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Abstract

The normalised version of Ricci flow is surveyed—with proofs of short- and long-time ex-
istence and convergence—then used to prove the Uniformisation Theorem, which states
that any closed and connected Riemannian 2-manifold is conformal to a manifold of con-
stant curvature (this proof was first completed by Chen, Lu and Tian after extensive work
by Hamilton and Chow). This result is used to inspect the Einstein equations of General
Relativity in (2 + 1) dimensions, where the spacetime is split using the ADM formalism
and the spacelike Cauchy hypersurface is classified by genus using the Uniformisation
Theorem. Following the work of Moncrief, the Einstein equations are reduced to dynam-
ics on the (finite-dimensional) cotangent bundle of the Teichmüller space of the Cauchy
hypersurface. Various comparisons are drawn between Ricci flow and General Relativity.





To solve a clearly posed challenging problem, even one without any apparent contact with
physical reality, is always a pleasure.

YVONNE CHOQUET-BRUHAT, 1923-

You know, people think mathematics is complicated. Mathematics is the simple bit. It’s the stuff
we can understand. It’s cats that are complicated. I mean, what is it in those little molecules and

stuff that make one cat behave differently than another, or that make a cat? And how do you
define a cat? I have no idea.

JOHN CONWAY, 1937-2020

When I was a boy in England long ago, people who travelled on trains with dogs had to pay for a
dog ticket. The question arose whether I needed to buy a dog ticket when I was travelling with a
tortoise. The conductor on the train gave me the answer: “Cats is dogs and rabbits is dogs but

tortoises is insects and travel free according.”

FREEMAN DYSON, 1923-2020
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Chapter 1

Introduction

At the beginning of the twentieth century, Poincaré mused (in [Poi04]) whether every
closed, simply-connected 3-manifold is homeomorphic to the 3-sphere.1 Nearly a cen-
tury of work by various mathematicians resulted in many advances in the direction
of resolving the conjecture, including the invention of Ricci flow by Hamilton in 1982
(see [Ham82]). Though intended as as a tool to resolve the Geometrisation of 3-manifolds
(as named by Thurston in 1982; see [And04] for a historical survey), Ricci flow was also
applicable to the Uniformisation Theorem (first conjectured by Poincaré and Klein in
1882 [Poi82] and 1883 [Kle83], respectively), which can be loosely thought of as a lower-
dimensional version of Geometrisation. It can be stated in the context of Riemannian
2-manifolds as follows.

Theorem (Uniformisation). Every complete Riemannian metric on a closed 2-manifold is con-
formal to a complete metric with constant curvature.

Though work by Hamilton in [Ham88], Chow in [Cho91] and others furthered the
understanding of Ricci flow in 2 dimensions, not until Chen, Lu and Tian’s brief pa-
per [CLT06] appeared in 2006 was the Uniformisation Theorem completely proved by
Ricci flow methods. The proof leans heavily on the existence, uniqueness and conver-
gence of the normalised Ricci flow, which takes the following form:

∂tg(t) = (r− R(t))g(t) with g(0) = g0,

where g(t) is a one-parameter family of Riemannian metrics on a given Riemannian 2-
manifold (Σ, g0) with associated Ricci scalars R(t) and average Ricci scalar r (which is
independent of t as a consequence of the Gauss-Bonnet Theorem). The main idea is to
prove the following result, which will imply the Uniformisation Theorem.

Theorem. On a closed and connected 2-dimensional Riemannian manifold (Σ, g0), there exists
a unique solution (which exists for all time) of Riemannian metrics g(t) to the normalised Ricci
flow with initial metric g(0) = g0 such that g(t) converges uniformly as t → ∞ (in any Ck

norm) to a metric g∞ of constant curvature.

This result will take a considerable portion of the text to prove. Short-time existence
(and uniqueness) is established by comparing the normalised Ricci flow to a modified

1The original question, translated from the French by Gray in [Gra13], is as follows:

One question remains to be dealt with: Is it possible for the fundamental group of V to reduce
to the identity without V being simply-connected?
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CHAPTER 1. INTRODUCTION

formulation called the Ricci-DeTurck flow which is (strongly) parabolic and thus whose
solutions exist and are unique by standard parabolic theory. Long-time existence is ar-
gued by a standard a priori argument, which relies on bounds that are established later
on. The proof of convergence is then split into various cases, depending on the sign of
the average Ricci scalar r. The cases r ≤ 0 are comparatively straightforward, using
a reaction-diffusion maximum principle applied to equations dictating the evolution of
various quantities to show that R(t)→ r as t→ ∞ (in which case the limiting metric will
have constant curvature, as desired). When r > 0, the flow will be shown to tend metrics
to gradient Ricci solitons, which are metrics that satisfy the following:

(R(t)− r)g(t) = 2∇∇ f (t),

where f (t) is called the (scalar) potential function of the curvature. The key result from
Chen, Lu and Tian was proving that gradient Ricci solitons have constant curvature.2

Other tools will be necessary, including more uses of the reaction-diffusion maximum
principle, as well as so-called Harnack inequalities.

Another system of partial differential equations whose solution is a semi-Riemannian
metric also received great attention in the twentieth century: the Einstein equations of
General Relativity, first published by their namesake in [Ein15]. Though these equations—
as shown by Choquet-Bruhat (see [CB52] and subsequently [CBR83])—are (quasi-linear)
hyperbolic, rather than (weakly) parabolic like Ricci flow, the initial goal for this project
was to connect the two subjects, either by finding intersections or by using tools and
perspectives invented for one to help better understand the other.

Some researchers have published papers that link the two subjects: Fischer, for ex-
ample, in his work with Moncrief on reducing the Einstein equations in (3 + 1) dimen-
sions to dynamics on a cotangent bundle of Teichmüller space (see [FM96a], [FM96b]
and [FM96c]) as well as his exploration in [Fis04] of what he calls conformal Ricci flow.
More recently, Kröncke has studied the stability of Einstein manifolds and asymptoti-
cally locally Euclidean metrics under Ricci flow (see [Krö13], [Krö15] and [DK20], the
last of which is co-authored by Deruelle) as well as the constant mean curvature Einstein
flow in [FK15] and [FK18], both of which are with Fajman.3 From a less mathematical
perspective, Woolgar studied applications of Ricci flow in physics in [Woo08]. Many
of the fruits borne from these studies were not quite accessible (yet), so a focus for this
project was made on the simplest case: 2 spatial dimensions. Upon exploration of (2+ 1)-
dimensional General Relativity—a higher dimension since in relativity time is intrinsic
to the manifold rather than a flow parameter—the Uniformisation Theorem was found
to play a significant role in understanding the different cases of solutions to the Einstein
equations and was thus chosen to be the linking subject of this thesis.

The ADM (Hamiltonian) formalism introduced in 1959 by Arnowitt, Deser and Mis-
ner (see [ADM59]) allows spacetime to be split into ‘space’ and ‘time.’ With the Uniformi-
sation Theorem in hand, the (2 + 1)-dimensional context can be classified by conformal
class into three cases: positive, zero or negative curvature. As shown in the late 1980s
by Moncrief in [Mon86] and [Mon89] (with later developments added in [Mon07]), the
(2+ 1)-dimensional Einstein equations can be seen as dynamics on the cotangent bundle
of the Teichmüller space4 T ∗T of the 2-dimensional spatial portion of spacetime, called

2Hamilton and Chow had relied upon the Uniformisation Theorem for their proofs of this fact.
3Kröncke also proved a generalisation of our 2-dimensional Ricci flow convergence result with Branding

for a general connection (that is, which may have non-vanishing torsion) in [BK17].
4The Teichmüller space T of a Riemann surface has existed in complex geometry since the first half of

the twentieth century.
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the Cauchy hypersurface.5 This built on the usage of Teichmüller theory in Riemannian
geometry surveyed by Fischer and Tromba in [FT84], wherein the space of Riemannian
metrics M for a given manifold Σ is seen as an infinite-dimensional (Hilbert) manifold,
and connected to the space of complex structures C (on Σ, seen as a Riemann surface)
via the space of almost complex structures A . Moncrief proved that the Hamiltonian in
(2+ 1)-dimensional General Relativity is the area functional of the Cauchy hypersurface,
finding its explicit form in the case of a toroidal (zero curvature) spacetime.

The ADM formalism and Moncrief’s reduction to dynamics on T ∗T is presented
in this text, with details that were omitted from the original papers presented in a more
comprehensive manner. The definition of the ADM Hamiltonian in terms of the so-called
Teichmüller parameters (which parametrise the Teichmüller space) and the eventual def-
inition of Einstein flow are the endpoints of this study. The text will reinforce the perspec-
tive of the space of metrics M as being interesting: in Ricci flow, a solution g(t) can be
thought of as a curve g : [0, ∞) →M from g0 to g∞; in General Relativity, the conformal
solution space modulo diffeomorphisms is exactly the cotangent bundle of the Teich-
müller space of the Cauchy hypersurface, which is of finite (known) dimension. Though
the leading goal of informing General Relativity with knowledge from Ricci flow (or vice
versa) was not directly accomplished, surveys of the two subjects in 2 spatial dimensions
established firm understandings of both their current pools of research and their future
prospects for symbiosis.

* * *

Conventions. (Note: an index of pertinent symbols can be found at the end of the text.)
For the most part, we have attempted to follow the conventions and notation of the

literature, while attempting to standardise our fonts. For example, a script font is always
for a space of functions—though the converse is not always true: for example, we write
C∞ (not C ∞) for smooth functions.

Importantly, we use the term ‘positive’ to refer to a quantity that cannot be zero
(sometimes this is called ‘strictly positive,’ though we will not use this term here), with
‘non-negative’ referring to greater-than-or-equal-to zero (and vice versa for negative and
non-positive).

We will employ the Einstein summation convention: repeated indices are summed over
throughout the text. In Chapter 4 we will also use prescript notation: the pre-superscript
denotes the dimensionality of an object.

Finally, crucial statements in the main text will be italicised for emphasis, and signifi-
cant terms will be emboldened when first introduced. Footnotes will frequently contain
further (albeit non-crucial) information or commentary, and may be less formal than the
main text.

Overview. (Note: each chapter will include a detailed overview at its onset.)
Chapter 2 will provide necessary background and review material for the chapters to

follow, including an introduction to semi-Riemannian geometry and the Uniformisation

5Moncrief’s work on the same subject continued with Fischer into (3 + 1) dimensions in [FM96a], as
mentioned above.
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CHAPTER 1. INTRODUCTION

Theorem. Chapter 3 will introduce Ricci flow, and upon focusing on the 2-dimensional
case, the Uniformisation Theorem will be proved using the normalised Ricci flow. Chap-
ter 4 explores General Relativity via the Einstein equations, using the ADM (Hamilto-
nian) formalism to split spacetime into ‘space’ and ‘time’ before proving that in (2 + 1)
dimensions the solution space of the Einstein equations is finite-dimensional. Chapter 5
briefly concludes and gives three possible future directions to explore in comparing Ricci
flow and General Relativity. Appendix A provides a supplement to some constructions
in semi-Riemannian geometry introduced in Section 2.1 and encountered throughout the
text. Appendix B contains an introduction to the content written for someone with min-
imal mathematical background.6 Bibliography and Indices (of Terms and of Symbols)
follow.

Reference Guide. (Note: each chapter will include a summary of pertinent references.)
Much of this text draws from the following resources: differential geometry textbooks

by Lee ([Lee06] and [Lee13]) as well as Kobayashi and Nomizu ([KN63] and [KN69]);
introductory Ricci flow textbooks by Chow and Knopf [CK04] and Topping [Top06]; the
work by Hamilton on 2-dimensional Ricci flow [Ham88], with the final step of the proof
of the Uniformisation Theorem in the paper by Chen, Lu and Tian [CLT06]; a standard
text on General Relativity by Wald [Wal10], as well as one specific to (2 + 1) dimensions
by Carlip [Car03] and one focusing on splitting spacetime by Gourgoulhon [Gou12]; the
original paper on Hamiltonian formalism by Arnowitt, Deser and Misner [ADM59]; the
paper by Fischer and Tromba [FT84] on Teichmüller theorem in Riemannian geometry,
complemented by textbook on the subject by Tromba [Tro92]; and the work on reduction
to Teichmüller space by Moncrief in the papers [Mon86], [Mon89] and [Mon07].

6The original contents of this thesis were completed on July 29, 2020; the addition of Appendix B and the
subsequent updating of the date on the title page were the only changes made on August 21, 2020.
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Chapter 2

Background

Before embarking upon our journey through Ricci flow and General Relativity, we need
to be familiar with their common language: semi-Riemannian geometry. The five fol-
lowing sections deal with introductory definitions and examples that will be of utmost
importance in the chapters to come. Note that while the bulk of this text treats 2 and 3
dimensions, we will begin in a more general setting, though with particular emphasis on
our dimensions of interest.

Overview. Section 2.1 will define tensors, metrics, geodesics, the Levi-Civita connection
and conformal Killing fields.1 Section 2.2 discusses curvature via the Riemann tensor, the
Ricci tensor and scalar, the sectional curvature, and how all of they are related. Section 2.3
surveys partial differential equations, the parabolic (reaction-diffusion) maximum prin-
ciple and Sobolev spaces. Section 2.4 introduces Hilbert manifolds and the space of Rie-
mannian metrics. Section 2.5 states the Uniformisation Theorem and its translation to
Riemannian geometry.

Reference Guide. Basic introductions to differential and semi-Riemannian geometry can
be found in [Lee13] and [Lee06], respectively. More advanced differential geometry is
found in the classic texts [KN63] and [KN69]. An advanced text on Riemannian geometry
is [Cha06]. A standard text on partial differential equations is [Eva10]. Hilbert manifolds,
including the space of metrics, the space of almost complex structures and other infinite-
dimensional spaces of pertinence in Riemannian geometry are discussed in [Tro92].

2.1 Introductory Semi-Riemannian Geometry

We will writeM for a smooth, orientable, connected and closed n-dimensional manifold.
In the case where n = 2, we will frequently write Σ, and sometimes call it a surface. The
space of smooth functions onM is written C∞(M) and a generic element of it is usually
called f .2 The diffeomorphism group ofM is written D(M), often shortened to D when
no confusion may arise.

A generic point is usually written p ∈ M, and coordinates are written (xi)n
n=1. Par-

tial derivatives (∂i)
n
i=1 along these directions and their duals (dxi)n

i=1 form bases of the
tangent and cotangent spaces TpM and T ∗p M, respectively.3 The unions of these spaces

1Appendix A contains a more thorough introduction to the topics found in Section 2.1.
2Unless otherwise noted, we assume that every function (no matter on what space) is smooth.
3We use the standard notation ∂i := ∂/∂xi and dxj(∂i) = δ

j
i .
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CHAPTER 2. BACKGROUND

form the tangent and cotangent bundles (T M and T ∗M), whose sections4 are called
vector and covector fields, though this is usually shortened to vectors and covectors.5

Similarly, we will often drop the point where the vector is defined: V will be written for
Vp ∈ TpM. Two useful operations are the pull-back and the push-forward, defined as
follows.

