, (4.27)

for sufficiently large N , i.e. there is a natural number N0 and a real number C ą 0 such that for
any K ą N0, we have

|λiK
2

´ λiK
2
˘1
| ď

C

K2
, pi “ 0, 1q. (4.28)

Assuming this statement is true, we can use this result to say something more about (4.9). Setting
detpJN`1{N ´ λ1q “ 0, it follows that

pN
2
pλqpN

2
`1pλq “ b2N{2pN

2
pλqpN

2
´1pλq. (4.29)

By the previous theorem, we have λiN
2

« λiN
2
˘1

, for N sufficiently large en i small. Since polynomials

are determined by its zeros, one might expect that for these values of N the polynomials pN
2

and

pN
2
˘1 are approximately equal on an interval of the domain where these zeros are located.

As b2N{2 ‰ 0 for any N , this will indeed confirm that the eigenvalues become approximately doubly
degenerate.
Keep still in mind that this approximation of degeneracy will never become an equality, since N
needs to be finite in order to speak about a proper quantum system, and hence about eigenvalues,
in the first place. As we have mentioned before, we will explain this in detail in §4.6. Moreover, it
is not clear what the limit of such a polynomial will be.

4.4 Link with orthogonal polynomials

In this section we will use orthogonal polynomials to deduce some properties of our tridiagonal
matrix. We are given the N ` 1-dimensional Curie-Weiss Hamiltonian, written with respect to
the canonical base for the subspace SymN pC2q of

ÂN
n“1 C2 – C2N . The corresponding matrix

representation was denoted by JN`1. We again put B “ 1{2 and J “ 1.

If v is an eigenvector of JN`1, then we can write JN`1v “ λv with v “
řN
i“0 µiei ‰ 0,

where teiu is the standard basis for CN`1. As the matrix is real and symmetric, the coefficients µi
are real. We denote the diagonal terms by bi and the off-diagonal terms by ai. In this notation we
have

JN`1ei “ ai´1ei´1 ` biei ` ai`1ei`1, (4.30)
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and

JN`1

N
ÿ

i“0

µiei “
N
ÿ

i“0

µiJN`1ei “ (4.31)

N
ÿ

i“0

µipai´1ei´1 ` biei ` ai`1ei`1q “ (4.32)

N
ÿ

i“0

pµi`1ai ` biµi ` aiµi´1qei. (4.33)

It follows that

λµi “ aiµi`1 ` biµi ` aiµi´1 i “ 0, ..., N, (4.34)

with µ0 “ 1 and µ´1 “ 0. This is a three-term recurrence relation associated to the symmetric
tridiagonal matrix JN`1. Since the diagonal entries are all real and the off-diagonal terms are all
strictly negative for each N , the corresponding infinite matrix J8 is a Jacobi matrix.2 However, we
will always focus on the semiclassical regime, i.e., for large, but finite N . One can try to solve this
recurrence relation using discrete orthogonal polynomials tPiu

N
i“0. Then the above equation reads

λPipλq “ aiPi`1pλq ` biPipλq ` aiPi´1pλq i “ 0, ..., N, (4.35)

with P0pλq “ 1, and P´1pλq “ 0 and with λ in the spectrum of JN . If we normalize this relation,
we find that the above equation is equivalent to

λPipλq “ Pi`1pλq ` biPipλq ` a
2
i´1Pi´1pλq. (4.36)

Plugging in the expressions for bi and ai gives

λPipλq “ Pi`1pλq ´
1

2N
p2i´Nq2Pipλq ´

1

4
ppN ` 1´ iqiqPi´1pλq. (4.37)

Note that these coefficients are unbounded in N . The coefficients of the above normalized recurrence
relation look a bit like the ones from Krawtchouk as explained in [20] for p “ 1{2, since his normalized
recurrence relation is given by

λPipλq “ Pi`1pλq ´ rppN ´ iq ` ip1´ pqsPipλq ´ ipp1´ pqpN ` 1´ iqPi´1pλq. (4.38)

Unfortunately, for p “ 1{2, only the term in front of Pi´1pλq will match the corresponding one in
our recurrence relation. The Askey scheme [20] has been checked and there is no known classical
orthogonal polynomial that solves our recurrence relation. So the approach through orthogonal
polynomials seems a dead end, but it was worth a try.

In the next paragraph, we are going to link the operator JN`1{N to a Schrödinger operator. Thus,
considering (4.37) for JN`1{N , gives:

λPipλq “ Pi`1pλq ´
1

2
p
2i

N
´ 1q2Pipλq ´

1

4
pp1´

i

N
`

1

N
q
i

N
qPi´1pλq. (4.39)

This time, the coefficients are bounded, but there it still no classical polynomial from the Askey
scheme that solves this recurrence relation (4.39).

2A Jacobi matrix A is an infinite symmetric tridiagonal matrix with real diagonal coefficients, and non-zero
off-diagonal coefficients that are all positive or all negative. The domain of the Jacobi matrix is defined as DpAq “
tx P `2| Ax P `2u.
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For every finite N , each eigenvector of JN`1 is an element of RN`1 and therefore one can
expand it in an orthonormal basis, say the standard one. If one can show that there exists
polynomials Pipλq such that the coefficients in this expansion are the same as the Pipλq for
i “ 0, ..., N , which is then equivalent to the fact that these polynomials solve the recurrence
relation, we are done.
We still don’t know yet how to find these polynomials. The problem relies on the fact that in the
normalized recurrence relation, there are two quadratic terms in i which makes that we cannot
easily apply the Askey scheme.

4.5 Locally uniform discretization

In this section, we start giving the basic principles of discretization of a second order differential
operator. We will do this on a uniform as well as on a non-uniform grid. Moreover, we make a link
between symmetric tridiagonal matrices and a discretization of a Schrödinger operator. Secondly,
we apply these result to the Curie-Weiss Hamiltoniann, written with respect to the canonical
symmetric basis for the subspace SymN pC2q of bNn“1C2 – C2N . For reasons regarding SSB, we still
fix B “ 1{2 and J “ 1 and keep these parameters fixed, unless specified otherwise. As before, we
denote this matrix by JN`1

Discretization is the process of approximating the derivatives in (partial) differential equations
by linear combinations of function values f in so-called grid points. The idea is to discretize the
domain, with N of such grid points, known as a grid. We give an example in one dimension.

Ω “ r0, Xs, fi « fpxiq, pi “ 0, .., Nq, (4.40)

with grid points xi “ i∆ and grid size ∆ “ X{N . The symbol ∆ is called the grid spacing. Note
this the grid spacing is chosen to be constant or uniform in this specific example. For the first order
derivatives (see also Appendix B), we have

Bf

Bx
px̄q “ lim

∆xÑ0

fpx̄`∆xq ´ fpx̄q

∆x

“ lim
∆xÑ0

fpx̄q ´ fpx̄´∆xq

∆x

“ lim
∆xÑ0

fpx̄`∆xq ´ fpx̄´∆xq

2∆x
. (4.41)

These derivatives are approximated with finite differences. There are basically three types of such
approximations:

ˆ

Bf

Bx

˙

i

«
fi`1 ´ fi

∆x
(forward difference)

ˆ

Bf

Bx

˙

i

«
fi ´ fi´1

∆x
(backward difference)

ˆ

Bf

Bx

˙

i

«
fi`1 ´ fi´1

2∆x
(central difference). (4.42)

It can be shown (Appendix B) that the central difference approximations are more accurate.
Therefore, we will focus on the central difference approximation method and apply this to the
second order differential operator d2{dx2. In the example above, the grid spacing was chosen to be
uniform. Consider this example again, now on the domain Ω “ r0, 1s with uniform grid spacing
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∆ “ 1{N . It can be shown (using (B.12)), that the second order derivative operator is approximately
given by

f2i «
fi´1 ´ 2fi ` fi`1

∆2
pi “ 1, ..., Nq, (4.43)

where we have thrown away the error term term Oph2q in (B.12). It follows that we can write the
second derivative operator in matrix form

1

∆2

¨

˚

˚

˚

˚

˚

˚

˝

´2 1

1 ´2 1 0
. . .

. . .
. . .

0 1 ´2 1
1 ´2

˛

‹

‹

‹

‹

‹

‹

‚

(4.44)

This matrix is the standard discretization of the second order derivative on a uniform grid
consisting of N points of length ∆ ¨N , with uniform grid spacing ∆. In this specific case, we have
∆ “ 1{N . We denote this matrix also by 1

∆2 r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN .

Suppose now that we are given a symmetric tridiagonal matrix A of dimension N with
constant off- and diagonal elements,

A “

¨

˚

˚

˚

˚

˚

˚

˝

b a

a b a 0
. . .

. . .
. . .

0 a b a
a b

˛

‹

‹

‹

‹

‹

‹

‚

(4.45)

We are going to extract a kinetic and a potential energy from this matrix. We write

A “ ar¨ ¨ ¨1
b

a
1 ¨ ¨¨sN “ ar¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN ` diagpb` 2aq, (4.46)

where the latter matrix is a diagonal matrix with the element b`2a on the diagonal. It follows that

A “ T ` V, (4.47)

for T “ ar¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN , and V “ diagpb` 2aq. In view of the above, the matrix T corresponds
to a second order differential operator. This matrix plays the role of (4.44), but with uniform grid
spacing 1{

?
a on the grid of length N{

?
a. Since the matrix V is a diagonal matrix, it can be

seen as a multiplication operator. Therefore, given such a symmetric tridiagonal matix A, we can
derive an operator that is the sum of a discretization of a second order differential operator and a
multiplication operator. The latter operator is identified with the potential energy of the system.
Hence, we can identify A with a discretization of a Schrödinger operator.3

The next step is to understand what happens in the case where we are given a symmetric
tridiagonal matrix with non-constant off- and on-diagonal elements. This is important as we will
see, since the Curie-Weiss Hamiltonian, written with respect to the canonical symmetric base for
the subspace SymN pC2q of C2N »

ÂN
n“1 C2, is precisely an example of such matrix. The question

we ask ourselves is if we can link such a matrix to a discretization of a Schrödinger operator as

3Strictly speaking we have to put a minus sign in front of T , as the kinetic energy is defined as ´ d2

dx2
.
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well.

Let us first review the second order differential operator d2

dx2
. In most central finite difference

applications non-uniform grids are employed, allowing the grid to be more refined in regions where
strong gradients are expected. In that case the grid points xi pi “ 1, ..., Nq are not uniformly
distributed over the domain. We define:

hj` 1
2
“ xj`1 ´ xj pi “ 1, ..., Nq. (4.48)

The length of the domain of discretization is then given by

N
ÿ

j“1

hj` 1
2
. (4.49)

Using a central difference approximation, it can be shown (see Appendix B, formula (B.16)) that
the second order derivative is given by the expression

f2j “
2fj´1

hj´ 1
2
phj´ 1

2
` hj` 1

2
q
´

2fj
hj´ 1

2
hj` 1

2

`
2fj`1

hj` 1
2
phj´ 1

2
` hj` 1

2
q
. (4.50)

Again, we have thrown away the error term Oph2q, and we assumed that we may neglect the
relative small term hj` 1

2
´ hj´ 1

2
in (B.16). Like for (4.44), we can also derive a matrix for the

second order derivative. This time the matrix entries are non-constant and they are given by
(B.17), (B.19) and (B.18).

Finally, suppose we are given a symmetric tridiagonal matrix B with non-constant off- and
on-diagonal elements. As for the uniform case, the question we asked ourselves was whether we can
link this matrix to a discretization of a Schrödinger operator. Note that we cannot easily apply
the same procedure as in the uniform case since, the matrix entries are not constant. Therefore,
we identify the matrix B with (4.50). It follows that

Bj,j`1 “
2

hj` 1
2
phj´ 1

2
` hj` 1

2
q
, (4.51)

Bj,j “
´2

hj´ 1
2
hj` 1

2

, (4.52)

Bj,j´1 “
2

hj´ 1
2
phj´ 1

2
` hj` 1

2
q
. (4.53)

We can compute the non-uniform grid spacing hj` 1
2

as follows. We put

ρj “
Bj,j`1

Bj,j´1
“
hj´ 1

2

hj` 1
2

. (4.54)

We derive from this combined with the above three equations that

h2
j` 1

2

“
2

Bj,j`1p1` ρjq
. (4.55)

From (4.53), we also find

h2
j´1{2 “

2

Bj,j´1p1{ρj ` 1q
. (4.56)
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From hpj´1q`1{2 “ hj´1{2, it now follows that

ρj´1 “
1

ρj
, or equivalently, (4.57)

Bj`1,j “ Bj´1,j´2, and Bj,j´1 “ Bj´2,j´3, (4.58)

where we used the fact that that the matrix is symmetric. This means that the off-diagonal matrix
entries of B must have the form c, d, c, d, c, d, ...,. If this is the case, then indeed we can identify B
with a discretization of a second order differential operator. This is clearly true for (4.45), since the
off-diagonal entries are all equal. Moreover, the potential energy is then obtained by subtracting
(4.52) from the diagonal of B. The result is that such a tridiagonal matrix with this symmetry of
the off-diagonal elements can also be written as sum of a kinetic and a potential energy operator and
hence corresponds to a discrete analog of a one-dimensional Schrödinger operator in a potential well.

This closes the first part of this section. In the next part, we apply these result to our
tridiagonal matrix JN`1. Our goal is to explain that JN`1 locally approximates a discretization
matrix of the form (4.45) (for N large) corresponding to a Schrödinger operator that describes
a particle in a symmetric double well potential. This means that there exists a sub-block of
JN`1 that has the form approximately given by the sum of 1

h2
r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨s (for some h

to be determined) and a diagonal matrix playing the role of a potential. This implies that
the matrix JN`1 applied to vectors that are nonzero on some subset W of the domain4, and
zero outside W , yields the same vectors as the discretization matrix applied to these vectors.5

Indeed, the existence of such a sub-block explained above is equivalent to the existence of the
subset W of the domain of discretization on which this discretization is approximately uniform
(which meaning has been explained at the beginning of this section).6 In §4.6 we will derive
an explicit formula for this discretization matrix. Moreover, we will see that to a very good
approximation even the spectral properties of both different matrices coincide and that this
approximation gets better with increasing N . In §4.7, we finally explain how to link this matrix
to a Schrödinger operator on L2pr0, 1sq. For the remaining part of this section we are going to
show the extremely important fact that grid spacing is approximately constant on some subset of
the domain of discretization. This observation is the basis of the link with the Schrödinger operator.

Thus consider the matrix JN`1. This matrix is tridiagonal with non-constant off- and diagonal
entries. In view of the above, we therefore apply the non-uniform discretization process in order to
identify this matrix with a discretization of a second order derivative operator and a multiplication
operator. At first sight, for any finite N ą 0, the matirix JN`1 does not have off-diagonal elements
of the form c, d, c, d, c, d, ...,, let alone c, c, c, c, ...,. However, we will argue (details given in §4.6 and
§4.7) that the scaled matrix JN`1{N locally approximates some discretization matrix à la (4.45)
corresponding to a Schrödinger operator describing a particle in a symmetric double well potential,
for large, but finite N . In order to show this, we see in this paragraph that in the limit N Ñ 8

we have uniform discretization on some interval, even though the limit point at N “ 8 does not
exists. Making N large enough, this discretization will be already almost uniform and thus we
have an approximate kinetic energy with emergent Schrödinger operator.

4We identify the subset W of the domain of discretization (which is some subset of R) with a subspace of the
vector space RN , where N denotes the number of grid points.

5Strictly speaking this is not true since the discretization is approximately uniform, so that the off- and diagonal
matrix entries are not constant. They are only constant in an approximation.

6We will stick to this notion of ‘locally approximation’ in the remaining part of this paragraph and chapter.
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We write T “ JN`1. Then as before, consider the ratios:

ρj “
hj´1{2

hj`1{2
“
Tj`1

Tj´1
pj “ 1, ..., Nq, (4.59)

with non-uniform grid spacing hj˘1{2. We divide the original tridiagonal matrix JN`1 by N for
scaling. Thus, we consider JN`1{N . If we then compute the distances hj`1{2, we see that they
are almost all of Op1q, except at the boundaries. Since we then have approximately N distances
of each order 1, we will see later that the corresponding Schrödinger operator analog of the matrix
JN`1{N will be an operator on a domain of length of order N .

First, we compute the ratios ρj :

ρj “
Tj`1

Tj´1
“

a

pN ´ jqpj ` 1q
a

pN ´ j ` 1qj
“

d

N ´ j

N ´ j ` 1

d

j ` 1

j
“

d

1

1` 1
N´j

c

1`
1

j
. (4.60)

Since
c

1`
1

j
« 1`

1

2j
“ 1`Op1{jq and (4.61)

d

1

1` 1{pN ´ jq
« 1´

1

2pN ´ jq
“ 1`O

ˆ

1

N ´ j

˙

, (4.62)

we see that the ratio satisfies

ρj « 1`Op1{jq `O

ˆ

1

N ´ j

˙

, (4.63)

using the fact that that the big-O notation respects the product, that Op1
j

1
N´j q ď Op1{jq, and also

Op1
j

1
N´j q ď Op 1

N´j q.

In the next paragraph, we will see from numerical simulations that to a good approximation the
ground state eigenfunction is a double peaked Gaussian with maxima centered in the minima of
some double well potential that we are going to determine. This potential occurs in a discrete
Schrödinger operator analog of the matrix JN`1{N for N large, i.e., in the semiclassical limit.
By these calculations, it follows that when we map the double well on the unit interval the two
minima of the symmetric double well are given by

1

2
˘

1

4

?
3. (4.64)

These minima are of order 1, and when we consider the potential on the original domain of order
N , the minima are (compared to N) of order

N

ˆ

1

2
˘

1

4

?
3

˙

“ OpNq. (4.65)

Furthermore, we showed by numerical simulations (Figure 4.1 below) that the width σ of each
Gaussian-shaped7 ground state of JN`1 located at one of minima of the potential is of order

?
N , and

hence that each peak rapidly decays to zero, so that the ground state eigenfunction is approximately
zero at both boundaries. In particular, the domain where the peak is non-zero is of order

?
N , as

we clearly observe from the figure. This is an approximation, since we neglect the (relatively
small) function values of the Gaussian that are more than Op

?
Nq away from the central maximum.

However, this approximation is reasonable, as the Gaussian decays to zero exponentially.
7We mean that if we plot the discrete points and draw a line through these points, then the corresponding graph

has the shape of a Gaussian.
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Figure 4.1: The width at half height of the ground state eigenvector of JN`1 (B “ 1{2 and J “ 1)
against N , for N “ 100 : 50 : 1500 on a log scale. The slope of the line is about 0.5, which means
that the width σ goes like

?
N .

This observation (the plot above) is extremely important, as we will see now.

Let us first focus on the left-located Gaussian. For a point j in the domain of order N ,
clearly j P OpNq. Therefore, for N large enough,

ρj « 1`Op1{Nq, (4.66)

since for these values of j ă N ´ j we have Op 1
N´j q ď Op1{jq. For the right-located peak, we have

N ´ j ă j, so that in this case Op1{jq ď Op 1
N´j q, and we find

ρj « 1`O

ˆ

1

N ´ j

˙

. (4.67)

We will now show that on an interval of length of order
?
N , we indeed have uniform discretization.

We start with the peak on the left. Since the error per step that we make equals ρj , it
follows that the error on the interval of length of order σ, equals ρσj « p1`

1
N q

σ for j ă N ´ j and
N large.

Denoting the off-diagonal element corresponding to the minimum xj0 of the potential well
by Tj0 , for the off-diagonal elements within a range of order σ, we derive the next estimate:

|Tj0 ´ Tj0`σ| « |Tj0 ´O

ˆ

p1`
1

N
qσ
˙

Tj0 | “ Tj0 |1´O

ˆ

p1`
1

N
qσ
˙

| ď C
σ

N
, (4.68)

where we used p1` 1{Nqσ ď 1` C σ
N and the fact that Tj0 is of order 1. Here, C ą 1 is a constant

independent of N .

Since the left peak of the Gaussian eigenfunction is approximatley non-zero within an interval of
length of order

?
N , we apply the above estimate to σ «

?
N . We see immediately that |Tj0´Tj0`σ|

goes to zero. Therefore, on an interval of length of order
?
N centered around the left minimum xj0

of the potential, the off-diagonal elements become the same in the limit N Ñ 8. This means that
the grid spacing becomes constant and hence that we have locally uniform discretization of the
domain. By symmetry, the same is true for the peak located on the right of the well. We conclude
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that the tridiagonal matrix locally behaves like a kinetic energy (and therefore like a discretized
Schrödinger operator). This is an approximation, because we may only consider finite N . All this
will be explained in more detail in the next two paragraphs.
Furthermore, note that this result is independent of the location of the interval of order

?
N .

However, since we observe numerically that the Gaussian-shaped ground state located in the
domain of order N attains its maxima at Np1

2 ˘
1
4

?
3q and exponentially decays to zero, the only

interval that might play a role is the one centered around these maxima. We come back to this
point in the next paragraph.

4.6 Link with a discrete Schrödinger operator

As we have already mentioned in the previous paragraph, our aim is to show that the matrix JN`1{N
locally approximates a discretization matrix corresponding to a Schrödinger operator describing a
particle in a symmetric double well. We started with the symmetrix tridiagonal matrix JN`1{N
with non-constant entries. In order to link this matrix to a second derivative and a multiplication
operator, we needed to apply the non-uniform discretization procedure. The off-diagonal matrix
entries of JN`1{N do not have the form c, d, c, d, c, d, ..., for any finite N . Therefore, we could not
immediately identify this matrix with a second order derivative operator. However, we have seen
in the limit N Ñ 8, that we have uniform discretization on some interval of the total domain
of discretization. Consequently, for sufficiently large, but finite N , this discretization becomes
approximately uniform. From this fact, we will extract a matrix of the form (4.45) corresponding
to a Schrödinger operator on L2pr0, 1sq. We now state the main results of this paragraph and §4.7.
For this, we consider the matrix H̃N , defined as

H̃N “ T̃N ` ṼN , (4.69)

where

T̃N “ ´
1

8
r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN (4.70)

and ṼN a diagonal matrix given by

ṼN “ ´
1

2
p
2j

N
´ 1q2 ´B

ˆ

c

p1´
j

N
qp
j

N
`

1

N
q `

c

p1´
j

N
`

1

N
q
j

N
q

˙

, pj “ 1, ..., Nq. (4.71)

We show that the matrix JN`1{N locally approximates H̃N`1 for N large, but finite. Recall
that this means that there exists some subset of the total domain of discretization on which the
discretization is approximately uniform (with grid spacing approximately given by

?
8), and gets

better with increasing N . This in turn means that the matrix JN`1{N contains a sub-block of the
form approximately given by the sum of ´1

8 r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN`1 and a diagonal matrix, given by
(4.71). We see in this section that to a very good approximation even the spectral properties of
both matrices coincide and get better with increasing N . In §4.7, we show that the matrix H̃N is
a discretization of a Schrödinger operator on L2pr0, 1sq, denoted by h̃2 and defined as

h̃2 “ ´CN
1

8

d2

dy2
`mṼ , (4.72)

with CN “ N´2. The potential Ṽ (for B “ 1{2 and J “ 1) is then given by the continuous function

Ṽ pyq « ´
1

2
p2y ´ 1q2 ´

a

p1´ yqy, y P r0, 1s. (4.73)
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For ~ “ 1
N , we recognize the well-known Schrödinger operator (2.46). It is now clear why N needs

to be finite: the case N “ 8 (or ~ “ 0) implies that the Schrödinger operator is no longer defined.

The next step is to show that the matrix H̃N`1 defined by (4.69) can be indeed locally
approximated by JN`1{N . As we have seen in the previous paragraph, for N large enough, we
locally have an approximate uniform discretization of the domain of discretization, using the fact
that some of the off-diagonal elements are approximately constant. Similar as for (4.45) explained
in §4.5, this implies that we can identify a sub-block of this matrix with a second order derivative
and hence with a kinetic energy T and a potential V . The latter operator is obtained by subtracting
the kinetic energy contribution to the diagonal from the diagonal of the original matrix JN`1{N .
Let us first focus on the kinetic energy. As explained in §4.5, we want to identify this sub-block to
a kinetic energy operator of the form:

T “ ´
1

h2
r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨s. (4.74)

This matrix is the second-order derivative on a grid of length h¨dim(sub-block), where the dimension
of this sub-block is approximately equal to

?
N , as explained in the last part of §4.5. The constant

h denotes the uniform grid spacing.8 This value can be determined using Appendix B or §4.5. The
value of h is fixed by (B.22), i.e.,

hj`1{2 “

d

´
2

Tj,j`1p1` ρjq
. (4.75)

As we know, for large N , the values hj` 1
2

are approximately constant on some specific subset of

the domain. This subset was located around the maxima of both Gaussian-shaped ground state
peaks. If we then denote the grid spacing at the central maximum of both Gaussians by hj0` 1

2
, we

find numerically that h2
j0`

1
2

« 8, for N “ 5000. This approximation gets better for increasing N .

Moreover, we observe also from numerical calculations that the approximation of the number 8 by
h2
j`1{2 becomes better for those values of hj`1{2 that belong to the entire subset of Op

?
Nq, when

N gets larger. This verifies that the subdomain centered around xj0 is uniformly discretized with
grid spacing h “

?
8. We have shown that the matrix JN`1{N contains a sub-block9 for which the

kinetic energy is approximately given by (4.74), for h “
?

8. Since we have seen that locally around
the maxima of both Gaussians the kinetic energy contribution to the diagonal approximately equals
2{h2 « 1{4, it follows that the potential V is locally approximately given by

V « diagpJN`1{Nq ´ 1{4. (4.76)

Hence, the matrix JN`1{N contains two sub-blocks that can be approximately written as sum
of a kinetic energy T and a potential energy V . We will see that the potential V approximately
equals the matrix ṼN (defined by (4.71)) locally around both maxima of the Gaussians. By
definition of H̃N , it then follows that the matrix JN`1{N applied to vectors living on this
subset of the domain of order

?
N on which the discretization is approximately uniform,

and are zero outside this set, approximately yields the same vectors as the matrix H̃N`1 applied
to these vectors. This indeed shows that the matrix H̃N`1 can be locally approximated by JN`1{N .

The next step in the process of the analysis regarding the matrix H̃N is to explain how the
potential ṼN given by (4.71) is obtained.

8Note that this result is in accordance with (4.47) for a “ 1{h2, since the corresponding grid spacing is 1{
?
a “ h.

9By symmetry of the ground state, there are two subsets of order
?
N on which the discretization is uniform. As

a result, the matrix JN`1{N contains two of such sub-blocks.
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In order to find this matrix ṼN , we start again with JN`1{N . We apply the same procedure as
before, namely, we first compute the contribution of the ‘kinetic energy’ K̃N to the diagonal of
JN`1 on the entire domain of discretization, using the formula

K̃N pj, jq “ ´
2

ρjh2
j`1{2

pj “ 1, ..., N ` 1q. (4.77)

We use quotation marks to indicate that K̃N is not a kinetic energy, because the discretization is
not uniform globally.10 We just use this as a trick to compute ṼN for the matrix H̃N . As before,
we compute ṼN by

ṼN “ diagpJN`1{Nq ´ K̃N pj, jq, pj “ 1, ..., N ` 1q. (4.78)

We are going to simplify (4.78). We start with JN`1. Write K̃N pk, jq ” K̃k,j , ṼN pk, jq ” Ṽk,j and
JN`1pk, jq ” Jk,j . Elaborating formula (4.77) for K̃N gives

K̃j,j “ ´pJj,j´1 ` Jj,j`1q, (4.79)

where Jj,j˘1 are the off-diagonal entries of the tridiagonal matrix JN`1. Plugging in the expressions
for Jj,j˘1, shows that the above equation is equal to

K̃j,j “ Bp
a

pN ´ jqpj `Nq `
a

pN ´ j ` 1qjq. (4.80)

It follows that (4.78) reads

Ṽj,j “ Jj,j ´ p´pJj,j´1 ` Jj,j`1qq. (4.81)

One should mention that the above equation (4.81) approximately equals formula (4.76) since
T̃j,j «

1
4 , locally around the maxima of the Gaussians for N large enough. This is almost exact

when N is large enough, since on this subset we may indeed speak about uniform discretization
and thus a kinetic energy.

Plugging in he expressions for Jj,j and Tj,j˘1 gives

Ṽj,j “ ´
1

2N
p2j ´Nq2 ´Bp

a

pN ´ jqpj ` 1q `
a

pN ´ j ` 1qjq. (4.82)

Using the identity j “ jN
N , the above expression (4.82) for the potential equals

Ṽj,j “ N

ˆ

´
1

2
p
2j

N
´ 1q2 ´Bp

c

p1´
j

N
qp
j

N
`

1

N
q `

c

p1´
j

N
`

1

N
q
j

N
q

˙

. (4.83)

Then for JN`1{N , we see that the factor N in front of the above equations disappears. With abuse
of notation, we put ṼN ” Ṽ {N . Note that ṼN is indeed given by (4.71). Then using (4.70) for the
kinetic energy, we define the pN ˆNq-matrix H̃N by

H̃N “ T̃N ` ṼN . (4.84)

This shows how the potential ṼN and therefore the matrix H̃N is constructed. As we will see in
§4.7, this is in fact a discretization of the Schrödinger operator (4.72).

We have to be careful with the domain of the matrix JN`1{N . The length of the domain

10This follows from the fact that ρj is not approximately equal to one for all i “ 1, ..., N ` 1.
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is given by the sum of all distances hj`1{2. Here, j runs from 0 to N . We computed this length
and this approximately gives 2.4N , for N large enough. Therefore, each point xj in the domain

corresponds to the sum
řj
k“1 hk`1{2. In particular,

řn
k“1 hk`1{2 « 2.4N . However, as we have

just seen, the operator T̃N and hence H̃N are defined on a domain of approximate length of
?