Definition 2.1.1 (Pull-back and push-forward). LetM and N be manifolds. Then,

1. For ψ : M → N a smooth map and f ∈ C∞(N ), the pull-back of f by ψ, written
ψ∗ f , is given by

ψ∗ f := ψ ◦ f

and is in C∞(M);

2. For ψ :M→ N a smooth map between manifolds, the push-forward (or differen-
tial) of ψ at a point p ∈ M is a linear map (ψ∗)p : TpM→ Tψ(p)N given by

(ψ∗)p(Vp)( f ) := Vp( f ◦ ψ),

for Vp ∈ TpM and f ∈ C∞(M).

We now define the fundamental objects of semi-Riemannian geometry: tensors.

Definition 2.1.2 (Tensor). The (k, l)-tensor bundle T (k,l)M overM is the tensor product
bundle given as

T (k,l)M := T ∗M⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
k times

⊗TM⊗ · · · ⊗ T M︸ ︷︷ ︸
l times

.

Sections of this bundle are known as (k, l)-tensors, or (k, l)-tensor fields, and are said to
be of rank-(k + l). They can be written in local coordinates around p ∈ M as

τp = τb1···bl
a1···ak

∣∣∣
p

∂b1 ⊗ · · · ⊗ ∂bl ⊗ dxa1 ⊗ · · · ⊗ dxak ,

for τb1···bl
a1···ak the function such that at p ∈ M we have

τb1···bl
a1···ak

∣∣∣
p
= τp(dxa1 , . . . , dxak , ∂b1 , . . . , ∂bl ),

where we use the fact that elements of the form ∂b1 ⊗ · · · ⊗ ∂bl ⊗ dxa1 ⊗ · · · ⊗ dxak form
a basis, where all indices run from 1 to n.6 Note that these constructions do not rely on
the basis chosen, which is a fact about tensors that we will rely upon heavily. We will
drop the tensor product from our notation, calling instead things of the form ζ j vectors,
ωi covectors, and τmn

ijk (or things of the sort) tensors. Note that the above discussion
describes a correspondence between maps that are (k + l)-linear over C∞(M) and (k, l)-
tensors, so we can equivalently think of them as maps

τ : T M× · · · × T M︸ ︷︷ ︸
k times

×T ∗M× · · · × T ∗M︸ ︷︷ ︸
l times

→ R. (2.1)

4Recall that a section of a vector bundle π : E → M is a right-inverse of π, generically written s, living
in the space Γ(E). See Section A.2 in the appendix for details.

5Sections of the bundle ∧kT ∗M are called k-forms, whose space is Ωk(M).
6Note that by linear algebraic properties of the wedge product, k-forms are (k, 0)-tensors that are anti-

symmetric under the exchange of any two indices.
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2.1. INTRODUCTORY SEMI-RIEMANNIAN GEOMETRY

We can now define three operations on tensors: tensoring, tracing and Lie derivation.

Definition 2.1.3 (Operations on tensors). Two tensors τ and ϑ can be tensored by the
pointwise multiplication of the maps in (2.1): (τϑ)

dj
abci := τd

abcϑ
j
i .

Tensors can also be traced: τd
adc = ϑac, where we have employed the Einstein summa-

tion convention: repeated indices are summed over. Note that we will use the same symbol
for the traced tensor (as with the Ricci and Riemann tensors, soon to be defined) since
there is no ambiguity on which tensor bundles they live because their number of indices
is different.

The final operation on tensors that we will use is the usual Lie derivative LV (along
some vector field V), which satisfies the following properties:

1. For a vector field V on a manifoldM and f ∈ C∞(M), we have LV f = V( f );

2. For vector fields V and W, we have LVW = [V, W], the commutator of vector fields;

3. The Lie derivative obeys a Leibniz-type rule with respect to tensoring:

LV(τ ⊗ ϑ) = (LVτ)⊗ ϑ + τ ⊗ (LVϑ) ,

for tensors τ and ϑ and a vector field V;

4. The Lie derivative commutes with all tracing operations.

We now define the metric, the most crucial tensor in our repertoire.

Definition 2.1.4 (Metric). A metric on a tangent bundle is a (2, 0)-tensor field g that is
symmetric and non-degenerate. That is, for every point p ∈ M we have a bilinear map
gp : TpM×TpM→ R that is

1. Symmetric: gp(Vp, Wp) = gp(Wp, Vp) for all vector fields V and W;

2. Non-degenerate: if gp(Vp, Wp) = 0 for all tangent vectors Wp ∈ TpM then Vp = 0,

where these maps vary smoothly with p:7 for all vector fields V and W, the function
g(V, W) is in C∞(M).

Because the maps gp are symmetric they can be diagonalised (with no zeroes on the
diagonal by non-degeneracy), giving rise to a basis-independent object called the signa-
ture: the collection of the signs of the diagonal. In general, a metric of the above form is
called semi-Riemannian; however, we highlight two cases:

1. The metric is called Riemannian if all signs in the signature are the same;

2. In the special case where the signature has all same signs except one—for exam-
ple, in standard four-dimensional physics, we have signature (− + ++) or (+ −
−−)8—the metric is called Lorentzian. This is significant because it allows us to
treat (n + 1)-dimensional spacetime—with one temporal coordinate and n spatial
coordinates—as an (n + 1)-manifold equipped with a Lorentzian metric. Latin in-
dices (usually beginning with i, j, and k) will be used for spatial coordinates, and

7In the future, we will discuss relaxing this rule. For now, we continue with the ideal case of all of our
maps being smooth.

8We will use the first convention, though the world of physics is divided in this regard.
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CHAPTER 2. BACKGROUND

Greek indices (µ, ν, σ and so on) will be used for spacetime coordinates. With this
in mind, we have the Minkowski metric η, or flat metric, given in locally by

ηµν := −dt2 +
n

∑
i=1

(
dxi
)2

=


−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (2.2)

Manifolds equipped with the above metrics are called semi-Riemannian, Riemannian,
and Lorentzian manifolds, respectively, and are written (M, g).9

A map ψ :M→ N between semi-Riemannian manifolds (M, g) and (N , h) is called
an isometry if it is a diffeomorphism and satisfies ψ∗h = g. A metric is diffeomorphism-
invariant if this holds for (N , h) = (M, g). The group formed by the set of all such
diffeomorphisms is called the isometry group of (M, g) and is written I (M, g), or I
when no confusion may arise.

The metric also gives us a map10

g[p : TpM→ T ∗p M, g[p(Vp) = g(Vp, ·) for Vp ∈ TpM,

and its inverse

g]p : T ∗p M→ TpM, gp(g]p(ωp), Vp) = ωp(Vp) for ωp ∈ T ∗p M and Vp ∈ TpM,

which induce bundle isomorphisms g[ : T M → T ∗M and g] : T ∗M → TM known
as musical isomorphisms. With the metric and its inverse written locally as gij and gij

such that gijgjk = δk
i , these isomorphisms allow the metric to raise and lower indices of

tensors. For a vector V = Viei (decomposed in a basis (ei)
n
i=1, whose dual basis we write

as (ei)n
i=1 in an abuse of notation) and a covector ω = ωjej we have

Vj :=
(

g[(V)
)

j
= gijVi and ωi :=

(
g](ω)

)i
= gijωj.

This process extends to general tensors, and, as hinted at before, we continually redefine
new tensors when we raise and lower indices while keeping the same symbol for the
tensor. For example, for a (2, 2)-tensor τ we define a (3, 1)-tensor (still called τ) locally
by τmkl

i = gmjτkl
ij .

Metrics allow us to measure things on our manifold, as in the following definition.
(Note that the following definitions and discussion should have asterisks and slight al-
terations in the Lorentzian case; once we begin to study General Relativity in Chapter 4,
causal structure will play an important role. As such, the following page or so should be
read with the Riemannian case in mind, and revisited to make the necessary amendments
after Section 4.2.)

Definition 2.1.5 (Geodesic). The length of a curve γ : [0, 1] →M (with speed γ̇ := d
dλγ)

is defined to be

`(γ) :=
∫ 1

0

√
±gγ(λ) (γ̇(λ), γ̇(λ))dλ,

9We will consider the Riemannian and Lorentzian cases in this text, though the step to general semi-
Riemannian geometry is usually not too complicated.

10This is since V ∼= V∗ for any finite-dimensional vector space V .
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2.1. INTRODUCTORY SEMI-RIEMANNIAN GEOMETRY

where the + is for a Riemannian manifold, and the − is for a Lorentzian manifold. Note
that a further assumption is required in the Lorentzian case: we want the curves γ to be causal,
which is described in Definition 4.2.1. As mentioned, we will revisit this later in Chapter 4;
until then, the Riemannian definitions will suffice. The Riemannian length is a functional
with input γ and does not depend on the parameter λ. It is interpreted as the integral of
the norm of the velocity vector along the curve, which indeed should give a distance.11

In the Riemannian case, this curve-length defines a metric dg : M×M → R≥0 (the
distance) induced by the (Riemannian) metric g, given by

dg(p, q) := inf
γ
`(γ), (2.3)

where p and q are points onM and the infimum is taken over curves γ that start at p and
end at q.12 The diameter diam(M, g) is the supremum of the possible distances:13

diam(M, g) := sup {dg(p, q)
∣∣ p, q ∈ M}.

Curves γ of extremal length are called geodesics and solve the geodesic equation:

γ̈i + Γi
jkγ̇jγ̇k = 0, (2.4)

where we have defined the Christoffel symbols Γi
jk to be

Γi
jk :=

1
2

gmi (∂jgmk + ∂kgmj − ∂mgjk
)

, (2.5)

which, though they have indices, are not tensors. A Riemannian manifold is called
geodesically complete if any two points14 can be connected by a geodesic, which we
assume our manifolds in this text to be. Note that this notion of completeness coincides
with the notion of completeness in the metric space sense via the distance function de-
fined above.

By noting that the geodesic equation (2.4) is a second-order ordinary differential equa-
tion, we have existence and uniqueness of geodesics by the Picard-Lindelöf Theorem:
given a point p ∈ M on a semi-Riemannian manifold and a vector Vp ∈ TpM there
exists a unique geodesic written γp,V defined on an open interval containing the origin
such that

γp,V(0) = p and
d

dλ
γp,V(λ)

∣∣∣∣
λ=0

= V.

This satisfies γp,βV(λ) = γp,V(βλ) for all β, λ ∈ R where the above curves are defined.15

We can now define the exponential map.

11This also aligns with the intuitive notion of calling the metric the ‘line element,’ written g = ds2 in
physics, as integrals along γ are then ∫

γ

√
|g| =

∫
γ

√
|ds2| =

∫
γ

ds.

12In the Lorentzian case, we have a supremum over possible causal curves. This will be revisited in
Chapter 4.

13Note that by the Hopf-Rinow Theorem a Riemannian manifold is (geodesically) complete if and only if
it is complete as a metric space (see Chapter IV.4 of [KN63]). Furthermore, if a manifold is complete, then it
is compact if and only if it has finite diameter.

14This needs to be sharpened to ‘any two causally-separated points’ in the Lorentzian case. This is guar-
anteed by global hyperbolicity (which we will assume in Chapter 4; see Definition 4.2.5 for details).

15This is because the curves λ 7→ γp,βV(λ) and λ 7→ γp,V(βλ) both satisfy the geodesic equation and have
the same initial value, so are equal by uniqueness.
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Definition 2.1.6 (Exponential map). At a point p ∈ M, we define the exponential map
expp defined on neighbourhood U ⊂ TpM of the origin by its action on a tangent vector
Vp ∈ U as

expp : U →M, expp(Vp) = γp,V(1).

This map is smooth, sometimes written as expp(λVp) = γp,V(λ), and often considered
as exp : T M → M. We thus obtain a diffeomorphism from a neighbourhood U of the
origin 0 ∈ TpM to a neighbourhood Np of p ∈ M, called a normal neighbourhood. We
choose coordinates (xi)n

i=1 of TpM such that their partial derivatives form an orthonor-
mal set—these are called normal coordinates, or locally inertial coordinates, and satisfy
the following:

1. Geodesics are straight lines: γp,V(λ) = λVp is a geodesic for as long as it exists;

2. The metric is flat: gij = δij (Riemannian case), or gµν = ηµν (Lorentzian case).

In particular, the second point implies that all Christoffel symbols (2.5) vanish. This use-
ful because if we prove a coordinate-independent identity (involving tensors with fully-
contracted indices, for example) in normal coordinates, then it is true in general.

The metric also allows us to define integration over our manifoldM as follows.

Definition 2.1.7 (Integration). A volume form ω on a semi-Riemannian n-manifoldM
is a nowhere-vanishing n-form.16 We normalise ω as follows:

ω(∂1, . . . , ∂n) =
√
±det g =:

√
±g,

where the positive sign is for a Riemannian manifold and the negative sign for a Lorentzian
manifold, and the second equality is notational shorthand.17 The volume form allows us
to integrate a function f ∈ C∞(M) overM as∫

M
f :=

∫
M

f ω =
∫
M

√
±det g(x) f (x)dnx.

We will almost always omit the volume element, save for when its presence is crucial. This
definition allows us to define the volume ofM as18

vol(M, g) :=
∫
M

1.

We now turn to a new manner of differentiating tensors.

Definition 2.1.8 (Covariant derivative). A covariant derivative is an assignment of a vec-
tor field V to a map ∇V that takes vector fields to vector fields in the following way:

1. The assignment V 7→ ∇V is C∞(M)-linear:

∇ f V(W) = f∇VW

for vector fields W;

16This exists since we assume all of our manifolds to be orientable.
17Note that this is independent of coordinates.
18When n = 2 this is often called the area ofM.
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2. It satisfies a Leibniz-type rule:

∇V( f W) = V( f )W + f∇VW,

for scalar functions f .

The tensor ∇VW describes the derivative of a vector W along the direction V, and de-
pends only upon the value of V at the point p ∈ M where all of this is taking place
and the values of W in the coordinate patch in which p lives. Thus, we can make our
focus local and consider the above in some coordinate patch. Suppose that for every p
in this patch, (ei(p))n

i=1 form a basis of TpM (restricted to the patch in question). From
this perspective we find that the covariant derivative is completely determined by the
connection coefficients Ak

ij defined by

Ak
ijek := ∇ei(ej),

where we make the important remark that despite the index notation, the connection co-
efficients are not tensors. Finally, note that in parallel our previous coordinate-shorthand,
we will write ∇i := ∇∂i . Using tensor products the covariant derivative can be uniquely
extended to act on generic tensors.19

The covariant derivative whose connection coefficients are the Christoffel symbols Γi
jk

is called the Levi-Civita connection, which satisfies:

1. Metric compatibility: U(g(V, W)) = g(∇UV, W) + g(V,∇UW), for vector fields
U, V and W;

2. Vanishing torsion: ∇VW −∇WV = [V, W].

It exists, is unique, and is given by the formula:

2g(∇UV, W) = U(g(V, W)) + V(g(W, U))−W(g(U, V))

− g(U, [V, W]) + g(V, [W, U]) + g(W, [U, V]).

We will assume every semi-Riemannian manifold considered in this text to be equipped with the
Levi-Civita connection, unless explicitly noted otherwise.

Finally, for a given metric g, the Levi-Civita connection allows us to define the Lapla-
cian ∆g = ∆ (where we drop the g unless confusion may arise) as ∆ := gij∇i∇j. It acts
on any (k, l)-tensor.

We now have two ways of differentiating tensors in hand. To summarise: for a (k, l)-
tensor τ and a vector field V on a semi-Riemannian manifold (M, g) equipped with
Levi-Civita connection ∇ with corresponding Christoffel symbols Γi

jk, we have the two
following differentiation rules:

1. Covariant derivative:

∇µτω1···ωl
ζ1···ζk

= ∂µτω1···ωl
ζ1···ζk

+
l

∑
i=1

Γωi
µατω1···α···ωl

ζ1···ζk
−

k

∑
i=1

Γβ
µζi

τω1···ωl
ζ1···β···ζk

,

where α and β have replaced ωi and ζi, respectively.

19See Section A.3 in the appendix for details.
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2. Lie derivative:

LVτω1···ωl
ζ1···ζk

= ∇Vτω1···ωl
ζ1···ζk

+
k

∑
i=1

(∇ζi V
β)τω1···ωl

ζ1···β···ζk
−

l

∑
i=1

(∇αVωi)τω1···α···ωl
ζ1···ζk

,

where, as above, α and β have replaced ωi and ζi, respectively.20

One special case of the Lie derivative is important enough to earn its own definition.

Example 2.1.1 (Conformal Killing field). On a semi-Riemannian n-manifold (M, g) equipped
the Levi-Civita connection ∇, we call a vector field V a conformal Killing field, or con-
formal Killing vector, if for some function λ ∈ C∞(M) we have

LV g = λg,

which is known as the conformal Killing equation. By tracing both sides we obtain

λ =
2
n

div(V),

for div(V) the divergence of the vector field V given in local coordinates by ∇iVi. Thus,
our conformal Killing equation in local coordinates is

∇iVj +∇jVi =
2
n

gij∇kVk.

Note that when λ = 0, the above reduces to what is called the Killing equation,
whose solutions are Killing vectors.

We close this section with several simple examples of metrics and their respective
Levi-Civita connections.

Example 2.1.2 (Flat space). In (2+ 1) dimensions with coordinates (t, x, y) the Minkowski
metric takes the local form

η = −dt2 + dx2 + dy2 =

−1 0 0
0 1 0
0 0 1

 .

It has vanishing Christoffel symbols (that is, Γk
ij = 0 for all i, j and k), meaning that co-

variant derivatives and partial derivatives coincide: ∂i = ∇i. Similarly, n-dimensional
Euclidean space the flat metric takes the form gij = δij, and so all of the Christoffel sym-
bols vanish as well. The geodesic equation for these spaces takes the form γ̈(t) = 0, and
we recover the expected straight lines.

In 2 dimensions we can write the flat metric in polar coordinates ($, θ) as

gpolar := d$2 + $2dθ2 =

(
1 0
0 $2

)
.

Now, using the definition of the Christoffel symbols, we find that all vanish except for

Γ$
θθ = −$ and Γθ

$θ = Γθ
θ$ =

1
$

.

20The Lie derivative is explored in depth in any textbook on differential geometry. In essence, it measures
the flow of a tensor along a vector field.
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Example 2.1.3 (Hyperbolic half-plane). On the half-plane H2 := {(x, y) ∈ R2 | y > 0}
we can define the following hyperbolic metric:

ghyp :=
1
y2

(
dx2 + dy2) = ( 1

y2 0
0 1

y2

)
.

Now, computing the Christoffel symbols we find that the only non-zero ones are

Γx
xy = Γx

yx = Γy
yy = −Γy

xx = −1
y

.

Example 2.1.4 (Round metric). On the 2-sphere S2 we define the natural21 round metric
in polar coordinates (θ, φ) by

ground := dθ2 + sin2 θdφ2 =

(
1 0
0 sin2 θ

)
.

The non-zero Christoffel symbols are

Γθ
φφ = − sin θ cos θ and Γφ

θφ = Γφ
φθ = cot θ.

Example 2.1.5 (Rotationally symmetric). For a 2-dimensional Riemannian manifold (Σ, g),
the metric is called rotationally symmetric about a point q ∈ Σ if it can be written in polar
coordinates ($, θ) (where $ = 0 is the point q) as

grs := d$2 + h($)2dθ2 =

(
1 0
0 h($)2

)
,

for h($) positive on some interval (0, A) (with A > 0) and vanishing when $ = 0 and
when $ = A, since our manifold is compact and smooth.22 Using the definition of the
Christoffel symbols, we find that all vanish except for

Γ$
θθ = −hh′ and Γθ

$θ = Γθ
θ$ =

h′

h
,

where we have denoted derivative by $ as (·)′.

2.2 Curvature in Various Guises

A much better understanding of curvature was one of Riemann’s great insights in his
work on manifolds. To motivate the definition of the Riemann tensor we take two al-
ternate yet equivalent routes, each demonstrating how different a space is from being
‘flat.’

The concept of curvature is often linked to second-order derivatives, or quadratic
terms in functions. To generalise this notion to manifolds, consider the normal coordi-
nates from Definition 2.1.6 in some neighbourhood of a point p ∈ M. We wish to see how
far a given Riemannian manifold (M, g) is from having gij = δij. In normal coordinates,

21Natural because it is induced by the embedding S2 ⊂ R3.
22Note that with h($) = $ then we recover the result for flat 2-space in polar coordinates.

- 19 -



CHAPTER 2. BACKGROUND

the first-order derivatives vanish, and we can define a (4, 0)-tensor Rikl j as the tensor23

about p satisfying

gij = δij +
1
3

Rikl jxkxl +O(x3), (2.6)

where O(x3) denotes higher-than-quadratic terms in x and the factor of 1
3 ensures that

this tensor agrees with our second definition. This (4, 0)-tensor will become our Riemann
tensor, satisfying our intuition that quadratic terms and curvature are related.

The second approach considers the following question: what is the difference in
parallel-transporting24 vector V first along a direction xk and then along xl versus first
along xl and then xk? This is best described as the commutator of covariant derivatives
∇k and ∇l . One can think of this as travelling around a parallelogram, as depicted in
Figure 2.1: first apply ∇k then ∇l , before subtracting ∇l then ∇k.

∇l

∇k

∇l

∇k

Figure 2.1: Visualisation of
the commutator of covari-
ant derivatives.

Computing this directly from the definition of the Levi-
Civita connection,25 we have

[∇k,∇l ]Vi = (∇k∇l −∇l∇k)Vi

=
(

∂kΓi
jl − ∂lΓi

jk + Γi
kmΓm

jl − Γi
lmΓm

jk

)
V j.

The term in parenthesis is then identified as the Riemann
(3, 1)-tensor, which has one index raised compared to its
(4, 0)-tensor counterpart described in (2.6). This deriva-
tion is often given in physics; its mathematical equivalent
is given by considering the following operator R(U, V),26

which is labelled by vector fields U and V and acts on a third
vector field W as follows:

R(U, V)W := ∇U∇VW −∇V∇UW −∇[U,V]W.

This collapses to the previous equation since the commutator of partial derivatives (co-
ordinate directions) vanishes.

With the above in mind, we give our official definition of this famous tensor.

Definition 2.2.1 (Riemann tensor). For a semi-Riemannian manifold (M, g) equipped
with the Levi-Civita connection∇ we define the Riemann tensor, or Riemann curvature
tensor, as the (3, 1)-tensor Riem defined by

Riem(U, V, W, ω) := ω
(
∇U(∇VW)−∇V(∇UW)−∇[U,V]W

)
,

for vector fields U, V and W and covector ω. In local coordinates, it takes the following
form (where we simplify to R for brevity):

Ri
jkl := ∂kΓi

jl − ∂lΓi
jk + Γi

kmΓm
jl − Γi

lmΓm
jk.

Both of these expressions can be verified to behave tensorially. A semi-Riemannian man-
ifold is called flat if its Riemann tensor vanishes.

23It is not immediately clear that this is a tensor; however, this is merely motivation for our eventual
Definition 2.2.1, so we will (implicitly) consider it to be a result that this object is indeed a tensor.

24To parallel-transport a tensor (field) τ along a curve γ means taking a covariant derivative of the tensor
in the direction of the tangent to γ: ∇γ̇τ = 0.

25Note that this derivation can be achieved with a general connection (and without coordinates, of course),
with a term that includes the torsion tensor (defined in Definition A.4.1 of the appendix) appearing.

26This operator R is sometimes called the curvature tensor, which may lead to some confusion—hence its
relegation to the footnotes.
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The Riemann tensor contains a lot of information about the curvature of the manifold,
yet many of its components are interrelated via various symmetries.27 Because there are
often too many components to deal with, we define the following tensors that, in some
sense, decompose the Riemann tensor.

Definition 2.2.2 (Ricci and Einstein tensors28). Consider a semi-Riemannian manifold
(M, g).

1. The Ricci tensor Ric (written R in coordinates, where there is no confusion with the
Riemann tensor because of the number of indices) is a symmetric (2, 0)-tensor on
an n-manifold given by the following trace of the Riemann tensor:

Rkl := Ri
kil .

If the Ricci tensor of a manifold is zero, we call the manifold Ricci-flat.

2. The Ricci tensor has the Ricci scalar (also written R), or scalar curvature, as a trace:

R := gkl Rkl .

3. These combine in two similar ways to form Einstein tensors:

Ekl := Rkl −
1
n

Rgkl , which is used in mathematics, and

Gµν := Rµν −
1
2

Rgµν, which is used in physics.

We also have the following definition of a particularly nice type of manifold.

Definition 2.2.3 (Einstein manifold). A metric is called an Einstein metric if Ric = 2Λg
for some constant Λ ∈ R, and a semi-Riemannian manifold equipped with such a metric
is called an Einstein manifold.

In our dimensions of interest, we make the following remarks:

1. If n = 2, the Ricci tensor has a single independent component (the same as the
Riemann tensor), and both Einstein tensors vanish;

2. If n > 2, a metric is Einstein if and only if it has vanishing (mathematical) Einstein
tensor;

3. If n = 3, the Ricci tensor has six independent components (the same as the Riemann
tensor).

From these, we can state that in 2 dimensions (as in our case of interest for Ricci flow), the
Ricci scalar R contains all possible curvature information, as does the Ricci tensor Ric in 3
dimensions (as in our case of interest for General Relativity). Concretely, in 2 dimensions
we have

Rijkl =
1
2

R
(

gikgjl − gil gjk
)

, (2.7)

27For more details, see Proposition A.4.3 in the appendix.
28See Definition A.4.3 of the appendix for yet another tensor commonly defined alongside these three,

called the Weyl tensor.
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while in 3 dimensions we have

Rijkl =
1
2

R
(

gikgjl − gil gjk
)
+ Eil gjk + Ejkgil − Eijgkl − Ekl gij. (2.8)

We now calculate some of these tensors to build upon our examples from the previous
section.

Example 2.2.1 (Flat space #2). The Minkowski, Euclidean, and polar coordinate metrics
have vanishing Riemann tensor (and thus Ricci tensor and scalar, too) since the Christof-
fel symbols are all zero, as we expect for flat space.

Example 2.2.2 (Hyperbolic half-plane #2). Our hyperbolic metric on H2 has non-zero
(independent) Riemann tensor component, Ricci tensor and Ricci scalar:

Rx
yxy = − 1

y2 , Rij =

(
− 1

y2 0
0 − 1

y2

)
and R = −2.

This has constant negative Ricci scalar, as expected for hyperbolic space.

Example 2.2.3 (Round metric #2). Our round metric on S2 has non-zero (independent)
Riemann tensor component, Ricci tensor and Ricci scalar:

Rθ
φθφ = sin2 θ, Rij =

(
1 0
0 sin2 θ

)
and R = 2.

This has constant positive Ricci scalar, as one would guess for a sphere.

Example 2.2.4 (Rotationally symmetric #2). Our rotationally symmetric metric has non-
zero (independent) Riemann tensor component, Ricci tensor and Ricci scalar:

Rθ
$θ$ = −h′′

h
, Rij = −h′′

( 1
h 0
0 h

)
and R = −2

h′′

h
.

The first three examples shared something in common: constant curvature. This is
a tricky concept to define, however, because the requirement that the entire Riemann
tensor is constant is far too restrictive. It is also undefined since constancy could only
refer to its components, which are coordinate-dependent. Instead, we define the sectional
curvature.

Definition 2.2.4 (Sectional curvature). At a point p on a semi-Riemannian manifold (M, g),
we define the sectional curvature Kp of linearly-independent vectors Vp, Wp ∈ TpM as

Kp(Vp, Wp) :=
Riemp(Vp, Wp, Vp, Wp)

gp(Vp, Vp)gp(Wp, Wp)− gp(Vp, Wp)2 .

This can be thought of as the normalisation of the Riemann tensor by dividing by the
area of a parallelogram spanned by Vp and Wp, which brings to light the requirement of
them being linearly independent. With this in hand, the concept of constant curvature
arises from the sectional curvature in the following way.

Definition 2.2.5 (Constant curvature). A semi-Riemannian manifold has constant cur-
vature if all of its sectional curvatures Kp coincide to some value called the curvature
K.
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K > 0 K = 0 K < 0

Figure 2.2: Geodesic behaviour in spaces of curvature K.

Spaces of constant curvature can be thought of in terms of their geodesic behaviour:
if a space has positive curvature, then geodesics tend toward one another, whereas if a
space has negative curvature, geodesics tend away from one another. In a space of zero
curvature, geodesics ‘remain parallel,’ or preserve the same angle between them that they
began with. Figure 2.2 qualitatively depicts these three scenarios.

For 2-dimensional cases, this is sometimes thought of as the sum of the interior angles
of a triangle drawn on the surface: if this sum exceeds π, that (patch of the) surface has
positive curvature; if it is less than π, then it has negative curvature; if it equals π (as in
Euclidean space), then it is flat.

We have the following results for spaces of constant curvature.

Proposition 2.2.1. Let (M, g) be a semi-Riemannian manifold of constant curvature. Then, it
is Einstein and its Riemann tensor can be written as

Rijkl = K(gikgjl − gil gjk),

for K the curvature.

Spaces of constant curvature will be of significance in our study of Ricci Flow, as we
will see that a metric undergoing Ricci Flow tends to a metric of constant curvature. As
previously remarked, because the Riemann tensor has only one component in 2 dimen-
sions, the notions of constant Ricci scalar and constant curvature are equivalent and they
are related by29 R = 2K.

We now turn to the study of partial differential equations and their solutions, inspired
by our eventual study of Ricci flow and the Einstein equations.

2.3 Partial Differential Equations

Many processes in physics—such as the flow of heat, Einstein gravitation, fluid flow,
and countless others—are described using partial differential equations. Though their
importance cannot be overstated, we will only skim the surface this section, giving only
key definitions and examples.

Our discussions thus far have been quite geometric, dealing with generic smooth
manifolds. During this section, however, we will often concentrate on patches of Rn for
simplicity, which can be applied to n-manifolds by using charts appropriately.

Definition 2.3.1 (Elliptic, hyperbolic and parabolic partial differential equations). A second-
order partial differential equation in n variables (xi)n

i=1 for a function u = u(x1, . . . , xn)
can be (locally) written (

Aij∂i∂j + lower-order terms
)

u = 0,

29In 2 dimensions, the curvature is equal to the Gaussian curvature, yet another notion of curvature.
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where the matrix Aij = Aij(x, u, ∂u) varies from point to point in the coordinate patch
considered (and may be dependent on u itself, or its derivatives—see ‘linearity’ below),
and the term in parentheses is often called the differential operator. We now have three
special cases, differentiated by the eigenvalues of Aij:

1. If all are non-zero and have the same sign, then the equation is elliptic;

2. If all are non-zero and one has the opposite sign from the rest, then the equation is
hyperbolic;

3. If all have the same sign except one which is zero, then the equation is parabolic.

Note that in practice, this third case arises most often with the presence of a first-order
derivative in one of the variables, which we frequently call t for time. Thus parabolic
equations can be thought of as elliptic equations with one extra term: a first-order tem-
poral derivative.