8N ,
which is fortunately the same order as 2.4N .

Remark. Consider the Schrödinger operator with a symmetric double well potential, given
by (2.46). Recall from §3.2 that for a sufficiently high and broad potential well, the ground state
of such a Schrödinger operator is approximately given by two Gaussians, each of them located in
one of the wells of the potential. This fact will be useful for the next observations.

We will now see that the Gaussian-shaped ground state of JN`1{N , indeed localizes in both
minima of the potential well ṼN . Therefore, we have made a plot of the scaled potential ṼN from
equation (4.83) on the domain of length 2.4N , for B “ 1{2 and J “ 1. See Figure 4.2 below. We
immediately recognize the shape of a symmetric double well potential. The points in its domain
are given by xj “

řj
k“1 hk`1{2 for j “ 0, ..., N . Then we diagonalized the matrix JN`1{N and

computed the ground state eigenvector. We plot this together with the potential in Figure 4.2. One
should mention that there is only one Gaussian peak visible, not two. As we have seen in §3.2, this
was due to the (in)accuracy of the computer i.e., the first two eigenvalues are already degenerate.
Therefore, the system is completely decoupled and thus the computer randomly picks one of the
two Gaussians as ground state, even though we know from the Perron-Frobenius Theorem (Chapter
5) that the ground state is always unique for any finite N . We also observe that the maxima of the
Gaussian ground state peaks are precisely centered in the minima of these two wells (as should be
the case).

Figure 4.2: The scaled potential ṼN and the ground state eigenfunction corresponding to JN`1{N
for N “ 1000. The potential is shifted so that its minimum is zero. The length of domain is
approximately equal to 2.4N as explained above. The parameters B “ 1{2 and J “ 1 are still fixed.

From this figure, it is immediately clear that the ground state is localized in (one of the) minima
of the double well.

One might suggests that there would be some critical value of N for which the eigenvalues
are not yet degenerate for the computer. We have seen that this value of N is about N “ 80. We
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made a similar plot for the ground state for N “ 60, like Figure 3.1 in §3.2. We recognize the
well-known doubly peaked Gaussian shape, but now it is localized in both minima of the potential
well. This is displayed in Figure 4.3. These figures show that there is a convincing relation between
the matrix JN`1{N and a Schrödinger operator describing a particle in a double well.

The double well shaped potential is a result of the choice B “ 1{2. The value of the magnetic
field needs to be within r0, 1q in order to get spontaneous symmetry breaking of the ground
state in the classical limit N Ñ 8. For B ě 1 the Curie-Weiss model will not display SSB, not
even in the classical limit. In §6.3, two different classical limits will be discussed. One of them
corresponds to the double well potential. Without going into details now, it is a fact that the
classical limit of a Schrödinger operator with a symmetric double well potential corresponds to
a doubly degenerate ground state that breaks the Z2-symmetry. For a single well potential, the
classical limit is non-degenerate and does not break the symmetry. As we will see soon, the matrix
JN`1{N is a discretization of such a Schrödinger operator on L2pr0, 1sq. However, the parameter B
determines the shape of the well. For B ě 1, the well will be a single potential. This is clear from
Figure 4.4. In view of the corresponding Schrödinger operator, the ground state in the classical
limit will not break the symmetry for a single potential well, and is therefore also compatible
with the Curie-Weiss model for B ě 1. This result is also in accordance with the Quantum Iisng
model [22, Thm. 10.11].

Figure 4.3: The scaled and shifted potential ṼN from the previous figure, and the ground state
eigenfunction corresponding to JN`1{N for N “ 60. Also here, the length of domain is
approximately 2.4N . The ground state (discrete) eigenvector is normalized to 1.
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Figure 4.4: The scaled and shifted potential ṼN for B “ 2 and J “ 1, and the ground state
eigenfunction corresponding to JN`1{N for N “ 60. The single well is clearly visible. Also now,
the ground state eigenvector is normalized to 1.

We now turn back to the regime 0 ď B ă 1. One can compute the spectral properties of the
matrix JN`1{N and compare them with those of the operator H̃N . This will be the next step.
We will see that to a very good approximation the spectral properties of both matrices coincide
and get better with increasing N . We have programmed the matrix H̃N in MATLAB. The matrix
has been diagonalized. The spectral properties have been compared to those of JN`1{N . In the
table below, the first 10 eigenvalues denoted by λn are displayed for the operator H̃N . The same
is done for the matrix JN`1{N . These eigenvalues are denoted by εn. The number N “ 1000 is fixed.

Eigenvalues

n λn εn
0 -0.6251 -0.6251
1 -0.6251 -0.6251
2 -0.6234 -0.6234
3 -0.6234 -0.6234
4 -0.6217 -0.6217
5 -0.6217 -0.6217
6 -0.6200 -0.6200
7 -0.6200 -0.6200
8 -0.6183 -0.6183
9 -0.6183 -0.6183

We see that these ten eigenvalues are exactly the same for both systems up to four decimals. Our
simulations showed that the eigenvalues differ from the sixth decimal for n “ 0, 1, 2, 3, 4 and from
the fifth decimal for n “ 5, ..., 9. It is also clear that all these eigenvalues are doubly degenerate, at
least up to four decimals.

We made a plot of the ground state eigenfunction of H̃N as well. This function has been
compared to the ground state of JN`1{N . Both graphs are displayed in Figure 4.5.
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Figure 4.5: Both ground states plotted on the domain of order N , for N=1000. Ψp0q corresponds
to H̃N and Φp0q to JN`1{N .

In fact, since the ground state is already numerically doubly degenerate for N “ 1000, the computer
picks a linear combination of the two eigenvectors, as already explained in §3.2. This choice is kind
of random, since when one changes N , the computer might pick the left located peak as a ground
state as well. We forced the computer to take the right located peak for both operators in order to
compare. The table and the graph above show, at least numerically, that we have strong evidence
that the original tridiagonal matrix may is related to H̃N . This is a priori not directly clear since
JN`1{N only contains two equal sub-blocks that approximate the sub-block of order

?
N in the

matrix H̃N , given by

´
1

8
r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨s ` diagpJN`1{Nq ´

1

4
. (4.85)

The reason for this strong (numerical) result probably lies in the fact that the eigenvectors of both
operators only localize on the specific subset of order

?
N , centered around the two minima of the

well.11

We have computed the minimum of the potential, set it to zero, and subtracted this minimum from
the lowest eigenvalues. Then, these shifted eigenvalues live in a positive potential with minimum
equal to zero. For JN`1{N and N “ 1000, we now consider the eigenvalues εn of this matrix.
We have already seen above that the lowest eigenvalues of JN`1{N become doubly degenerate.
Therefore, we identify these approximately doubly degenerate eigenstates with one single state that
we denote by n. It follows that each n corresponds to two (approximately) degenerate eigenvalues,
e.g., n “ 0 corresponds to the ground state as well as the first excited state of JN`1{N , n “ 1
corresponds to the second and the third excited state, and so on. This is displayed in the table
below.

11This has been numerically checked in §4.5, see for example Figure 4.1.
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Shifted eigenvalues for odd values of n

n εn
0 0.000863
1 0.002591
2 0.004310
3 0.006013
4 0.007710

Using this table, we deduce that the energy splitting is given approximately given by
?

3{N , when
N large enough. The ground state (shifted) eigenvalue (which is approximately doubly degenerate)

is then given by 1{2
?

3
N , the first excited state (also approximately doubly degenerate) by 3{2

?
3

N ,

the second excited state by 5{2
?

3
N etc. Therefore, there is excellent numerical evidence that the

(approximately) doubly degenerate shifted spectrum of JN`1{N is given by

pn` 1{2q
?

3

N
, for N large enough. (4.86)

Note that the eigenvalues for N “ 8 appear to be all zero, and we will see in the next paragraph
that these are not even defined in this case. Moreover, observe that the values in both tables are
computed for fixed N . Therefore, also different values of N need to be considered. We will focus
on the ground state eigenvalue εN0 of the matrix JN`1{N . See the table below.

NεN0 for increasing N

N NεN0
100 0.8473
1000 0.8633
2500 0.8653
5000 0.8655

Thus εN0 will approximate 1{2
?

3
N when N increases. This shows that (4.86) indeed makes sense.

What do we learn from these simulations?
We started with the tridiagonal matrix JN`1{N . Using a central difference approximation on
a non-uniform grid, we showed that locally we had (an approximate) uniform discretization
precisely on a subset of order

?
N centered around the maxima of the Gaussian-like ground state

peaks. Therefore, locally, this matrix approximates a kinetic and a potential energy, meaning
that there exists a sub-block in the matrix JN`1{N that has the form approximately given by
T ` V , as we explained in detail before. Using this fact, we constructed the matrix H̃N . In fact,
we showed that JN`1{N locally approximates H̃N . This in turn means that JN`1{N applied to
those vectors living on a specific subset on which the discretization was uniform, and are zero
outside this set, yields the same vectors as H̃N applied to these vectors. We have seen that
this set was centered around the maxima of the Gaussian-shaped ground state eigenvectors. In
the construction of H̃N we computed the potential ṼN that had the shape like a double well.
We found that the maxima of the doubly peaked Gaussian ground state correspond precisely
with the minima of a potential well. Moreover, we have convincing numerical evidence that
JN`1{N is related to H̃N , since also their spectral properties coincide to very good approximation.
If N increases, this approximation gets better. The spectral properties of H̃N behave like a
Schrödinger operator describing a particle in a symmetric double well. This lead us to the surmize
that H̃N is the discretization of a Schrödinger operator. In §4.7 we give the precise connection
between H̃N and the Schrödinger operator h̃2 on L2pr0, 1sq. Since JN`1 is in turn related to
H̃N , we first say something more about these matrices. This will be the final part of this paragraph.
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For each finite N the matrix H̃N is a finite-dimensional tridiagonal matrix, which can be
identified with an element of Bp`2N pNqq, where the latter space is the space of linear operators on
the Hilbert space of all finite sequences of length N . It is easy to see that the coefficients of H̃N

are bounded when N Ñ 8 and 0 ď j ď N . Moreover, for each N P N, the off-diagonal entries of
H̃N have the same sign. Therefore, one might expect that in the limit the matrix will be bounded
as well. Moreover, since for each finite N the matrix is self-adjoint, one might expect the same
result in the limit. The same result holds for JN`1{N . Therefore, one could try to prove that both
matrices converge to so-called bounded self-adjoint Jacobi operators on `2pNq. Based on the similar
spectral properties of both matrices, one could expect that that there exists a unitary operator
uN`1 such that H̃N`1 and JN`1{N become asymptotically unitary equivalent, in that:

lim
NÑ8

||uN`1H̃N`1u
˚
N`1 ´ JN`1{N ||N`1 “ 0. (4.87)

Note that the operator norm depends on N as well and does not converge in general. The above
conjecture is not easy to prove, as it is purely based on numerical results. Furthermore, it is not
relevant what this limit will be, since we only have to consider finite N in the semiclassical limit, as
we will see soon. In any case, we have strong evidence that there is a relation between the matrices
JN`1{N and H̃N`1 that might be given by the above formula.

4.7 Link with a Schrödinger operator on L2pr0, 1sq

In this section, we are first going to make a link between the matrix H̃N and a Schrödinger operator
on a domain of order N , viewed as a subset of L2pRq. We denote this operator by h̃1. Then we
scale h̃1 to an operator defined on L2pr0, 1sq, which we denote by h̃2. This operator is the one we
mentioned in the beginning of §4.6, viz. (4.72). We should remark that the fixed values of B “ 1{2
and J “ 1 used in the matrix entries for JN`1{N determine also H̃N and hence h̃2. Thus, the
results derived in this section are based on these two parameters.

In §4.5 we explained how to approximate a second order differential operator with a discretization
matrix using a central difference scheme. We also showed that a symmetric tridiagonal matrix with
constant off- and diagonal entries can be identified with a discretization of a Schrödinger operator
on a uniform grid. We now apply this procedure to the matrix H̃N and we are going to find the
corresponding Schrödinger operator that we denoted by h̃1. The matrix H̃N corresponds to a
uniform grid spacing of

?
8 on a grid of length

?
8N . Applying the method explained in §4.5, it

follows that we can identify H̃N with the sum of a second order derivative d2

dx2
and a multiplication

operator mṼN
acting on the space L2pr0, LN sq:

h̃1 “ ´
d2

dx2
`mṼN

. (4.88)

Here, mṼN
is the operator that acts as multiplication by ṼN . It is the continuous analog of the

matrix (4.83), but note that its domain still depends on N . The constant LN denotes the length
of the interval which equals

?
8N . h̃1 is of course an unbounded operator. It is not clear how the

operator h̃1 behaves when N increases, since the domain increases with N and so the potential
minima of ṼN as well. Therefore, we will scale the interval by its length LN , so that it becomes
fixed. Thus scaling this interval by its length gives an operator on an interval of order 1. We denote
this operator by h̃2. Note that the variable y P r0, 1s satisfies y “ x{LN , so that dx{dy “ LN , and
hence d{dx “ 1

LN
d{dy. The Schrödinger operator on the unit interval is therefore given by

h̃2 “ ´CN
1

8

d2

dy2
`mṼ , (4.89)
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with CN “ N´2. The potential Ṽ (for B “ 1{2 and J “ 1) is then given by the continuous function

Ṽ pyq « ´
1

2
p2y ´ 1q2 ´

a

p1´ yqy, y P r0, 1s. (4.90)

As we have explained in the beginning of the previous paragraph, it is clear that for ~ “ 1{N , we
recognize the well-known Schrödinger operator describing a particle in a symmetric double well
potential. We will see in §6.3 that a far more sophisticated deformation quantization is needed to
pass from quantum mechanics p~ ą 0q to classical mechanics p~ “ 0q.

It is also clear that H̃N is a correct discretization of h̃2: a matrix of dimension N on an
interval of order 1 gives a grid spacing ∆ “ 1{N . It follows that

´
1

8N2

d2

dy2
« ´

1

8N2

r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN
∆2

“ ´
1

8
r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN , (4.91)

and the latter matrix is precisely T̃N from H̃N .
Thus, a claim/conclusion that connects these operators is the following12:

Claim 4.7.1. The matrix H̃N defined by (4.69) is a discretization of the Schrödinger operator h̃2

on an interval of order 1. The term ‘discretization’ refers to the one given by (4.91).

We have seen in the previous paragraph that the approximation H̃N by JN`1{N gets better with
increasing N , so that one should consider H̃N and thus h̃2 for large N .

Remark. When one would start with a Schrodinger operator on some interval, then one
should beware of the following. Discretizing an operator on a finite grid means restricting the
original operator to some subspace and projecting this restricted operator onto that subspace. One
can take a basis for this subspace, and writing the operator with respect to this basis gives a finite
dimensional matrix. This matrix, then, will be a discretized analog of the original operator. This
result of course strongly depends on the subspace and the basis.

In our case, we have linked H̃N to a Schrodinger operator on L2pr0, 1sq. We have argued
that the matrix r¨ ¨ ¨1 ´2 1 ¨ ¨¨sN corresponds to the second order derivative operator ´CNd

2{dy2 on
an interval of order 1. In view of the above remark, there exists some finite-dimensional subspace
and a basis, so that its corresponding matrix is indeed of that specific form. However, finding this
subspace and basis is not really relevant anymore since we are given the discrete matrix H̃N , from
which we derived a Schrödinger operator.

It is well known that the ground state of the operator h̃2 for finite N looks approximately
like a doubly peaked Gaussian, where each peak is centered in one of the minima of the potential.
For infinite N , these peaks will behave like delta peaks, but they are not eigenfunction anymore
since H̃2 is not defined for N “ 8 [34], [22, Sec. 10.1,10.2].
Moreover, numerical simulations (Figure 4.1) show that the eigenfunctions of H̃N live approximately
on a grid of order

?
N points on he interval r0, 1s. Using the above discretization, we then have an

order
?
N steps of 1{N each, so that in particular the ground state Gaussian has a width of 1{

?
N .

On the one hand, it is clear that this width will go to zero as N Ñ8. On the other hand, also the
unit interval depends on N , as the latter has to be discretized with N ` 1 points. The grid spacing
of 1{N will go to zero when N Ñ8 too. Therefore, the total number of points in the ground state

12Note that this claim is based on the fact that the number N occuring in the factor 1{N in front of the derivative
d2

dy2
in (4.91) is the same as the dimension of the discretization matrix r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN .
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peak living on a subset of order
?
N is given by

1{
?
N

1{N
“
?
N (4.92)

Even though the ground state will behave like a delta peak when N gets larger, when discretizing
the grid, the number of points in this peak increases with

?
N . In fact, due to the discretization of

the grid we have a better approximation of the Gaussian ground state when N increases.

The equivalence between JN`1{N and H̃N`1 for N large was originally obtained from a
discretization based on a central difference scheme using a non-uniform grid. Moreover, we have
seen that the operator H̃N`1 can be linked to a Schrödinger operator on L2pr0, 1sq.
Consider now this Schrödinger operator h̃2. For convenience, one can identify CN with ~2, for
~ “ 1{N small, so that the operator under this identification is given by

h̃2 “ ´
~2

8

d2

dx2
` V pxq. (4.93)

It is also known (see e.g., §4.8 or [12], [14]) that the lowest eigenstates of such a Schrödinger
operator are approximately degenerate when the barrier of the double well potential is sufficiently
high enough. For such a potential, we have seen that these states approximately behave like a
linear combination of weighted Hermite polynomials centered in both minima of the potential.
These polynomials are in general given by

ϕnpxq “ e´x
2{2Hnpxq, n “ 0, 1, 2, ... (4.94)

Thus for this type of potential, the ground state in particular is approximately given by two
Gaussians, each localized in one of the minima. The spectrum of this operator consists of
eigenvalues and the lowest eigenvalues are approximately doubly degenerate and equidistant in this
semiclassical approach. This relies on the assumption that we can approximate both wells with a
parabola (see §4.8 for a justification of this assumption).

It can then be shown that the eigenvalues of h̃2 are approximately given by

En,˘ « pn` 1{2q~ω ¯ ~Ce´
1
~ϕ, pn “ 0, 1, 2...q. (4.95)

where ϕ an integral with positive integrand, and C ą 0. In the case for h̃2, we have a factor 1{N
which now plays the role of ~ in (4.93). Hence, as expected, we find that also now e´Nϕ « 0, if N
large. As a result, the lowest eigenstates indeed become approximately doubly degenerate as we
have already seen from the tables in §4.6. We will give a detailed analysis in §4.8.

We conclude this paragraph by recalling the following statement.
The most important property linking the quantum Curie-Weiss model to a Schrödinger operator is
the existence of a subspace, namely SymN pC2q, so that the matrix representation of the operator
hCW
N restricted to this subspace became a tridiagonal matrix JN`1{N that could be seen as a

discretiation H̃N`1 of a Schrödinger operator h̃2. One should still prove the correct asymptotic
equivalence between this matrix JN`1{N , and the matrix H̃N`1, for N large, but finite. This
then, in combination with Theorem (4.7.1), should really prove a semi-classical equivalence
between JN`1{N and the Schrödinger operator h̃2. Unfortunately, we were not able to prove this
mathematically.
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4.8 Double well with WKB

In the previous paragraph, we have argued that we can view our matrix JN`1{N as a discretization
H̃N of the Schrödinger operator H̃2, when N sufficiently large. We have already mentioned
some properties about the spectrum and the lowest eigenstates corresponding to this Schrödinger
operator.
In this section we use the WKB-approximation method applied to a double well potential to deduce
these results. Most of the work done in this section is based on [34]. We consider the following
situation, displayed in Figure 4.6.

Figure 4.6: Symmetric double well with turning points ˘x1 and ˘x2 and minima ˘a. The figure is
taken from [34].

We are going to determine the energy levels below the potential, i.e., the energies for which
E ă V p0q holds. From the results obtained in Appendix C, it can be shown that the wave function
for this classical forbidden area p´x1 ă x ă x1q, below the potential, takes the following form:

ψWKBpxq »
D

a

|ppxq|

„

2 cos θ exp

ˆ

1

~

ż x1

x
|ppx1q|dx1

˙

` sin θ exp

ˆ

´
1

~

ż x1

x
|ppx1q|dx1

˙

, (4.96)

where ´x1 ď x ă x1. Here, D is the coefficient corresponding to the WKB solution on the interval
px2,8q.
Since the potential is symmetric, it commutes with the parity operator. Moreover, the energy levels
in the potential well are non-degenerate, as we will see in Chapter 5. Thus, we automatically have
that the energy eigenfunctions need to be parity eigenfunctions. Hence we only need to consider the
even ψWKB

` and odd ψWKB
´ wave functions. In the former case d

dxψ
WKB
` p0q “ 0, and in the latter

case ψWKB
´ p0q “ 0. For the antisymmetric (odd) case, the property ψWKB

´ p0q “ 0 implies that

D
a

|ppxq|

„

2 cos θ exp

ˆ

1

~

ż x1

0
|ppx1q|dx1

˙

` sin θ exp

ˆ

´
1

~

ż x1

0
|ppx1q|dx1

˙

“ 0, (4.97)
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which in turn implies

tan θ “ ´2e´
2
~
şx1
0 |ppx1q|dx1

“ ´2e
´ 1

~
şx1
´x1

|ppx1q|dx1

“ ´2e´φ, (4.98)

where we used the fact that p is even, as well as

φ “
1

~

ż x1

´x1

|ppx1q|dx1. (4.99)

For the symmetric (even) case , we have ψpx1q “ ψp´x1q, so that we find

D
a

|p|
psin θ ` 2 cos θq “

D
a

|p|
psin θe

´ 1
~
şx1
´x1

|ppx1q|dx1
` 2 cos θe

1
~
şx1
´x1

|ppx1q|dx1
q, (4.100)

which by definition implies

D
a

|p|

ˆ

sin θ ` 2 cos θ

˙

“
D

a

|p|

ˆ

sin θe´φ ` 2 cos θeφ
˙

. (4.101)

Hence

tan θ “ 2
1´ e´φ

e´φ ´ e´2φ

“ 2e´φ. (4.102)

From this we conclude that

e´φ “
˘2

tan θ
. (4.103)

Solving these equations exactly is not possible analytically in most cases,. If we assume that the
potential barrier is very high and broad, we we can get an idea of the general behaviour of the
system. Since φ, which is the integral over the magnitude of imaginary momentum and represents
the phase, is going to very large in such a case, it follows that e´φ is very small. Therefore, by
definition of the tangent function, θ must be very close to pn` 1

2qπ. With this in mind, let us write
θ “ pn` 1

2qπ ` ε, where ε ăă 1. Then it follows that:

tan pn`
1

2
qπ ` ε « ˘2eφ

ùñ cot p´nπ ´ εq « ˘2eφ

ùñ ´ cot ε « ˘2eφ

ùñ
1

ε
« ¯2eφ

ùñ ε « ¯
1

2
2e´φ. (4.104)

Thus the quantization condition simplifies to

θ « pn`
1

2
qπ ¯

1

2
e´φ. (4.105)

In a first approximation, we see immediately that

θ “ pn`
1

2
qπ. (4.106)
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This can also be understood since tunneling through a very high and broad barrier is almost
impossible, and hence the physically particle will be localized in one of the two wells. In this case,
we know that the allowed energies correspond to those of a single well potential, for which the
quantization condition is precisely given by (4.106) [2]. In this case, both the even and the odd
wave function have the corresponding energy level of the single well potential, which we denote

by E
p0q
n pn “ 0, 1, 2, ...q. For the harmonic oscillator in a single well, these energies are given by

E
p0q
n “ pn ` 1{2q~ω. For a double well with a high and broad barrier, it therefore makes sense to

write

EWKB
n,˘ “ Ep0qn `∆En,˘ pn “ 0, 1, 2, ...q, (4.107)

where ∆En,˘ is assumed to be much smaller than E
p0q
n .13

The next step is to find an expression for the energy splitting of the ground state ∆E0,˘.

Again, we assume that the potential barrier is very high and broad, and suppose that ψ
p0q
0 is the

WKB wave function corresponding to the ground state in the classical forbidden region p´x1 ă x1q,
located in the right well. This corresponds to (C.17), for D “ 0. Then, we may write

ψ
p0q
0 pxq »

C
a

|ppxq|
exp

ˆ

1

~

ż x

0
|ppx1q|dx1

˙

. (4.108)

We can compute its derivative. It follows by the chain rule that

ψ
p0q1

0 pxq »

ˆ

|ppxq|

~
´

ˇ

ˇ

ˇ

ˇ

p1pxq

2ppxq

ˇ

ˇ

ˇ

ˇ

˙

ψ
p0q
0 pxq «

|ppxq|

~
ψ
p0q
0 pxq, (4.109)

where we neglect the second term, since we assume that the system is in a semi-classical state for
which (C.14) holds. We then use Herring’s formula14 for an expression for the energy splitting

∆En,˘ in terms of ψ
p0q
n :

∆En,˘ “ ¯
~2

2m
ψp0qn p0qψ

p0q1

n p0q. (4.110)

Using Herring’s formula and (4.108), it follows that

∆E0,˘ “ ¯
~
m
C2. (4.111)

Thus, our task is to determine C. First we make another assumption. We assume that the potential
V in the area px1, x2q can be approximated by a quadratic potential in a neighborhood of its
minimum at x “ a, like the case of a harmonic oscillator. Since we focus on the area px1, x2q, we
consider

V pxq «
1

2
mω2

0px´ aq
2, (4.112)

where the constant ω0 is given by ω0 “
a

V 2paq{m, with a the position of the minimum of the well
on the right site, and V the original potential.

13We will soon see that this is indeed the case for the ground state energy splitting ∆E0,˘.
14This formula is named after Herring, who derived it in the analysis of a problem relating the H`2 molecular

ion [15], [16].
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Assuming (4.112), this implies that both the ground state wave function and the ground
state energy match those of the harmonic oscillator:

E
p0q
0 «

1

2
~ω0, (4.113)

ψ
p0q
0 pxq «

ˆ

mω0

π~

˙1{4

e´
mω0
2~ px´aq

2
. (4.114)

We also assume that this approximation of the wave functions is valid in the whole region p´x1, x1q.
Then, in order to determine C, we have to compare (4.108) and (4.114). Therefore, we need to

compute |ppxq| in the region p´x1, x1q. Using V px1q “ E
p0q
0 , we compute

|ppxq| “

d

2m

ˆ

V pxq ´ E
p0q
0

˙

“

d

2m

ˆ

V pxq ´ V px1q

˙

“ mω0

ˆ

pa´ xq2 ´ pa´ x1q
2

˙1{2

. (4.115)

Now, we define y0 ” a´ x1. Again using V px1q “ E
p0q
0 , it follows that y0 is approximately equal to

y0 «

c

~
mω0

. (4.116)

For a barrier that is sufficiently high and broad, we may neglect the term y2
0 in computing |ppxq|

for the ground state on p´x1, x1q, since on this interval we have a´ x ąą a´ x1. It follows that

ψ
p0q
0 pxq »

C
a

mω0pa´ xq
exp

ˆ

1

~

ż x1

0
|ppyq|dy ` Φpxq

˙

, (4.117)

where Φ is given by

Φpxq “ ´
1

~

ż x1

x
|ppyq|dy (4.118)

“ ´
mω0

~

ż x1

x
rpa´ yq2 ´ pa´ x1q

2s1{2dy (4.119)

« ´
mω0pa´ xq

2

2~
`

1

2
log

ˆ

2pa´ xq

y0

˙

`
1

4
`O

ˆ

y2
0

pa´ xq2

˙

. (4.120)

Comparing (4.108) with (4.117), it follows that

C “

ˆ

m2ω2
0

4πe

˙1{4

e´
1
~
şx1
0 |ppyq|dy. (4.121)

Then formula (4.111) reads

∆E0,˘ “ ¯
~ω0

2
?
πe

exp

ˆ

´
1

~

ż x1

´x1

b

2mrV pyq ´ E
p0q
0 sdy

˙

. (4.122)

This procedure can also be applied for higher energy levels. All one needs to do is match the WKB
wave function in the classically forbidden region p´x1, x1q to the nth harmonic oscillator state and
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use Herring’s formula to find ∆En,˘. We can also see that the splitting becomes large if the energy
increases or the barrier decreases in height and width, since the integral in the last expression
decreases in that case. The energy splitting will disappear for a very high and broad barrier.

Now, we are going to compute the lowest eigenenergies numerically using the formula we
have just derived. We take the double well potential corresponding to the Schrödinger operator h̃2

on L2pr0, 1sq, as derived in §4.7. Still keep in mind that this operator is derived from the matrix
JN`1{N for B “ 1{2 and J “ 1. For N large enough, we could approximate the potential by a
continuous function, in that

Ṽ pyq « ´
1

2
p2y ´ 1q2 ´

a

p1´ yqy, y P r0, 1s. (4.123)

We have to determine the minima a and the mass m in order to compute ω ”

b

V p2paq
m . We have

already seen that the minimum of the above potential is attained at x “ 1{2˘ 1{2
?

3. This can be
easily shown by computing the derivative. It is also elementary to show that the second derivative
of the above function equals

V 2pyq “
1

4p´py ´ 1qyq3{2
´ 4, (4.124)

so that V 2p˘aq “ 12. As we have seen, we put ~ “ 1{N in (4.93). In order to find the mass, we
compare the factor 1

8 in h̃2 from (4.89) with the factor in front of the derivative in (4.93). We see

that m “ 4. It follows that ω0 “

b

V 2paq
m “

b

12
4 “

?
3. Thus ~ω0 “

?
3{N .