In the simple case of two variables u = u(x, y) and coefficients Aij independent of u
and ∂u (written instead as A, B and C), we write(

A∂xx + 2B∂xy + C∂yy + lower-order terms
)

u = 0,

and the three above cases are the only possibilities, differentiated by their sign of the
discriminant B2 − AC: elliptic if negative, hyperbolic if positive and parabolic if zero.

Finally, recall that a partial differential equation for a function u is linear if all in-
stances of u and derivatives of u appear as linear terms. It is quasi-linear if the highest-
order derivatives of u appear linearly, and non-linear otherwise.

The descriptions above will be revisited in Section 3.5, when we prove short-time
existence for Ricci flow. For now, we give canonical examples of these types of equations.

Example 2.3.1 (Poisson and Laplace equations). The Poisson equation,

∆u = f ,

is linear and elliptic, as is the special case when f vanishes, which is known as the Laplace
equation. Solutions to the Laplace equation are called harmonic functions. The Poisson
equation describes the potential distribution of a mass or charge, such as in the Newto-
nian gravitational equation

∆φ = 4πρ,

where φ is the scalar gravitational potential of a massive object with density ρ. The
elliptic nature of this gravitational theory was an indication of its violation of relativity,
since, as we will discuss shortly, the information at any point is felt immediately at any
other point, without being slowed by a finite speed of propagation.

Example 2.3.2 (Wave equation). The wave equation,

∂ttu = ∆u, (2.9)

is linear and hyperbolic. It describes the propagation of waves: waves along a string,
sound waves, light waves, and more. Maxwell showed that the equations that bear his
name are wave equations for waves produced by the electromagnetic field propagating
at the speed of light, corresponding to the wave interpretation of light.
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Example 2.3.3 (Heat equation). The heat equation,

∂tu = ∆u, (2.10)

is linear and parabolic. It describes the diffusion of a heat distribution throughout a
domain, moving from areas of high concentration to lower concentrations (averaging the
distribution), with a constant distribution being the limit at temporal infinity.

The usefulness of these simple examples lies in the fact that lots of qualitative un-
derstanding of a given equation can be grasped by comparison with the well-known
behaviours of the above cases. For instance, the speed of propagation of data is infinite
in the parabolic case, whereas it is finite in the hyperbolic case (the speed of the wave).
In a hyperbolic equation, the smoothness (as in differentiability, or C∞-smoothness) of
the solution30 depends on the smoothness of the initial data (and propagates by wave-
speed), whereas solutions to elliptic equations are smooth, (almost) regardless of initial
conditions.31 Finally—and most crucially to our chapter on Ricci flow—parabolic equa-
tions tend to ‘smoothen’ (though ‘average’ might be a better term, since confusion with
C∞-smoothness or differentiability may occur) out the initial data, as heat diffusing to a
constant temperature throughout a domain.

Elliptic and parabolic equations benefit from what are known as maximum and min-
imum principles, which use initial data to give bounds on the solution at other points in
the domain. In essence, they state that the maximum and minimum of a function satis-
fying an elliptic or parabolic equation must occur on the boundary of its domain. Before
presenting the only formulation of such a principle that we will use in this text, we make
the following notational comments:

1. We resume x as the notation for a point to coincide with most literature and to
emphasise that this takes place in (subsets of) Rn—requiring charts to apply these
results to a general manifold;

2. Contraction via the metric will often be written 〈·, ·〉, with corresponding norm
| · |.32

Consider a partial differential equation for a function u : Ω× [0, T] → R (for some
Ω ⊂ Rn open, connected and bounded, and T > 0) of the form

∂tu = ∆u + F(u) + 〈∇u, V〉,

for a function F(u) that we assume to be locally Lipschitz and Vt = V a time-dependent
family of vector fields. This is called a reaction-diffusion equation, where F(u) is the
reaction term, which works to prevent the parabolic (diffusion) operator ∆ − ∂t from
‘averaging out’ the function u. (It turns out that the gradient term 〈∇u, V〉 has no effect
on the maximum or minimum principle.) With this reaction-diffusion equation in mind,
we have the following maximum and minimum principles, which state that if u satisfies
certain initial bounds and the reaction-diffusion equation, then it has (time-dependent)
bounds that can be explicitly calculated with knowledge of F(u).

30This is partial motivation for our impending review of Sobolev spaces in the pages to come.
31Note that this is barring very nasty circumstances.
32Given for a vector in the usual way via |V|2 = 〈V, V〉. Extensions to tensors in general are straightfor-

ward.
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Proposition 2.3.1 (Reaction-diffusion maximum and minimum principles). As above, con-
sider the reaction-diffusion equation for u : Ω× [0, T]→ R (for some T > 0) given by

∂tu = ∆u + F(u) + 〈∇u, V〉, (2.11)

where F(u) some (locally Lipschitz) function and Vt = V is a one-parameter family of vector
fields. Then,

1. Let α(t) solve the equation

∂tα = F(α) with α(0) = α0;

if u(x, t) satisfies33

∂tu ≥ ∆u + F(u) and u(x, 0) ≥ α0 for all x ∈ Ω,

then u(x, t) ≥ α(t) for all (x, t) ∈ Ω× [0, T];

2. Let β(t) solve the equation

∂tβ = F(β) with β(0) = β0;

if u(x, t) satisfies

∂tu ≤ ∆u + F(u) and u(x, 0) ≤ β0 for all x ∈ Ω,

then u(x, t) ≤ β(t) for all (x, t) ∈ Ω× [0, T].

Combining the above gives that if for all x ∈ Ω we have

∂tu = ∆u + F(u) + 〈∇u, V〉 and α0 ≤ u(x, 0) ≤ β0,

then

α(t) ≤ u(x, t) ≤ β(t) for all (x, t) ∈ Ω× [0, T].

Idea of the proof. (Since it has been proven in many places—see, for example, Theorem 4.4
of [CK04] or Theorem 3.2 of [She06]—the proof has been omitted.)

The idea is to look at

∂t(u− α) ≥ ∆(u− α) + 〈∇(u− α), V〉+ F(u)− F(α),

and use the locally Lipschitz nature of F to take care of the reaction terms. Eventually, it
can be reduced to the simpler case where F is linear, which in turn can be translated into
a more standard parabolic maximum principle result where one modifies the function u
by some small ε > 0 and inspects the first- and second-order derivatives.

These principles will be vital tools in our study of Ricci flow. Various tensorial quan-
tities will satisfy reaction-diffusion equations of the form (2.11), and we will use Proposi-
tion 2.3.1 to find time-dependent bounds for the evolving quantities.

One important topic within the study of partial differential equations is the space of
possible solutions. What requirements must the solution functions satisfy to be reason-
able solutions? In this direction, we briefly discuss what are called Sobolev spaces, which
address exactly this notion. We first introduce multi-index notation, which will simplify
the definitions to come.

33That is, u(x, t) is not required to solve (??). This condition is less stringent.
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Definition 2.3.2 (Multi-index notation). Let α = (α1, . . . ,αn) be a list of non-negative
integers called a multi-index with length |α| := ∑n

i=1 αi. For coordinates (xi)n
i=1 on an

n-manifoldM, we write Dα := ∂α1
1 · · · ∂

αn
n .

Now we introduce a particularly nice class of functions on our manifold, known as
test functions.

Definition 2.3.3 (Test function). For a manifoldM with atlas (Ui, ϕi)i, we let C∞
c (M) be

the functions in C∞(M) with compact support. We write D(M) for the space of test
functions, which is D(M) := C∞

c (M) as a set and is equipped with a topology given
as follows. For positive integers k, we say that test functions fk ∈ D(M) have limit f
in D(M) if for every multi-index α, every chart (Ui, ϕi) and every Fi ∈ C∞

c (ϕi(Ui)) we
have34 ∥∥∥Dα

(
Fi ◦ ( fk − f ) ◦ ϕ−1

i

)∥∥∥
∞
→ 0.

We now define distributions, which are objects that generalise functions.

Definition 2.3.4 (Distribution). We write D′(M) for the space of distributions, which
as a set is the dual of the space of test functions (D′(M) := D(M)∗) and is equipped
with the weak topology: distributions uk ∈ D′(M) have limit u ∈ D′(M) if for every
f ∈ D(M), we have uk( f ) → u( f ). We will write 〈u, f 〉 := u( f ) to be consistent with
standard conventions.35

We now give two simple examples of distributions.

Example 2.3.4 (Functions as distributions). On Rn, every locally integrable and mea-
surable (though not necessarily smooth) function ψ : Rn → R defines a distribution
uψ ∈ D′(Rn) by (Lebesgue) integration:

〈uψ, f 〉 :=
∫

Rn
ψ f for f ∈ D(Rn).

Example 2.3.5 (Dirac delta function). The Dirac delta function δ0 cannot be defined as a
function, though it is a distribution: 〈δ0, f 〉 := f (0), for f ∈ D(Rn).

The above examples motivate the following definition of how to differentiate distri-
butions.

Definition 2.3.5 (Weak derivative). On Rn, the weak derivative of a distribution u ∈
D′(Rn) is defined for a multi-index α and a test function f ∈ D(Rn) by

〈Dαu, f 〉 := (−1)|α|〈u, Dα f 〉.

This is inspired by partial integration, and indeed by observation, we have Dαuψ = uDαψ

for functions ψ : Rn → R.

34Recall that the L ∞-norm is the essential supremum:

‖ψ‖∞ := inf
{

C ≥ 0
∣∣ |ψ(x)| ≤ C for almost every x

}
.

The space of functions on a manifoldM where the above norm is finite is L ∞(M). In our case, the supre-
mum tending to zero should be sufficient, since our test functions are smooth.

35This should not be confused with contraction via the metric. We will only employ this notation until
Sobolev spaces have been defined.
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Finally, we can define our sought-after Sobolev spaces.

Definition 2.3.6 (Sobolev space). For a manifoldM and a positive integer s (called the
Sobolev parameter), we define the Sobolev space H s(M) as36

H s(M) :=
{

u ∈ L 2(M)
∣∣ for all αwith |α| ≤ s, we have Dαu ∈ L 2(M)

}
,

where the previous discussion arises because we only require the derivatives Dαu to be
weak.37 These spaces become Hilbert spaces38 when equipped with the inner product
〈·, ·〉s given by

〈u, v〉s := ∑
|α|≤s
〈Dαu, Dαv〉L 2(M).

Until now we have been assuming our tensors to be smooth—equivalent to C∞(M)-
linear maps. This is not necessary, however: in general they can be thought of as H s(M)-
linear maps, which will be called H s-tensors, or simply tensors (with their Sobolev na-
ture implicit).39 Most importantly, our metrics no longer need to be required to be smooth
but can instead be H s. For this train of thought to work, we could assume that s > 3
throughout, to be safe.

However, in practice, it will be much easier to consider everything to be C∞-smooth. This
tangent into Sobolev spaces would allow us to be much more precise in our discussions
of both Ricci flow and the Einstein equations; nevertheless, other than a few mentions in
the text to come, we will suppress the s from our notation and from our discourse and
proceed blindly, hoping that everything behaves well under the assumption of smooth-
ness. Typically, C∞-smooth results are proved via existence in Sobolev spaces H s for
sufficiently large s and then sending s → ∞. One of the final times we will include this s
is in the following section, which defines several new infinite-dimensional spaces to join
the ranks of our diffeomorphism groups, isometry groups, and the spaces defined in this
past section on our list of function spaces.

2.4 Hilbert Manifolds

In the spirit of our brief mention of the space of solutions to a partial differential equation,
we define the following generalisation to the definition of a manifold, which allows for
the construction to be infinite-dimensional.

36Recall that for 1 ≤ p < ∞ the L p-norm is given on a semi-Riemannian manifoldM by

‖ψ‖p :=
(∫
M
|ψ|p

) 1
p

.

The space of functions where the above norm is finite is L p(M).
37Sobolev spaces are often defined more generally as depending on two parameters, one of which acts as

our s and the other acts as the p in L p, which we have taken to be 2.
38Recall that a Hilbert space is a metric space with inner product that is complete with respect to the inner

product. Note that L 2(M) is a Hilbert space with inner product 〈·, ·〉2 given by

〈ψ,φ〉2 :=
∫
M
ψφ.

39We note that for our tensor operations defined in Section 2.1, we want the product of two tensors to once
again be a tensor. Thankfully, a consequence of the Sobolev Embedding Theorem is that for an n-manifold
M, H s(M) is algebra—that is, it is closed under multiplication—when s > n

2 .
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Definition 2.4.1 (Hilbert manifold). A Hilbert manifold is a paracompact Hausdorff
space such that every point has a neighbourhood that is homeomorphic to an open set in
a (possibly infinite-dimensional) Hilbert space. Such a manifold can be considered dif-
ferentiable by defining an atlas and differentiable transition functions whose values are
taken in the Hilbert space.

Further, we can define a Hilbert submanifold40 as a Hilbert manifold with a map
to another Hilbert manifold that is a homeomorphism onto its image and whose push-
forward is injective. We can also equip a Hilbert manifold with its inner product on each
tangent space (which are each canonically isomorphic to the Hilbert space itself41) acting
as a Riemannian metric, giving a Hilbert-Riemannian manifold.42

The precise definitions of these spaces are not crucial for our discussions, however.
We simply want to think of an infinite-dimensional function space as a manifold. For
details, see the introductory chapters of [Tro92].

We now state important examples of Hilbert manifolds, the second of which is crucial
in our discussions to come. For reasons which will become apparent in our study of
General Relativity,43 we now deal with Riemannian (not semi-Riemannian) manifolds
for the rest of this section, and we preserve the Sobolev parameter s, not requiring C∞-
smoothness.

Example 2.4.1 (Trivial Hilbert manifold). Any Hilbert space is a Hilbert manifold whose
global chart is the identity.

Example 2.4.2 (Space of metrics). For a Riemannian manifold (M, g), we define the space
of metrics M s to be the Hilbert manifold whose points are H s-Riemannian metrics. As
a sub-example we let

M s
λ := {g ∈M s whose Ricci scalar is constant and equal to λ ∈ R}.

Because almost all of our discussion involves smooth metrics, we make the note here that
M and Mλ are defined in an identical fashion to the spaces above but instead requiring
metrics to be smooth;44 it turns out that they are submanifolds of M s and M s

λ , where
their smooth structure can be established by making them Inverse Limit Hilbert (ILH)
manifolds, which are not quite Hilbert manifolds.45

Further, these Hilbert manifolds can be equipped with the L 2-metric GL 2
, which is

defined as follows:

1. Consider two elements ξ and Ξ of TgM s, the tangent space of M s at a metric g;

2. Since TgM s is isomorphic (in the way mentioned in Definition 2.4.1) to the space
of symmetric rank-2 H s-tensors on M, written S s

2 , we can think of ξ and Ξ as
elements of S s

2 ;46

40Though we have not yet stated the definition of a submanifold—they will be the principal characters of
Section 4.3—this definition of a Hilbert submanifold is a logical translation of it.

41Recall that any vector space V is canonically isomorphic to its tangent space T V .
42One can continue this line of thought even further: a Hilbert-Lie group is a smooth Hilbert manifold

whose group composition and inversion operations are smooth, and so on.
43This will be because our goal is to split spacetime into space and time, and we will use the following

ideas on the ‘space’ part alone.
44These can also be seen as M := ∩sM s.
45See [Omo70], [Koi78] and [Koi79] for fundamental work in the ILH procedure.
46Note that by definition M s is a Hilbert submanifold of S s

2 since it is an open subspace (a cone).
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3. We then have an inner product on S s
2 given in local coordinates (at g) by contraction

with the metric g: 〈ξ, Ξ〉 := gijgklξikΞjl , which is all evaluated at some p ∈ M, of
course;

4. Now, we define the L 2-metric as

GL 2

g (ξ, Ξ) :=
∫
M
〈ξ, Ξ〉 .

The previous example treats the largest possible solution space to any partial dif-
ferential equation for a Riemannian metric. In the case of Ricci flow, the solution is a
time-dependent family of metrics g(t). Thus if Ricci flow exists on some interval [0, T]
(for some T > 0), the solution is a curve g : [0, T] → M on the Hilbert manifold M .
In the case of the Einstein equations (once we have made the desired ‘space’ and ‘time’
split of spacetime), the solutions form some subset of M , denoting the possible Rieman-
nian metrics on the spatial part of spacetime. We will study this subset in great detail
in Section 4.4. We will discover that under certain circumstances it can be reduced to be
finite-dimensional, rather than infinite-dimensional, as it is at first glance.

We close this introductory chapter with a discussion of the Uniformisation Theorem.

2.5 Uniformisation Theorem

The Uniformisation Theorem dates back to the nineteenth century, having been conjec-
tured by Poincaré and Klein in 1882 [Poi82] and 1883 [Kle83], respectively. We will state
two forms of the Theorem, first formulated in complex geometry, then in the language
of Riemannian manifolds. We first define a 2-dimensional complex manifold, called a
Riemann surface.

Definition 2.5.1 (Riemann surface). A smooth oriented 2-manifoldM whose local triv-
ialisations (ϕα)α take values in C and whose transition functions are holomorphic47 is
called a Riemann surface. The atlas in this case is called a complex structure c, where

c := (Uα, ϕα)α for open Uα ⊂M with ϕα : Uα → C.

The set of all complex structures onM is denoted C (M) (or simply C ), and a Riemann
surface is often denoted (M, c).

Two Riemann surfacesM andN are biholomorphic if there exists a map ψ :M→ N
such that for all trivialisations (ϕα)α and (φβ)β on M and N , respectively, the func-
tion φβ ◦ ψ ◦ ϕ−1

α is holomorphic. Two Riemann surfaces are conformal if there exists
a holomorphic map between them with non-vanishing derivative (the function is then
also called conformal).

The Uniformisation Theorem gives a conformal classification of Riemann surfaces.

Theorem 2.1 (Uniformisation Theorem). Every simply connected Riemann surface is confor-
mal to the complex plane C, the Riemann sphere48 S, or the upper half-plane H.

We would like to translate this result into one that classifies Riemannian 2-manifolds.
We now define an intermediary step between the real and complex cases.

47Recall that a complex-valued map is holomorphic if it is equal to a convergent power series; equiva-
lently, if it is complex-differentiable at every point.

48Think of this as C∪ {∞}, the extended complex plane.
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Definition 2.5.2 (Almost complex manifold). On an n-manifoldM, an almost complex
structure is a (1, 1)-tensor J such that for all p ∈ M,

1. J squares to the identity: J2
p = −1p;

2. (Vp, JpVp) is an oriented basis for TpM for all Vp ∈ TpM.

(The second requirement is analogous to the choice of ±i for the imaginary unit on C.)
A manifoldM with an almost complex structure J is called an almost complex man-

ifold and is written (M, J). The space of all almost complex structures onM is written
A (M). Though we will not prove this, A can be thought of as a Hilbert manifold in the
same way as M .49

We give a simple example that will help us to connect the space of complex structures
and the space of almost complex structures.

Example 2.5.1 (On R2). On R2, the simplest almost complex structure is50

Ĵ :=
(

0 −1
1 0

)
.

This allows us to transition between almost complex structures on R2 to complex struc-
tures on C—or on patches of either, and thus on manifolds. To see this, define for any
chart (U, ϕ) in a complex structure c the map

Jϕ := (ϕ∗)
−1
p ◦ Ĵ ◦ (ϕ∗)p. (2.12)

This defines an almost complex structure, as can be readily checked.

The above is also independent of the chart chosen, which leads to the following result,
which describes a bijection (in 2 dimensions) between the space of complex structures C
and the space of almost complex structures A .

Proposition 2.5.1. In two dimensions, there exists a bijection $ : C → A given locally by the
expression for Jϕ in (2.12).51

Proof. See Theorem 1.1.1 of [Tro92] for details.

Since our case of interest (M, g) is 2-dimensional and real, we can use Ĵ to connect
almost complex structures to Riemannian 2-manifolds as well. We argue as follows: a
Riemannian metric defines angles on the manifold, and at each point p ∈ M the tangent
space TpM is 2-dimensional. Thus the metric induces an almost complex structure J by
demanding that J rotate vectors in TpM counterclockwise by π

2 .52

49Where once more we have omitted the Sobolev parameter s and are assuming the presence of a smooth
structure in the ILH manner described in Section 2.4.

50This is a counterclockwise rotation by π
2 .

51Note that the correspondence of almost complex structures to complex structures is only bijective in two
dimensions. See [FT84] or Chapter IX.2 of Volume II of [KN63] for details. (Plus, we only defined complex
structures in 2-dimensions.)

52We can go even further and define a symplectic form ω to be a closed non-degenerate 2-form. When
a manifoldM is equipped with a symplectic form, called its symplectic structure, it is called a symplectic
manifold and is written (M, ω). Now, a Riemannian manifold (M, g) equipped with an almost complex
structure J (which we assume to be integrable—that is, in bijection with a complex structure; in 2 dimensions,
this is always the case by Proposition 2.5.1)—sometimes called a Hermitian manifold—induces a symplectic
structure via ω(·, ·) := g(·, J(·)), where the Hermitian form is h := g− iω. This ω is then called the Kähler
structure, so the manifold (M, g, J, ω) is called Kähler, where any two of the three structures define the
third (as g(·, ·) = ω(J(·), ·), etc.). The tensors g and ω are called compatible with J, as g(·, ·) = g(J(·), J(·))
and ω(·, ·) = ω(J(·), J(·)).
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We now want to describe conformal equivalence in the language of Riemannian man-
ifolds.

Definition 2.5.3 (Conformal). Two metrics g and ĝ on a manifoldM are conformal, or
conformally equivalent, if there exists a function λ ∈ C∞(M) such that ĝ = e−2λg every-
where onM.53

This definition can be expanded to include the conformal action of the C∞-smooth
functions on the space of metrics M :54

M × C∞ →M , (g, λ) 7→ e−2λg. (2.13)

This action describes the split of M into conformal equivalence classes.

Because we do not allow the conformal transformation to change sign, we can think of
conformally equivalent metrics as simply having a different scale (albeit with the scaling
factor changing from point to point). It allows us to partition Riemannian manifolds
into conformal equivalence classes. With all of our tools in hand, we have the following
reformulation of the Uniformisation Theorem.

Theorem 2.2 (Uniformisation Theorem, #2). Every (complete) Riemannian metric on a closed
2-manifold is conformal to a (complete) metric with constant curvature.

One may ask where the simply-connected requirement went. In Riemannian geom-
etry there is the following result, valid in any dimension, which classifies all spaces of
constant curvature.

Theorem 2.3. For n ≥ 2, every simply connected Riemannian n-manifold (M, g) with constant
(sectional) curvature and complete metric is isometric to the n-sphere Sn, flat Euclidean space Rn,
or the upper half-plane Hn.

This will classify all universal covering spaces55 of Riemannian 2-manifolds, which
can then be constructed by taking a quotient of the universal cover by a suitable discrete
subgroup of the isometry group.

Using the notation from Section 2.4, we can state this second formulation of the Uni-
formisation Theorem symbolically:

M /C∞ ∼= Mλ, where λ ∈ {1, 0,−1},

where the quotient is via the conformal action (2.13).
This result will come into play as a link between the studies of 2-dimensional Ricci

flow and (2+ 1)-dimensional General Relativity, the topics of the two following chapters.
We will show that Ricci flow can be used to prove the Uniformisation Theorem, and it
will play a significant role in our inspection of General Relativity, by dividing possible
universal manifolds into three case studies.

53This is equivalent, of course, to having a function λ′ ∈ C∞(M) such that ĝ = e2λ′ g. We will use both
versions.

54Sometimes this equivalently written as a point-wise multiplication action on M by positive smooth
functions. We also note that it is possible to include the Sobolev parameter s and consider the conformal
action of H s on M s defined analogously.

55Recall that the universal covering space of a topological space is one that contains all connected covering
spaces of the space, and in particular is simply connected.
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Ricci Flow

In 1982, Hamilton (see [Ham82]) set forth a programme whose primary goal was to re-
solve the Poincaré Conjecture.1 His project centred around a (system of) partial differen-
tial equation(s) consisting of varying the Riemannian metric of a manifold M by some
parameter—often taken to be t and representing time—in the following way:

∂tg = −2Ric.

This equation is called the Ricci flow equation, or Hamilton’s Ricci flow, and has solution
a one-parameter family of Riemannian metrics g(t). (We will refer to it most as ‘Ricci
flow,’ with no article.) Note that to become a well-posed problem, initial data must be
provided: here, and throughout the following sections, we (often implicitly) assume the
requirement that the initial metric g(0) = g0 be given. The idea behind Ricci flow is
to ‘smoothen’ a metric (in the sense of curvature being constant, rather than in the C∞

sense): we will see that under certain conditions, a metric undergoing Ricci flow will
tend towards a metric of constant curvature.2

Recall from the previous chapter our definition of M as the space of all possible
smooth Riemannian metrics on a manifold M. The solution g(t) (which we assume to
exist for some interval [0, T] for T > 0) to Ricci flow with initial metric g0 can then be
visualised as a path on M : it is a smooth curve g : [0, T] → M that begins at the point
g(0) = g0. Tending to a metric of constant curvature would be if this curve ended on
(or tended to, as T → ∞) some point g∞ ∈ M , which is a metric of constant curvature.
Figure 3.1 depicts this set up as if M was finite-dimensional.

g0
g∞

g(t)
M

Figure 3.1: Visualisation of a solution g(t) to Ricci flow with initial metric g(0) = g0 on
the space of metrics M .

1This has since been proven and so can be stated as a Theorem.

Theorem 3.1 (Poincaré Conjecture). Every closed, simply-connected 3-manifold is homeomorphic to the 3-sphere.
2The rough idea to prove the Poincaré Conjecture was then to argue that if the resultant metric was

compact and of constant curvature, then it could only be (homeomorphic to) one thing: the 3-sphere!
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Note that Ricci flow is invariant under diffeomorphism: if ψ is a diffeomorphism
of M and g(t) is a solution to Ricci flow with initial metric g0, then ψ∗g(t) is a so-
lution to Ricci flow with initial metric ψ∗g0. This arises from the Ricci tensor being
diffeomorphism-equivariant:

Ric(ψ∗g) = ψ∗Ric(g).

This can be loosely argued by considering the diffeomorphism to be a change of chart
(that is, consider ψ∗g to be the metric in the new chart), and noting that since the Ricci
tensor is a trace of another tensor (the Riemann tensor), it should behave in this way
under a coordinate change.3 This equivariance will also appear in General Relativity, as
the Einstein equations will also be diffeomorphism-equivariant.

One final comment that will be discussed in greater detail in Section 3.5 is that Ricci
flow can be loosely thought to be a parabolic equation, in the same vein as the heat
equation (2.10). Though Ricci flow is not linear (and not strongly parabolic, either), this
characterisation of it as a heat-type equation explains the similarity in its ‘smoothening’
behaviour towards the metric, just as a heat distribution averages out over time.

Overview. Section 3.1 introduces Ricci flow and the behaviour of some tensorial quanti-
ties under it, as well as defines gradient Ricci solitons. Section 3.2 applies the maximum
principle to the Ricci scalar. Section 3.3 discusses mean curvature flow and compares its
qualitative behaviour to that of Ricci flow. Section 3.4 addresses the (short- and long-
time) existence of Ricci flow. Section 3.5 summarises the plan for proving the Uniformi-
sation Theorem. Sections 3.6 and 3.7 prove the Uniformisation Theorem for the case of
an average Ricci scalar r ≤ 0. Sections 3.8 through 3.13 treat the case r > 0.

Reference Guide. A great introduction to Ricci flow is [CK04], and it forms a backbone
to this chapter (particularly its Chapter 5). Lecture notes [Top06] (which is now a book)
and [Lan19] as well as the thesis [She06] introduce the material clearly, too. The collec-
tion of papers on Ricci flow [CCY03] contains reams of information on the subject. The
paper [CLT06] contains the final piece of the proof of the Uniformisation Theorem via
Ricci flow (see Proposition 3.9.1 in this text).

3.1 Formulations of Ricci Flow

Before simplifying our discussion to our 2-dimensional case of interest, we state sev-
eral examples of closely-related flow equations that are considered in the general n-
dimensional case of a Riemannian manifold (M, g), where the time-dependence of the
metric and associated tensors is withheld for notational simplicity.

Example 3.1.1 (the normalised Ricci flow). We define the average Ricci scalar r by

r :=
1

vol(M, g)

∫
M

R, (3.1)

3One can show that diffeomorphisms ψ :M→M induce maps ∗ψ(k,l) : T (k,l)M→ T (k,l)M, defined at
each p ∈ M by

∗ψ(k,l)
p (τp) = τω1···ωl

ζ1···ζk

∣∣
p

(
ψ−1

p

)∗
(dxζ1 )⊗ · · · ⊗

(
ψ−1

p

)∗
(dxζk )⊗

(
ψp
)
∗ (∂ω1 )⊗ · · · ⊗

(
ψp
)
∗ (∂ωl ),

before carrying this definition through the definitions of the Levi-Civita connection and the Riemann tensor
and concluding. See Chapter 5.4 of [Lan18] for details.
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where we have defined integration over Riemannian manifolds in Definition 2.1.7. This
then allows us to write the the normalised Ricci flow as4

∂tg = −2Ric +
2
n

rg.

Consider the functions

φ(t) := exp
(

2
n

∫ t

0
r(t′)dt′

)
and τ(t) :=

∫ t

0
φ(t′)dt′.

If g(t) is a solution to Ricci flow, then the metrics ḡ(τ) := φ(t)g(t) solve the normalised
Ricci flow, as can be verified by direct computation.5 In this manner we can move be-
tween solutions of the two flows.

Example 3.1.2 (Ricci-DeTurck flow). The Ricci-DeTurck flow has the following form:

∂tg = −2Ric + Lξ g, (3.2)

for some time-dependent vector field ξt = ξ called the DeTurck vector. This flow will ap-
pear in our later discussions, in the special case where the DeTurck vector is the gradient
of a scalar function.

We will see that solutions to the Ricci-DeTurck differ from solutions to Ricci flow
by pulling-back by time-dependent diffeomorphisms. That is, if g(t) solves the Ricci-
DeTurck flow for some DeTurck vector ξt and ψt is a one-parameter family of diffeomor-
phisms generated by ξt, then the metrics ḡ(t) := ψ∗t g(t) solve Ricci flow.