Now, consider the formula we derived before,

EWKB
n,˘ “ pn` 1{2q~ω0 `∆En,˘, pn “ 0, 1, 2, ...q (4.125)

where ω0 “
?

3 and ∆En,˘ given by (4.122). We compare it to the lowest eigenenergies of the
operator H̃N , which was a discretization of the Schrödinger operator h̃2. It is immediately clear

that the first term pn` 1{2q~ω0 equals pn`1{2q
?

3
N , exactly as we found before. In order to compute

the second term ∆En,˘, we compute

´
1

~

ż x1

´x1

b

2mrV px1q ´ E
p0q
0 sdx1 “ ´

1

~

ż x1

´x1

mω0rpa´ x
1q2 ´ pa´ x1q

2s1{2dx1

“ ´
2mω0

~

ż x1

0
rpa´ x1q2 ´ pa´ x1q

2s1{2dx1

“
2mω0

~

ż y0

a
ry2 ´ y2

0s
1{2dy

“
2mω0

~
1

2

ˆ

y
b

y2 ´ y2
0 ´ y

2
0 log

ˆ

y `
b

y2 ´ y2
0

˙˙y0

a

“
mω0

~

„ˆ

´ a
b

a2 ´ y2
0 ` y

2
0 log

ˆ

a`
b

a2 ´ y2
0

˙˙

´ y2
0 log y0



.

(4.126)

Since we assume that y0 «

b

~
mω0

, and m,ω0 and a are parameters from the potential, we are

able to compute the above equation, and hence the WKB-ground state energy EWKB
0,˘ . For these

parameters, we find that (4.126) equals

´
1

~

ż x1

´x1

b

2mrV px1q ´ E
p0q
0 sdx1 « ´

6

~
“ ´6N. (4.127)
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Moreover, note that the prefactor ~ω0

2
?
πe

in (4.122) for our parameters is approximately equal to

~ω0

2
?
πe
« 0.296{N. (4.128)

As |ppxq| “

b

2mrV px1q ´ E
p0q
0 s is positive, the exponential of the equation (4.126) is bounded by

1. Thus, we know that

∆E0,˘ ď
~ω0

2
?
πe
« 0.296{N. (4.129)

We see that for N sufficiently large, the ground state energy splitting is about zero. In fact, it goes
even faster to zero since we have to take the exponential factor into account as well. It follows that
the ground state energy splitting for our potential behaves like

∆E0,.˘ « ¯
0.296

N
e´6N . (4.130)

Even for N “ 1, the above equation is already in the order 10´4.

We give a summary.
We have seen that for increasing but finite N , the spectrum of the operator JN`1{N approximates
the one of the matrix H̃N , playing the role of a discretization of the Schrödinger operator h̃2. For
N “ 1000, the (shifted) ground state of the operator JN`1{N was, up to five decimals, equal to the
number 0.8633{N . For this relative large value of N , this number was the same as the (shifted)
ground state eigenvalue corresponding to H̃N (see tables in §4.6). If one compares this number
to (4.125) (for n “ 0 in (4.122)) derived from the WKB-approximation for N “ 1000, then it is
clear that for this value of N , to a very good approximation both energy levels are completely

degenerate, and are given by
?

3
2N . On the one hand, the approximation of H̃N by JN`1{N gets

better for relative large values of N , and we have seen that the ground state eigenvalue becomes
numerically two-fold degenerate, already for N « 80. For these and larger values of N , the energy
splitting (4.122) has been computed and and is of order ă 10´200. Accordingly, it is reasonable
to speak about a degenerate ground state as we indeed have observed numerically. Moreover for
N “ 80, the shifted ground state eigenvalue is approximately given by 0.842{N . On the other
hand, the value of N “ 80 is still relatively small when one wants to give a better approximation of
?

3
2N « 0.866, even though the ground state may be numerically degenerate. In order to find a better

approximation of
?

3
2N , one should increase N much more. Note that for values of N ă 80, we have

seen that the energy levels of JN`1{N are non-degenerate. In this regime the WKB-approximation
is definitely not applicable, since for say N “ 60, according to this approximation the energy
splitting is already in the order of 10´160, so that we may speak about degenerate eigenvalues, even
though we know that the eigenvalues of JN`1{N of H̃N are not degenerate.

Therefore, applied to our double well potential, the WKB approximation does not match
one to one for the value of ~ “ 1{N . It can only be used as an indication of the energy splitting
of the lowest eigenenergies, not as a quantitative tool to predict the absolute values of the
eigenenergies.
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Chapter 5

Perron-Frobenius Theorem

In this section we provide machinery in order to prove the Perron-Frobenius Theorem, in finite and
infinite dimensions. First, we discuss a version of the Perron-Frobenius Theorem in the setting of
linear algebra, i.e. we state this theorem for matrices. Then, we give an overview and a prove an
important theorem that extends the Perron-Frobenius Theorem in infinite dimensions. Moreover,
we apply this theorem to the N -dimensional spin system given by the Curie-Weiss Hamiltonian.
Finally, we will apply it to some class of Schrodinger operators, since we have seen in Chapter
4 that these play an important role as continuous analog of our scaled Curie-Weiss Hamiltonian,
represented with respect to the canonical base for symN pC2q.

5.1 Perron-Frobenius theorem for N-dimensional matrices

We start with some definitions and basis facts.

Definition 5.1. A square matrix is called non-negative if all its entries are non-negative. It is
called strictly positive if all its entries are strictly positive.

Definition 5.2. A non-negative matrix a is called irreducible if for every pair indices i and j there
exists a natural number m such that pamqij is not equal to zero. If the matrix is not irreducible, it
is said to be reducible.

Definition 5.3. A directed graph is a graph G “ pV,Eq with vertices V and edges E such that the
vertices are connected by the edges, and where the edges have a direction. A directed graph is also
called a digraph.

Definition 5.4. A digraph is called strongly connected if there is a directed path x to y between any
two vertices x, y.

We use the notion of the directed graph or digraph of a square N -dimensional matrix a, denoted
by Gpaq. We say that the digraph of a is the digraph with

V “ t1, 2, ..., Nu,

E “ tpi, jq| aij ‰ 0u.

There is a relation between irreducibility of a matrix and connectedness of the corresponding
digraph:1

Lemma 5.5. A non-negative matrix square a is called irreducible if and only if the digraph of a is
strongly connected.

1These basis facts are take from www.transo.com.tw/shwu/note/AMN 07.ppt

69



CHAPTER 5. PERRON-FROBENIUS THEOREM

Proof. ñq Given a square non-negative matrix a, and m P N`. If pamqij ‰ 0 for some pair pi, jq,
then there exists a direct path in Gpaq of length m from vertex i to vertex j. Compute, using matrix
multiplication:

pamqij “
ÿ

1ďi2ď....ďim

aii2ai2i3 ¨ ¨ ¨ aimj . (5.1)

If pamqij ‰ 0, then there exists 1 ď i2, i3, ..., im ď m such that aii2 ¨ ai2i3 ¨ ¨ ¨ aimj ‰ 0. Hence
pi, i2q, pi2, i3q, ..., pim, jq P E. Thus there is a direct path of length m from vertex i to vertex j.
This is precisely the definition of a strongly connected digraph. Hence irreducibility of a implies
that the digraph of a is strongly connected.

ðq Assume that a is reducible. Then the set of vertices V can be partitioned into two
non-empty sets V1 and V2 in such a way that there is no path from any vertex in V1 to some vertex
in V2. Therefore, if i is a vertex in V1 and j a vertex in V2, there is no direct path from i to j, and
thus a is not strongly connected.

We will now prove a theorem that connects strong connectedness of the digraph of a non-negative
square matrix to permutation matrices2. These permutation matrices will play an important role
when proving that our 2N -dimensional Hamiltonian is irreducible.

Theorem 5.6. The graph of a square non-negative matrix a is strongly connected if and only if
there exists no permutation matrix p such that

p´1ap “

„

N L

0 R



. (5.2)

Here N and R are square matrices and 0 is the matrix with all entries zero. This holds if and
only if there does not exists a non-empty proper subset I Ă t1, 2..., nu such that for all i P I, and
j P t1, 2..., nuzI we have aij “ 0.

Proof. We show first that if the last assertion not holds, then necessarily there exists a permutation
matrix p such that (5.2) holds.
Therefore, suppose there exists I Ă t1, 2..., nu such that aij “ 0 if i P I and j P t1, 2..., nuzI.
Let I “ tik`1, ..., inu and Ic “ ti1, ..., iku. Define σ : t1, 2..., nu Ñ t1, 2..., nu by σpmq “ im@m P

t1, 2..., nu. Then σ is a permutation and for i “ k ` 1, .., n and j “ 1, ..., k, we have

pp´1
σ apσqij “ aσpiqσpjq “ aiiij “ 0. (5.3)

Hence pp´1
σ apσq takes the form

„

A11 A12

0 A22



, where A11 and A22 are a square matrices of

dimension k and n´ k respectively.

Now we prove other direction, again by contraposition. Suppose there is a permutation
matrix pσ such that

pp´1
σ apσq “

„

A11 A12

0 A22



, (5.4)

where A11 and A22 are square matrices, for some 1 ď k ď n. Then for i “ k`1, ..., n and j “ 1, ...k,
we have pp´1

σ apσqij “ aσpiqσpjq “ 0. Let I “ tσpk` 1q, .., σpnqu. Then the complement of I, denoted
by Ic, is the set Ic “ tσp1q, ..., σpkqu. Clearly, by construction aIIc “ 0.

2Again, these facts are take from www.transo.com.tw/shwu/note/AMN 07.ppt.
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The next step is to show that the graph Gpaq is strongly connected if and only if the last
statement in the proposition holds.
Suppose Gpaq is not strongly connected. Then Gpaq has at least 2 strongly connected components.
So there is a I Ă t1, ..., nu such that pi, jq R E for all i P I and j P Ic. This means that aij “ 0 for
all i P I and j P Ic. Thus the last assertion does not hold.
For the other direction, suppose there is a a proper subset I Ă t1, ..., nu such that aIIc “ 0. Then
it is obvious that there is no path in Gpaq form vertex i to vertex j for all i P I and j P Ic. Thus
the graph Gpaq is not strongly connected.

Now, we come to the Perron-Frobenius Theorem. It turns out that there are two versions of this
theorem: one for strictly positive matrices, and the other for irreducible matrices. We will use the
version for irreducible matrices since, as we shall see, the Curie-Weiss Hamiltonian -hCW

N represented

with respect to the standard base for
ÂN

n“1 C2 is a non-negative and irreducible matrix of dimension
2N .

Theorem 5.7. Let a be an N ˆN real-valued non-negative matrix, and denote its spectral radius
by rpaq “ λ . If a is irreducible, then λ “ rpaq an eigenvalue of a, which is positive, simple, and
corresponds to a strictly positive eigenvector.

In fact, the theorem also provides more results, but for us the statement above is enough. Note that
this theorem is based on properties of a matrix. In fact, given some operator on a finite dimensional
space, when specifying a basis and representing the operator with respect to that basis, the result
will be a matrix. The matrix obtained is of course strongly dependent of the choice of the basis.
Nonetheless, the Perron-Frobenius Theorem is valid if there exists a basis such that the matrix
representation of the operator in this basis satisfies the assumptions of the theorem.
As we have said above, later in this chapter we will prove that our Curie-Weiss Hamiltonian -hCW

N ,
written with respect to the canonical basis for the N -fold tensor product, is a 2N -dimensional
matrix that is non-negative and irreducible. So we could apply the above Perron-Frobenius Theorem
immediately to -hCW

N . When multiplying -hCW
N by ´1, the eigenvalues will change sign and we find

instead that the smallest eigenvalue (i.e. the ground state) of hCW
N is simple and corresponds to a

strictly positive eigenvector. However, we will follow another approach and generalize this theorem
to infinite dimensions. We will give a proof of equivalent statements of simplicity and positivity
of an eigenvector based on a general setting for a σ- finite measure space. Then as a special case,
we apply one of these equivalent statements to the matrix exponential e´th

CW
N pt ą 0q in order to

conclude that the ground state of hCW
N is a strictly positive eigenvector, corresponding to a simple

eigenvalue, and is therefore unique.

5.2 Perron-Frobenius theorem for L2-spaces

In this section we consider a self-adjoint operator h that is bounded below and has an eigenvalue
at the bottom of its spectrum. In particular, we will prove equivalent conditions stating that the
eigenspace corresponding to this lowest eigenvector is one-dimensional and that the eigenvector is a
strictly positive function, in a realization of the underlying Hilbert space as an L2-space. We start
with some definitions taken from [33].

Definition 5.8. Let a be an operator on some Hilbert space H. Then it is called bounded from below
if there is a constant c such that

xax, xy ě c||x||2 pfor all x P Hq (5.5)
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It follows that

xax, xy ě c||x||2 ðñ xx, pa´ c1qxy ě 0 pfor all x P Hq, (5.6)

which implies that H ´ c1 ě 0, so that H ě c1 in the sense of operator ordering.

Definition 5.9. Let pX, dµq be a σ-finite measure space. A function ψ P L2pX, dµq is called positive
if ψ is non-negative almost everywhere and is not the zero function. ψ is called strictly positive if
ψpxq ą 0 almost everywhere. A bounded operator a on L2 is called positivity preserving if aψ is
positive whenever ψ is positive. The operator a is called positivity improving if aψ is strictly positive
whenever ψ is positive. Finally, a is called ergodic if and only if it is positively preserving and for

any ψ, φ P  L2 that are both positive, there is some natural number n ą 0 such that xφ, anψy ‰ 0.

Remark.
We remark that by definition the zero function is not positive. So if a is positivity preserving,
then aψ is not the zero function for any positive function ψ. Moreover, every positivity improving
function is ergodic: A function ψ P L2pX, dµq is strictly positive if and only if xφ, ψy ą 0 for all
positive functions φ. Thus, a bounded operator a on L2pX, dµq is positivity improving if and only
if xφ, aψy ą 0 for all positive functions φ, ψ P L2pX, dµq. This brings us to the first theorem of this
section, also stated in [33, p.204]:

Theorem 5.10. Let h be a self-adjoint operator that is bounded from below. Let ε “ inf σphq.
Then e´th is positivity preserving for all t ą 0 if and only if ph ´ λq´1 is positivity preserving for
all λ ă ε.

Proof. First note that e´th and pH ´ λq´1 are bounded operators whenever λ R σphq. We use the
following formulas

ph´ λq´1ψ “

ż 8

0
eλte´htψdt pψ P Dphqq (5.7)

and

e´thψ “ lim
nÑ8

ˆ

1`
th

n

˙´n

ψ pψ P L2pX, dµqq (5.8)

These formulas can be proven using the theory of semigroups, or, as h is required to be self-adjoint,
by functional calculus.

We can rewrite the above equation (5.8) as

e´thψ “ lim
nÑ8

ˆ

n

t
ph´ λ̃q´1

˙n

ψ, (5.9)

where λ̃ “ ´n
t . So if ph ´ λq´1 is positivity preserving for all λ ă ε, then for any t ą 0 and n

large enough, clearly we have λ̃ “ ´n
t ă ε, so that also for all t ą 0 and large n the expression

ˆ

n
t ph´ λ̃q

´1

˙n

is positivity preserving, hence e´th is positivity preserving.

On the other hand, if e´th is positivity preserving for all t ą 0, then from (5.7), it follows
that ph´ λq´1 is positivity preserving.

The above theorem will be used in order to prove the main theorem (Theorem 5.11 below), which
proves positivity of the ground state. This theorem is a combination of [33, Thm. XIII.43] and [33,
Thm. XIII.44].
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Theorem 5.11. Let h be a self-adjoint operator on L2pX, dµq that is bounded from below. Suppose
e´th is positivity preserving for all t ą 0 and that ε “ inf σphq is an eigenvalue of h. Then the
following are equivalent:

(a) ε is a simple eigenvalue of h with a strictly positive eigenvector.
(b) e´th is ergodic for some t ą 0.
(c) L8pXq Y te´thu acts irreducibly for some t ą 0, i.e., no non trivial closed subspace is left
invariant by both e´th and every bounded multiplication operator.
(d) ph´ λq´1 is ergodic for some λ ă ε.
(e) ph´ λq´1 is positivity improving for all λ ă ε.
(f) e´th is positivity improving for all t ą 0.

Before we proof all equivalent statements, we say something about the application of this theorem
to the Curie-Weiss Hamiltonian (3.1) and the quantum mechanical double well Hamiltonian as given
by (4.93) in the previous chapter. In the next paragraph we are going to prove that the Curie-Weiss
Hamiltonian ´hCW

N , represented with respect to the canonical basis for
ÂN

n“1 C2, has a strictly
positive matrix exponential for all t ą 0, and that hCW

N satisfies the assumptions of Theorem (5.11).
Then we can indeed apply the equivalence between statements paq and pfq from this theorem to
our Curie-Weiss matrix in order to conclude that this Hamiltonian has a unique strictly positive
eigenvector corresponding to the simple eigenvalue ε. In fact, it is enough to prove the equivalence
paq ðñ pfq, rather then all other other statements. But in the literature, this equivalence is not
directly proven and is often based on other lemmas. In this thesis, all these lemmas are added in
one single theorem in order to compare the equivalent statements easily.
Moreover, this theorem shows also that the Perron-Frobenius Theorem in the linear algebra setting
(Theorem (5.7)) follows as a special case of this more general theorem, which holds for a much
bigger class of operators than only the non-negative irreducible matrices.
Furthermore, in §5.4 we will see how the uniqueness of the ground state of the (unbounded) quantum
mechanical double well Hamiltonian can be proved using this theorem.

Proof. paq ùñ pbq.
Since ε is a simple eigenvalue of h, it follows that e´tε is a simple eigenvalue of e´th for all t ą 0.
Clearly, e´tε is the largest eigenvalue corresponding to e´th. Put b “ e´th{||e´th||. Then, by
functional calculus, b is positive and we have b ď ||b|| “ 1. Let tPΩu be the spectral projections
for b. Consider the map fnpxq “ xn on r0, 1s. Then fn Ñ χ1 pointwise, with χ1 the characteristic
function in 1. By the measurable functional calculus applied to the self-adjoint element b, we have

fnpbq ÞÑ fpbq strongly. (5.10)

But fpbq “ χ1pbq is just the spectral projection pt1u for b. This is the projection onto the kernel of
b ´ 1I, i.e the eigenspace for 1. By assumption, 1 “ ||b|| is a simple eigenvalue for b. It follows by
hypothesis that pt1u “ xψ, ¨yψ for some strictly positive ψ. Then for any positive χ and φ, we have

lim
nÑ8

xφ, bnχy “ xφ, ψyxψ, χy ą 0, (5.11)

where we used the fact that strong convergence implies weak convergence. Hence there exists a
natural number n such that xφ, pe´thqnχy “ ||e´th||nxφ, bnχy ą 0. Thus e´th is ergodic.

pbq ùñ pcq.
Suppose by contraposition that c does not hold. Then we can find a non-trivial left-invariant
subspace S for L8pXq Y te´thu. Let f P S and put h “ f̄{|f | P L8pXq. Then
|f | “ |f |2{|f | “ hf P S. Similarly, for g P SK, it follows that |g| P SK. Now, pick f P S,
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and g P SK such that f, g ‰ 0. Since e´th leaves S invariant, we have that e´nth|f | P S for all n,
hence

x|g|, e´nth|f |y “ 0 (5.12)

for all n. Thus e´th is not ergodic.

pcq ùñ paq.
By hypothesis, ε is an eigenvalue. Let ψ be the eigenvector of e´th corresponding to e´tε. Suppose
first that ψ is real-valued. Then as |ψ| ˘ ψ ě 0, we know that e´thp|ψ| ˘ ψq ě 0, since e´th is
positivity preserving. Hence

0 ď |e´thψ| ď e´th|ψ|. (5.13)

It follows that

e´tε||ψ||2 ě x|ψ|, e´th|ψ|y ě x|ψ|, |e´thψ|y ě xψ, e´thψy “ e´tε||ψ||2. (5.14)

In the first step, we used Cauchy-Schwarz and the fact that e´tε is the largest eigenvalue of the
self-adjoint operator e´th, which equals its spectral radius, just being this eigenvalue. In the second
and third steps, we used the positivity preserving property of e´th applied to the positive function
e´th|ψ| ´ |e´thψ| and to |e´thψ| ´ e´thψ. In the last step we used e´thψ “ e´tεψ. So all the
inequalities become equalities.

Now, if |e´thψ| ă e´th|ψ|, then e´th|ψ| ´ |e´thψ| ą 0, so that it follows that
x|ψ|, e´th|ψ|y ą x|ψ|, |e´thψ|, which is a contradiction by the above. As a result, e´th|ψ| “ e´εt|ψ|,
so |ψ| is also an eigenvector. We show that |ψ| is strictly positive.

Let S “ tf P L2pX, dµq| fψ “ 0 a.e.u. Then S is clearly a closed subspace and is left
invariant by L8pXq. Let S` “ tg P S| g ě 0u. Then for f P S`,

xe´thf, |ψ|y “ xf, e´th|ψ|y “ e´tεxf, |ψ|y “ 0. (5.15)

The last step in the above equality follows from the observation:

xf, |ψ|y “

ż

X
f |ψ| “

ż

X
|f ||ψ| “

ż

X
|fψ| “ 0, (5.16)

where the first equality follows by definition of the inner product, the second by positivity of f , and
the last equality from the fact that f P S`. Then it follows that

ż

X
pe´thfq|ψ| “ xe´thf, |ψ|y “ }e´tε}xf, |ψ|y “ 0, (5.17)

where used in the first step that e´thf is positive.
Since also |ψ| is positive, the product pe´thfq|ψ| is positive, and since the integral of this function is
zero, it follows that pe´thfq|ψ| “ 0 almost everywhere. Furthermore, for any f P L2pXq any x P X,
pfψqpxq “ 0 if and only if pf |ψ|qpxq “ 0. So, ppe´thfq|ψ|qpxq “ 0 if and only if ppe´thfqψqpxq “ 0.
We conclude that e´thf P S`, thus e´th leaves S` invariant. Since

S “ S` ´ S` ` ipS` ´ S`q, (5.18)

e´th leaves S invariant. By hypothesis pcq, S “ t0u or S “ L2pXq. But since ψ R S,and ψ ‰ 0
(because it is an eigenvector), it follows that S “ t0u. Then |ψ| ą 0 a.e.
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Thus any real eigenvector with eigenvalue e´tε is nonzero a.e., and satisfies e´th|ψ| “ }e´tε}|ψ|.
Thus |ψ| ´ ψ is an eigenvector with eigenvalue e´tε, or it is identically zero, so that |ψ| ´ ψ is
either almost everywhere vanishing or almost everywhere nonvanishing. This means that every real
eignvector with eigenvalue e´tε is almost everywhere strictly positive (in the case that |ψ| ´ ψ “ 0
a.e) or almost everywhere strictly negative (in the case that |ψ| ´ ψ ‰ 0 a .e.)
If e´th had two real different eigenvectors with eigenvalue e´tε, we can assume that they are linearly
independent (because eigenvectors are unique up to scalar multiplication). Then the operator
would also have two orthogonal eigenvectors, which follows from the Gram-Schmidt process for
the eigenspace. Both eigenvectors can be chosen positive a.e, since if for example one of the
real eigenvectors is strictly negative a.e, then multiplying it by ´1 gives an a.e. strictly positive
eigenvector. But this is impossible by definition of the L2-inner product. We conclude that e´th

has only one real eigenvector of eigenvalue e´tε and this eigenvector is strictly positive a.e.
Finally, let ψ be an arbitrary eigenvector with eigenvalue e´tε. Since e´th is a positive operator,
it maps positive functions into positive functions, so by linearity it takes real functions into real
functions. Thus ApRepψqq “ RepAψq. Since ψpxq “ Repψqpxq ` i ¨ Impψqpxq, where Repψq and
Impψq are both real, it follows that both Repψq and Impψq are real eigenvectors with eigenvalue
e´tε. We conclude that ψ is a complex multiple of the unique real (strictly positive) eigenvector.
Hence e´tε is a simple eigenvalue corresponding to a strictly positive eigenvector.

pbq ùñ pdq.
From the proof of Theorem 5.10, we can write

ph´ λq´1 “

ż 8

0
eλte´htdt pλ ă εq. (5.19)

We must show for a fixed λ ă ε, that for all positive functions f, g P L2, we have xf, ph´λq´ngy ‰ 0
for some n ą 0 and that ph ´ λq´1 is positively preserving. We start with the last assertion.
Suppose e´th is ergodic from some t ą 0. Since, by assumption, e´th is positively preserving for all
t ą 0, it follows by Theorem 5.10 that ph´ λq´1 is positively preserving for all λ ă ε.

Now we prove the ergodic property for ph ´ λq´1. By assumption, e´th is ergodic for some
t ą 0. So for all positive functions f, g, there is an n ą 0 such that xf, e´nthgy ą 0. Put s “ nt ą 0.
Notice that xf, e´shgy is continuous, so xf, e´shgy ą 0 on some interval containing s. Thus for any
λ ă ε

xf, ph´ λq´1gy “

ż 8

0
eλxxf, e´hxgydx ą 0. (5.20)

Now, for this n we compute

xf, ph´ λq´ngy “ xph´ λq´n`1f, ph´ λq´1gy “
ż 8

0
eλxxph´ λq´n`1f, e´xhgydx. (5.21)

This integral is strictly positive if xph ´ λq´n`1f, e´thgy is strictly positive on some interval.
By the above, for all positive functions f, g, the expression xf, e´shgy ą 0 on an interval
containing s, so we are done if we show that ph ´ λq´n`1f is positive, since in this case, there
would exists an ñ such that xph´λq´n`1f, e´ñthgy ą 0, which by continuity holds also on an interval.
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So we need to show that ph´ λq´n`1 is positively preserving. But

xf, ph´ λq´n`1gy “ xf, ph´ λq´n`2ph´ λq´1gy “
ż 8

0
eλxxph´ λq´n`2f, e´xhgydx. (5.22)

By the same argument as above, we show that ph ´ λq´n`2 is positivity preserving. This process
can be repeated n´2 times, so that it follows that we just have to prove that ph´λq´1 is positivity
preserving. But this statement was already proven by (5.20). Hence ph ´ λq´n`1 is positivity
preserving. We conclude that xf, ph´ λq´ngy ą 0. Thus ph´ λq´1 is ergodic.

pdq ùñ pbq.
Assume ph ´ λq´1 is ergodic for some λ ă ε. We need to show that there is a t ą 0 such that for
all positive f, g there is some n ą 0 such that xf, e´tnhgy ‰ 0. By assumption, e´th is positivity
preserving for all t ą 0. So xf, e´thgy ě 0 for all t ą 0. As before, compute

0 ‰ xf, ph´ λq´ngy “

ż 8

0
eλxxph´ λq´n`1f, e´xhgydx. (5.23)

This inner product in the integrand is equal to

xph´ λq´n`1f, e´xhgy “ xph´ λq´n`2f, ph´ λq´1pe´xhgqy “
ż 8

0
eλyxph´ λq´n`2f, e´yhe´xhgydx “

ż 8

0
eλyxph´ λq´n`2f, e´px`yqhgydx. (5.24)

Iterating this process, we find that

0 ‰ xf, ph´ λq´ngy “

ż 8

0
¨ ¨ ¨

ż 8

0
eλpx1`...`xnqxf, e´px1`...`xnqhgydx1 ¨ ¨ ¨ dxn. (5.25)

If for all t ą 0 the expression xf, e´thgy equals 0, then also the above integral is zero and we have a
contradiction. So there is a t ą 0 such that xf, e´thgy ą 0, and by continuity, this inequality holds
on an interval so that the integral is strictly positive. Then take n “ 1, and we have shown that
e´th is ergodic.

pdq ùñ peq
Let f and g be positive. Since e´th is ergodic, xf, e´shgy ą 0 for some ą 0. But s ÞÑ xf, e´shgy is
continuous in s, so xf, e´shgy ą 0 on some interval containing s. Thus for all λ ă ε,

xf, ph´ λq´1gy “

ż 8

0
eλspxf, e´shgyds ą 0. (5.26)

pdq ùñ pfq
Let f and g be positive and put B “ tt ą 0 | xf, e´thgy ą 0u.
The map t ÞÑ pf, e´tHgq is analytic on p0,8q, which means that every zero of this map is an
isolated point. But p0,8qzB is precisely the set of zeros of this map in p0,8q. So for any x P p0,8q
there exists an ε ą 0 such that for any y P p0,8qzB, y ‰ x, we have |x´ y| ě ε.

If x would be a limit point of p0,8qzB, then for any ε ą 0 there exists a y P p0,8qzB,
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such that |x ´ y| ă ε. Such a point x has to be in the closure of p0,8qzB, but by definition, it
cannot be in p0,8qzB itself. Since every isolated point is not a limit point and every limit point is
not an isolated point, by the previous observation, it now follows that the closure of p0,8qzB is a
subset of r0,8qzB. Hence x P pr0,8qzBqzpp0,8qzBq Ď t0u. The conclusion is that if p0,8qzB has
a limit point, it is equal to one. In particular, B contains arbitrary small numbers. Thus, if we can
show that t ą s and s P B implies that t P B, we can conclude that b “ p0,8q.
Fix s P B. Then pf, e´thgq ą 0, so that fp¨qpe´thgqp¨q is not identically zero. Put w “ minpf, e´shgq.
Then w is not identically zero since f is positive and also e´shg is not identically zero because e´sh

is positively preserving and g positive. It follows that for any τ ą 0,

xf, e´τhpe´shgqy ě xf, e´τhwy “ xe´τhf, wy

ě xe´τhw,wy “ }e´τh{2w}2 ą 0. (5.27)

We have used that w is positive and that e´τh{2 is positively preserving to conclude that
e´τh{2w ‰ 0. Thus s P B and τ ą 0 imply that s` τ P B.

peq ùñ pdq
This follows from the remark before Theorem 5.10.

pfq ùñ pbq
Again, this follows by the same remark.