The importance of the Ricci-DeTurck flow will become apparent in Section 3.5, when
we use the fact that it is strongly parabolic—whereas the usual Ricci flow is what is called
weakly parabolic—to prove that this modified flow exists for short times. The relation
of solutions between the flows (via pulling-back by diffeomorphisms) mentioned above
will then allow us to conclude the short-time existence result for the standard Ricci flow.

Now, we will consider 2-dimensional Riemannian manifolds (Σ, g). Using the sim-
plified form of the Ricci tensor in 2 dimensions arising from (2.7) and adding a constant
factor of the metric for reasons that will become clear shortly, we have the following
formulation of our central definition.

Definition 3.1.1 (2-dimensional Ricci flow). The Ricci flow of a closed connected Rie-
mannian 2-manifold (Σ, g) is given for some parameter t by

∂tg = (ρ− R)g,

where ρ ∈ R is constant.6

We will also revert to index notation frequently in the upcoming sections, and our
most frequent usage of Ricci flow will be in the following normalised form:

∂tgij = (r− R)gij, (3.3)

where r is the average Ricci scalar.

4As is implied by its name, this has the property that the volume of the manifold remains constant
throughout the flow, as we shall soon see.

5The only trick to this is that Ric(ḡ) = Ric(g), which arises by conformal invariance of the Ricci tensor
(multiplying the metric by a positive factor leaves the Ricci tensor unchanged). We will see this again next
chapter when we encounter the Einstein equations.

6By constant, we mean that it should be constant in space, and that under this equation, it should remain
constant in time. Also, the case of vanishing ρ is sometimes called the Yamabe flow, which does not coincide
with Ricci flow in higher dimensions.
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In 2 dimensions, we have the following fundamental geometric result, which we state
without proof.

Theorem 3.2 (Gauss-Bonnet). For χ(Σ) the Euler characteristic7 of a closed 2-dimensional
Riemannian manifold (Σ, g) with Ricci scalar R, we have∫

Σ
R = 4πχ(Σ).

Recall that the definition of the average Ricci scalar r is

r :=
1

vol(Σ, g)

∫
Σ

R,

from which it is clear that r is constant in space. Since the Euler characteristic of a man-
ifold undergoing the normalised Ricci flow is unchanging, Theorem 3.2 gives that the
time dependence of r is only (inversely) related to the time dependence of the volume of
the manifold. Thus once we establish that the normalised Ricci flow preserves volume, r
will be constant in time and will thus satisfy our desired qualities for a chosen ρ.

Next, we have the following result, valid in any dimension.

Proposition 3.1.1. Let hij be a symmetric (2, 0)-tensor. For a Riemannian metric gij on an
n-manifoldM evolving as

∂tgij = hij,

we have the following:

1. The inverse metric evolves as

∂tgij = −hij;

2. The Christoffel symbols evolve as

∂tΓk
ij =

1
2

gkm (∇ihjm +∇jhim −∇mhij
)

; (3.4)

3. The Laplacian (whose explicit dependence on g(t) we show only here) evolves as

∂t∆g(t) = −hij∇i∇j −
(
∇ihij −

1
2
∇jh

)
∇j,

where h is the trace of hij;

4. The Ricci scalar evolves as

∂tR = −∆h +∇i∇jhij − hijRij;
7Recall that the Euler characteristic χ of a 2-dimensional topological space is the homotopy invariant

defined by

χ := V − E + F,

where V, E and F are the number of 0-cells (vertices), 1-cells (edges) and 2-cells (faces), respectively, for any
CW complex homotopic to the space.
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5. The volume element evolves as

∂t(dA) =
1
2

hdA,

though we note that we withhold this from our notation unless absolutely necessary;

6. The volume evolves as

∂tvol(M, g) =
1
2

∫
M

h. (3.5)

The final point implies that the normalised Ricci flow indeed preserves volume, as replacing

hij = −2Rij +
2
n

rgij

makes the right-hand side of (3.5) vanish.

Idea of the proof. (For details, see Lemmas 3.1-3.3 and 3.9 of [CK04].)
These can be proven by direct computation. The most interesting point is for the Levi-

Civita connection: though Christoffel symbols are not tensors, the difference between
between Christoffel symbols is tensorial and thus by the definition of the derivative, ∂tΓk

ij
is too. By proving the equality (3.4) in normal coordinates, we can conclude that it holds
in general by coordinate-independence.

There are also similar evolution equations for the Riemann and Ricci tensors, though
because of the property of 2 dimensions that all curvature information is contained within
the Ricci scalar R, the above points are sufficient for our discussion.8 Using hij = (ρ−
R)gij and returning to our notation of Σ being a 2-manifold, we have

∂tgij = (R− ρ)gij; (3.6)

∂tΓk
ij =

1
2

(
−δk

j∇iR− δk
i∇jR + gij∇kR

)
; (3.7)

∂t∆ = (R− ρ)∆; (3.8)
∂tR = ∆R + R(R− ρ); (3.9)

∂t(dA) = (ρ− R)dA; (3.10)
∂tvol(Σ, g(t)) = ρvol(Σ, g(t))− 4πχ(Σ), (3.11)

where the final point uses the Gauss-Bonnet Theorem 3.2. Using the results above, we
have the following evolution equation for the average Ricci scalar:

∂tr = ∂t

(
1

vol(Σ, g(t))

∫
Σ

R
)
= − 1

vol(Σ, g(t))2

(∫
Σ

R
)
(ρvol(Σ, g(t))− 4πχ(Σ)) = r2 − rρ,

which vanishes when the normalised Ricci flow (where ρ = r) is considered, as expected.
We now give three important examples of solutions to Ricci flow.

8Furthermore, under the assumptions of Proposition 3.1.1, we have

∂t

∫
Σ

R =
∫

Σ
hij
(

1
2

Rgij − Rij

)
.

This vanishes for n = 2 (as expected by the Gauss-Bonnet Theorem 3.2), and motivates the future result
that the (vacuum) Einstein equations arise from the varying of the Einstein-Hilbert action, as will be seen in
Section 4.1.
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Example 3.1.3 (Einstein metric). Suppose (Σ, g0) is an Einstein manifold with Ricci tensor
Ric0 = 2Λg0, and consider the standard (vanishing ρ) case of Ricci flow with initial metric
g(0) = g0. The solution metric is

g(t) = (1− 4Λt)g0,

which is valid for t ∈ [0, 1
4Λ ). This can be checked by differentiating the above metric

with respect to time and using the result that under a constant (over the manifold) con-
formal transformation, the Ricci tensor is unchanged: Ric(e−2λg) = Ric(g) when λ ∈ R

constant—this is why there is the restriction on the time of validity. Once the equality of
the two sides of the Ricci flow equation is established, we foresee the uniqueness of the
solution9 to conclude that it is the only solution.

In 2 dimensions, the assumption of the metric being Einstein is the same as assuming
the initial Ricci scalar to be the constant R0 = 4Λ. If we consider the normalised Ricci
flow in 2 dimensions (3.3), then the metric is unchanging.

On the other hand, Einstein metrics are interesting because they are fixed points of
the normalised Ricci flow: if ∂tg = 0, then

Ric =
1
n

rg.

In 2 dimensions, this merely states that the Ricci scalar is equal to its average over the
manifold and thus is constant throughout, which we already knew was a consequence of
the metric being Einstein.

Example 3.1.4 (Round metric). The round metric on a 2-sphere with radius $ > 0 and its
corresponding Ricci scalar are given by

ground,$ = $2ground and R =
2
$2 ,

where ground := dθ2 + sin2 θdφ2 is the round metric on the unit sphere. If we write $0
for the initial radius and allow the radius to change in time (writing $(t)), standard Ricci
flow (with ρ = 0) becomes the following simple ordinary differential equation:

∂t

(
$(t)2ground

)
= −

(
2

$(t)2

)(
$(t)2ground

)
.

Cancelling factors and solving for $(t), we find the solution

$(t) =
√

$2
0 − 2t,

which demonstrates that the manifold will shrink to a point in finite time as t → 1
2 $2

0.10

In the case of the normalised Ricci flow, we have R = r and therefore the metric does not
change in time.

9This will be discussed in Section 3.5.
10Note that this same procedure works for the n-sphere with n-dimensional Ricci flow, obtaining

$(t) =
√

$2
0 − 2(n− 1)t,

which vanishes as t→ $2
0/(2(n− 1)).
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Example 3.1.5 (Hyperbolic half-plane). The same procedure as the example above can be
completed with the hyperbolic metric on H2 to find the equation11

∂t$(t)2 = 2 =⇒ $(t) =
√

$2
0 + 2t,

which blows up to infinite size as t→ ∞.

These two last examples motivate the following definition.

Definition 3.1.2 (Self-similar solution). A solution g(t) to Ricci flow (with ρ = 0) with
initial metric g0 is called self similar if it can be written

g(t) = ψ∗t g0,

where ψt is a time-dependent family of conformal diffeomorphisms (where a diffeo-
morphism is conformal if it keeps metric within its conformal equivalence class when
pulling-back) with the property ψ0 = 1. As such, a self-similar solution evolves only via
diffeomorphism and conformal re-scaling.12

A related definition is the following.

Definition 3.1.3 (Ricci soliton). Consider a Riemannian manifold (Σ, g) with Ricci scalar
R and average Ricci scalar r. We call g a Ricci soliton if it satisfies

(r− R) gij = ∇iVj +∇jVi, (3.12)

for V a vector field.13

Though this is defined without mention of Ricci flow, we will often consider all ele-
ments of (3.12) to be time-dependent, with the metric g undergoing the normalised Ricci
flow. In this case, the solution g(t) is called a Ricci soliton solution. By observation, this
amounts to demanding that the metric change as

∂tg = LV g,

where Vt = V is time-dependent.
Furthermore, if V is the negative gradient of some smooth time-dependent scalar

function f (that is, if Vi = −∇i f ), then g is called a gradient Ricci soliton. In this case,
the defining equation becomes

(R− r)gij = 2∇i∇j f .

The function f appearing in the previous equation deserves its own definition.

11Similar to the previous example, the n-dimensional case involves including a factor of (n− 1).
12Including diffeomorphism changes here arises from our interest in solutions to Ricci flow up to diffeo-

morphism. This will later appear in more detail in our study of the Einstein equations (also diffeomorphism-
equivariant), where the space of solutions will resemble ‘metrics modulo diffeomorphisms.’

13In n dimensions, this equation is often written

−2Ric(g0) = LV g0 + 2λg0,

for λ a scaling constant, which is negative, zero or positive denoting a shrinking, steady or expanding Ricci
soliton. In our discussion, r takes the role of λ.
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Definition 3.1.4 (Potential function). The trace of the gradient Ricci soliton equation is

∆ f = R− r.

Since the right-hand side integrates to zero by the definition of r, the equation is solvable
for any solution of the normalised Ricci flow. We call a solution f of the above equation
the potential function, or potential of the curvature. Note that the potential is unique up
to adding a function of time alone, since on a closed surface the only harmonic functions
are constants.

The above definitions of self-similar and Ricci soliton solutions correspond to one
another in the following way. Consider differentiating a self-similar metric with respect
to time and identifying Vt with the vector field generated by the diffeomorphisms ψt. We
then obtain

∂tg = ∂t (ψ
∗
t g0) = LV g.

We will use the above notions of Ricci solitons and potential functions frequently in
our proof of the Uniformisation Theorem. The following section gives us our first taste
of the promised usefulness of the maximum principle and evolution equations.

3.2 Maximum Principle Revisited

In this short section we will make a first use of our prized maximum principle, found
in Proposition 2.3.1, which will be of utmost importance in the sections to come. It will
allow us to find time-dependent bounds for the Ricci scalar R.

Recall that we are interested in reaction-diffusion equations (for a function u) of the
form

∂tu = ∆u + F(u) + 〈∇u, V〉,

where F(u) is some (locally Lipschitz) function, Vt = V is a one-parameter family of vec-
tor fields and 〈·, ·〉 denotes contraction via the metric. The maximum principle allows us
to ignore the Laplacian and gradient terms, focusing only on the function F to find time-
dependent bounds for u if it is initially (at t = 0) bounded. We can use Proposition 2.3.1
on our evolution equation for the Ricci scalar R (3.9).

Similarly to Section 2.3, we will revert to using x to denote a point on our manifold, and this
convention will continue throughout the rest of this chapter.

Example 3.2.1 (Ricci scalar evolution). Using Proposition 2.3.1 with (3.9), we have F(R) =
R(R− ρ) and V = 0. Thus, we search for a solution α(t) (and another one β(t)) to

∂tα = α(α− ρ). (3.13)

Direct computation for non-zero ρ gives

α(t) =
ρ

eC+ρt + 1
, where C ∈ R is such that α0 =

ρ

eC + 1
.

Rearranging to explicitly include α0, we find

α(t) =
α0ρ

(ρ− α0)eρt + α0
=

ρ

1−
(

1− ρ
α0

)
eρt

,
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which can be checked to satisfy the ordinary differential equation (3.13). Thus, if we can
find bounds α0 and β0 such that for all x ∈ Ω we have α0 ≤ R(x, t) ≤ β0, then

α0ρ

(ρ− α0)eρt + α0
≤ R(x, t) ≤ β0ρ

(ρ− β0)eρt + β0
for all (x, t) ∈ Ω× [0, T].

Note that the above does not work when ρ = 0. However, in this case, a similar (and
simpler) computation can be made to find

α(t) =
α0

1− α0t
,

which satisfies the above for F(R) = R2, as can be verified.
If we now inspect the above in the context of the normalised Ricci flow, allowing ρ to

be the average Ricci scalar r and explicitly replacing α with R (whose role it was playing),
we have the following ordinary differential equation:

∂tR = R(R− r) with R(0) = R0,

which has solutions:

1. If r 6= 0 and R0 6= 0, then

R(t) =
r

1−
(

1− r
R0

)
ert

;

2. If r = 0, then

R(t) =
R0

1− R0t
;

3. If R0 = 0 (which means that r = 0, since it is independent of time), then R(t) = 0.

Thus, we can draw the following conclusion. If R0 > max{r, 0}, then for

0 < T :=

{
− 1

r log
(

1− r
R0

)
if r 6= 0,

1
R0

if r = 0,

we have R(t) → ∞ as t → T. Note that thankfully this divergence is only within the
context of the ordinary differential equation (3.13) for R, not under Ricci flow. It is a
warning sign, however, and we will have to work hard to find bounds for R—because
any divergence will prevent us from having existence of our flow for all time, as we shall
soon see.

Another tool we will briefly mention is the strong maximum principle, which we
discuss here without formal formulation or proof. If u ≥ 0 is a non-negative solution
to the heat equation (2.10), then intuitively we know that u > 0 for any time t > 0
unless u = 0 everywhere.14 A similar principle applies to Ricci flow: if the Ricci scalar
R is initially non-negative, then the strong maximum principle applied to its evolution
equation allows us to conclude that unless R = 0 everywhere, R will be positive for all
time t > 0 (as long as the solution exists).

14Here infinite speed of propagation of information within parabolic equations is very clear.
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Moving on, we will use the tools above to inspect possible bounds (or lack thereof)
of the Ricci scalar. We will be considering the normalised Ricci flow for the rest of the chapter,
so the previous ρ will again be replaced by the average Ricci scalar r, which we know to be time-
independent in this context.

From the previous discussion, we know that the Ricci scalar may blow up under the
ordinary differential equation (3.13), eliminating the possibility of the maximum princi-
ple granting us a satisfactory upper bound on it. However, we can use our results to
derive lower bounds for the Ricci scalar. A useful piece of notation from here on out will
be the following:

Rmin(t) := inf
x∈Σ

R(x, t),

which is always initially well-defined (written Rmin,0 := Rmin(0)) as we always consider
R0 to be bounded.

Proposition 3.2.1. Let g(t) be a solution of the normalised Ricci flow (3.3). Now,

1. If r < 0, then

R− r ≥ r

1−
(

1− r
Rmin,0

)
ert
− r ≥ (Rmin,0 − r)ert;

2. If r = 0, then

R ≥ Rmin,0

1− Rmin,0t
> −1

t
; and

3. If r > 0 and Rmin,0 < 0, then

R ≥ r

1−
(

1− r
Rmin,0

)
ert
≥ Rmin,0e−rt.

In particular, the right-hand side tends to 0 as t → ∞ in each case, and so by taking the infimum
of the left-hand sides, we find that

1. If r < 0, then Rmin(t)→ r exponentially quickly as t→ ∞;

2. If r > 0 and Rmin(t) ≥ 0 at some point, then it remains greater than 0 for all time;

3. If r > 0 and Rmin,0 < 0, then Rmin(t)→ 0 exponentially quickly.

Proof. In each case, the middle step of the bounds is given by the previous discussion of
minimum principles, and the right-most step is a further simplification for demonstrative
purposes. The conclusions follow from the bounds and the strong maximum principle
(for the second).

The following section describes the qualitative behaviour of a Riemannian manifold
undergoing Ricci flow, so that we have a better idea of what exactly the process entails.
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3.3 Qualitative Ricci Flow Behaviour

As hinted at in previous sections, a metric of a Riemannian manifold undergoing Ricci
flow will (under certain assumptions) tend to a metric of constant curvature. Because our
intuitive visualisation of curvature involves spaces with peaks15 and valleys, or protru-
sions and cavities, it is challenging to think of a Riemannian manifold as its own space,
instead of embedded within a larger ambient one.16 This section attempts to qualita-
tively explain the Ricci flow process, using a (traditional) comparison with a different
‘geometric flow’: mean curvature flow.

Example 3.3.1 (Mean curvature flow). Consider a one-parameter family of 2-manifolds
M(t), all embedded in some ambient space, taken to be Euclidean. Roughly, mean cur-
vature flow involves the following process:

1. For each point p ∈ M(t), approximate a neighbourhood of p by a 2-sphere of radius
$ (write this sphere S2

$,p);17

2. Consider a vector18 pointing (since we are embedded in Euclidean space, there is no
issue with this) from p towards the centre of S2

$,p, scaled to be inversely proportional
to the radius $;

3. Flow the point p ∈ M(t) along this vector, where the length of the vector dictates
the speed of the flow, to create the manifold one time-step later.

Note that this process can be simplified further by considering the 1-dimensional
analogue, curve shortening flow, where a curve embedded in R2 flows and eventually
shrinks to a point, as shown in Figure 3.2.

Figure 3.2: An example of curve shortening flow.

Mean curvature flow (within an ambient space) involves a flow of the differentiable
manifold itself, the points of the topological space themselves moving. Peculiarities can
be encountered in simple examples, such as the neck-pinch, described as follows. Con-
sider a 2-manifold consisting of (something closely resembling) two copies of S2 con-
nected by a cylinder S1× [0, 1], where the radius of the cylinder is smaller than the radius
of the spheres: see Figure 3.3, whose manifold resembles a dumbbell.

15Though not perfectly pointed (conical), as this does not satisfy the condition of being locally homeomor-
phic to Euclidean space.

16See Section 4.3 for a more precise discussion of embedded submanifolds.
17If a neighbourhood of p is perfectly flat, take the radius r to be very big—this is a qualitative depiction,

after all.
18This is the mean curvature vector, hence the name of the flow.
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Figure 3.3: A neck-pinch on a dumbbell.

In this case, mean curvature flow dictates that the spheres will begin to shrink, as will
the cylinder (along its radial directions). However, as depicted in Figure 3.3, the smaller
radius of the cylinder will result in a neck-pinch: the handle of the dumbbell will shrink
to a 1-dimensional line, and the 2-manifold description of the example will break down
at this singularity.19

Despite having a single time-derivative equating second-order spatial derivatives,
mean curvature flow and Ricci flow differ. One similarity lies in their tendencies to
‘smoothen’ manifolds to create spaces of constant curvature. However, the curvature
in the case of Ricci flow is metric-induced, rather than arising from embedding in an
ambient space. In Ricci flow, the manifold itself is static: the points remain stationary,
the only thing changing being the metric. As such, singularities of the type described
above cannot arise. However, in Ricci flow, singularities of another form do arise, in the
following way.

Consider the same dumbbell set-up as in the mean curvature flow example. Ricci
flow will also induce a neck-pinch, except that the stationary nature of the points of the
manifold implies that instead of a neck-pinch as seen in Figure 3.3, which is easy to vi-
sualise because of our embedding in an ambient Euclidean space, it is the metric that
creates the illusion20 of the points along the neck shrinking to a point. This is done in the
only ways the metric can: the volume (which is calculated using the metric; see Defini-
tion 2.1.7) shrinks to zero along the neck and geodesics that wrap around the neck have
lengths (also metric-dependent; see Definition 2.1.5) that shrink to zero. This can also be
described as having a shrinking injectivity radius, defined as follows.

Definition 3.3.1 (Injectivity radius). Consider a Riemannian manifold (M, g). Then the
ball of radius $ > 0 centred at p ∈ M is written Bg,$(p) and is given by

Bg,$(p) := {q ∈ M | dg(p, q) < $}, (3.14)

19Note that mean curvature flow (just as in Ricci flow) has only a single time-derivative of the object
undergoing the flow. Physically, this means that the points move with no acceleration, which would require
a second-order temporal derivative. Thus, if a sphere with a small bulge undergoes mean curvature flow,
the bulge, though shrinking, remains until the manifold becomes singular. The greater radius of the points
on the bulge will guarantee them a higher velocity, but the bulge will only ‘flatten’ (to create a sphere)
asymptotically. On the other hand, if there was an acceleration term then the larger radius of the bulge
would result in the points of the bulge ‘catching up’ with the points on the sphere after some finite time—
after this point, however, the higher speed of these points would carry them past the sphere’s non-bulge
points, creating a dent, which would then have a mean curvature vector pointing outward, sending (after
slowing, stopping and changing direction) the points in the dent back outward, and so on, making the bulge
oscillate (bulge-dent-bulge-dent-etc.) as the manifold as a whole shrinks. This oscillation reminds us of a
wave, which it should, since the wave equation (2.9) indeed has a second-order temporal derivative.

20In some sense, if we consider our starting point to be the differentiable manifold M rather than the
Riemannian manifold (M, g), then the metric g is artificially added and thus problems it encounters are not
dire. However, since we consider the Riemannian manifold to be fundamental, problems faced by the metric
are of utmost importance.

- 44 -



3.4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

for dg(p, q) the distance between p and q induced by the metric g defined by (2.3). Now,
at p ∈ M, the injectivity radius injg(p) is given by

injg(p) := sup{$ > 0 | expp : Bg,$(p)→M is injective},

where the exponential map was defined in Definition 2.1.6. The injectivity radius of the
manifold itself inj(M, g) is

inj(M, g) := inf
p∈M

injg(p).

In general, spaces of positive curvature (such as spheres, dumbbells, etc.) encounter
singularities of the type described above during Ricci flow, signified quantitatively by
a vanishing injectivity radius. In the 2-dimensional case, however, neck-pinches do not
occur, for the following reason. The handle of the dumbbell is roughly S1 × [0, 1], with
extremal bulbs (the ‘weights’) considered to be copies of S2. Though the S2 bulbs have
positive curvature and shrink under Ricci flow to a point in finite time as in Example 3.1.4,
the handle has no curvature (as S1 is flat) and therefore does not pinch off. Neck-pinches
do arise in higher dimensions, since the handle is then Sn−1 × [0, 1], which has positive
curvature when n ≥ 3.

In our 2-dimensional context, for the purposes of proving the Uniformisation Theo-
rem, we wish to show that Ricci flow exists for all time. This makes the case of a shrinking
2-sphere unfortunate, which is why we will consider the normalised Ricci flow. In this
case, no singularity arises: instead, the metric will tend to one of constant curvature.

We have restricted ourselves to the case of closed Riemannian 2-manifolds Σ with
genus g(Σ) = g. The positive, zero and negative curvature cases here correspond to sur-
faces with genera g = 0, g = 1 and g > 1, respectively. Arising from the Uniformisation
Theorem (which we have yet to prove), this is because these surfaces can be constructed
by a quotient of their universal covering spaces by a discrete subgroup, where the uni-
versal coverings here are the 2-sphere S2, flat 2-space R2 and hyperbolic 2-space H2,
respectively, which have positive, zero and negative constant curvature.21

The following section establishes short- and long-time existence for Ricci flow by com-
paring it to the Ricci-DeTurck flow, which is shown to be parabolic (and thus existence
and uniqueness results from parabolic theory apply to it).

3.4 Existence and Uniqueness of Solutions

This section briefly addresses the existence and uniqueness of solutions to Ricci flow.
First, we will show that the flow exists and is unique for short times. Then, we will state
and discuss a result on long-time existence. We will then assume long-time existence for
the sections to come before encountering the bound necessary to secure it.

Our survey of short-time existence will be as brief as possible, leaving the details to
be found in Chapter 5 of [Top06], Chapter 3 of [CK04] or Chapter 5 and Appendix A
of [She06]. We will follow these references (and the literature at large) and prove the
existence for standard (non-normalised) Ricci flow in n dimensions, and hence we write
our manifold as M. We return to our discussions of Section 2.3, though with slightly
modified notation: we are considering partial differential equations of the form

∂tu = L(u) with u(x, 0) = u0(x), (3.15)

21When we apply the Uniformisation Theorem to General Relativity we will use the classification of sur-
faces by genus, and consider the three situations mentioned above as case studies.
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where L is a differential operator of order k and u is a time-dependent function on M.
To be precise, we will refer to Section A.2 of the appendix and consider a vector bundle
π : E → M, where now u : M× [0, T) → E for some T > 0, and L : C∞(E) → C∞(E).
We will be interested in differential operators of the form

L(u) = ∑
|α|≤k

Lα∂αu, (3.16)

where the Lα are homomorphisms from E to itself and we have employed the multi-index
notation introduced in Section 2.3. This notation will be used throughout our short-time
existence discussion. We have the following definition.

Definition 3.4.1 (Strong parabolicity). For a covector ω, the principal symbol of the op-
erator L in the direction of ω is a vector bundle homomorphism σ̂[L](ω) : E → E defined
by

σ̂[L](ω)(u) := ∑
|α|=k

Lα(u)∏
i

ωαi .

Now, the partial differential equation (3.15) is called strongly parabolic is there exists
δ > 0 such that at each p ∈ M, for all non-zero covectors ω and non-zero functions u, we
have

〈σ̂[L](ω)(u), u〉 > δ|ω|2|u|2.

However, the Ricci tensor is not linear and so cannot be written in the form (3.16). As
such, we define its linearisation—in the same spirit as a derivative being the linearisation
of a function—as follows.

Definition 3.4.2 (Linearisation). The linearisation of an operator L : C∞(E) → C∞(E) is
the linear map D[L] : C∞(E)→ C∞(E) given by

D[L](u) :=
d
dt

L(u(t))
∣∣∣∣
t=0

.

We now call (3.15) strongly parabolic if its linearisation ∂tu = D[L](u) is.

The following general theorem guarantees existence and uniqueness of solutions to
strongly parabolic equations.

Theorem 3.3. A strongly parabolic equation of the form (3.15) has a solution on some time
interval [0, T) (for T > 0), which is unique as long as it exists.

Proof. The proof can be found in [LSU88], a gigantic text on parabolic theory.

We can use the above in our Ricci flow (where we resume the notation ∂tgij = hij from
Proposition 3.1.1) and compute the following linearisation:

D[−2Ric](h)ij = gkl∇k∇lhij +∇iVj +∇jVi + lower-order terms in h, (3.17)

where the lower-order terms will not contribute to the principal symbol, and where we
have defined

Vi := gkl
(

1
2
∇ihkl −∇lhik

)
.
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This follows from the evolution equation of the Ricci tensor, which can be computed from
the results in Proposition 3.1.1 (or is found in Chapter 3 of [CK04]).22

The first term in (3.17) is the Laplacian, which is fine for our desires of strong parabol-
icity. The Lie derivative along V is what makes Ricci flow not strongly parabolic, which
induces us to turn to the Ricci-DeTurck flow from Example 3.1.2 (this is called the De-
Turck trick, hence the naming of the flow—it was first done in [DeT83]). If ḡ is a solution
to the Ricci-DeTurck flow (3.2) for some DeTurck vector ξ then a similar computation
(which can be found in Chapter 5 of [She06], among other places) to the one compar-
ing solutions to the normalised Ricci flow and standard Ricci flow gives that the metric
g(t) := ϕ∗t ḡ(t) (where the diffeomorphisms ϕt induce the DeTurck vector ξ = ξt) solves
Ricci flow.23

Now, if we write D[Ric, ξ] for the linearisation of the differential operator found in
the Ricci-DeTurck flow with DeTurck vector ξ, then we have

D[Ric, ξ](h)ij = gkl∇k∇lhij +∇iVj +∇jVi − D[∇iξ j +∇jξi](h) + lower-order terms in h.

We now can choose24 ξ so that the terms involving V and ξ cancel. We let

ξi := −gkl gij

(
Γj

kl − Γ̃j
kl

)
,

for some fixed constant connection25 ∇̃ with connection coefficients Γ̃j
kl . This choice can-

cels the desired terms of the linearisation of Ricci-DeTurck flow, leaving its principal sym-
bol to satisfy

〈σ̂(D[Ric, ξ])(ω)(h), h〉 = |ω|2|h|2,

which satisfies the strong parabolicity criterion in Definition 3.4.1 by choosing some
δ < 1. Thus, by Theorem 3.3, the Ricci-DeTurck flow exists for short times. By finding
the diffeomorphisms ϕt that generate ξt we can pull-back solutions to the Ricci-DeTurck
flow to conclude that standard Ricci flow exists (and is unique by arguments found in
Chapter 4.4 of [CK04]) for short times as well.

Note: the rest of the chapter will take place in a 2-dimensional context. We also introduce
a crucial piece of notation, which we will employ repeatedly for the rest of the chap-
ter: we write (Σ, g(t), g0) for the one-parameter family of closed and connected 2-dimensional
Riemannian manifolds that solve the (normalised) Ricci flow with initial metric g0 := g(0).

As is common in the theory of partial differential equations, the long-time existence of
solutions will be proved by a priori bounds. We will assume the following result, whose
proof will follow once we find uniform bounds on the curvature.

Proposition 3.4.1. The unique solution (Σ, g(t), g0) to the normalised Ricci flow exists for all
time.