5.3 Perron-Frobenius theorem and the Curie-Weiss model

The general theorem from the previous paragraph can of course also be applied to (some class) of
matrices, by taking X as a discrete space with counting measure. We will prove that the matrix
exponential e´th

CW
N of the Curie-Weiss Hamiltonian ´hCW

N is positivity improving for all t ą 0. For
this, we need a lemma that connects irreducibility of a non-negative square matrix to its matrix
exponential. The proof of this lemma is based on [11].

Lemma 5.12. If a is non-negative matrix, then it is irreducible if and only if the matrix exponential
ea is strictly positive in the sense of Definition 5.1.

Proof. Take α P R` such that 1{α is greater than the spectral radius of a. Then we know that
p1´ αaq´1 “: S exists, and S is given by the Neumann series

S “ 1` αa` α2a2 ` α3a3 ` ... (5.28)

This follows since this sum of the Neumann series on he right hand side exists and it is easy to see
that p1´αaqS “ 1 “ Sp1´αaq. Now, for any i, j P R, the matrix entry Si,j is a sum of non-negative
terms and if S is strictly positive, then there must be a lowest power mi,j of S such that ami,j ą 0,
since the identity matrix is not strictly positive. By the previous definition, if this is true for all
i, j, then a is irreducible.
Conversely, if a is irreducible, then for all indices i and j, there must be a power m of a such that
pamqij ą 0. This implies that for all i and j there must be terms in Si,j that are non-zero.
Now, we apply this to ea. This matrix exponential is defined by the power series

ea “ 1` a`
a2

2!
`
a3

3!
` ... (5.29)

The above argument applies for S “ ea. Hence a is irreducible if and only if ea is strictly positive.
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Now, we are in a position to prove a statement about our Hamiltonian ´hCWN . This statement will
depend on the basis in which we represent the operator. We will take the standard basis of C2, also
extended to a basis of the tensor product

ÂN
n“1 C2.

Theorem 5.13. The Curie-Weiss Hamiltonian ´hCWN from (3.1), represented in the standard basis

for
ÂN

n“1 C2, is non-negative and irreducible.

Proof. Since all constant factors in ´hCWN are strictly positive, we only have to consider both terms
containing sums. We show that

ÿ

x,yPΛN

σ3pxqσ3pyq `
ÿ

xPΛN

σ1pxq (5.30)

is non-negative. Consider the standard basis te1, e2u for C2 over C. Then ten1b...benN u
2
n1“1,...,nN“1

is the standard basis for
ÂN

n“1 C2. Note that the spin-Pauli matrix σ3 maps e1 to e1 and e2 to ´e2,
whereas σ1 maps e1 to e2 and e2 to e1. Note that σ1pxq “ 1b ...b 1b σ1 b 1...b 1, where σ1 acts
on the xth position and similarly for σ3pxq. It follows for all x, y P t1, ..., Nu that

σ3pxqpen1 b ...b enN q “

1pen1q b ...b 1penx´1q b σ3penxq b 1penx`1q b ...b 1penN q “
$

’

’

’

’

&

’

’

’

’

%

`en1 b ...b enN q, if enx “

˜

1

0

¸

´en1 b ...b enN q, if enx “

˜

0

1

¸

.

(5.31)

We have σ3pyqσ3pxqpen1 b ... b enN q “ ˘pen1 b ... b enN q, where the minus sign appears only
if enx ‰ eny . We conclude that the standard basis for the N -fold tensor product is a set of
eigenvectors for σ3pyqσ3pxq with eigenvalues ˘1. Thus we know that

ř

x,yPΛN
σ3pxqσ3pyq is a

diagonal matrix with respect to this standard basis.

The entries are all non-negative.
This can easily be seen by the following argument. Given an arbitrary basis vector
e :“ pen1 b ... b enN q, let A be the set of indices of this vector containing e1, and B the
set of indices containing e2. Let a “ #A, and b “ #B, so that a ` b “ n. Then σ3pxqσ3pyqe
has a negative eigenvalue ´1 if and only if x P A and y P B, or x P B and y P A. In the sum
ř

x,yPΛN
σ3pxqσ3pyqe, this gives ab ` ba “ 2ab minus signs. So there are n2 ´ 2ab plus signs. We

must have, independently of a and b, that n2´ 2ab ě 2ab, and then we are done, since the diagonal
term can be never strictly negative. Plugging in a ` b “ n gives n2 ´ 4apn ´ aq ě 0 if and only if
n2 ´ 4an ` 4a2 ě 0. The parabola a ÞÑ n2 ´ 4an ` 4a2 attains its minimum in a “ n{2, which is
given by n2 ´ 4n2n` 4pn2 q

2 “ 0. So indeed, there are at least as much plus signs as minus signs so
that the corresponding diagonal term is non-negative.

The other term
ř

xPΛN
σ1pxq does not contain any negative entries at all, so if we apply this to any

basis vector ten1b...benN u, we get a non-negative matrix. It follows that the (5.30) is non-negative.

Now we show that the matrix corresponding to the Curie-Weiss Hamiltonian is irreducible.
Note that irreducibility of a matrix does not depend on the basis in which the operator is
represented, since similar matrices define equivalent representations which preserve irreducibility.
We use Theorem 5.6 to show by contradiction that the matrix ´hCWN is irreducible.
So suppose there exists a permutation matrix p such that

p´1p´hCWN qp “

„

N L

0 R



. (5.32)
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Now ´hCWN is symmetric, since all σ1 and σ3 are symmetric. It follows that L “ 0. Moreover,

x :“ p´1
ÿ

x,yPΛN

σ3pxqσ3pyqp (5.33)

is again a diagonal matrix and y :“
ř

xPΛN
σ1pxq commutes with any permutation operator since it

is a sum over all spin flips. It follows that the only off-diagonal terms in p´1p´hCWN qp are coming
from the part

ř

xPΛN
σ1pxq. But if we take the 2N{2-th basis vector, i.e. e :“ pe1 b e2 b ... b e2q

in the ordered basis as defined before, then σ1p1qe “ pe2 b e2 b ... b e2q. Thus in this matrix
representation, the last basis vector contributes. Hence we see that in the matrix p´1p´hCWN qp
on position p2N , 2N{2q there is always a 1. We can repeat this process for the vector that has the
vector e2 only in two positions. So there is also a 1 at position p2N ´ 1, 2N{2 ´ 1q, and so on. In
the last step we see that there is a 1 at position p2N{2 ` 1, 1q, It follows that the blocks N and R
can never be square. This is a contradiction.

We have showed that the non-negative matrix ´hCWN is irreducible. Thus the Curies-Weiss
Hamiltonian is a non-negative irreducible matrix.

We are going to use Theorem 5.11 and Lemma 5.12. By the previous proposition, we may apply
Lemma 5.12 to the Curie- Weiss Hamiltonian ´hCWN . Then e´h

CW
N is strictly positive. Then clearly

for any t ą 0, also e´th
CW
N is strictly positive. Furthermore, it is positivity improving. To see this,

we must show that for any to non-zero positive vectors f, g P L2pX, dµq, we have

xf, e´th
CW
N yL2 ą 0. (5.34)

Since our space X is a discrete space consisting of 2N points, the corresponding measure is simply
the counting measure. Hence the inner product is just the standard inner product on C2N . Moreover
it suffices to show the above inequality for (standard) basis vectors ei, where 1 ď i ď 2N , So we are
done if we show that for all i and j,

i“2N
ÿ

i“1

eipkqpe
´thCWN ejqpkq ą 0. (5.35)

The above equation means that pe´th
CW
N ejqpiq ą 0, which is saying that all entries of the matrix are

strictly positive. So this means that for all t ą 0, e´th
CW
N is positivity improving, which is exactly

what we just have shown.
It remains to show that ´hCWN is bounded from below. But this is obvious, since any matrix
is bounded from below. In order to apply Theorem (5.11), inf σphCWN q must be an eigenvalue.
But this is trivial in a finite dimensional Hilbert space. The positivity improving Curie-Weiss
Hamiltonian satisfies all the assumptions of Theorem (5.11), so that we may conclude that the
lowest eigenvalue is simple, with a strictly positive eigenvector.

It also follows that Theorem 5.11 can be applied to ´a, for any non-negative irreducible
self-adjoint matrix a, since then eta pt ą 0q is strictly positive, and automatically every matrix is
bounded from below by its spectral radius and the bottom of the spectrum is always an eigenvalue.
Thus for these matrices, the eigenvalue corresponding to the ground state will be simple and
the ground state eigenvector is strictly positive. Of course, Theorem 5.11 does not hold only
for matrices, and can therefore be seen a generalization of this version of the Perron-Frobenius
Theorem, given in Theorem 5.7.
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5.4 Application to Schrödinger operators

We have seen in Chapter 3 that the scaled compressed Curie-Weiss Hamiltonian 1
N h

CW
N �symN pC2q,

written with respect to the canonical base for symN pC2q, was a tridiagonal matrix of dimension
N`1. In Chapter 4, we have argued that this scaled matrix was related to an unbounded Schrodinger
operator describing a particle in a symmetric double well potential. Therefore, we will also explain
how the Perron-Frobenius Theorem for matrices can be generalized to some class of unbounded
operators on an infinite Hilbert space. In this section we prove a general theorem stating that
the Schrodinger operator with a locally integrable potential V bounded from below such that
lim|x|Ñ8 V pxq “ 8, has has a non-degenerate strictly positive ground state. The proof of this
statement is partially based on Theorem (5.11) and on other theorems that we will prove in this
chapter. In particular, the harmonic oscillator with a symmetric double well potential one the real
line will be an example. However, we will prove the theorem for the Hilbert space L2pRnq, with n
an arbitrary natural number. It is not so easy to prove this statement for arbitrary n. Therefore,
in Appendix D we give some important definitions and basis facts about unbounded operators.
Using the machinery from this appendix, we can start with the theorems regarding the Schrodinger
operator with some class of potentials. We consider potentials that are bounded from below and
such that lim|x|Ñ8 V pxq “ 8. The main theorem of this section is:

Theorem 5.14. Let V P L2
locpRnq be positive and suppose that lim|x|Ñ8 V pxq “ 8. Then ´∆` V

has a non-degenerate strictly positive ground state.

The notation ´∆` V is explained by (D.4). It denotes the closure of the operator ∆ ` V . The
above theorem can be found in [33, Thm. XIII.47]. However, the proof is quite short. We try to
give a more detailed version of it. The proof we provide basically consists of three steps. The first
step we is to show that the spectrum of the operator H “ ´∆` V is discrete. We need a couple
of theorems in order to prove this. The first theorem involved is based of the compactness of the
resolvent operator:

Theorem 5.15. Let V P L1
locpRnq be bounded from below and suppose that V pxq Ñ 8 if |x| Ñ 8.

Then H “ ´∆` V , defined as a sum of quadratic forms, is an operator with compact resolvent.

This statement can be proven using the min-max principle, as given in [33, Thm. XIII.1]. However,
we give a more direct proof based on the following theorem:

Theorem 5.16. Let V P L1
locpRnq be bounded from below and suppose that V pxq Ñ 8 if |x| Ñ 8.

Then the injection of H1
V pRnq into L2pRnq is compact.

To prove this theorem, we need the following two lemmas and a corollary. These can be found
in [7, section 4.1]. The proofs involve Sobolev spaces Hs with a real parameter s. More information
about these spaces can be found in Appendix D or in [9].

Lemma 5.17. Let V be a real measurable function on Rn such that:
(a) V pxq tends to 0 if xÑ8;
(b) multiplication by V is a continuous mapping from HspRnq to L2pRnq, for a particular s ě 1.

Then multiplication by V is a compact mapping from HtpRnq to L2pRnq, for all t ą s.

Proof. Let ϕ P DpRnq be a test function with ϕ “ 1 for |x| ă 1, and ϕkpxq “ ϕpx{kq with k P N.
Let Tk be the mapping from HspRnq to L2pRnq defined by:

Tkupxq “ ϕkpxqV pxqupxq px P Rnq, (5.36)
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being the composition of the mapping: u P HtpRnq ÞÑ ϕku P H
spRnq and multiplication by V . It is

a general fact that u P HtpRnq ÞÑ ϕku P H
spRnq is compact and, by assumption, multiplication by

V is continuous, so that Tk is therefore compact. Furthermore, for all u P HtpRnq

||Tku´ V u|| “||p1´ ϕkqV u|| “

ˆ
ż

|x|ąk
|p1´ ϕkqV u|

2dx

˙1{2

(5.37)

ďA sup|x|ąk|V pxq|||u||
1{2
L2 ď A sup|x|ąk|V pxq|||u||H1 . (5.38)

Here, A is a constant given by the supremum of |1´ϕk| times the length of the (compact) interval
where ϕk ‰ 0. When k Ñ 8, for all |x| ą k we clearly have ϕk Ñ 0, as it is a test function.
Since t ą s we know that Ht Ă Hs Ă H1 so that ||u||H1 is finite, since its norm can be bounded
by ||u||Ht . Now, by taking k Ñ 8, we see that the sequence of compact operators Tk converges,
for the norm topology in BpHtpR2q, L2pR2qq, towards the operator of multiplication by V , which is
therefore compact.

Lemma 5.18. Let p be a real measurable function on Rn such that:
(a) 1{p P L2

locpRnq;
(b) multiplication by p is a compact mapping from HspRnq to L2pRnq, for some s ą 0.

Then the space V defined by:

V “ tu P HspRnq :

ż

|upxq|2

|ppxq|2
dx ă 8u, (5.39)

equipped with the norm:

||u||V “

ˆ

||u||2Hs `

ż

|upxq|2

|ppxq|2
dx

˙1{2

(5.40)

is contained in L2pRnq with compact injection.

Proof. We have to show that the inclusion operator ι : HspRnq Ñ L2pRnq is compact in that the
image pιpukqqk of any weakly convergent sequence pukqk P V converges in L2- norm. Therefore,
given such a weakly convergent sequence pukqk in V , without loss of generality we may assume that
pukqk is bounded by one and that it converges to 0. Thus, we have the following setting: pukqk is a
sequence of elements uk P V such that

||uk||V ď 1, uk Ñ 0 in V weakly if k Ñ8. (5.41)

Since ||uk||
s
H ď ||uk||V , the space V is contained in the space HspRnq, with continuous injection, we

deduce that the sequence pukqk satisfies

||uk||Hs ď 1, uk Ñ 0 in HspRnq weakly if k Ñ8. (5.42)

From the compactness of multiplication by p : HspRnq Ñ L2pRnq, we have

||puk||L2 Ñ 0 if k Ñ8. (5.43)

By hypothesis: ||uk||V ď 1 implies that
ş

|uk|
2

|p|2
dx ď 1, whence by Cauchy-Schwarz inequality:

ż

|uk|
2dx “

ż

puk
uk
p
dx ď

ˆ
ż

|puk|
2dx

˙1{2ˆż

|
uk
p
|2dx

˙1{2

, (5.44)

hence

||uk||
2
L2 ď ||puk||L2 , (5.45)

which shows that ||uk||L2 Ñ 0 if k Ñ8. This proves the lemma.
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This brings us to the following corollary.

Corollary 5.19. Let V P L1
locpRnq be bounded from below and suppose that V pxq Ñ 8 if |x| Ñ 8.

For all given α ą 0, the space W ”Wα defined by,

W “ ty P H1pRnq : p1` V qαu P L2pRnqu, (5.46)

with norm

||u||W “

ˆ
ż
„

p1` V pxqq2α|upxq|2 `
ÿ

j

|
Bu

Bxj
|2dx

˙

. (5.47)

Then, W is a Hilbert space in L2pRnq with compact injection.

Proof. Consider the mapping ppxq “ p1 ` V pxqq´α. Then p P L8pRnq, so that p is a continuous
mapping from H1pRnq to L2pRnq. Moreover, ppxq Ñ 0 if |x| Ñ 8. By Lemma 5.17, multiplication
by p is a compact mapping from H1pRnq to L2pRnq. Furthermore, 1{p “ p1`V pxqqα P L2

locpRnq. We
can apply Lemma 5.18 to conclude that W is a Hilbert space in L2pRnq with compact injection.

We are now in the position to prove Theorem 5.16. We know that the potential is bounded below
by some constant ´C. It is shown in [13] that the domain of the self-adjoint extension is always
contained in the form domain QpHq :“ H1

V pRnq given by

H1
V pRnq “ tu PW 1,2pRnq |pV ` Cq1{2u P L2pRnqu. (5.48)

This set is nothing more than the space V of Corollary 5.19, for α “ 1{2 and 1 replaced by C. Of
course, the latter is just a rescaling and does not change the result. By the same corollary, it now
follows that QpHq is compactly embedded in L2pRnq. This proves Theorem 5.16.

This brings us the the next result:

Corollary 5.20. Let us assume that the injection of H1
V pRnq into L2pRnq is compact. Then H “

´∆` V has compact resolvent.

Proof. For H “ ´∆ ` V and λ R σpHq, the operator RλpHq “ pλI ´ Hq´1 is a bijection with
continuous inverse λI ´ H. Furthermore, the inclusion map ι : H1

V pRnq Ñ L2pRnq is compact
by assumption, and if we restrict it to the domain of H, it is still compact. Now use that the
composition of a compact map with a continuous map is compact. Therefore, RλpHq is compact,
and we conclude that H has compact resolvent.

We apply this corollary to ´∆` V and conclude that this operator has compact resolvent. Hence
Theorem (5.15) has been proven. We need one lemma more to finish step 1.

Lemma 5.21. An operator with compact resolvent has purely discrete spectrum and therefore has
a complete set of eigenfunctions.

Proof. Let a be an operator with compact resolvent. Then we know by assumption that b :“ Rλpaq
is compact for λ R σpaq. We show first that b´1 has discrete spectrum. Note that 0 R σpbq, therefore
we may apply the spectral theorem for compact operators to conclude that σpbq consists of countably
many non-zero eigenvalues with no accumulation point in C. Since 0 ‰ λ is an eigenvalue of b if
and only if λ is an eigenvalue of b´1, we know that σpb´1q consists only of eigenvalues which follows
from the following observation. If λ P ρpbq, then b´1 ´ λ´1 is bounded and invertible, since

b´ λ “ λbpλ´1 ´ b´1q, (5.49)
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so that we have

pb´1 ´ λ´1q´1 “ ´λpb´ λq´1b. (5.50)

Thus λ´1 P ρpb´1q. We have showed that σpb´1q “ tλ´1 : λ P σpbqu. As b´1 “ a ´ λ, the above
observation implies that a has a discrete spectrum.

The same result is valid for the operator ´∆` V , since the above corollary holds for the closure
as well. This proves step 1.

The second step proofs an important fact about strong resolvent convergence of the operator
´∆` V . There is another theorem needed that shows essentially self-adjointness of the operator
H “ ´∆` V on some domain. The two theorems are given below and can be found in [32, Thm.
X.28] and [31, Thm. VIII.25a].

Theorem 5.22. Let V P L2
loc with V ě 0 pointwise. Then ´∆ ` V is essentially self-adjoint on

C80 pRnq.

Proof. Put H “ ´∆` V . It is clear that H is symmetric, hence closable (with closure H̄ “ H˚˚).
Since V pxq Ñ `8 if |x| Ñ 8 and V is bounded from below, we have seen that the corresponding
domain of H̄ is always contained in the form domain QpHq :“ H1

V pRnq given by

H1
V pRnq “ tu PW 1,2pRnq |pV ` Cq1{2u P L2pRnqu. (5.51)

Note that ´∆ ` V ` 1 is a strictly positive symmetric operator. Therefore, in view of [32, Thm.
X.26], it suffices for self-adjointness of H̄ to show that

p´∆` V ` 1q˚u “ 0 ùñ u “ 0, (5.52)

for u P L2pRnq (in the sense of distributions). But ´∆` V is given with domain C80 pRnq, which is
dense in L2pRnq, so that the above statement is equivalent to

p´∆` V ` 1qu “ 0 ùñ u “ 0 pu P L2pRnqq. (5.53)

Note that u P L2pRnq and V P L2
locpRnq imply that V u P L1

locpRnq. Moreover, u P L1
locpRnq, so that

we conclude from the above equality that ∆u P L1
locpRnq. By Kato’s inequality, we have

∆|u| ě Rerpsgnpuqq∆us “ RerpsgnpuqqpV ` 1qus “ |u|pV ` 1q ě 0. (5.54)

In particular, ∆|u| ě 0. Let jδ be an approximation identity, and w “ |u|, wδ “ w ˚ jδ. It follows
from a simple calculation that ∆wδ “ w ˚∆jδ P L2pRnq. Hence, wδ P Dp∆q. Then,

xwδ,∆pwδqyL2 “ ´x∇pwδq,∇pwδqyL2 ď 0, (5.55)

with equality only if wδ “ 0. But ∆wδ “ ∆|u| ˚ jδ ě 0 in distributional sense, hence ∆wδ ě 0
pointwise. It follows that wδ “ 0. Using the fact that jδ is an approximation of the identity, it
follows that δ Ñ 0 implies that wδ Ñ w. Therefore, w “ 0, and hence u “ 0.

The next theorem gives a result about strong resolvent convergence:3

Theorem 5.23. Let tanu
8
n“1 and a be self-adjoint operators and suppose that D is a common core

for all an and a. If anϕÑ aϕ for each ϕ P D, then an Ñ a in the strong resolvent sense.

3This notion of convergence is explained in Appendix D (see Definition (D.17)).
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Proof. Let ϕ P D, and put C “ pa ´ iqD. Note that C is dense in H, since the deficiency index of
TD is zero, which follows from the fact that a is essentially self-adjoint. Then for each ϕ P D, we
put ψ “ pa´ iqϕ P C. Note that pan ´ iq

´1 and pa´ iq´1 exists as i is imaginary and hence is not
in the spectrum of a and an (since these are self-adjoint). Then:

rpan ´ iq
´1 ´ pa´ iq´1sψ “ (5.56)

pan ´ iq
´1pa´ iqϕ´ ϕ “ (5.57)

pan ´ iq
´1paϕ´ iϕ´ anϕ` anϕq ´ ϕ “ (5.58)

pan ´ iq
´1pa´ anqϕ` ϕ´ ϕ “ (5.59)

pan ´ iq
´1pa´ anqϕ. (5.60)

By the uniform boundness principle applied to the bounded operators pan ´ iq´1, it follows that
the pan ´ iq´1 are uniformly bounded. Since pa ´ anqϕ Ñ 0, we can now conclude that the above
equation goes to zero if nÑ8. Since D is dense, we can conclude that

pan ´ iq
´1ϕÑ pa´ iq´1ϕ @ϕ P H. (5.61)

By virtue of [31, Thm. VIII.19], we conclude that we have strong resolvent convergence: an Ñ
a, pnÑ8q.

Then, let V P L2
locpRnq be positive and suppose that lim|x|Ñ8 V pxq “ 8. Put Vn “ mintV, nu.

Then ∆` Vn,´∆` V,´∆ and ´∆` pV ´ Vnq are essentially self-adjoint on C0pRnq by Theorem
5.22. Moreover, for any ψ P C0pRnq, we clearly have Vnψ Ñ V ψ in L2 as C0pRnq is dense in L2pRnq.
Then, by Theorem 5.23 applied to an “ ´∆` Vn and a “ ´∆` V , and to bn “ ´∆` pV ´ Vnq
and b “ ´∆, we have the necessary strong resolvent convergence.

The third step is based on a link giving a connection between the operators H0 “ ´∆ and
H “ ´∆` V . Two theorems are needed. The first theorem taken from [33, Thm. XIII.45], is the
most important one: it lifts some properties of H0 to H. The second one is given by a lemma and
proves that the properties in question are true for H0.

Theorem 5.24. Let H and H0 be semibounded,4 self-adjoint operators on L2pM,dµq where
pM,dµq is a σ- finite measure space. Suppose that there exists a sequence of bounded multiplication
operators Vn such that H0 ` Vn converges to H in the strong resolvent sense and so that H ´ Vn
converges to H0 in strong resolvent sense. Suppose, moreover, that H ´ Vn and H ` Vn are
uniforormly bounded from below. Then

(a) e´tH is positively preserving if and only if e´tH0 is positively preserving.

(b) te´tHu Y L8pM,dµq acts irreducibly on L2pM,dµq if and only if te´tH0u Y L8pM,dµq
acts irreducibly on L2pM,dµq.

Proof. Note that the Trotter product formula states that for A and B are self-adjoint operators and
A`B is essentially self-adjoint on DpAq XDpBq, then we have

s- lim
nÑ8

peitA{neitB{nqn “ eipA`Bqt. (5.62)

Moreover, if A and B are bounded from below, then

s- lim
nÑ8

pe´tA{ne´tB{nqn “ e´tpA`Bqt. (5.63)

4This definition is explained in Appendix D (see Definition (D.14)).
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Now, we use the last equality and the continuity of the functional calculus to obtain:

e´tH “ s- lim
nÑ8

ˆ

s- lim
mÑ8

pe´tH0{me´tVn{mqn
˙

. (5.64)

and

e´tH0 “ s- lim
nÑ8

ˆ

s- lim
mÑ8

pe´tH{me`tVn{mqn
˙

. (5.65)

Since e˘tVn{m is positivity preserving, we see that paq holds. Moreover, by the above two formulas
and the fact that e˘tVn{m P L8pMq, any subspace left invariant by e´tH0 and L8pMq is left invariant
by e´tH and vice versa. Thus no nontrivial closed subspace is left invariant by both e´tH and every
bounded multiplication operator, if and only if no nontrivial closed subspace is left invariant by
both e´tH0 and every bounded multiplication operator. This proves that te´tH0uYL8pM,dµq acts
irreducibly on L2pM,dµq if and only if te´tHu Y L8pM,dµq acts irreducibly on L2pM,dµq

Since the above theorem is based on a proof using the Trotter product formula, which works for
self-adjoint operators, we really need H0 and H0`V to be self-adjoint. Therefore, we must take their
closure, because we know that both operators on the domain C0pRnq are essentially self-adjoint.
Thus, using Theorem 5.23 with an “ ´∆` Vn, a “ ´∆` V , bn “ ´∆` pV ´ Vnq and b “ ´∆,
where Vn “ mintV, nu, we have strong resolvent convergence. Moreover, if we can show that the
operator e´tH0 is positivity improving, we can indeed apply Theorem 5.24 to conclude that for
H “ ´H0 ` V , the exponential e´tH is positivity preserving. This will be the next step. We are
going to show that for H0 “ ´∆, the operator e´tH0 is positivity improving. It follows then by the
remark under Theorem 5.11, that it is also ergodic and positivity preserving.

Lemma 5.25. Given H0 “ ´∆, the operator e´tH0 is positivity improving for all t ą 0.

Proof. From [32, p.57], we know that H0 “ F´1λ2F and fpH0q “ F´1fpλ2qF , where f is any
bounded measurable function. It follows that the operator e´iH0t “ F´1e´iλ

2tF , for Imptq ď 0.
Theorem IX.29 in [32] states that given f P L8pRnq, if either (a) f P L2pRnq or (b) f̌ P L1pRnq,
then

pfp´i∇qϕqpxq “ p2πq´n{2
ż

qfpx´ yqϕpyqdy, pϕ P L2pRnqq, (5.66)

and the integral converges for all x in case paq and for almost all x in case pbq.

Here, by fp´i∇q, we denote the operator ϕ ÞÑ ~pfϕ̂q. With the notation f̂ , we mean the
Fourier transform Fpfq of f . Similarly, the notation f̌ means the inverse Fourier transform F´1pfq
of f .

It follows that for α P C and Repαq ą 0, we have

e´λ
2α P L8pRnq X L2pRnq. (5.67)

Therefore, we can apply (5.66) to e´λ
2α and we obtain

pe´H0αϕqpxq “ p4παq´n{2
ż

e
´|x´y|2

4α ϕpyqdy pϕ P L2pRnqq, (5.68)

where we used the fact that F´1pe´λ
2αq “ p2αq´n{2e´x

2{4α.

Now, we are in the position to prove the lemma. We have to show that

xψ, e´H0αϕyL2 ą 0, (5.69)
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for all positive functions ψ and ϕ in L2pRnq. By formula (5.68) this is obvious, as p4παq´n{2e
´|x´y|2

4α

is strictly positive. For t ą 0, we put t “ α, and the statement is of course still true.

From now on, we will use the notation H0 to indicate the operator ´∆, and H to indicate the
operator ´∆` V .

As we have just mentioned, it follows that the operator e´tH0 is positivity preserving and
ergodic. By Theorem 5.11 pbq ùñ pcq, we have now that L8pRnq Y te´tH0u acts irreducibly on
L2pRnq.

We give a short summary of the steps used as preparation to apply the main Theorem
5.14.

(1) We showed that the spectrum of H “ ´∆` V is discrete.

(2) Then we proved that we have strong resolvent convergence so that H0 and H satisfy
the assumptions of Theorem 5.24 with bounded multiplication operators given by Vn “ minpV, nq.

(3) It has been shown that e´tH0 is positivity preserving and that L8pRnq Y te´tH0u acts
irreducibly on L2pRnq. Thus, by Theorem 5.24, this hold for e´tH as well.

In order to prove that the ground state is strictly positive and non-degenerate, we use Theorem
5.11 applied to our Schrodinger operator H. We know that ´∆ ` V is essentially self-adjoint, so
that H “ ´∆` V is self-adjoint. It is clearly bounded from below:

xp´∆` V qψ,ψy “ x´∆ψ,ψy ` xV ψ, ψy ě C||ψ||2. (5.70)

We used that V is bounded from below, and that ´∆ is positive (which follows by Green’s identity).
Moreover, by scaling the potential we can make ´∆`V positive. Then, also H “ ´∆` V is positive
as follows from the next theorem, also stated in Appendix D as Theorem D.13:

Theorem 5.26. A positive, densely defined, symmetric operator, has a unique positive self-adjoint
extension, called the Friedrichs extension.

Since the operator ´∆` V is positive, densely defined, and symmetric, the above theorem applies.
Since the ´∆`V is essentially self-adjoint, the extension equals its closure, and it now follows that
´∆` V is positive and thus its spectrum is contained in the positive real axis. In particular, this
operator is bounded from below. Since we know by step 1 that the spectrum is discrete, we can now
conclude that the bottom of the spectrum of H is an eigenvalue. Hence, by paq ðñ pcq in Theorem
5.11, it suffices to show that e´tH is positivity preserving and that L8pRnqYte´tHu acts irreducibly.
We know these facts for e´tH0 and hence, we may apply Theorem 5.24 to conclude that e´tH is
positivity preserving and that L8pRnq Y te´tHu acts irreducibly on L2pRnq. We conclude that the
ground state of H is non-degenerate and strictly positive. This completes the proof of theorem 5.14.

Consider now the Schrödinger operator with a symmetric double well potential V defined
on a domain of L2pRq. Then, it is easy to see that V is in L2

locpRq, and that V pxq Ñ 8 as |x| Ñ 8,
by definition of the potential function. Moreover, the potential is bounded below and can always
be scaled in order to make it positive. Thus Theorem 5.14 is applicable.

Then finally, consider our Schrodinger operator h̃2 “ ´ d2

dy2
` V pyq with symmetric potential

V given by V pyq “ ´1
2p2y ´ 1q2 ´

a

p1´ yqy. We apply Theorem D.19 with d “ 1 and Λ “ r0, 1s
and V the function given above which is clearly continuous on Λ. The Dirichlet boundary
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conditions are given by V p0q “ V p1q “ ´1{2. By Theorem D.19, it follows that the spectrum is
discrete. The potential is bounded from below and can be translated to make it positive. By a

similar argument as for the operator H, also ´ d2

dy2
` V pyq is positive and has a discrete spectrum,

and hence it admits an eigenvalue at the bottom of its spectrum. Furthermore, Theorems 5.22,

5.23, 5.24 and Lemma 5.25 are applicable for the self-adjoint operators ´ d2

dy2
` V pyq, H0 ” ´

d2

dy2

and e´tH0 . In Theorem 5.24 one can take Vn “ minpV,maxpV q ´ maxpV q
n q in order to get strong

resolvent convergence. Thus, by Theorem 5.11 it follows that the ground state of h̃2 is unique and
strictly positive. As expected from numerical simulations and the equivalence established between
the scaled quantum Curie-Weiss Hamiltonian JN`1{N and the discretization matrix H̃N`1 (see
Chapter 4), this result is in accordance with the fact that the ground state of JN`1{N is unique
and strictly positive.
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Chapter 6

Classical limit

We have proved in Chapter 3 that the ground state eigenvector ψ
p0q
N can be found by diagonalizing

the Curie-Weiss Hamiltonian represented with respect to the canonical base of SymN pC2q. This
’compressed’ Hamiltonian was also denoted by JN`1. We have seen in Chapter 4 that the scaled
compressed Curie-Weiss Hamiltonian, denoted by JN`1{N , could be viewed as a discretization of a
particular Schrödinger operator, which we denoted by h̃2. Under this identification, it was not clear
what the limiting object limNÑ8 JN`1{N would be, since the corresponding Schrödinger operator
h̃2 is not defined for N “ 8.1 Therefore, this correspondence only holds semi-classically, in the
sense that N needs to be large, but finite. As a result, we could not take the limit of the ground

state eigenvector ψ
p0q
N , at least not naively. The reason for this lies in the fact the limiting system

N Ñ 8 describes a classical theory and rather than a quantum system. The link between the two
theories is based on a deformation quantization, in this specific case called Berezin quantization. In
order to compute limits, it turns out that we have to transform the ground state eigenvector first
into a vector state and then apply this state to the deformation quantization. This method has been
extensively studied in [22]. We will discuss this more in detail in §6.3. Regardless of the connection
with the Schrödinger operator together with its corresponding classical limit, the Curie-Weiss model
also has a classical limit on another algebra, namely on the commutative C˚-algebra CpB3q, with
B3 Ă R3 the closed unit ball. Again, the relationship between quantum theory and classical theory
is described by a deformation quantization map. In the first paragraph of this chapter, we will define
this map and give a proof partially based on numerical simulations, showing that the vector state

associated to the ground state eigenvector ψ
p0q
N of the Curie-Weiss Hamiltonian hCW

N and applied
to some deformation quantization, does converge to some probability measure on B3. We will
see that the use of the deformation quantization map plays a crucial role in computing this limit.
Hence this map plays a key role in connecting the two different theories (which are individually
well-understood).

6.1 Determination of the classical limit

Recall from §3.1 that the local dynamics defined on BpHN q »
ÂN

n“1M2pC2q is given by

αΛN
t paq “ eith

CW
N ae´ith

CW
N pa P BpHN qq (6.1)

where hCW
N is the Curie-Weiss Hamiltonian (3.1) defined on the Hilbert space HN “

ÂN
n“1 C2 »

C2N . We have seen that the quantum Curie-Weiss model does not converge to a global dynamics
on the quasi local C˚- algebra A “

Â

xPZBpHq, where H “ Hx is identified with C2. However,

1Naively (in quantum mechanics) one cannot take the limit N Ñ 8 (for ~ “ 1{N). The limit can however be
taken via a detour: deformation quantization. In this case we will see the surprising result that the closed unit ball
B3
Ă R3 plays a role.
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its dynamics does converge to a global dynamics on the commutative C˚-algebra CpSpBqq, where
B “M2pCq is the single site algebra.

It can be shown by Theorem E.5 from Appendix E that

A
pcq
0 “ CpSpM2pCqqq; (6.2)

A
pcq
1{N “ BpHΛN q, (6.3)

form a continuous bundle of C˚- algebras whose continuous cross-sections are the quasi-symmetric
sequences, in this case specified via the symmetrization maps:

SM,N : BpHΛM q Ñ BpHΛN q pN ěMq. (6.4)

As a special case for HΛM “
ÂM

k“1 C2 so that BpHΛM q –M2pCqbM , we have for N ěM :

SM,N : M2pCqbM ÑM2pCqbN . (6.5)

Regarding pa1{M q P BpHΛM q as an element pa11{M q of BpHΛM q via the canonical embedding AΛN ãÑ

AΛM , we finally define SM,N by

SM,N pa1{M q “ SN pa
1
1{M q. (6.6)

Here the canonical symmetrizer SN : BpHΛN q Ñ BpHΛN q is defined à la (E.21) and (E.22) in
Appendix E.

We use the notion of deformation quantization (Appendix E) in order to compute the limit

N Ñ 8 of the N -dependent vector state associated to the ground state eigenvector ψ
p0q
N of the

system. We shall see that the limit will be a probability measure µ
ψ
p0q
N

on the Poisson manifold

SpM2pCqq – B3. For this, we use the Riesz Representation Theorem, stating that given a compact
Haussorff space X, complete regular finite probability measure spaces pX,Σ, µq uniquely determine
a state ω : CpXq Ñ C and vice versa. Given the measure space pX,Σ, µq, then µ defines a state ω
by

ωpfq “

ż

X
dµf. (6.7)

The converse is more complicated and involves some measure theory. The construction can for
example be found in [22, Thm. B.15]. We apply this to X “ B3 with ω being a vector state as we
will see below.

Denote the deformation quantization map by QN : CpB3q Ñ BpHN q, where N ą 0 is a
natural number. Assume first that QN is given. Then define

µ
p8q

0 pfq “ lim
NÑ8

ω
pNq
0 pQN pfqq pf P CpB3qq, (6.8)

provided this limit exists . Here, ω
pNq
0 is the vector state on BpHN q associated to the ground state

ψ
p0q
N , (or more generally to any unit vector in HN ) given by

ω
pNq
0 pa1{N q “ xψ

p0q
N , a1{Nψ

p0q
N y pa1{N P BpHN q. (6.9)

We do not a priori know QN pfq for all f on B3. Fortunately, in view of (E.27), for a fixed M we
do have that each b PM2pCqbM induces a function fb : SpM2pCqq – B3 Ñ C given by

fbpωq “ lim
NÑ8

ωN pSM,N pbqq pω P SpM2pCqqq, (6.10)
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where SM,N : M2pCqbM ÑM2pCqbN is the symmetrization map, defined for N ěM by (6.5). The
above definition makes sense as SM,N pbq is symmetric, and hence quasi-symmetric. Recall from
(E.28) that ωN P SpM2pCqbN q is defined as

ωN pb1 b ¨ ¨ ¨ b bN q “ ωpb1q ¨ ¨ ¨ ωpbN q. (6.11)

It follows that

fbpωq “ ωM pbq, (6.12)

since N ě M and states map the identity element of the operator algebra to the unit element of
C. Moreover, fb is continuous as well.

We define QN on these functions fb induced by b, by

QN pfbq “ SM,N pbq. (6.13)

It can be checked that QN can indeed be linked to deformation quantization of X “ B3 in the sense
of Definition E.2. This follows from the fact that the map 0 ÞÑ f and 1{N ÞÑ QN pN ą 0q is a
continuous section of the bundle since, by definition of the symmetrization map these clearly form
a quasi-symmetric sequence. It is a bit more difficult to check that the Dirac-Groenewold-Rieffel
condition (E.6) is satisfied [23]. However, strictly speaking, since the map QN has only been
defined for these induced functions fb on B3, we cannot speak about a deformation quantization.
Nonetheless, we will see below that even this partial construction yet provides a very interesting
result.
For this, we fix M “ 1. Then we want to get an indication of what the limit µ

p8q

0 could be. Since
the Pauli matrices together with the identity form a basis for M2pCq, we can just compute QN pfσiq,
where i “ 1, 2, 3. Denoting M2pCq by B and recall formula (E.25) from Appendix E:

S1,N pσiq “
1

N

N
ÿ

k“1

1B b ¨ ¨ ¨σipkq b 1B ¨ ¨ ¨ b1B. (6.14)

Here k denotes the kth position in the tensor product. It follows that

µ
p8q

0 pfσiq “ lim
NÑ8

xψ
p0q
N , S1,N pσiqψ

p0q
N yHN

“ lim
NÑ8

1

N
xψ
p0q
N , pσi b 1B ¨ ¨ ¨ b1B ` ¨ ¨ ¨ ` 1B b ¨ ¨ ¨1B b σiqψ

p0q
N yHN

“ lim
NÑ8

N

N
xψ
p0q
N , pσi b 1B ¨ ¨ ¨ b1Bqψ

p0q
N yHN

“ lim
NÑ8

TrC2

„

γ
p1q

ψ
p0q
N

¨ σi



. (6.15)

In the final last step, we used the fact that ψ
p0q
N is a symmetric vector, so that

xψ
p0q
N , pσi b 1B ¨ ¨ ¨ b1Bqψ

p0q
N yHN

“ ¨ ¨ ¨ “ xψ
p0q
N , p1B b 1B ¨ ¨ ¨ bσiqψ

p0q
N yHN

.

In the last step we also realize that the inner product equals the trace of the one-particle reduced

density matrix associated with the many-particle vector ψ
p0q
N called γ

p1q

ψ
p0q
N

, times the spin-Pauli

matrix σi. A rigorous formalism of this can be found in [25].

The beautiful thing about this link with the reduced density matrix is that the problem
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reduces to the computation of the trace of a 2 ˆ 2-matrix. However, we still need to determine

γ
p1q

ψ
p0q
N

. By definition of the one-particle reduced density matrix, the four matrix elements of γ
p1q

ψ
p0q
N

are given by
ˆ

γ
p1q

ψ
p0q
N

˙

i,j

“
ÿ

k

xei b ξk|ψ
p0q
N yxψ

p0q
N |ej b ξky. (6.16)

Here tξkuk is an orthonormal basis for HN´1, and teiu
2
i“1 is the standard orthonormal basis for C2.

In order to compute µ
p8q

0 pfσiq, it is necessary to compute the matrix γ
p1q

ψ
p0q
N

. For this, we

take the standard orthonormal basis for HN´1 – C2N´1
. First consider

ˆ

γ
p1q

ψ
p0q
N

˙

1,1

. It follows that

ˆ

γ
p1q

ψ
p0q
N

˙

1,1

“

2N´1
ÿ

k“1

|xei b ξk, ψ
p0q
N y|

2. (6.17)

Since ψ
p0q
N is symmetric, we can write

ψ
p0q
N “

N
ÿ

n`“0

cn` |n`, n´y, (6.18)

where n``n´ “ N , and |n`, n´y are the symmetric basis vectors (see also §3.1). These were given
by

|n`, n´y “
1

b

`

N
n`

˘

p Nn`q
ÿ

l“1

βn`,l, (6.19)

where, βn`,l are basis vectors for HN – C2N containing n`- times the vector e2 P C2 in the lth basis
vector βn`,l of HN .

Lemma 6.1. We have the following identity for the matrix elements of γ
p1q

ψ
p0q
N

:

ˆ

γ
p1q

ψ
p0q
N

˙

1,1

“

N´1
ÿ

n`“0

c2
n`

`

N
n`

˘

ˆ

N ´ 1

n`

˙

“

N´1
ÿ

n`“0

c2
n`p1´

n`
N
q; (6.20)

ˆ

γ
p1q

ψ
p0q
N

˙

2,2

“

N´1
ÿ

n`“1

c2
n`

1

n`
N
` c2

N . (6.21)

For the off diagonal matrix elements we have:
ˆ

γ
p1q

ψ
p0q
N

˙

1,2

“

ˆ

γ
p1q

ψ
p0q
N

˙

2,1

“

N´1
ÿ

n`“0

cn``1 cn`
`

N
n``1

˘1{2`N
n`

˘1{2

ˆ

N ´ 1

n`

˙

“

N´1
ÿ

n`“0

cn``1 cn`
N

pn` ` 1q1{2pN ´ n`q
1{2. (6.22)
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Proof. Let Ak “ tξ P HN´1| e2 occurs k times in ξu. Then #Ak “
`

N´1
k

˘

. We compute

ˆ

γ
p1q

ψ
p0q
N

˙

1,1

“

N´1
ÿ

k“0
ξkPAk

|xe1 b ξk,
N
ÿ

n`“0

p Nn`q
ÿ

l“1

1
b

`

N
n`

˘

cn`βn`,ly|
2

“

N´1
ÿ

n`“0

c2
n`

`

N
n`

˘

ˆ

N ´ 1

n`

˙

“

N´1
ÿ

n`“0

c2
n`p1´

n`
N
q. (6.23)

In the second step, we used the fact that e1 b ξk and βn`,l are both basis vectors for C2N´1
and

that the inner product is orthonormal with respect to these vectors. The last step follows form the
identity

`

N´1
n`

˘

`

N
n`

˘ “ 1´
n`
N
. (6.24)

Similarly, one can prove that

ˆ

γ
p1q

ψ
p0q
N

˙

2,2

“

N´1
ÿ

n`“1

c2
n`

`

N
n`

˘

ˆ

N ´ 1

n` ´ 1

˙

` c2
N “

N´1
ÿ

n`“1

c2
n`

1

n`
N
` c2

N . (6.25)

It is a bit more difficult to derive a formula for the matrix elements

ˆ

γ
p1q

ψ
p0q
N

˙

1,2

and

ˆ

γ
p1q

ψ
p0q
N

˙

2,1

. As

before, consider Ak “ tξ P HN´1| e2 occurs k times in ξu. Compute
ˆ

γ
p1q

ψ
p0q
N

˙

1,2

“
ÿ

k

xe1 b ξk, |ψ
p0q
N yxψ

p0q
N |e2 b ξky

“
ÿ

k

xe2 b ξk, ψ
p0q
N yxe1 b ξk, ψ

p0q
N y

“
ÿ

k

xe2 b ξk,
N
ÿ

n`“0

p Nn`q
ÿ

l“1

1
b

`

N
n`

˘

cn`βn`,lyxe1 b ξk

N
ÿ

n`“0

p Nn`q
ÿ

l“1

1
b

`

N
n`

˘

cn`βn`,ly

“

N´1
ÿ

k“0
ξkPAk

xe2 b ξk,
N
ÿ

n`“0

p Nn`q
ÿ

l“1

1
b

`

N
n`

˘

cn`βn`,lyxe1 b ξk

N
ÿ

n`“0

p Nn`q
ÿ

l“1

1
b

`

N
n`

˘

cn`βn`,ly

“

„

c1
`

N
1

˘1{2

ˆ

N ´ 1

0

˙1{2„ c0
`

N
0

˘1{2

ˆ

N ´ 1

0

˙1{2

` ¨ ¨ ¨`

„

cN´1
`

N
N´1

˘1{2

ˆ

N ´ 1

N ´ 2

˙1{2„ cN´2
`

N
N´2

˘1{2

ˆ

N ´ 1

N ´ 2

˙1{2

` cN
cN´1

`

N
N´1

˘1{2

“

N´1
ÿ

n`“0

cn``1 cn`
`

N
n``1

˘1{2`N
n`

˘1{2

ˆ

N ´ 1

n`

˙

“

N´1
ÿ

n`“0

cn``1 cn`
N

pn` ` 1q1{2pN ´ n`q
1{2. (6.26)
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The last step follows from an easy computation that uses the identity

1
`

N
n``1

˘1{2`N
n`

˘1{2

ˆ

N ´ 1

n`

˙

“
1

N
pn` ` 1q1{2pN ´ n`q

1{2. (6.27)

By symmetry, using the fact that ψ
p0q
N is real-valued, it follows that

ˆ

γ
p1q

ψ
p0q
N

˙

1,2

“

ˆ

γ
p1q

ψ
p0q
N

˙

2,1

.

This proves the lemma.

We have simplified the matrix elements of γ
p1q

ψ
p0q
N

. We are going to prove that γ
p1q

ψ
p0q
N

converges weakly-˚

in the trace class sense to γ
p1q
8 , which is given by

γ
p1q
8 “

1

2

ˆ

1˘
?

1´B2 B

B 1¯
?

1´B2

˙

p0 ď B ă 1, J “ 1q. (6.28)

The question is: could we have expected this specific matrix?

The answer is not so difficult, since we know the numerical ground state eigenvector ψ
p0q
N of the

compressed Curie-Weiss Hamiltonian. We can compute the coefficients easily up to N “ 5000
using MATLAB. Since this vector is given with respect to the canonical symmetric base for the
subspace SymN pC2q, we have to express S1,N pσiq P HN in terms of the symmetric basis vectors in

order to compute the expression xψ
p0q
N , S1,N pσiqψ

p0q
N ySymN pC2q numerically pi “ 1, 2, 3q. This result

in turn will be used to find γ
p1q
8 .

The following lemma is used to derive an explicit matrix representation for S1,N pσiq pi “ 1, 2, 3q,
when we represent this operator with respect to the canonical basis for SymN pC2q.

Lemma 6.2. In the canonical basis for SymN pC2q, the operator S1,N pσ3q is given by a diagonal
matrix with entries on the diagonal

1´
2i

N
, pi “ 0, ..., Nq (6.29)

In this basis, the operator S1,N pσ1q has non-zero entries only on the upper and lower diagonal, both
given by

a

ipN ´ pi´ 1q{N, i “ 1, ..., tpN ` 1q{2u, (6.30)

and for i “ tpN ` 1q{2u` 1, ..., N ` 1, we have
a

pi´ tpN ` 1q{2upN ´ ptpN ` 1q{2u´ 1qq{N. (6.31)

Here txu denotes the floor function. Thus the lower diagonal equals the upper diagonal, and the
entries are repeated in opposite direction at tpN ` 1q{2u.

In this basis the operator S1,N pσ2q only has non-zero entries on the upper and lower diagonal. The
lower diagonal is given by the lower diagonal of S1,N pσ1q multiplied with i and the upper diagonal
by the upper diagonal of S1,N pσ1q multiplied with ´i.

Proof. This follows by computing the expressions

xn`, n´|S1,N |pσiqn`, n´y pi “ 1, 2, 3q, (6.32)

with |n`, n´y given by (6.19). We omit this computation, as it is similar to the proofs of Theorem
3.1 and Lemma 6.1.
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Using the above lemma, we are finally in the position to compute xψ
p0q
N , S1,N pσiqψ

p0q
N ySymN pC2q,

(i “ 1, 2, 3) and show at least numerically that we expect convergence of γ
p1q

ψ0
N

to the specific matrix

entries

ˆ

γ
p1q
8

˙

i,j

as given before by (6.28).

Of course, this inner product is nothing but the scalar inner product on SymN pC2q – CN`1. It is
very easy to compute this inner product numerically. It is not obvious that this will converge as
N Ñ8, but as we shall see below that, it does though.

We use identity (6.15) and the expressions for S1,N pσiq that we deduced above and compute

TrC2

„

γ
p1q

ψ
p0q
N

¨ σi



“xψ
p0q
N , S1,N pσiqψ

p0q
N ySymN pC2q

“

N`1
ÿ

j“1

ψ
p0q
N pjqpS1,N pσiqψ

p0q
N qpjq. (6.33)

This sum is computed up to N “ 5000 (i “ 1, 2, 3). The results are given in Figure 6.1 below.

Figure 6.1: The above inner (6.33) from above has been computed for i “ 1, 2, 3, starting from
N “ 100 up to N “ 5000. The blue circles correspond to i “ 3, the red asterisks to i “ 1, and the
light blue diamonds to i “ 2. We took B “ 1{2 and J “ 1 in the Curie-Weiss Hamiltonian (3.1).

The above figure shows that the blue circles that correspond to i “ 3 are equally and randomly
spread over the numbers approximately equal to ˘

?
3{2. This means that the limiting function is

double degenerate. It also shows that we have convincing numerical evidence that

TrC2

„

γ
p1q

ψ
p0q
N

¨ σ1



Ñ
1

2
, (6.34)

TrC2

„

γ
p1q

ψ
p0q
N

¨ σ2



Ñ 0, (6.35)

TrC2

„

γ
p1q

ψ
p0q
N

¨ σ3



Ñ ˘

?
3

2
. (6.36)
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Now we are in the position to ’guess’ what γ
p1q
8 will be.

Since the limiting γ- matrix is still a 2ˆ 2- matrix, we can write

γ
p1q
8 “ a012 ` a1σ1 ` a2σ2 ` a3σ3. (6.37)

We know from the above numerical computations that

TrC2

„

γ
p1q
8 ¨ σ1



“
1

2
, (6.38)

TrC2

„

γ
p1q
8 ¨ σ2



“ 0, (6.39)

TrC2

„

γ
p1q
8 ¨ σ3



“ ˘

?
3

2
. (6.40)

(6.41)

Moreover, we have

TrC2

„

γ
p1q
8 ¨ σ1



“ TrC2

„

pa012 ` a1σ1 ` a2σ2 ` a3σ3q ¨ σ1



“ 2a1. (6.42)

Similarly, we find that TrC2

„

γ
p1q
8 ¨ σ2



“ 2a2 and TrC2

„

γ
p1q
8 ¨ σ3



“ 2a3. Combining this and the

above numerical observations, we have

γ
p1q
8 “ 1`

1

2
σ1 ` 0σ2 ˘

?
3

2
σ3, (6.43)

as indeed hypothesized for B “ 1{2. In general, for 0 ă B ă 1 and J “ 1, similar computations
can be done and one can show completely analogously that

γ
p1q
8 “

1

2
p1`Bσ1 ` 0σ2 ˘

a

1´B2σ3q

“
1

2

ˆ

1˘
?

1´B2 B

B 1¯
?

1´B2

˙

, (6.44)

as postulated before by (6.28).

This proof, inspired by numerical computations, shows that

µ
p8q

0 pf1q “ 1 (6.45)

µ
p8q

0 pfσ1q “ B (6.46)

µ
p8q

0 pfσ2q “ 0 (6.47)

µ
p8q

0 pfσ3q “ ˘
a

1´B2. (6.48)

We will use the isomorphism SpM2pCqq – B3, explicitly given by

ωpx,y,zqpaq “ Trpρpx, y, zqaq ppx, y, zq P B3, a PM2pCqq; (6.49)

ρpx, y, zq “
1

2

ˆ

1` z x´ iy
x` iy 1´ z

˙

. (6.50)
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For b “ σi pi “ 1, 2, 3q, we use the above isomorphism and equation (6.12) to compute

fσipωpx,y,zqq “ ωpx,y,zqpσiq “ Trpρpx, y, zqσiq “ fσipx, y, zq. (6.51)

It follows that

f1px, y, zq “ 1; (6.52)

fσ1px, y, zq “ x; (6.53)

fσ2px, y, zq “ y; (6.54)

fσ3px, y, zq “ z. (6.55)

Denoting the point pB, 0,˘
?

1´B2q by x˘, we then have

f1px˘q “ 1 (6.56)

fσ1px˘q “ B; (6.57)

fσ2px˘q “ 0; (6.58)

fσ3px˘q “ ˘
a

1´B2. (6.59)

It is known [22, Sec. 10.8] (and easy to verify) that the classical Curie-Weiss Hamiltonian on B3,
given by

hCW
8 px, y, zq “ ´

1

2
z2 ´Bx, (6.60)

has a doubly degenerate ground state for 0 ă B ă 1, given by

x˘ “ pB, 0,˘
a

1´B2q. (6.61)

In view of the proof of Lemma 2.5 in Chapter 2, we know that the points x˘ correspond to Dirac
measures µ̃˘0 (or, equivalently, to pure states), given by:

µ̃˘0 pfq :“ δ
pB,0,˘

?
1´B2q

pfq “

ż

B3

dµ̃
pB,0,˘

?
1´B2q

pfq “ fpB, 0,˘
a

1´B2q pf P CpB3qq. (6.62)

From the above equation, using fb for b “ σi pi “ 1, 2, 3q, we recover precisely equations (6.46)-
(6.48). In fact, we have numerically proven that for a specific choice of the deformation quantization
acting on the functions fb coming from a matrix b P M2pCq, namely QN pfbq “ S1,N pbq, the limit
defined in (6.8) exists and is precisely the doubly degenerate ground state that corresponds to
the classical Hamiltonian hCW

8 (for 0 ă B ă 1 and J “ 1). The ensuing Z2-symmetry on B3 is
simply given by the map px, y, zq ÞÑ px,´y,´zq. From a similar argument as given in the text
under Lemma 2.5, one can show that the degenerate (pure) ground states µ̃˘0 on CpB3q are not
Z2-invariant, so that the symmetry is spontaneously broken.
This is completely in accordance with the link between the Curie-Weiss model and the corresponding
Schrödinger operator. We have seen in §4.6 that for 0 ă B ă 1 we obtained a double well potential
such that in the classical limit the ground state was doubly degenerate and displayed SSB, even
though these ground states were defined on a different algebra from the one we just considered,
namely CpB3q. This will become clearer in §6.3.

Remark.

We haven’t made a clear distinction between convergence of the delocalized eigenvectors ψ
p0q
N and

ψ
p1q
N , or the localized eigenvectors 1?

2
pψ
p0q
N ˘ψ

p1q
N q. For the double well, it known that the delocalized

wave functions converge to a mixed state on the corresponding classical algebra. The localized
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wave functions, which define pure states as well, converge to pure states on this algebra [22], [34].
The latter states indeed correspond to Dirac measures. As for the double well, we can expect a
similar result for the Curie-Weiss model. However, we could not check this for the delocalized

eigenvectors ψ
p0q
N and ψ

p1q
N , since due to numerical inaccuration these already localize for N « 80.

As a result, we expect convergence to a pure classical state. Fortunately, we already found this
correct outcome.

6.2 Convergence of the reduced density matrix

In this section we say more about the convergence of the matrix γ
p1q

ψ
p0q
N

to the matrix γ
p1q
8 . It is

extremely difficult to prove this analytically, since the ground state eigenvector ψ
p0q
N is only given

numerically, being a solution of the characteristic equation corresponding to the smallest eigenvalue.

We have seen in Chapter 4 that for large but finite N , the compressed (scaled) Hamiltonian
that we denoted by JN`1{N was in some sense equivalent to a discretization of the Schrödinger
operator h̃2 on L2pr0, 1sq describing a particle in a one-dimensional symmetric double well.
We have also seen that the lowest eigenfunctions of such a Schrödinger operator with a symmetric
double well potential are approximately given by linear combinations of the weighted Hermite
polynomials (see §3.2). In particular, for N large enough, the ground state was approximately
given by a linear combination of Gaussians

Tapϕ0q ` T´apϕ0q
?

2
, (6.63)

where the symbol ˘a indicates the position on both minima of the symmetric double well potential
and T˘a is the translation operator over distance ˘a, i.e., pT˘aϕ0qpxq “ ϕ0px˘ aq.

In our previous discussion in Chapter 4 it was not clear what the limiting object limNÑ8 JN`1{N
would be, since the corresponding Schrödinger operator h̃2 was not defined for N “ 8. As a

result,2 we could not just take the limit N Ñ 8 of the ground state eigenvector ψ
p0q
N . We will

see in §6.3 that the so-called Berezin quantization is involved when computing the classical limit
of this Schrödinger problem. Nonetheless, we have already seen that the use of the deformation
quantization map defined in the beginning of the previous paragraph enables us to speak about
the limit (6.8), which will be different than the one for the Schrödinger operator. This limit was a
probability measure on the compact space B3, at least defined for special functions fb.

In §4.7 we argued that, when discretizing the grid, the number of points in this peak increases with?
N , so that the in fact we get a better approximation of this Gaussian, as we also have observed

numerically. The next step is then to fit the numerical vector components cn` to Gaussians.
Following this approach, one can try to use these Gaussians rather then only the numerical values
cn` in order to compute the limit N Ñ 8 of equation (6.8). The idea is to prove things more
analytically using these Gaussian functions, rather then only numerical values.

We are going to fit our numerical ground state eigenvector ψ
p0q
N to a Gaussian G

p0q
N using

MATLAB. This time for simplicity, we take the operator JN`1 rather than the scaled one,
since the eigenvectors do not change by a scaling constant. We will show analytically that, using

these fitted Gaussians instead of the numerical vector ψ
p0q
N , the matrix γ

p1q

G
p0q
N

indeed converges to γ
p1q
8 .

2Note that for any finite N the ground state eigenvector, seen as the original eigenvector of the Curie-Weiss model
or as the eigenvector of the discretization matrix H̃N of the Schrödinger operator h̃2 is well-defined and independent
of the type of classical limit we take, which depends only on the deformation quantization. However, inspired by
Chapter 4, we know that the ground state looks like a Gaussian, and thus we will fit ψ

p0q
N to a Gaussian.
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The mixed ground state 1?
2
pTaϕ ` T´aϕq is never seen numerically for N ě 80, as explained in

Chaper 3 and 4. Hence we fit ψ
p0q
N to T˘aϕ. By symmetry, we can restrict to only Taϕ. We fit the

ground state eigenvector ψ
p0q
N on the discrete grid r0 : ∆ : 1s (with uniform grid spacing ∆ “ 1{N)

to the Gaussian in the most general form:

G
p0q
N pxq “ a1e

p´ppx´b1q{c1q2q (6.64)

A plot of this fit is displayed in Figure 6.2.

Figure 6.2: The ground state eigenvector ψ
p0q
N fitted to the above Gaussian for N “ 5000.

As we have seen, the eigenvector will be numerically degenerate, so that we indeed observe
one peak instead of two. For this value of N “ 5000, we find the following values for the fit
parameters:

Fit parameters

parameters value

a1 0.1449
b1 0.06702
c1 0.007597

Of course, these parameters depend on N . However, the position of the maximum indicated by b1
tends to converge to a fixed value being 0.0670 « Bp1´

?
1´B2q, for B “ 1{2. This result is purely

based on numerics. By symmetry, the other maximum is then given by 1´ b1 “ Bp1`
?

1´B2q.
When one compares these two values to the double well as given in (4.90), they indeed correspond
to both minima of this potential, given by Bp1 ´

?
1´B2q and 1 ´ Bp1 ´

?
1´B2q. The other

parameters are more difficult to handle since the amplitude and the width of the Gaussian depend
on N , and we may not speak about the limit of the single Gaussian. However, we can always try

to prove that γ
p1q

G
p0q
N

converges to matrix γ
p1q
8 as N Ñ 8, (but N ‰ 8, which is undefined). This

will be the next step.
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We have deduced the entries of

ˆ

γ
p0q

ψ
p0q
N

˙

i,j

for ψ
p0q
N . The same formulas of course holds for

the fitted Gaussian G
p0q
N . We find on the grid r0 : 1{N : 1s:

ˆ

γ
p0q

ψ
p0q
N

˙

1,1

«

N´1
ÿ

n`“0

pG
p0q
N pn`{Nqq

2p1´
n`
N
q (6.65)

“

N´1
ÿ

n`“0

pG
p0q
N pn`{Nqq

2 ´

N´1
ÿ

n`“0

pG
p0q
N pn`{Nqq

2n`
N
. (6.66)

Using the fact that ψ
p0q
N is normalized, also the fitted Gaussian G

p0q
N will be normalized to a good

approximation. So when we take N large enough, the first term converges to 1. An outline of a
proof of convergence is as follows. Consider the first term. The function

1

N

N´1
ÿ

n`“0

pG
p0q
N pn`{Nqq

2 (6.67)

is the Riemann sum for the function pG
p0q
N pxqq

2 over the interval x P p0, 1q. Hence, for N large, the
original sum behaves like

N

ż 1

0
pG
p0q
N pyqq

2dy “
Na2

1

?
2πc1

4

„

erfp
1´ b1
?

2c1{2
q ´ erfp

0´ b1
?

2c1{2
q



. (6.68)

However, the function pG
p0q
N pxqq

2 is almost zero outside the interval p0, 1q since the Gaussian function
decays exponentially. For N “ 5000, the value at the boundary is of the order 10´45. Thus, it is
reasonable to integrate over the whole real axis to find that

N

ż 8

´8

pG
p0q
N pyqq

2dy “ Na2
1

?
2πc1{2 « 0.9993 « 1. (6.69)

Here, we used that
ş8

´8
pG
p0q
N pyqq

2dy “
?

2πc1
2 .

Now consider the second term. Using n` “
Nn`
N , for large N , the function

´
1

N

N´1
ÿ

n`“0

Nn`
N

pG
p0q
N pn`{Nqq

2 “ ´

N´1
ÿ

n`“0

n`
N
pG
p0q
N pn`{Nqq

2 (6.70)

corresponds to the integral over the interval p0, 1q given by

´N

ż 1

0
ypG

p0q
N pyqq

2dy. (6.71)

As before, already for N “ 5000 the function value of the exponential G
p0q
N on the boundary is of the

order 10´45, so that multiplication by the function y does change this order, as the latter function
increases more slowly to infinity than the exponential decreases to zero. Hence we can take the
integration domain to be the whole real line. That gives

´N

ż 8

´8

ypG
p0q
N pyqq

2dy “ Na2
1

?
2π
c1

2
b1 « ´b1. (6.72)
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This shows that for N “ 5000, we find that (still using B “ 1{2 and J “ 1)

ˆ

γ
p1q

G
p0q
N

˙

1,1

« 1´ b1 « Bp1`
a

1´B2q. (6.73)

Completely similarly to the previous one, we get

ˆ

γ
p1q

G
p0q
N

˙

2,2

«

N´1
ÿ

n`“1

pG
p0q
N pn`{Nq

2

1

n`
N
`G

p0q
N p1qq

2. (6.74)

Using G
p0q
N p1qq

2 « 0, we find that

ˆ

γ
p1q

G
p0q
N

˙

2,2

« b1 « Bp1´
a

1´B2q. (6.75)

This brings us to the final two equations

ˆ

γ
p1q

G
p0q
N

˙

1,2

“

ˆ

γ
p1q

G
p0q
N

˙

2,1

, where again we used the fitted

Gaussian for ψ
p0q
N .

Unfortunately, these equations are more difficult to handle since they involve the function
?
n``1

?
N´n`

N . We can rewrite the product G
p0q
N pn` ` 1qG

p0q
N pn`q in terms of one single Gaussian.

For j P r0 : 1{N : 1s, by completing the square we find that

G
p0q
N pj ` 1qG

p0q
N pjq “a

2
1e
p´pppj`1q´b1q{c1q2qep´ppj´b1q{c1q

2q

“a2
1e
´ 2

N2c21

ˆ

j´

4b1
N
´ 2
N2

4
N2

˙2

e
´ 1

c21

ˆ

1
N2´

2b1
N
`2b21´

p 2
N2 ´

4b1
N
q2

8{N2

˙

. (6.76)

The function

1

N

N´1
ÿ

n`“0

a

N ´ n`
a

n` ` 1G
p0q
N ppn` ` 1q{NqG

p0q
N pn`{Nq (6.77)

is the Riemann sum for the function above function on the interval p0, 1q. Hence for N large, this
behaves like the integral

a2
1e
´ 1

c21

ˆ

1
N2´

2b1
N
`2b21´

p 2
N2 ´

4b1
N
q2

8{N2

˙

ż 1

0
e
´ 2

N2c21

ˆ

y´

4b1
N
´ 2
N2

4
N2

˙2

a

N ´Ny
a

Ny ` 1dy. (6.78)

This integral indicates the expectation value of the function
?
N ´Ny

?
Ny ` 1 over the interval

p0, 1q that corresponds to the density function given by the Gaussian

e
´ 2

N2c21

ˆ

y´

4b1
N
´ 2
N2

4
N2

˙2

. (6.79)

We computed

ˆ

γ
p1q

G
p0q
N

˙

1,2

for N “ 5000, obtaining

ˆ

γ
p1q

G
p0q
N

˙

1,2

« 0.2501 « 1{4 “
B

2
. (6.80)
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We conclude that using these Gaussians, the matrix γ
p1q

G
p0q
N

converges to γ
p1q
8 .

This result, inspired by numerical evidence as well as by the link between our system and

the harmonic oscillator, is based on the fact that we could fit the ground state eigenvector ψ
p0q
N to

a Gaussian G
p0q
N , for N large enough. We have already shown numerically that γ

p1q

ψ
p0q
N

converges to

γ
p1q
8 . However, using these Gaussians instead, we showed that the same result is true and is not

based on pure numerical computations.

We still need to understand in which sense we have convergence.3 We claim that the convergence
of states is in the sense of the weak˚ topology defined by the duality B1pHq – B0pHq˚. This means
that given a sequence pTnqn P B1pHq of trace-class operators4 and a T P B1pHq, we have5

Tn Ñ T (weak*) ðñ @Jcompact : TrpJTnq Ñ TrpJT q pnÑ8q. (6.81)

In our case H “ C2, so that the Pauli spin matrices together with the identity matrix form a basis
for M2pCq, as we have also seen before. Therefore, showing that

TrC2pγ
p1q

ψ
p0q
N

σiq Ñ TrC2pγ
p1q
8 σiq (6.82)

proves that

γ
p1q

ψ
p0q
N

Ñ γ
p1q
8 (weak*). (6.83)

This is exactly what we have just shown.

6.3 Two classical limits

In the previous two paragraphs, we have shown that the vector state associated to the ground state

eigenvector6 ψ
p0q
N converges to a doubly degenerate Dirac measure on B3. We needed a deformation

quantization map in order to make this work. In Chapter 4, we linked our compressed Curie-Weiss
Hamiltonian to a Schrödinger operator with a symmetric double well potential. Also the ground
state of this Hamiltonian has a classical limit, as we will explain briefly below.

We know from the example in Appendix E that there exists a deformation quantization of
R2, called Berezin quantization: QB~ : C0pR2q Ñ B0pL

2pRqq, and defined by equation (E.15).
Consider then the Hamiltonian h~ with a symmetric double well potential, defined on L2pRq. It
has been shown that using Berezin quantization, the localized wave functions of this Hamiltonian
converge to some double degenerate Dirac measure on R2 [22], [34]. These Dirac measures are
given by

ż

R
dµ˘0 f “ fp0,˘aq, (6.84)

3The space B1pHq is the set of trace-class operators, and the space B0pHq˚ denotes the dual space of the compact
operators. Here, the symbol – stands for isometric isomorphism, given by the map B1pHq Ñ B0pHq˚, u ÞÑ Trpu¨q pu P
B1pHqq. A proof of this result can for example be found in [22].

4A trace-class operator is an operator a such Trp|a|q is finite.
5Let X be a normed vector space. A net pϕλq of functionals in X˚ converges to a functional ϕ P X˚ in the weak˚

topology if ϕλpaq Ñ ϕpaq @a P X. In this case B1pHq – B0pHq˚ under the map u ÞÑ Trpu¨q. Then weak˚ convergence
of a net puλq P B1pHq to an operator u P B1pHq is equivalent to saying Trpuλaq Ñ Trpuaq @a P B0pHq.

6This holds only for the localized eigenvectors. Due to numerical degeneracy, the ground state ψ
p0q
N will be

automatically localized for N ě 80, so that the classical limit will be indeed a pure state.
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where ˘a denotes the position of the left and right minimum of the potential. Lemma 2.5 showed
that these measures break the Z2-symmetry in sense of Definition 2.3. Moreover, in a similar way,
we can define the Berezin quantization of r0, 1s ˆ R.7 We then get

QB~ : C0pr0, 1s ˆ Rq Ñ B0pL
2pr0, 1sqq, (6.85)

defined by (E.15) as well. If we now consider the Schrödinger operator h̃2 from equation (4.89),
then one can analogously show that its (vector) state associated to the ground state eigenfunction

ψ
p0q
N , now corresponding to h̃2, converges to a symmetric sum of Dirac measures on r0, 1sˆR. These

measures then correspond to the points pBp1 ˘
?

1´B2q, 0q, where Bp1 ˘
?

1´B2q are precisely
the minima of the potential double well. The proof of this is similar to the one for the Curie-Weiss

model (explained in §6.1), with one detail different. We are given the discrete eigenvector ψ
p0q
N that

corresponds to H̃N , i.e., the discretization of h̃2. We should approximate the integral (E.15) by a

sum, and put ~ “ 1{N . Then it is a matter of computing xψ
p0q
N , QB1{N pfqψ

p0q
N y, given by equation

(E.16). Since for N sufficiently large, our vector ψ
p0q
N behaves like a delta-peak concentrated in

both minima of the well, it is obvious that (E.16) will converge to the function fpBp1˘
?

1´B2q, 0q.

On the one hand, using the deformation quantization QN of B3 defined in §6.1, we have a

classical limit of the ground state associated to the eigenvector ψ
p0q
N , originally corresponding to

the Curie-Weiss Hamiltonian. On the other hand, making the identification with the Schrödinger
operator and using the Berezin quantization of r0, 1s ˆ R, it follows that the same ground state,
but now applied to this map, has a classical limit as well. Both different classical limits therefore
consist of a doubly degenerate ground state that break the Z2-symmetry (in the regime 0 ă B ă 1).

6.4 The Lipkin-Meshkov-Glick (LMG) Model

In this section we consider the Lipkin-Meshkov-Glick Model which is a generalization of the
Curie-Weiss model under some transformation.
The Lipkin-Meshkov-Glick Model, or LMG model, was first proposed to describe phase transitions
in atomic nuclei [24]. We will focus on the spontaneous symmetry breaking, which has already
been studied by for many years in this model, see for example [3]. Recently, it was found that the
LMG model is relevant to many other quantum systems, such as cavity QED [27].

The Hamiltonian of a general LMG model is given by

hLMG
N “

λ

N
pS2

1 ` γS
2
2q ´BS3, (6.86)

where Si “
ř

x σipxq{2 is the total spin operator summing over all N spins, and σi is the ith spin
Pauli matrix. We are interested in λ ă 0, standing for a ferromagnetic interaction, γ P p0, 1s
describing the anisotropic in-plane coupling, and B is the magnetic field along z direction with
B ě 0. Also recall that for λ “ ´1 it is well known that a quantum phase transition occurs
at B “ 1 [17]. Note that the LMG-model is just the Curie-Weiss model for γ “ 0, and the
transformation σ1 ÞÑ σ3 and σ3 ÞÑ σ1.

We will focus on the regime 0 ď B ă 1 with λ “ ´1.

7The set r0, 1s denotes the configuration space, i.e., the space of all possible ‘positions’ of the system. The set
R is the momentum space, i.e., the space of all possibile ‘momenta’ of the system. The cotangent bundle of the
configuration space T˚Q – r0, 1s ˆ R is called the phase space, incorporating all possible positions and momenta of
the system.
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First consider γ “ 1, called the isotropic case. Based on [17], it has been shown that the
eigenenergies of the isotropic Hamiltonian are given by

EpS,Mq “ ´
1

N
rSpS ` 1q ´M2s ´BM. (6.87)

Moreover, the ground state localizes at S0 “ N{2 and

M0 “

#

tBN2 u, for N even

tBN2 ` 1
2 u´ 1

2 , for N odd
(6.88)

Here, t¨u denotes the floor function.

Observe that the Hamiltonian hLMG
N commutes with the Symmetrizer operator, for any γ P r0, 1s.

We want the ground state to be in the range of the Symmetrizer operator in order to diagonalize
the matrix with respect to the canonical base for SymN pC2q. As we have seen many times
before since both operators commute, a sufficient condition for the ground state being in the
range of the Symmetrizer is uniqueness. For the Curie-Weiss model, this is shown by the
Perron-Frobenius Theorem. When we write the LMG Hamiltonian with respect to the standard
basis for bNn“1C2 – C2N , its corresponding matrix is not positive definite. In fact, it has strictly
positive as well as strictly negative entries. Therefore, the Perron-Frobenius Theorem is not
applicable to this matrix. However, based on numerical intuition, the ground state will be in the
range of the Symmetrizer even though it might be not unique as we will see. We have diagonalized
the LMG Hamiltonian up to N “ 15, by writing the Hamiltonian with respect to the standard
basis for C2N and comparing the ground state eigenvalue to the one obtained when diagonalizing
the matrix with respect to the symmetric basis for SymN pC2q. We observed that for these values
of N the ground state eigenvalues are the same for both (independent) diagonalization processes.
Therefore, we may conclude that at least for these values of N , the ground state indeed lies in this
subspace, and therefore is symmetric.

It is not difficult to show that the matrix entries of hLMG
N written with respect to the symmetric

basis are located on the diagonal and given by

xn`n´, h
LMG
N n`n´y “ ´

1

4
p2pN ` 2n´n`qq ´

Bpn` ´ n´q

2
. (6.89)

Assuming for a moment that the ground state eigenvector lies in this subspace, then clearly it will be
a (canonical) basis vector, since the Hamiltonian represented in this subspace is a diagonal matrix.
Therefore, in order to compute this eigenvector we just have to solve the following equation for n`:

EpN{2,M0q “ ´
1

4
p2pN ` 2n´n`qq ´

Bpn` ´ n´q

2
. (6.90)

It is not difficult to show that for any N there are two solutions for n`:

n1
` “ N ´ t

N

4
u; and (6.91)

n2
` “

N

2
` t

N

4
u. (6.92)

This also shows that the ground state is double degenerate when n1
` ‰ n2

`. We conclude that if the
ground state eigenvector lies in the symmetric space, it is given by n1

` or n2
` and could therefore

be degenerate in contrast to the finite quantum Curie-Weiss model.
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Consider now the anisotropic case, for γ ‰ 1. In contrast to the anisotropic LMG model, it
it has been proved that the ground state of the isotropic LMG model in the limiting mean field
is infinitely degenerate [8]. It has also been explained in [8] that for γ P r0, 1q and λ “ ´1 the
ground state of (6.86) is non-degenerate for any finite N , and hence unique. Again, this does
not easily follow from the Perron-Frobenius theorem applied to the matrix written with respect
to the standard basis. Since we still know that the anisotropic Hamiltonian commutes with the
Symmetryzer, it follows that for any finite N the ground state of the anisotropic LMG model
(λ “ ´1) lies in the range of the symmetrizer operator. Without loss of generality, this allows us
to diagonalize the anisotropic LMG Hamiltonian (λ “ ´1) with respect to SympC2q. Similar to
Theorem 3.1 we deduce a formula for the matrix entries for this Hamiltonian.

Lemma 6.3. In the symmetric basis, the LMG-Hamiltonian hLMG
N given in equation (6.86) for

γ P r0, 1q and λ “ ´1 is a tridiagonal matrix with diagonal entries given by

´
1

4
pn`pn´ ` 1q ` n´pn` ` 1qqp1` γq ´

B

2
pn` ´ n´q, (6.93)

and on the second upper and second lower diagonal we have

´
1

4

a

pn` ` 2qpn` ` 1q
a

pn´qpn´ ´ 1qp1´ γq. (6.94)

Thus the only non-zeros entries are located on the diagonal and on the second upper and lower
diagonal, i.e the elements pi, i` 2q and pi` 2, iq.

Proof. The proof is similarto the proof of Theorem 3.1 for the Curie-Weiss Hamiltonian, and is
therefore omitted.

The next step is to define a deformation quantization map that we can apply to the ground states
of the anisotropic LMG Hamiltonian pλ “ ´1q in order to compute limits. We took the same
deformation quantization map as for the Curie-Weiss model, i.e., QN pfbq “ S1,N pbq, where b P
M2pC2q, where the classical C˚-algebra is still given by CpB3q. We apply this map to the same
functions fb as before, and similarly as in (6.8) we define the limit of the vector state associated to

the ground state ϕ
p0q
N of this Hamiltonian. Of course, we first assume that this limit exists. Thus,

we need to compute the limit of the expression

xϕ
p0q
N , S1,N pσiqϕ

p0q
N y, pi “ 1, 2, 3q (6.95)

What do we expect?
It has been shown in the same paper [8] that for γ P r0, 1q and λ “ ´1, the ground state in the
thermodynamical limit is twofold degenerate, still assuming that 0 ď B ă 1.
We will compute the limit of the above expression numerically, and check that this is indeed the
case. After this, we show that the ground state of the corresponding classical Hamiltonian lies on
the boundary S2 of B3, and is given by the points

x˘ “ p˘
a

1´B2, 0, Bq. (6.96)

In fact, these points are precisely obtained as the limits of the corresponding localized eigenstates.
To see this, consider the following expression:

x
ϕ
p0q
N ˘ ϕ

p1q
N?

2
, S1,N pσiq

ϕ
p0q
N ˘ ϕ

p1q
N?

2
y pi “ 1, 2, 3q, (6.97)

where ϕ
p1q
N denotes the first excited state. In contrast to (6.95), the above expression takes the inner

product with the localized eigenvectors. The ground state of this Hamiltonian is non-degenerate
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for any finite N , and we observe for N up to 5000, that the ground state and the first excited are
still not numerical degenerate for the computer. This is in contrast to the Curie-Weiss model. The
reason for this probably lies in the fact that the roles of σ3 and σ1 are switched in the Curie-Weiss
model so that numerical degeneracy can already occur for smaller values of N . We computed the
above inner product (6.95) up to N “ 5000. We did the same for the functions (6.97). Both results
are displayed in Figure 6.3 and Figure 6.4.

Figure 6.3: The inner product (6.97), computed for i “ 1, 2, 3, starting from N “ 100 up to
N “ 5000. The blue circles correspond to i “ 3, the red asterisks to i “ 1, and the light blue
diamonds to i “ 2. We took B “ 1{2, λ “ ´1 and γ “ 1{2 in the LMG Hamiltonian.

Similar to the Curie-Weiss Hamiltonian, but now for i “ 1, the above figure shows that the

red asterisks that correspond to i “ 1 are randomly and equally spread over the numbers ˘
?

3
2 .

This means that the limiting function is double degenerate. The result should hold for any
γ P r0, 1q. In the same point of view as for the Curie-Weiss model, we can show that for the
functions fσi defined by (6.53) up to (6.55), we obtain

fσipp˘
a

1´B2, 0, Bqq “

$

’

&

’

%

˘
?

1´B2, if i “ 1;

0. if i “ 2;

B, if i “ 3.

(6.98)

Hence the limit of (6.97) corresponds to the points x˘ and thus to Dirac measures, or, equivalently,
to pure states. Keep in mind that these points can only be recovered for the functions
fσi pi “ 1, 2, 3q.

Note that the function
ϕ
p0q
N ˘ϕ

p1q
N?

2
denotes the localized wave functions, which of course define

pure states as well. We have shown numerically that these states converge to pure classical states,
exactly as expected and as already known for the double well potential.

In the Curie-Weiss model, we took the ground state eigenvector ψ
p0q
N . We saw that the ground

state was already numerically twofold degenerate for finite N . Due to this degeneracy, the

computer already takes the combination
ψ
p0q
N ˘ψ

p1q
N?

2
so that we indeed find Dirac measures. These

Dirac measures or pure states are identified with the classical limit of these localized wave functions.
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If one takes the ground state ϕ
p0q
N or the first excited state ϕ

p1q
N , and computes the limit of

(6.95), then we may expect that this limit is defined by the mixed ground state given by

1

2
pµ` ` µ´q. (6.99)

For the numerics, this means that we should find the point 1
2px` ` x´q “ p0, 0, Bq, since for this

model we do not have numerical degeneracy and therefore no mixing of ground and first excited
state. For both the ground state and the first excited state we performed this computation (still
for the matrices σi) and we recovered precisely the point p0, 0, Bq, as depicted in Figure 6.4.

Figure 6.4: The inner product (6.95), computed for i “ 1, 2, 3, starting from N “ 100 up to

N “ 5000 for both ϕ
p0q
N and ϕ

p1q
N . The blue circles correspond to i “ 3, the red asterisks to i “ 1,

and the light blue diamonds to i “ 2. We took B “ 1{2, λ “ ´1 and γ “ 1{2 in the LMG
Hamiltonian.

Again, this should hold for any γ P r0, 1q. We will now show that the corresponding classical (pure)
ground state is indeed given by the point in phase space equated by (6.96).

Lemma 6.4. For γ P p0, 1q, λ “ ´1 and B P r0, 1q, the classical LMG-Hamiltonian on the unit ball
B3 given by

hLMG
8 px, y, zq “ ´

1

4
px2 ` γy2q ´

B

2
z, (6.100)

has a pure doubly degenerate ground state, which is given by

x˘ “ p˘
a

1´B2, 0, Bq. (6.101)

Proof. We apply the method of Lagrange multipliers to these ground states.8 We set

Lpx, y, xq “ hLMG
8 px, y, zq ´ µpgpx, y, zq ´ 1q. (6.102)

8According to Definition (2.1) and the explanation in §2.4, the classical ground states are obtained by extremizing
the classical LMG-Hamiltonian. According to this definition all extrema are classical ground states. As we know for
the classical Curie-Weiss model [22, p.411] and the classical Hamiltonian with double well [22, p.372], this is not true:
only minima are considered to be classical ground states. In spirit of these examples, we assume this to be true for
the LMG-model as well. We therefore ignore the other extrema and only focus on the minima.
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Here, gpx, y, zq “ x2 ` y2 ` z2. Taking derivatives of L with respect to x, y, z, µ and setting them
equal to zero yields

z “ ´
B

4µ
; (6.103)

y “ 0 or y “ ´
1

4
γ; (6.104)

µ “ ´
1

4
or x “ 0; (6.105)

´ px2 ` y2 ` z2 ´ 1q “ 0. (6.106)

It follows that µ “ ´1
4 , as γ ‰ 1 so that y “ 0 and then z “ B. The minimum is obtained for x ‰ 0

so that x “ ˘
?

1´B2.

In the same view as given in the text just below the proof of Lemma 2.5, the Z2-symmetry is
spontaneously broken in this limit. Since the above results hold in particular for γ “ 0, our findings
regarding the Curie-Weiss model are explained in this context, since the change of σ3 ÞÑ σ1 and
σ1 ÞÑ σ3 result in a switch of position 1 and 3 of the vector x˘. Under this transformation, this
shows that the Curie-Weiss model is a particular case of the more general LMG model that includes
the parameter γ for non-zero values of γ as well.
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Chapter 7

Perturbation in the Curie-Weiss
model

In this section we introduce a perturbation in the quantum Curie-Weiss model hCW
N such that the

delocalized ground state as displayed in Figure 3.1 localizes already for finite N , but this time it
does not do so as a result of numerical degeneracy. We compare the ground state of the perturbed
Hamiltonian to the unperturbed one and again make the link with the Schrödinger operator, as
explained in Chapter 4. We will see that the perturbation produces a small asymmetric flea on the
double well potential corresponding to this Schrödinger operator. The delocalization or collapse of
the ground state to the left or the right side of the potential barrier is a result of where exactly this
flea is put. We will introduce the notion of explicit symmetry breaking and compare this to the
definition of spontaneous symmetry breaking.

7.1 Peturbation in Hamiltonian

Consider again the Hamiltonian for the quantum Curie-Weiss-model:

hCW
N “ ´

J

2|ΛN |

ÿ

x,yPΛN

σ3pxqσ3pyq ´B
ÿ

xPΛN

σ1pxq, (7.1)

where ΛN is an arbitrary finite subset of Z consisting of N elements, J ą 0 scales the spin-spin
coupling, and B is an external magnetic field. Recall that this local Hamiltonian acts on the
Hilbert space HΛN “ bxPΛNHx, where Hx “ C2. We have seen in §3.1 that this Hamiltonian is
represented with respect to the standard basis for HΛN as the spin Pauli matrices are represented
in the standard basis for C2. We labeled this standard basis consisting of 2N vectors by β, where
β “ ten1 b en2 b ...b enN u

2
n1,...,nN“1.

These local Hamiltonians define a time evolution on the local algebras AΛN “ BpHΛN q,
given by

α
pNq
t paN q “ eith

CW
N aNe

´ithCW
N . (7.2)

We have seen that for each finite N , and each B P R, this Hamiltonian has a Z2-symmetry given by
180-degree rotation around the x-axis, locally implemented by the unitary operator upxq “ σ1pxq,
so that at each x P ΛN gives pσ1, σ2, σ3q Ñ pσ1,´σ2,´σ3q since σiσjσ

˚
i “ ´σj if i ‰ j. Hence upxq

sends σ3pxq to ´σ3pxq, σ2pxq to ´σ2pxq, but σ1pxq to σ1pxq. The Z2-symmetry was implemented
by the unitary operator upNq on HΛN given by

upNq “ bxPΛNσ1pxq. (7.3)
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It is easy to see that upNq commutes with the Hamiltonian for every finite N . Therefore, if the
ground state eigenvector is non-degenerate, it is an eigenvector of upNq as well, and therefore its
corresponding vector state is Z2-invariant. We will see this below.
We also remarked that the ensuing Z2-symmetry on BpHΛN q is given by the automorphism γpNq:

γpNqpaq “ upNqapupNqq˚. (7.4)

It follows that we have the local property

α
pNq
t ˝ γpNqg “ γpNqg ˝ α

pNq
t pt P R, g P Z2 » t˘1uq. (7.5)

Thus, in view of Definition 2.3 we have a symmetry of the dynamics. We have shown in §5.3 that
for each finite N and B ą 0 the ground state of the Hamiltonian is unique. For N “ 8, and
0 ď B ă 1, the ground state is doubly degenerate and breaks the Z2-symmetry, as explained in
Chapter 6 or in [22, Sec. 10.8].

Transform the ground state eigenvector ψ
p0q
N into a vector state by

ωN0 paq “ xψ
p0q
N , aψ

p0q
N y, pa P AΛN q (7.6)

This state is clearly pure, since ψ
p0q
N is a unit vector and AΛN “ BpHΛN q. For g “ 1 and g “ ´1, it

is easy to check that ω
pNq
0 “ ω

pNq
0 ˝ γg, since uNψ

p0q
N “ zψ

p0q
N for some z P T, using ruN , hCW

N s “ 0
and the fact that the ground state is non-degenerate because it is unique. Thus the state ωN0 is
Z2- invariant. This in combination with (7.5) shows that the Z2-symmetry is not spontaneously
broken in the sense of Definition 2.3.

We are going to define a ’flea’-like perturbation that does not commute with the unitary
operator uN but does commute with the Symmetrizer S. We will give a condition on this flea so
that the ground state of the perturbed operator remains unique and therefore lies in the range of
S. The perturbation will be defined in a way such that the ground state localizes for finite N , but
not as a result of numerical degeneracy. In view of the double well potential displayed in Figure
4.3, we show that this localization can be forced towards the left or right side of the potential
barrier, depending on where the flea is put.

Recall from §3.1 that the Symmetrizer S, which is a projection onto the space of all totally
symmetric vectors, is given by

Spvq “
1

N !

ÿ

σPSn

Lσpvq, (7.7)

with v is a vector in the N -fold tensor product and Lσ is given by permuting by permuting the
factors of v, thus v1 b ¨ ¨ ¨ b vn ÞÑ vσp1q b ¨ ¨ ¨ b vσpnq. As we have seen, a basis for the space of
totally symmetric vectors is given by the vectors t|n`, n´y| n` “ 0, ..., Nu, which spans the subspace
SymN pC2q, as mentioned in the beginning of paragraph §3.1.
In order to define a perturbation, again we may pick a basis for HΛN and define the perturbation
on a basis for HΛN . Since the original Hamiltonian was defined on the standard basis β, we do the
same for the perturbation. In the proof of Theorem 3.1 in §3.1, we have seen there is a bijection
between the number of orbits and the dimension of SymN pC2q. The identification was made as
follows:

Ok Ø |N ´ k, ky, (7.8)
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where k in |N ´ k, ky labels the number of occurrences of the vector e2 in any of the basis vectors
βi P β, and N ´ k in |N ´ k, ky labels the occurrence of the vector e1 in βi, so that N ´ k stands for
the number of spins in the up direction whilst the second position k denotes the number of down
spins. By definition of the Symmetrizer S, any basis vector βk P β in the same orbit Ok will be
mapped under S to the same vector in SymN pC2q, which equals

1
b

`

N
k

˘

pNk q
ÿ

l“1

βkl . (7.9)

Here l in βkl labels the basis vector βk P β within the same orbit Ok. So for each orbit Ok, we have
`

N
k

˘

vectors βk. Hence for each l “ 1, ...,
`

N
k

˘

the image Spβklq under S, is always the same. It is
the coordinate vector written with respect to β. It turns out that the perturbation we are going
to define will be very similar to the Symmetrizer operator. Of course, since we have expressed our
original Curie-Weiss Hamiltonian with respect to this |n`, n´y - basis, we need to do the same for
the perturbation we are going to define now.

Since we have a partition of our 2N -dimensional basis β into N ` 1 orbits, we define a
perturbation as follows: we fix k P t0, ..., Nu as well as some real number λk dependent of k. We
denote the perturbation by V k

λk
. Then by definition of this perturbation any basis vector βkl in the

corresponding orbit Ok will be mapped to

V k
λk

: βkl ÞÑ λkSpβklq,

ˆ

l “ 1, ...,

ˆ

N

k

˙˙

. (7.10)

All other 2N ´
`

N
k

˘

basis vectors βi will be sent to Spβiq. The parameter λk is a real number that
denotes the strength of the perturbation. When we transform the matrix rV k

λ sβ in the β- basis to
the matrix written in the |n`, n´y - basis, it is obvious that it becomes a diagonal matrix with the
value λk at entry pk, kq.

If we can show that V k
λk

commutes with S and that the ground state eigenvector of the

perturbed Hamiltonian hCW
N ` V k

λk
is unique, then we may conclude that the ground state lies

in the subspace SymN pC2q. The reason for this is the same as for the unperturbed Curie-Weiss
Hamiltonian: proving these properties makes that this eigenvector lies in the ranpSq “ SymN pC2q,
so that we may diagonalize this Hamiltonian represented as a matrix that can be written with
respect to the symmetric subspace, which will be a tridiagonal matrix of dimension N ` 1 as well.
This makes computations much easier, and we can compare both systems, i.e. the unperturbed one
and the perturbed one. Similarly as for the Curie-Weiss model, a sufficient condition for uniqueness
of the ground state of the perturbed matrix, originally written with respect to the standard basis
for HΛN , is non-negativity and irreducibility, so that we can apply Lemma 5.12 and Theorem 5.11.
This depends, of course, on the parameter λk. We will come back to this later.

In order to show that the commutator relation is zero, i.e., rS, V k
λ s “ 0, it suffices to show

this for a basis. We check it for the standard basis β of the N -fold tensor product. Fix a basis
vector βj in Ok. If we take any basis vector βi not in Ok, then by definition

V k
λ pβiq “ Spβiq. (7.11)
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If we take any vector βi in the orbit Ok, then

V k
λ Spβiq “ V k

λ

1
b

`

N
k

˘

pNk q
ÿ

l“1

βl

“
1

b

`

N
k

˘

pNk q
ÿ

l“1

V k
λ pβlq

“
λ

b

`

N
k

˘

pNk q
ÿ

l“1

Spβlq

“ λS2pβiq

“ λSpβiq. (7.12)

since Spβiq lies in the orbit Ok and thus is a linear combination of all other
`

N
k

˘

vectors in this orbit.

On the other hand, if we take any basis vector βi not in Ok, then again as before,

SV k
λ pβiq “ S2pβiq “ Spβiq (7.13)

since V k
λ acts as the Symmetrizer on vectors in ranpSq “ SymN pC2q that are not equal to βj . If we

take any vector βi in Ok then,

SV k
λ pβiq “ SλSpβiq “ λSpβiq. (7.14)

We see that for all basis vectors βi P β we have rS, V k
λ spβiq “ 0.

The last step is to show that the Hamiltonian ´phCW
N ` V k

λ q, written with respect to the
standard basis β for HΛN , is a non-negative and irreducible matrix. Since the off-diagonal elements
are completely determined by the unperturbed Hamiltonian and are never zero, the matrix can
never be decomposed into two blocks, so that it remains irreducible. Non-negativity is achieved
when

J

2N
p2n` ´Nq

2 ´ λn` ě 0. (7.15)

This depends of course on k “ n` and hence on the orbit On` where we have put the perturbation.
Any V

n`
λn`

satisfying this inequality guarantees non-negativity. If we assume that this is satisfied,

then together with the fact that hCW
N ` V k

λn`
commutes with S, we can conclude in the same spirit

as §5.3 that the ground state of the perturbed Hamiltonian is unique, and therefore indeed lies in
ranpSq “ SymN pC2q. Finally, knowing now that we may diagonalize the perturbed Hamiltonian with
respect to the symmetric basis |n`, n´y, we use the fact that the sum of two linear transformations
written with respect to a basis individually equals the sum of both linear transformations if this
total sum is written with respect to the basis, i.e.:

rhCW
N s|n`,n´y ` rV

k
λk
s|n`,n´y “ rh

CW
N ` V k

λk
s|n`,n´y. (7.16)

Therefore, since we may diagonalize hCW
N ` V k

λk
in the symmetric basis |n`, n´y, the above

observation (7.16) ensures that it suffices to diagonalize the sum of the individual matrices
represented in this basis, i.e., the tridiagonal matrix rhCW

N s|n`,n´y (viz. (3.1)) and the perturbation

matrix rV k
λk
s|n`,n´y.
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Recall that in §3.2 the ground state ψ
p0q
N of the unperturbed Hamiltonian hCW

N was approximately
given by two Gaussians (for N large), each of them located in one of the wells of the potential, and
was given by

ψ
p0q
N –

Tapϕ0q ` T´apϕ0q
?

2
. (7.17)

In fact, this is true for any finite N , since the ground state is unique, as we have proven in §5.3.
However, due to numerical degeneracy of the ground state and the first excited state for about
N ě 80, these two states will form a linear combination χ˘ given by (3.29). By a simple calculation,
we found that for these relative large values of N , the (numerical) degenerate ground state is given
by

χ˘ – T˘apϕ0q, (7.18)

where the functions ϕ0pxq have to be understood as functions on a discrete grid. For N ă 80, we
observed that a plot of the ground state displayed a doubly peaked Gaussian, as expected from
(7.17). This made sense, since the energy levels in the latter case are not degenerate, not even for
the computer.

As we have mentioned we wanted to show that, due to the perturbation, the (unique) ground
state localizes for finite N . We have just argued that this happens already for N ě 80, but this
was a result of numerical inaccuracy/degeneracy. The question is then if our perturbation forces
the ground state to localize for finite N in such a way that it will be not a result of numerical
degeneracy. The answer is yes. It depends on the parameter λn` with n` denoting the nth

` - position
in the diagonal matrix of the perturbation. Completely analogously as in Chapter 4, we can extract
the potential corresponding to the perturbed Hamiltonian hCW

N ` V k
λn`

, written with respect to

the symmetric base. We scaled this Hamiltonian by 1{N and translated the potential so that its
minima are set to zero. We have made a plot of this potential (Figure 7.1). For convenience, we
scaled the domain to the unit interval. Moreover, we plotted the ground state of this Hamiltonian
and the one corresponding to the unperturbed one (Figure 7.2). We observe a localization of the
ground state in the right sided well. Simulations showed that the eigenvalues of the perturbed
Hamiltonian are non-degenerate, so that the ground state is indeed unique, also for the computer.
Hence, the localization is not a result of numerical degeneracy. We did a similar simulation for
the flea but now located on the right site of the barrier (Figure 7.3). We see a localization of the
ground state to the left side of the barrier (Figure 7.4).
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Figure 7.1: The perturbed potential energy computed from the tridiagonal matrix hCWN ` V k
λk

for
N “ 60, λk “ 0.5, k “ 7, J “ 1 and B “ 1{2. This potential has a ‘flea’ on the left side of well due
the perturbation V k

λk
.

Figure 7.2: The corresponding ground state (in red) of the perturbed Hamiltonian hCWN ` V k
λk

is
already localized for N “ 60, λk “ 0.5, k “ 7, J “ 1 and B “ 1{2. For these values of λk and k,
still condition (7.15) is satisfied. The localization takes place on the right side of the well, since the
flea lifts the potential on the left side.
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Figure 7.3: The perturbed potential energy computed from the tridiagonal matrix hCWN ` V k
λk

for
N “ 60, λk “ 0.5, k “ 7, J “ 1 and B “ 1{2. This potential has a ‘flea’ on the right side of the
well due the perturbation V k

λk
.

Figure 7.4: The corresponding ground state (in red) of the perturbed Hamiltonian hCWN ` V k
λ is

already localized for N “ 60, λk “ 0.5, k “ N ´ 7, J “ 1 and B “ 1{2. For these values of λk and
k, condition (7.15) is still satisfied. Localization takes place on the left side of the barrier, since the
flea lifts the potential on the right side.

Our conclusion is that due to this ‘flea’-like perturbation, the ground state will localize in one of
the wells depending on where the flea is put. This localization may be understood from energetic
considerations. For example, if λn` ą 0 such that condition (7.15) is satisfied and the perturbation
is located on the right, then the relative energy in the left-hand part of the double well is lowered,
so that localization will be to the left. This result matches exactly the work done in [34], where the
Schrödinger operator with a symmetric double well was studied rather than quantum spin systems.

The last topic of this section is to relate these results to symmetry breaking. Given the
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perturbed Hamiltonian hCW
N ` V k

λk
such that (7.15) is satisfied, we know that the unique ground

state lies in RanpSq “ SymN pC2q. However, we do not have a Z2-symmetry of the system since
this perturbed Hamiltonian does not commute with the unitary operator upNq “ bNx“1σ1pxq
implementing this Z2-symmetry:

Lemma 7.1. The unitary operator upNq “ bNx“1σ1pxq does not commute with V k
λk

, and therefore

the ground state of the perturbed Hamiltonian hCW
N ` V k

λ is not Z2-invariant.

Proof. It is easy to see that upNq maps any vector in the orbit Ok to vectors in ON´k: fix a basis
vector βkl P Ok, ( k “ 0, ..., N and l “ 1, ...,

`

N
k

˘

). Then

V k
λk
βkl “ λkSpβklq;

upNqpβklq “ σ1pen1q b ¨ ¨ ¨ b σ1penN q. (7.19)

Here, eni “
`

1
0

˘

or
`

0
1

˘

. Since βkl P Ok, then by definition of the σ1, we have upNqpβklq P ON´k.

Now compute:

pupNqV k
λk
qpβklq “ pu

pNqV k
λk
qpen1 b ¨ ¨ ¨ b enN q “ λkSpσpen1q b ¨ ¨ ¨ b σpenN qq. (7.20)

On the other hand:

pV k
λk
upNqqpβklq “ pV

k
λk
upNqqpen1 b ¨ ¨ ¨ b enN q “ λN´kSpσpen1q b ¨ ¨ ¨ b σpenN qq. (7.21)

Hence, as soon as λN´k ‰ λk, the above two equations are not equal, so that V k
λk

does not commute

with upNq. But this is satisfied, since λN´k “ 1 and λk ‰ 1.

We will now prove the last assertion by contradiction. Denote ψ̃
p0q
N to be the (unique) ground state

eigenvector of hCW
N ` V k

λk
. Transform it into a (pure vector) state:

ω̃
p0q
N paq “ xψ̃

p0q
N , aψ̃

p0q
N y. (7.22)

Assume this state is Z2-invariant. Then, in particular for the non-trivial element γ “ ´1 P Z2, we
have

ω̃
p0q
N pγ´1paqq “ xpu

pNqq˚ψ̃
p0q
N , apupNqq˚ψ̃

p0q
N y “ xψ̃

p0q
N , aψ̃

p0q
N y. (7.23)

By uniqueness of the ground state, this would imply that upNqψ
p0q
N “ zψ

p0q
N for some z with |z| “ 1,

and hence also that rhCW
N ` V k

λk
, upNqs “ 0, which is a contradiction with the first part of the proof.

Therefore, the ground state of the perturbed Hamiltonian is not Z2-invariant. This completes the
proof the lemma.

From this lemma, it follows also that there is no symmetry of the dynamics in the sense of Definition
2.3. Therefore, we cannot speak about spontaneous symmetry breaking of the ground state. Since
the perturbation forces the ground state to localize in one of the wells, in the classical limit
the ground state will be a pure state. This is in contrast to the case without perturbation: in
theory the (doubly peaked) ground state will converge to a mixed ground state if N Ñ 81. We
call this phenomena explicit symmetry breaking meaning that due to a small perturbation of the
Hamiltonian, the ground state will localize already for finite N , with a pure state being its classical
limit. The direction of localization to either the left or the right side of the potential barrier can be
controlled by the perturbation.

1Keep still in mind that the unperturbed Hamiltonian does not give this result, since the eigenvectors already mix
due to the numerical degeneracy of the computer. Therefore, the classical limit is pure as well.
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When one considers the Schrödinger operator with a double well potential, symmetric around
x “ 1{2, and defined on the Hilbert space L2pr0, 1sq, the ensuing Z2 symmetry is given by reflection
around x “ 1{2 given by τ1{2pfqpxq :“ fp1´ xq. If one adds an asymmetric flea on the potential as
displayed in the figure above, then it is clear that the Schrödinger Hamiltonian does not commute
anymore with τ1{2, so that completely analogously to the above observation, we do not have a
symmetry of the dynamics and hence no SSB, even though the ground state still remains unique,
because the uniqueness theorems in §5.4 remain applicable to the potential. It has been shown
in [34] that the ground state localized exactly a same way as we just have shown. Therefore, our
findings concerning the (explicit) symmetry breaking of the ground state of the Curie-Weiss model
completely match the Schrödinger operator analog.

Remark.
We have seen the the ground state of the unperturbed Curie-Weiss model has a classical limit as
a state on CpB3q. This should be a mixed state, like for the LMG-model. However, we have seen
that due to numerical degeneracy of the ground state, the ground state eigenvector localizes already
for finite N ě 80, so that the classical limit is a pure state. This ‘numerical symmetry breaking’
therefore has the same effect as explicit symmetry breaking for the perturbed Hamiltonian. The
disadvantage is that we cannot take N too big (like N “ 5000) in order to check that we have a
mixed classical limit, as expected from [22, Sec. 10.1].
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Chapter 8

Discussion and further research

Let us summarize our findings and see what can be said regarding spontaneous symmetry
breaking of quantum spin systems and their classical limits. Although the only spin system we
have studied in detail was the quantum Curie-Weiss model, we can conclude some important
results. Probably the most important result is the link we have made between the quantum
Curie-Weiss Hamiltonian and a Schrödinger operator with a symmetric double well potential.
We have shown that the scaled quantum Curie-Weiss Hamiltonian restricted to the symmetric
subspace SymN pC2q was an approximation of a discretization of a Schrödinger operator with
a symmetric double well potential, defined on L2pr0, 1sq. Using the fact that this Schrödinger
operator has a classical limit with corresponding ground state given by Dirac measures, we
might conclude the same for the spin system. We have also seen in Chapter 6 that the ground
state of the quantum spin Hamiltonian has another classical limit, this time defined on CpB3q.
Both limiting cases have in common that the ground state is doubly-degenerate and breaks
the Z2-symmetry spontaneously, at least in the regime 0 ď B ă 1. Subsequently, we showed
in Chapter 7 that due to a small perturbation this Z2-symmetry can already be explicitly
broken for finite N , resulting in a pure ground state in the classical limit. This form of explicit
symmetry breaking due to a small perturbation has also been studied from a similar perspective
for the Schrödinger operator with a symmetric double well potential [22], [34]. We have seen
that this was completely in accordance with our findings regarding the quantum Curie-Weiss model.

We started this thesis by mentioning the concept of asymptotic emergence. We saw that
the natural phenomenon spontaneous symmetry breaking (SSB) is an example of what we called
an emergent feature. We considered the pair pH1, L1q, with H1 classical mechanics on CpB3q, and
L1 the quantum Curie-Weiss spin chain on a finite line. Another example for which SSB is an
emergent feature is the pair pH2, L2q, with H2 quantum mechanics on B0pL

2pRqq and L2 classical
mechanics of a particle on a subset of the real line. In fact, based on the connection between the
pertinent Schrödinger operator and the quantum Curie-Weiss model, these pairs are related. There
should be more research to get a better understanding about this relation, since our findings are
partly based on numerical simulations. For example, we were not able to prove mathematically
that the ground state eigenfunction of the compressed Curie-Weiss Hamiltonian localizes on a
subset of order

?
N . Apart from that, another important omission is that we do not know if the

excited states of the Curie-Weiss Hamiltonian defined on
ÂN

n“1 C2 are in the symmetric subspace
or not. We only know this for the ground state. Therefore, considering the tridiagonal matrix,
we may not a priori conclude that for example the first excited state of this matrix corresponds
also to the first excited state of the original Curie-Weiss Hamiltonian. As a result, when passing
to the classical limit from the (scaled) tridiagonal matrix, we should beware of convergence of
the first excited state. However, numerical results have shown that the desired classical limit,
starting from the quantum ground and first excited state, was in fact obtained. In view of the
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pair pH1, L1q, we defined a deformation quantization. Although this map was only defined for
some class of functions, not for all functions on CpB3q, this definition was sufficient to pass to the
classical ground states. It is still not so clear how to define this map on the whole algebra CpB3q.
Moreover, in view of Theorem E.5 the construction of this map is not unique, i.e., different choices
can lead to quasi-symmetric sequences which converge to the desired limit. In addition, the proof
of weak˚-convergence of the reduced density matrices involved was partly based on numerical
simulations, since we were not able to give an explicit expression for the ground state eigenvector.

More research is needed to understand better the connection between such pairs pH,Lq.
We have mentioned some interesting topics regarding this relation in the beginning of this thesis.
For example, it is not so clear how to construct a classical Hamiltonian corresponding to H from
the underlying quantum Hamiltonian belonging to L. A useful theorem that connects at least
the classical dynamics to quantum dynamics for spin systems can be found in [22, Thm. 10.22]
and [22, Cor. 10.23]. We have seen in the introduction of this thesis that the quantum Ising
model has both a classical and a quantum limit. Both (different) limits have a doubly-degenerate
ground state that displays SSB, like for the classical Curie-Weiss model. This non-trivial result is
definitely a very interesting topic for further research. However, the disadvantage of the quantum
Ising model is that its Hamiltonian represented with respect to the canonical basis for

ÂN
n“1 C2

has alternating positive and negative entries so that the Perron-Frobenius theorem cannot be
applied to this matrix, and hence uniqueness of the ground state does not follow easily, like for
the Curie-Weiss model. Moreover, this model takes only nearest neighbour interactions so that it
does not commute with the Symmetrizer operator. Thus, in order to compute the ground state, we
cannot restrict ourselves to this subspace and numerical simulations seem pretty hopeless. Inspired
by the connection between the quantum Curie-Weiss Hamiltonian and the Schrödinger operator
with a symmetric potential, the general question is if there are more quantum spin systems that
can be related to Schrödinger operators with some potential. Like for the quantum-Curie-Weiss
model, the crucial property is the existence of a subspace of

ÂN
n“1 C2 and a basis such that the

spin Hamiltonian, written with respect to this basis of the subspace, is a tridiagonal matrix. It is
a priori not clear if such a subspace also exists for other quantum spin Hamiltonians. A complete
new research project relating quantum spin systems to Schrödinger operators can therefore be
launched.

In short, lots of interesting topics regarding asymptotic emergence are still not well understood
and can therefore be the subject for new research.
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Appendix A

C˚-algebras

C˚-algebras play a central role in modeling the quantum (and even the classical) systems in which
we are interested. Therefore, we outline some basic concepts related to C˚-algebras that can be
found in [28], [29]. We begin with some definitions.

Definition A.1. An involution on an algebra A is a conjugate-linear map a ÞÑ a˚ on A, such that
a˚˚ “ a and pabq˚ “ b˚a˚ for all a, b P A. The pair pA, ˚q is called a ˚-algebra.

Definition A.2. A homomorphism from an algebra A to an algebra B is a linear map ϕ : AÑ B
such that ϕpabqϕpaqϕpbq for all a, b P A. If ϕ : AÑ B is a homomorphism of ˚-algebras A and B,
and ϕ preserves adjoints, that is ϕpa˚q “ ϕpaq˚ pa P Aq, then ϕ is called a ˚ ´ homomorphism.
If in addition ϕ is a bijection, then it is a ˚ ´ isomorphism. An automorphism of a ˚-algebra A
is a ˚-isomorphism ϕ : AÑ A. The set of all automorhpisms of A is denoted by AutpAq. This set
forms a group under composition. If A is unital and u is unitary in A, then

a ÞÑ uau˚ pa P Aq, (A.1)

is an automorphism of A. Such an automorphism, given by conjugation with a unitary, is called
inner. In general, not every automorphism of a C˚-algebra is inner (except,for example when
A “ BpHq).

Definition A.3. A Banach ˚ ´algebra is a ˚-algebra A together with a complete submultiplicative
norm (i.e., ||ab|| ď ||a|| ¨ ||b||) such that ||a||˚ “ ||a|| pa P Aq. If, in addition, A has a unit such that
||1|| “ 1, we call A a unital Banach ˚ ´algebra. A C˚-algebra is a Banach ˚-algebra such that

||a˚a|| “ ||a||2 pa P Aq. (A.2)

Now, we introduce the concept of the dynamics of a physical system. They describe how observables
(i.e., elements of the C˚-algebra) evolve over time. A natural approach is to look at the time
evolution of the observables, t ÞÑ aptq. This is called the Heisenberg picture. The time evolution
induces a one-parameter subgroup of automorphisms t ÞÑ αt of the observable algebra.

Definition A.4. The dynamics of a C˚-algebra A is given by a continuous homomorphism

α : RÑ AutpAq; (A.3)

t ÞÑ αt, (A.4)

where we use the notation αt ” αptq. Continuity here means strong continuity, in that for each
a P A, the map t ÞÑ αtpaq from R to A is continuous (so that the map R ˆ A Ñ A given by
pt, aq ÞÑ αtpaq is continuous, as usual for group actions).
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To make the connection between the abstract C˚-algebraic picture and the physical world, it is
necessary to have a way to describe expectation values of measurement outcomes. This naturally
leads to the notion of a state on a C˚-algebra. Using such states there is then a canonical way, the
GNS construction, to represent the system on a Hilbert space.

Definition A.5. A linear map ϕ : AÑ B between two C˚-algebras A and B is said to be positive if
ϕpA`q Ă ϕpB`q. Here, A` and B` denote the sets of self-adjoint elements with positive spectrum.

Definition A.6. A state ω : AÑ C is a positive linear functional of norm 1. We denote by SpAq
the set of states of A.

Definition A.7. Let A be a C˚-algebra and H be a Hilbert space. A representation of A on H is
a ˚-homomorphism π : AÑ BpHq.

it is a basic result that for representations π of C˚-algebras, one automatically has ||πpaq|| ď ||a||
for all a P A. It follows that the representation is automatically continuous with respect to the
norm topology.

Definition A.8. A representation π : A Ñ BpHq is called non´ degenerate if the set πpAqH is
dense in H. It is called cyclic if there exists some vector Ω P H such that πpAqΩ is a dense subset
of H. Such an Ω is called a cyclic vector.

We are now in the position to state the GNS construction, named after Gel’fand, Naimark and Segal.

With each positive linear functional, there is an associated representation. Suppose that ω
is a positive linear functional on a C˚-algebra A. Define the set

Nω “ ta P A| ωpa
˚aq “ 0u. (A.5)

It is not difficult to see that Nω is a closed left ideal of A. We can therefore form the quotient vector
space Hω “ A{Nω and write ras for the equivalence class of a P A in this quotient. This means that
ras “ rbs if and only if a “ b` n0 for some n0 P Nω. We can define a map on Hω ˆHω:

Hω ˆHω Ñ C; (A.6)

pa`Nω, b`Nωq ÞÑ ωpa˚bq. (A.7)

It can be shown that this map is a well-defined inner product on Hω. By taking the completion
with respect to this inner product we obtain the Hilbert space Hω.
Next we define the representation πω by defining the action of πωpAq on the dense subset Hω of
Hω. Let rbs P Hω, then we define

πω : AÑ BpHωq (A.8)

πωpaqrbs “ rabs. (A.9)

It is easy to check that this is well-defined. Moreover, we have

||πωpaqrbs||
2 ď xrabs, rabsy “ ωpb˚a˚abq ď ||a||2ωpb˚bq “ ||a||2 ¨ ||rbs||Hω , (A.10)

where || ¨ ||is the norm on the C˚-algebra. Therefore, πωpaq is bounded on a dense subset of Hω. It
is not difficult to check that πω is linear on this dense subset, hence it can be uniquely extended to
a bounded operator on Hω, which we again denote by πω. From the definition of πω, it is easy to
check that this map is a ˚-homomorphism.1 If we define Ωω “ rIs, it is clear that Ωω is cyclic for
πω. Moreover, for each a P A:

xΩω, πωpaqΩωy “ xrIs, rasy “ ωpaq. (A.11)

1If necessary, we add a unit I to A, or we take an approximate identity teλu for A. In the latter case, it is easy to
show that the equivalence class of the net teλu converges to some cyclic unit vector in Hω.
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If ω is a state, then it can be shown that Ωω has norm 1, and is therefore a cyclic unit vector.

This brings us to the first theorem.

Theorem A.9. Let A be a C˚-algebra and ω a state on A. Then there exists a triple pπω,Hω,Ωωq,
where Hω is a Hilbert space and πω a representation of A on Hω, such that Ωω is a cyclic unit
vector for πω, and in addition we have

ωpaq “ xΩω, πωpaqΩωy pa P Aq. (A.12)

This triple is unique in the sense that if pπ,H,Ψq is another such triple, there is a unitary U :
Hω Ñ H such that UΩ “ Ψ and πpaq “ UπωpaqU

˚ for all a P A.

Proof. The first part of the theorem is given above. It remains to be shown that the construction
is essentially unique. Suppose that pπ,H,Ψq is another such triple. Define U : Hω Ñ H by setting

UπωpaqΩω “ πpaqΨ pa P Aq. (A.13)

This is a linear map of a dense subspace of Hω onto a dense subspace of H, using that Ψ is cyclic
by assumption. Moreover, for each a, b P A we have

xUπωpaqΩω, UπωpbqΩωy “ xπpaqΨ, πpbqΨy “ ωpa˚bq “ xπωpaqΩω, πωpbqΩωy. (A.14)

This shows that U is well defined as well as isometric, so that it extends to Hω by continuity. It
then follows that its image is the closure of πpAqΨ, which is H. Thus U is surjective and hence
unitary. Moreover, we compute

UπωpaqπωpbqΩ “ UπωpabqΩ “ πpabqΨ “ πpaqπpbqΨ “ πpaqUπωpbqΩ. (A.15)

We conclude that Uπωpaq “ πpaqU pa P A) on the dense space πωpAqΩω, and hence everywhere.

Note that automorphisms preserve all the algebraic relations of the algebra. Hence they are a
natural tool to model symmetries. There is an important corollary that follows from the uniqueness
of the GNS representation. If α is an automorphism of A and ω is invariant under the action of this
automorphism (e.g., a ground state of a physical system is invariant under some symmetry), then
α is implemented by a unitary in the GNS representation. The precise statement is as follows:

Theorem A.10. Let A be a C˚-algebra and α an automorphism of A. Suppose that ω is a state
on A such that ω ˝ α “ ω. then there is a cyclic representation pπω,Hω,Ωωq such that

ωpaq “ xΩω, πωpaqΩωy, (A.16)

and a unitary U P BpHωq such that πω ˝ αpaq “ UπωpaqU
˚ and UΩω “ Ωω.

Proof. Let pπω,Hω,Ωωq be the GNS representation for the state ω. Note that pπω ˝ α,Hω,Ωωq is
another GNS triple:

xΩω, πωpαpaqqΩωy “ ωpαpaqq “ ωpaq pa P Aq. (A.17)

Moreover, Ωω is again cyclic since α is an automorphism. By uniqueness of the GNS triple (Theorem
A.9), there is a unitary operator U such that πω ˝ αpaq “ UπωpaqU

˚. This U is defined by

UπωpaqΩω “ πωpαpaqqΩω. (A.18)
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This definition is well-defined. To see this, denote ras “ πωpaqΩω and ra1s “ πωpa
1qΩω, both elements

of Hω. If ras „ ra1s, then a “ a1 `Nω, so that a´ a1 P Nω. It follows that

πωpαpaqqΩω ´ πωpαpa
1qqΩω “ rαpa´ a

1qIs. (A.19)

We have to prove that

πωpαpaqqΩω “ πωpαpa
1qqΩω. (A.20)

Hereto, we show that (A.19) is zero, by proving that αpa´ a1q P Nω. We compute

ωpαpa´ a1q˚αpa´ a1qq “ ωpαpa´ a1q˚pa´ a1qq “ ωpa´ a1q˚pa´ a1q “ 0, (A.21)

using that α is a automorphism, the invariance of ω under α and that a´ a1 P Nω. By definition of
ω, we have

0 “ ||rαpa´ a1qIs||2, (A.22)

which implies immediately that

rαpa´ a1qIs “ 0. (A.23)

We conclude that

πωpαpaqqΩω “ πωpαpa
1qqΩω. (A.24)

Therefore, U is well-defined and this is exactly the unitary we were looking for.
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Appendix B

Discretization

This information provided in this appendix is based on [21] and [19]. These results have been used
in §4.5.

Recall from calculus that the following approximations are valid for the derivative of single-variable
functions fpxq. The first one is called the forward difference approximation and is an expression of
the form

f 1pxq “
fpx` hq ´ fpxq

h
`Ophq ph ą 0q. (B.1)

The backward difference approximation is of the form

f 1pxq “
fpxq ´ fpx´ hq

h
`Ophq ph ą 0q. (B.2)

Furthermore, the central difference approximation is

f 1pxq “
fpx` hq ´ fpx´ hq

2h
`Oph2q ph ą 0q. (B.3)

The approximations are obtained by neglecting the error terms indicated by the O-notation.
These formulas can be derived from a Taylor series expansion around x,

fpx` hq “ fpxq ` hf 1pxq `
h2

2
f2pxq ` ... “

8
ÿ

n“0

hn

n!
f pnqpxq (B.4)

and

fpx` hq “ fpxq ´ hf 1pxq `
h2

2
f2pxq ` ... “

8
ÿ

n“0

p´1qn
hn

n!
f pnqpxq, (B.5)

where f pnq is the nth order derivative of f . Subtracting fpxq from both sides of the above two
equations and dividing by h respectively ´h leads to he forward difference respectively the backward
difference. The central difference is obtained by subtracting equation (B.5) from equation (B.4) and
then dividing by 2h.
The question is how small h has to be in order for the algebraic difference fpx`hq´fpxq

h (for in this
case the forward difference approximation) to be good approximation of the derivative. It is clear
from the above formulas that the error for the central difference formula is Oph2q. Thus, central
differences are significantly better than forward and backward differences.
Higher order derivatives can be approximated using the Taylor series about the value x

fpx` 2hq “
8
ÿ

n“0

p2hqn

n!
f pnqpxq (B.6)
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and

fpx´ 2hq “
8
ÿ

n“0

p´1qn
p2hqn

n!
f pnqpxq. (B.7)

A forward difference approximation to f2pxq is then

fpx` hq ´ 2fpx` hq ` fpxq

h2
`Ophq, (B.8)

and a centered difference approximation is for example

fpx` hq ´ 2fpxq ` fpx` hq

h2
`Oph2q. (B.9)

Now we discretize the kinetic and potential energy operator. For simplicity, consider the
one-dimensional case. We first discretize the interval r0, 1s using a uniform grid of N points
xi “ ih, h “ 1

N , i “ 0, 1, ..., N . It follows that fpxq ÞÑ fpxiq “: fi. The Taylor series expansion of a
function about a point xi becomes

fi`k “ fi `
8
ÿ

n“0

p´1qn
pkhqn

n!
f pnqpxq, (B.10)

where k “ ˘1,˘2, ...,˘N . Analogously as above, we can find central difference formulas for f 1j , f
2
j ,

namely

f 1j “
´fj´1 ` fj`1

2h
`Oph2q (B.11)

f2j “
fj´1 ´ 2fj ` fj`1

h2
`Oph2q. (B.12)

The approximations are again obtained by neglecting the error terms.
Using this uniform grid with grid spacing h “ 1{N , it follows that the second derivative operator
in one dimension is given by the tridiagonal matrix 1

h2
r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN and the potential which

acts as multiplication, is given by a diagonal matrix. With the notation 1
h2
r¨ ¨ ¨1 ´ 2 1 ¨ ¨¨sN , we

mean the N -dimensional matrix

1

h2

¨

˚

˚

˚

˚

˚

˚

˝

´2 1

1 ´2 1 0
. . .

. . .
. . .

0 1 ´2 1
1 ´2

˛

‹

‹

‹

‹

‹

‹

‚

Now suppose that the values of the kinetic energy operator T are non-uniformly dependent
of the positions in space. Then one needs to use a non-uniform grid in order to get a good
description of the second derivative. We use the central difference approximation and approach f
by a Taylor series.
Denote xj by the jth grid point and fk “ fpxkq. Then the Taylor series of f at xj can be written as

fk “ fj `
8
ÿ

m“1

pxk ´ xjq
m

m!
f
pmq
j . (B.13)
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If we let hj` 1
2
“ xj`1 ´ xj , then similarly as above, for a three-point finite-difference formula i.e.,

only fi`1, fi, fi´1 are used, we find that

fj`1 “ fj ` hj` 1
2
f 1j `

h2
j` 1

2

2
f2j `

h3
j` 1

2

6
f
p3q
j ` ... (B.14)

and similarly for hj´ 1
2
“ xj´1 ´ xj , so that xj ´ xj´1 “ ´hj´ 1

2
, we find

fj´1 “ fj ´ hj´ 1
2
f 1j `

h2
j´ 1

2

2
f2j ´

h3
j´ 1

2

6
f
p3q
j ` ... (B.15)

Both expressions can be used to eliminate f 1j to derive an expression for the second derivative:

f2j “
2fj´1

hj´ 1
2
phj´ 1

2
` hj` 1

2
q
´

2fj
hj´ 1

2
hj` 1

2

`
2fj`1

hj` 1
2
phj´ 1

2
` hj` 1

2
q
`
hj` 1

2
´ hj´ 1

2

3
f
p3q
j `Oph2q. (B.16)

This is the central difference approximation for the non-uniform grid. If we assume that hj` 1
2
´hj´ 1

2

is small, we may neglect the last term, and we get precisely that

2

hj´ 1
2
phj´ 1

2
` hj` 1

2
q
“ Tj,j´1, (B.17)

´2

hj´ 1
2
hj` 1

2

“ Tj,j , (B.18)

2

hj` 1
2
phj´ 1

2
` hj` 1

2
q
“ Tj,j`1. (B.19)

Therefore we find that the ratio, say ρj , equals

ρj “
Tj,j`1

Tj,j´1
“
hj´ 1

2

hj` 1
2

. (B.20)

Thus hj´ 1
2
“ ρjhj` 1

2
. We derive from this combined with the above three equations that

h2
j` 1

2

“
2

Tj,j´1ρjp1` ρjq
, (B.21)

or h2
j` 1

2

“
2

Tj,j`1p1` ρjq
. (B.22)
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Appendix C

Semiclassical WKB approximation

In this Appendix, we review some important results of the semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation. We give a short overview of the most important results needed for §4.8.
The information in this appendix is taken from [34] and [2].

A particle of a mass m satisfies the Schrödinger equation given by

´
~2

2m

d2ψ

dx2
“ rE ´ V pxqsψ. (C.1)

This equation is equivalent to

d2ψ

dx2
“ ´

p2

~2
ψ, (C.2)

where the momentum p is given by

ppxq “

#

a

2mpE ´ V pxqq, E ě V pxq

˘i
a

2mpV pxq ´ Eq, E ă V pxq.
(C.3)

The generalized de Broglie-wavelength is given by

λpxq “
h

ppxq
, (C.4)

where h is the Planck constant. It turns out that there are three cases: the case E ą V pxq, called
the classically allowed region; the case E ă V pxq, called the classically forbidden region; and finally
the case E “ V pxq, consisting of turning points.

We start with the first case. In general the wave function ψ has a position x dependent on
the phase ϕpxq. It is therefore given by

ψpxq » Ae
i
~ϕpxq, (C.5)

with A a normalization constant. Substituting this into (C.1) gives

i~ϕp2q ` pϕp1qq2 “ p2. (C.6)

For ~ small, we can expand ϕpxq in terms of ~, assuming ϕpxq is a polynomial. We find

ϕpxq “ ϕ0pxq ` ~ϕ1pxq `
~2

2!
ϕ2pxq ` ... (C.7)
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Substituting (C.5) into (C.6), and comparing to (C.7) up to the second order, we find the equations:

pϕ
p1q
0 q2 “ p2, (C.8)

2ϕ
p1q
0 ϕ

p1q
1 ´ iϕ

p2q
0 “ 0, (C.9)

ϕ
p1q
0 ϕ

p1q
1 ` pϕ

p1q
1 q2 ` ipϕ

p2q
1 q2 “ 0. (C.10)

Using that E ą V pxq, so that ppxq is a real, the solution to the first equation is

ϕ0pxq “ ˘

ż x

ppyqdy, (C.11)

where we have a free choice for the lower bound of the integral, since any constant can be absorbed
in A. Hence we can solve the second equation:

ϕ1pxq “
i

2
logpppxqq. (C.12)

The solution to the third equation is then given by

ϕ2pxq “ ¯
p1pxq

2p2pxq
¯

ż x

ppyq

ˆ

p1pyq

2p2pyq

˙2

dy. (C.13)

If |~ϕ2pxq{2 ăă 1|, then the power series (C.7) can be terminated after two terms. This can only
hold if

ˇ

ˇ

ˇ

ˇ

p1pxq

2p2pxq

ˇ

ˇ

ˇ

ˇ

ăă
2

~
. (C.14)

This is the case when to potential V pxq varies slowly as a function of position, or when ~Ñ 0.
If we assume (C.14), then we may truncate the power series after two terms. Plugging in our
solution for ϕ0 and ϕ1, we find the WKB approximation for the wave function:

A
a

ppxq
e˘

i
~
şx ppyqdy. (C.15)

The general solution under these semiclassical assumptions is

ψpxq »
1

a

ppxq

ˆ

Ae
i
~
şx ppyqdy `Be´

i
~
şx ppyqdy

˙

. (C.16)

For the second case, the classical forbidden region, we have E ă V pxq, so that ppxq is imaginary.
Similarly as above, one can deduce that the general solution of the wave function (under this
assumption (C.14)) is

ψpxq »
1

a

ppxq

ˆ

Ce
1
~
şx
|ppyq|dy `De´

1
~
şx
|ppyq|dy

˙

. (C.17)

As we have argued, the approximations to the wave functions for the two previous cases, only make
sense if (C.14) holds. However, close to the classical turning points, we see that ppxq approximates
zero. Therefore, there is some area where (C.14) is not valid, and hence the WKB approximation
derived above is not applicable there. First, we should remark there are two kinds of turning points.
In the figure below, x1 is a left-hand turning point and x2 is a right-hand turning point.
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Figure C.1: A general potential well. The particle has energy E. The turning points are indicated
by x1 and x2, the three different areas by 1, 2 and 3. This picture has been taken from [2].

In order to find the WKB wave functions around these turning points, one needs to use a different
approach. We won’t derive these functions but refer to [34]. The wave function around the
right-hand turning point is given by

ψpxq »

$

’

’

&

’

’

%

1?
ppxq

„

2C cos

ˆ

1
~
şx
x2
|ppyq|dy ` π

4

˙

`D sin

ˆ

1
~
şx
x2
|ppyq|dy ` π

4

˙

, if x ď x2

1?
|ppxq|

„

C exp´1
~
şx
x2
|ppyq|dy `D exp´1

~
şx2
x |ppyq|dy



, if x ą x2,
(C.18)

A similar result holds for the left-hand turning point.
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Appendix D

Schrödinger operators

We provide the preliminaries for the theory of unbounded operators, as used in §5.4. We just state
some definitions and basic facts. In particular, we introduce the term Schrödinger operator. This
appendix is based on [31] and [32].

Definition D.1. Let T be a mapping from a Hilbert space H1 into a Hilbert space H2. The graph
of T , denoted by ΓpT q, is defined as

ΓpT q “ tpx, yq | px, yq P H1 ˆH2, y “ Txu. (D.1)

The graph of T is thus a linear subset of H1 ˆ H2, which is a Hilbert space H1 ‘ H2 with inner
product

xpψ1, ϕ1q, pψ2, ϕ2qy “ xψ1, ψ2y ` xϕ1, ϕ2y. (D.2)

Definition D.2. An operator T : H1 Ñ H2 is said to be closed if the graph ΓpT q is a closed subset
of H1 ˆH2.

Definition D.3. Let T1 and T be operators on H. if ΓpT1q Ą ΓpT q, then T1 is said to be an
extension of T , and we write T1 Ą T . Equivalently, T1 Ą T if and only if DpT1q Ą DpT q, and
T1pϕq “ T pϕq for all ϕ P DpT q. Here, DpT q is called the domain of T .

Definition D.4. An operator T is closable if it has a closed extension. Every closable operator has
a smallest closed extension, called its closure, which we denote by T .

Definition D.5. The domain of an operator T on a Hilbert space H is a linear subspace H, denoted
by DpT q. If the domain is dense in H, we say that T is densely defined. Unless specified otherwise,
we will always suppose that the domain is dense.

Definition D.6. An unbounded linear operator T from H1 to H2 is a pair pDpT q, T q consisting of
a domain DpT q Ă H1 and a linear map T : DpT q Ă H1 Ñ H2.

Remark : unbounded operators may be bounded according to our terminology.

Definition D.7. Let T be a densily defined operator on a Hilbert space H. Let DpT ˚q be the set of
ϕ P H for which there is a η P H with

xTψ, ϕy “ xψ, ηy, for all ψ P DpT q. (D.3)

For each such ϕ P DpT ˚q, we define T ˚pϕq “ η. T ˚ is called the adjoint of T . By the Riesz Lemma,
ϕ P DpT ˚q if and only if |xTψ, ϕy| ď C||ψ||, for all ψ P DpT q.
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Definition D.8. Let T be a closed operator on a Hilbert space H. A complex number λ is in
the resolvent set ρpT q if λI ´ T is a bijection of DpT q onto H with a bounded inverse. If λ P
ρpT q, RλpT q “ pλI ´ T q

´1 is called the resolvent of T at λ.

Definition D.9. A densely defined operator T on a Hilbert space is called symmetric (or
Hermitian) if T Ă T ˚, that is DpT q Ă DpT ˚q and Tϕ “ T ˚ϕ for all ϕ P DpT q. Equivalently,
T is symmetric if and only if

xTϕ, ψy “ xϕ, Tψy, for all ϕ,ψ P DpT q. (D.4)

Definition D.10. T is called self-adjoint if T “ T ˚, that is if and only if T is symmetric and
DpT q “ DpT ˚q.

A symmetric operator is always closable since DpT ˚q Ą DpT q is dense in H. If T is symmetric,
T ˚ is a closed extension of T , so the smallest closed extension T ˚˚ of T must be contained in T .
Thus for symmetric operators we have T Ă T ˚˚ Ă T ˚. For closed symmetric operators, we have
T “ T ˚˚ Ă T ˚, and for self-adjoint operators we have T “ T ˚˚ “ T ˚.
From this, one can easily see that a closed symmetric operator T is self-adjoint if and only if T ˚ is
symmetric.

Definition D.11. A symmetric operator T is called essentially self-adjoint if its closure T̄ is
self-adjoint. If T is closed, a subset D Ă DpT q is called a core for T if ¯T �D “ T .

One can show that if T is essentially self-adjoint, then it has only one self-adjoint extension, namely
its closure. The converse is also true.

Definition D.12. A densely defined symmetric operator T , on a domain DpT q is called positive if

xTψ, ψy ě 0 pψ P DpT qq. (D.5)

The following theorem will be useful when proving properties of the closure operator.

Theorem D.13 (Friedrichs). A positive, densely defined, symmetric operator a, has a unqiue
positive self-adjoint extension, called the Friedrichs extension. When a is essentially self-adjoint,
this extension (of course) equals the closure of a.

Definition D.14. A quadratic form is a map q : QpQq ˆQpqq Ñ C, where Qpqq is a dense linear

subset of H called the form domain, such that Qp9,ψq is conjugate linear and Qpϕ, 9q is linear for
ϕ,ψ P Qpqq. If Qpϕ,ψq “ ¯Qpψ,ϕq, we say hat q is symmetric. If qpϕ,ϕq ě 0, for all ϕ P Q, q is
called positive, and if qpϕ,ϕq ě ´M ||ϕ||2, for some M , we say q is semibounded.

Definition D.15. A Schrödinger operator is a self-adjoint operator H on a dense domain DpHq
of the Hilbert space H “ L2pRnq, such that H can be written as the sum of the minus the
Laplace-operator (Laplacian) and multiplication with a given real function V , also called the
potential. Thus V is seen as the (pointwise) multiplication operator with V .
A priori, the function V is not continuous or bounded, but it needs to be at least locally integrable.

An example of a Schrödinger operator in one dimension is the operator h̃2 given by (4.72).

Definition D.16. An operator T : DpT q Ă H1 Ñ H2 has compact resolvent at λ if RλpT q is a
compact operator, i.e., the closure of RλpT qpBq is a compact subset of H2, where B is the closed
unit ball. .

Definition D.17. Let Tn be self-adjoint operators, n “ 1, 2, .... Then Tn is said to converge to T
in the norm resolvent sense if RλpTnq Ñ RλpT q in norm for all λ with Impλq ‰ 0. Tn is said to
converge to T in the strong resolvent sense if RλpTnq Ñ RλpT q strongly for all λ with Impλq ‰ 0.
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Remark.
It can be shown in [31, Thm. VIII.19] that for a sequence An of self-adjoint operators and for a
point λ0 P C, if Impλ0q ‰ 0 and Rλ0pAnqϕ Ñ Rλ0pAqϕ for all ϕ P H, then An Ñ A is the strong
resolvent sense.

In order to prove some theorems in §5.4, we need the notion of a Sobolev space, see also [9].

Definition D.18. Let Ω be an open subset of Rn. Let k P N and p P r1,8s. The Sobolev space
W k,ppΩq is defined to be the set of all functions f on Ω such that for every multi-index α, with
|α| ď k, the mixed partial derivative

f pαq “
B|α|f

B
α1
x1 ¨ ¨ ¨ B

αn
xn
, (D.6)

exists in the weak sense and is in LppΩq, i.e., ||f pαq||Lp ă 8. That is, the Sobolev space W k,ppΩq is
defined as

W k,ppΩq “ tu P LppΩq | Dαu P LppΩq, @ |α| ď ku. (D.7)

For p “ 2, we use the notation Hk “W k,2. It can be shown that Hk is a Hilbert space for all k P N
with inner product

xu, vyHk “
ÿ

|a|ďk

xDαu,DαvyL2 . (D.8)

There exists also Sobolev space spaces with non-negative real parameter. Assume 0 ă s ă 8 and
u P L2pRnq. Then, we define the space HspRnq by

HspRnq “ tu P L2pRnq| p1` |y|sqû P L2pRnqu, (D.9)

where we denote the Fourier transform of any u P L2pRnq by û. For non-negative integer s, we
make HspRnq into a Hilbert space with norm

||u||Hs “ ||p1` |y|sqû||L2 . (D.10)

The spaces HspL2pRnqq are called fractional Sobolev spaces.

The next theorem describes when the domain of the Schrödinger operator is bounded. It can be
found in [12, p.43]

Theorem D.19. Let Λ be a cube in Rd, and V a continuous function on Λ. Then the Schrodinger
operator H “ ´∆ ` V , acting on the space L2pΛq with Dirichlet boundary conditions, has purely
point spectrum, accumulating at 8.
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Appendix E

Deformation quantization

In this appendix we will give the basics of the notion of a continuous bundle of C˚-algebras and
a deformation quantization, including an example. A rigorous treatment can be found in [22, Def.
C.121], [22, Def. 7.1], and [22, pp. 250-252]. The main results of this appendix have been used in
chapter 6.

Definition E.1. Let I be a locally compact Hausdorff space. A continuous bundle of C˚-algebras
over I consists of a C˚-algebra A, a collection of C˚-algebras pA~q~PI with norms || ¨ ||~, and
surjective homomorphisms ϕ~ : AÑ A~ for each ~ P I, such that:

1. The function ~ ÞÑ ||ϕ~paq||~ is in C0pIq for all a P A.

2.The norm for any a P A is given by

||a|| “ sup~PI ||ϕ~paq||~. (E.1)

3. For any f P C0pIq and a P A, there is an element fa P A such that for each ~ P I,

ϕ~pfaq “ fp~qϕ~paq. (E.2)

A continuous (cross-) section of the bundle in question is a map ~ ÞÑ ap~q P A~, p~ P Iq, for which
there exists an a P A such that ap~q “ ϕ~paq for each ~ P I.

For the definition below, we will assume that the space I is taken to be a subset of the unit interval
r0, 1s that contains 0 as an accumulation point (so one may have for example I “ r0, 1s itself, or
I “ p1{Nq Y t0uq.

Definition E.2. A deformation quantization of a Poisson manifold X consists of a continuous
bundle of C˚-algebras pA, tϕ : AÑ A~u~PIq over I, along with maps

Q~ : Ã0 Ñ A~ p~ P Iq, (E.3)

where Ã0 is a dense subspace of A0 “ C0pXq, such that:

1. Q0 is the inclusion map Ã0 ãÑ A0;

2. Each map Q~ is linear and satisfies Q~pf
˚q “ Q~pfq

˚.

3. For each f P Ã0, the following map is a continuous section of the bundle:

0 Ñ f (E.4)

~Ñ Q~pfq p~ ą 0q (E.5)
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4. For all f, g P Ã0 one has the Dirac-Groenewold-Rieffel condition:

lim
~Ñ0

||
i

~
rQ~pfq, Q~pgqs ´Q~ptf, guq||~ “ 0. (E.6)

it follows from the definitions of a continuous bundle that continuity properties like

lim
~Ñ0

||Q~pfq|| “ ||f ||8; (E.7)

lim
~Ñ0

||Q~pfqQ~pgq ´Q~pfgq|| “ 0, (E.8)

are automatically satisfied. if X is compact, so that 1X P C0pXq, and we require Q~p1Xq “ 1H ,
with 1H the unit of the C˚-algebra A~.

We give an example without proof for the case n “ 1. We put

A0 “ C0pT
˚pRqq; (E.9)

A~ “ B0pL
2pRqq, p~ ą 0q, (E.10)

where we identity the cotangent bundle T ˚pRq » R2, carries the canonical Poisson structure given
by

tf, gu “
2
ÿ

j“1

ˆ

Bf

Bpj

Bg

Bqj
´
Bf

Bqj
Bg

Bpj

˙

, (E.11)

where pp, qq P R2 The C˚-algebra A~ is the space of compact operators on the Hilbert space L2pRq.
A deformation quantization of R2 that is positive in the sense that

f ě 0 ùñ Q~pfq ě 0, pf P Ã0 Ă A0q (E.12)

exists under the name Berezin quantization, denoted by QB~ . For this we need the notation of a

coherent state. For each pp, qq P R2, and ~ ą 0, define a unit vector φ
pp,qq
~ P L2pRq by

φ
pp,qq
~ pxq “ pπ~q´n{4e´ipq{2~eipx{~e´px´qq

2{2~. (E.13)

This is called a coherent state. Writing z “ p` iq, the transition probability between two coherent
states is

|xφ
pzq
~ , φ

pz1q
~ y|2 “ e´|z´z

1|2{2~. (E.14)

Then we define QB~ : C0pT
˚Rq Ñ B0pL

2pRqq, by

QB~ pfq “

ż

R2

dpdq

2π~
fpp, qq|φ

pp,qq
~ yxφ

pp,qq
~ |. (E.15)

The integral is understood in the sense that for ψ,ϕ P L2pRq, we have

ωψpQ
B
~ pfqq :“ xϕ,QB~ pfqψy “

ż

R2

dpdq

2π~
fpp, qqxϕ, φ

pp,qq
~ yxφ

pp,qq
~ , ψy. (E.16)

In particular, for each unit vector ψ we may write

xψ,QB~ pfqψy “

ż

R2

dµψf, (E.17)
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where µψ is the probability measure on T ˚pRq with density

Bψ
~ pp, qq “ |xφ

pp,qq
~ , ψy|2, (E.18)

called the Husimi function of ψ P L2pRq; in other words, µψ is given by

dµψ “
dpdq

2π~
Bψ

~ pp, qq. (E.19)

In general, ψ depends on ~ as it corresponds to a ~-dependent Schrödinger operator. For example,
ψ~ can be the ground state eigenfunction. We say that the wave-functions ψ~ have a classical limit
if

lim
~Ñ0

ż

TR2

dµψ~f “

ż

R2

dµ0f, (E.20)

for any f P C0pT
˚pRqq, where µ0 is some probability measure on T ˚pRq – R2.

In the remaining part of this appendix, we introduce the notion of (quasi) symmetric sequences
and show how they play a role in continuous bundles of C˚-algebras. For this, we first explain how
to link an element of BM to an element of BN , with BN the N -fold tensor product of B, and B a
unital C˚-algebra describing a single quantum spin system. The case B “ M2pCq will be used in
this thesis. We define SN to be the permutation group of N objects acting on BN in the obvious
way, i.e., by linear and continuous extension of

αpNqp pb1 b ¨ ¨ ¨ b bN q “ bpp1q b ¨ ¨ ¨ b bppNq, (E.21)

where Bi P B, and p P SN . This yields a Symmetrizer operator SN : BN Ñ BN , defined by

SN “
1

N !

ÿ

pPSN

αpNqp . (E.22)

It can be shown that SN is continuous. For N ěM , we then define

SM,N : BM Ñ BN (E.23)

by linear (and if necessary continuous) extension of

SM,N pa1{M q “ SN pa1{M b 1B ¨ ¨ ¨ 1Bq pa1{M P BM q, (E.24)

with N ´M copies of the unit 1B P B ,so as to obtain an element of BN . Clearly, SN,N “ SN . In
particular S1,N : B Ñ BN gives the average of b over N copies of B:

S1,N pbq “
1

N

N
ÿ

k“1

1B b ¨ ¨ ¨bpkq b 1B ¨ ¨ ¨ b1B. (E.25)

Finally, we give the definition of symmetric and quasi-symmetric sequences. They play a role in

the continuous bundle of C˚-algebras A
pcq
0 “ CpSpBqq and A

pcq
1{N “ BN , with BN the N -fold tensor

product of the unital C˚-algebra B.

Definition E.3. We say that a sequence pa1{N qNPN, with a1{N P BN is symmetric, when there

exists an M P N and a1{M P BM such that for each N ěM one has

a1{N “ SM,N pa1{N q. (E.26)
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This implies that a1{M “ SM pa1{M q. For each symmetric sequence we define a function a0 : SpBq Ñ
C by

a0pωq “ lim
nÑ8

ωN pa1{N q, (E.27)

where ω P SpBq, and ωN P SpBN q is defined by a linear and coninuous extension of

ωN pb1 b ¨ ¨ ¨ b bN q “ ωpb1q b ¨ ¨ ¨ωpbN q. (E.28)

Continuity of ωN is guaranteed by [22, C.98]. It can be shown, using the fact that the sequence is
symmetric, that the above limit exists from which it follows that a0 P CpSpBqq.

We now return to the general case.

Definition E.4. A sequence pa1{N qNPN as above is quasi´ symmetric if for each N P N one has
a1{N “ SN pa1{N q and for any ε ą 0 there is a symmetric sequence pã1{N q and some M P N such
that ||a1{N ´ ã1{N || ă ε for all N ąM .

This brings us to an important theorem.

Theorem E.5. For any unital C˚-algebra B, the C˚-algebras

A
pcq
0 “ CpSpBqq; (E.29)

A
pcq
1{N “ BN , (E.30)

where BN is the N -fold projective tensor power ˆÂN

maxB, are the fibers of a continuous bundle Apcq of
C˚-algebras over I “ p1{NqYt0u whose continuous cross-sections are the quasi-symmetric sequences
pa1{N q with limit a0 given by (E.27).

The proof is very technical and will be omitted (See e.g. [22, Thm. 8.4]). In any case, it can be
shown that we have deformation quantization of SpBq in the sense of (E.2) [22, Thm. 8.4].
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