22If we had naïvely tried to apply the above to the usual Ricci flow, we have the following problem. The
principal symbol of −2Ric in some direction ω is then

σ̂[−2Ric](ω)(h)ij = gkl
(

ωkωlhij + ωiωjhkl −ωlωihjk −ωlωjhik

)
,

which can be shown to not satisfy the strongly parabolic criterion by choosing hij = ωiωj, as can be checked.
23We will perform this computation in the 2-dimensional case in the discussion preceding Proposi-

tion 3.13.2.
24Decisions of this form are often called gauge-fixing, particularly in physics. We will see more of this in

Section 4.8.
25See Section A.3 of the appendix for an introduction to general connections.
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Discussion of proof. (See Proposition 5.19 and Corollary 7.2 of [CK04] for details.)
As discussed in Chapter 7 of [CK04], the length of the interval on which the solution to

Ricci flow exists is bounded from below by a constant that is inversely proportional to the
maximum of the Riemann tensor (and thus of the Ricci scalar, in our 2-dimensional con-
text). This means that the proof can be reduced to the validity of the following Lemma.

Lemma 3.4.1. The unique solution (Σ, g(t), g0) to the normalised Ricci flow exists on a maximal
time interval 0 ≤ t < T ≤ ∞. Further, T < ∞ only if

sup
x∈Σ
|Riem(x, t)| t→T−−→ ∞,

where the Riemann (4, 0)-tensor takes some unit vector V as its inputs

Riem(V, V, V, V)(x, t) = Riem(x, t),

within this Lemma.

We make the remark here that the blowing-up of the Riemann tensor is equivalent (in
our 2-dimensional context) to the blowing up of the Ricci scalar. Thus, when we establish
uniform bounds for the Ricci scalar, the above result follows and we have our desired
existence for long times. We will see bounds for R in the sections to come.

The following section will briefly outline our plan of attack for proving the Uniformi-
sation Theorem using Ricci flow.

3.5 Strategy for Proving Uniformisation

As the following sections will prove, our comments about the parabolic nature of Ricci
flow being a driving force behind its ‘smoothening’ of the metric so that as time tends
to infinity the metric becomes one of constant curvature, is indeed true. This is done by
keeping a close eye on the Ricci scalar and by showing that it converges to the average
Ricci scalar, and thus is constant throughout the manifold. Various cases will be studied,
depending on the initial value of the Ricci scalar, as well as on its average. The goal will
be the following Theorem.

Theorem 3.4. On a closed, connected and oriented 2-dimensional Riemannian manifold (Σ, g0),
there exists a unique solution (which exists for all time) of Riemannian metrics g(t) to the nor-
malised Ricci flow with initial metric g(0) = g0 such that g(t) converges uniformly as t → ∞
(in any Ck norm) to a metric g∞ of constant curvature.

In the language of our space of metrics M , this result claims that any point g0 ∈ M
can be (maybe asymptotically) connected via a curve g : [0, ∞) → M to some point g∞
that has constant curvature. In this way the constant curvature metrics (which, up to
re-scaling, are the Hilbert manifolds Mλ with λ ∈ {−1, 0, 1}) form what are sometimes
called attractor basins for the normalised Ricci flow. Because the normalised Ricci flow
does not change the conformal equivalence class of the metric g0, Theorem 3.4 indeed
implies the Uniformisation Theorem (Theorem 2.2).

This section will present our agenda for the coming sections. Proposition 3.4.1 will
be assumed for the time being, so that we may speak of solutions to the normalised
Ricci flow without pausing to question their long-time existence. With the existence of
the flow in hand, Theorem 3.4 will now be split into the four following cases, for r the
average Ricci scalar:
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1. r < 0;

2. r = 0;

3. r > 0 and the initial Ricci scalar is non-negative;

4. r > 0 and the initial Ricci scalar not necessarily non-negative.

If we assume g(t) to be the solution to the normalised Ricci flow, then each of our cases
will be approached in the following manner:

1. Establish uniform bounds for g(t) depending on g0;

2. Show that R approaches r as t→ ∞;

3. Show that |∇kR| vanishes as t→ ∞.

Naturally, some of these steps will require much work. It will be useful to establish
evolution equations for tensorial quantities in the manner of the Ricci scalar (3.9), then
apply the maximum principle to find a decaying upper bound for the quantities, which
we will relate to |R− r| somehow. Then, showing that these quantities decay will allow
us to conclude that R→ r as t→ ∞.

The first two cases are comparatively simple. When r < 0, instead of looking directly
at R − r we will consider the closely-related quantity26 R − r + |∇ f |2 (where f is the
potential function introduced in Definition 3.1.4). Using the maximum principle on the
evolution equation of this quantity will allow us to conclude that R→ r as t→ ∞. When
r = 0, we will determine decaying bounds directly on R, so that R → 0 as t → ∞. In
both cases, we will then simply need to show that all derivatives ∇kR of the Ricci scalar
vanish to obtain our desired convergence in any Ck norm.

The cases with r > 0 are much more complicated. The second, where the initial
Ricci scalar can be of mixed sign, will be proved by showing that within finite time,
it turns into the first case. That is, Rmin becomes positive at some time, and thus the
proof of the first case allows us to conclude upon restarting the flow at this time. To
prove the first case, however, new quantities need to be defined and inspected. A closer
look at the quantity27 ∆ log R + R − r (once again closely related to R − r) will help us
determine the Ricci scalar at one point in terms of it at an earlier point,28 which will help
us determine a lower bound for R. An inspection of the tensor29 ∇2 f − 1

2 (R − r)g will
allow us to show that metrics with r > 0 (that is, metrics on spaces with vanishing genus,
like S2) tend to become gradient Ricci solitons, which we will show always have constant
curvature—thus our limiting metric does too. Finally, bounds on the injectivity radius
and the diameter of the manifold will allow us to conclude R → r and |∇kR| → 0 in a
satisfactory manner as t→ ∞.30

The following section (Section 3.6) has been isolated to allow us to get a feel for the
‘evolution-equation-then-maximum-principle’ strategy. Section 3.7 will then treat the
first two cases (r ≤ 0). The six following sections will prove the r > 0 cases, by first
establishing bounds for the metric on an interval (Section 3.8); taking a closer look at
gradient Ricci soliton solutions (Section 3.9); defining and exploring a quantity known as

26Soon to be known as the H scalar.
27Soon to be known as the Q scalar.
28This is called a Harnack inequality.
29Soon to be known as the M tensor.
30Note that our approach using entropy and Harnack inequalities is not the only one. See [AB10] for an

alternate perspective, which employs what is called isoperimetric comparisons.
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the entropy (Section 3.10); proving bounds for R, the diameter and the injectivity radius
(Section 3.11); relating the Ricci scalar at a point to the Ricci scalar at an earlier point
(Section 3.12); and concluding (Section 3.13).

3.6 Evolution Equations in Action

As shown in the beginning of this chapter, when a metric undergoes the normalised Ricci
flow (3.3), its Ricci scalar obeys the following evolution equation:

∂tR = ∆R + R(R− r). (3.18)

We also recall that by Definition 3.1.4, a potential function f satisfies the equation

∆ f = R− r. (3.19)

From these two simple facts we will define a new scalar quantity, H, and use its evolution
equation and the maximum principle to show that R→ r as t→ ∞.

The presence of many ∇’s and ∆’s inspires us to recall several useful identities that
the Riemann tensor satisfies (and once traced, that the Ricci tensor and scalar satisfy),
which will be used frequently in our coming derivations and proofs. By definition, we
have31

(∇k∇l −∇l∇k)∇i f = Ri
jkl∇j f and (∇k∇l −∇l∇k)∇j f = −Ri

jkl∇i f . (3.20)

These combine to give the first part of the following result.

Lemma 3.6.1. 1. In 2 dimensions, we have the following identity:

∇∆ = ∆∇− 1
2

R∇, (3.21)

which holds whenever applied to a scalar function;

2. For any tensor τ, we have

∆|τ|2 = 2〈∆τ, τ〉+ 2|∇τ|2. (3.22)

Proof. 1. Employing the Riemann tensor identities (3.20) and (2.7), we have

∇i∆ f = ∇i∇k∇k f = ∇k∇i∇k f + Rk
lik∇l f = ∇k∇k∇i f − 1

2
Rgli∇l f = ∆∇i f − 1

2
R∇i f ,

for some scalar function f , as desired;

2. This identity follows by the product rule.

As previously mentioned, potential functions are unique up to adding a function of
time. With this in mind, we have the following proposition, which gives the evolution
equations of the potential and of its gradient as well as a bound for the potential.

31In the context of these identities and the subsequent Lemma, it is more proper to write d, the exterior
derivative, (or, locally, ∂i) instead of ∇i (when applied to a scalar function). However, for notational conve-
nience we will take advantage of their equality when applied to scalars and use ∇ and ∇i instead.
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Proposition 3.6.1. For a potential function f0(x, t) of a solution (Σ, g(t), g0) to the normalised
Ricci flow, there exists a function c(t) only dependent on time such that the potential f := f0 + c
satisfies

∂t f = ∆ f + r f . (3.23)

This allows us to choose our potential function to satisfy (3.23). We then have that

1. There exists a constant C ≥ 0 such that

| f | ≤ Cert; (3.24)

2. The gradient of the potential satisfies the following evolution equation:

∂t|∇ f |2 = ∆|∇ f |2 − 2|∇∇ f |2 + r|∇ f |2. (3.25)

Proof. We differentiate the defining equation of the potential function (3.19) for f0:

∂t(∆ f0) = ∂t(R− r).

Now, using the evolution equations of ∆ (3.8) and R (3.18), as well as the fact that r is
constant, we find

(R− r)2 + ∆(∂t f0) = ∆∆ f0 + R(R− r),

which rearranges to become

∆(∂t f0) = ∆(∆ f0 + r f0).

Now, the only harmonic functions on closed 2-manifolds are constants, so there exists a
function γ(t) only dependent on time such that

∂t f0 = ∆ f0 + r f0 + γ.

By observation, if we take

c(t) := −ert
∫ t

0
e−rt′γ(t′)dt′,

we obtain the desired function f := f0 + c, since

∂t f = ∂t f0 + ∂tc = ∆ f0 + r f0 + γ− ert (e−rtγ
)
− rert

∫ t

0
e−rt′γ(t′)dt′ = ∆ f0 + r f0 + rc,

as claimed. Now,

1. The constant C is found by applying the maximum principle to the evolution equa-
tion of f (3.23);

2. We use the evolution equations of gij (3.6) and f (3.23) and our favourite identi-
ties (3.21) and (3.22) to pass down each line, respectively:

∂t|∇ f |2 = ∂t

(
gij∇i f∇j f

)
= (R− r)|∇ f |2 + 2 (∇i∂t f )∇i f

= (R− r)|∇ f |2 + 2 〈∇∆ f + r∇ f ,∇ f 〉
= r|∇ f |2 + 2〈∆∇ f ,∇ f 〉
= ∆|∇ f |2 − 2|∇∇ f |2 + r|∇ f |2,

as desired. �
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We now make an important definition.

Definition 3.6.1 (H scalar). For f a potential function, let H be the following scalar quan-
tity:

H := R− r + |∇ f |2. (3.26)

This quantity is related to R− r, which is what we want to show vanishes in a satis-
factory manner. We have added a |∇ f |2 because of the effect it will have on the evolution
equation of H. By Proposition 3.6.1, |∇ f |2 behaves well in time. Thus, we hope that H
will as well, so that an application of the maximum principle on its evolution equation
gives us a decaying bound. If H is bounded, then R− r will be as well (since |∇ f |2 ≥ 0),
and thus we will have our desired decaying bound on R − r. The following result ad-
dresses these wishes.

Proposition 3.6.2. The quantity H defined above evolves under the normalised Ricci flow (with
initial metric g0) as

∂tH = ∆H − 2
∣∣∣∣∇∇ f − 1

2
(
∆ f
)

g
∣∣∣∣2 + rH. (3.27)

Furthermore, there exists a constant C dependent only on g0 such that

R− r ≤ H ≤ Cert. (3.28)

Proof. Using the defining equation of f (3.19) and the evolution equation of R (3.18), we
find

∂t(R− r) = ∆R + R(R− r) = ∆(R− r) + (∆ f )2 + r(R− r).

We then combine this with our evolution equation for |∇ f |2 (3.25) to obtain

∂tH = ∂t(R− r) + ∂t|∇ f |2

= ∆(R− r) + (∆ f )2 + r(R− r) + ∆|∇ f |2 − 2|∇∇ f |2 + r|∇ f |2

= ∆H − 2
∣∣∣∣∇∇ f − 1

2
(
∆ f
)

g
∣∣∣∣2 + rH,

where the final line follows from the definition of H (3.26), as well as the identity∣∣∣∣∇∇ f − 1
2
(
∆ f
)

g
∣∣∣∣2 = |∇∇ f |2 − 1

2
(
∆ f
)2. (3.29)

Using the maximum principle, we obtain the desired constant C, and the lower bound
follows by observation.

As promised, the previous bounds on H give the following result regarding time-
dependent upper and lower bounds of the Ricci scalar.

Proposition 3.6.3. For a solution (Σ, g(t), g0) to the normalised Ricci flow, there exists a con-
stant C dependent only on g0 such that

1. If r < 0, then

r− Cert ≤ R ≤ r + Cert;
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2. If r = 0, then

− C
1 + Ct

≤ R ≤ C;

3. If r > 0, then

−Ce−rt ≤ R ≤ r + Cert.

Proof. The upper bounds follow from (3.28), and the lower bounds from the minimum
principle result Proposition 3.2.1.

We now possess enough machinery to begin our proof of Theorem 3.4.

3.7 Non-Positive Average Ricci Scalar

This section aims to prove the cases of Theorem 3.4 where r < 0 and r = 0, respectively.
Thankfully, most of the ground work was done in the previous section.

As mentioned in Section 3.5, we would like to establish uniform bounds for the met-
rics g(t). The nice evolution equation (3.23) for our potential function f allows us to state
the following result, bounding our metrics g(t) in the case of a non-positive average Ricci
scalar.

Proposition 3.7.1. When r ≤ 0 for a solution (Σ, g(t), g0) to the normalised Ricci flow, there
exists a constant C ≥ 1 dependent only on g0 such that for as long as the solution exists we have

1
C

g0 ≤ g(t) ≤ Cg0.

The metrics g(t) are thus all called uniformly equivalent.

Proof. Using the definition of f (3.19) and its evolution equation (3.23), we have

∂tg = (r− R)g = (∆ f )g = (∂t f − r f )g.

Integrating both sides in time, we obtain

g(x, t) = exp
(

f (x, t)− f (x, 0)− r
∫ t

0
f (x, t′)dt′

)
g(x, 0).

Writing C′ for the bound for f in (3.24), we have for any vector V,∣∣∣∣∣log

(
g(x,t)(V, V)

g(x,0)(V, V)

)∣∣∣∣∣ ≤
∣∣∣∣ f (x, t)− f (x, 0)− r

∫ t

0
f (x, t′)dt′

∣∣∣∣
≤ 2C′ert − r

C′

r
ert′
∣∣∣∣t′=t

t′=0

= C′
(
ert + 1

)
.

From this we can conclude that there exists the desired C.

Now, we consider the case r < 0. We know that

1. By Proposition 3.4.1, the solution g(t) exists for all time;
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2. By Proposition 3.7.1, the metrics g(t) are uniformly equivalent;

3. By Proposition 3.6.3, there exists a constant C dependent only on the initial metric
g0 such that

|R− r| ≤ Cert,

which means R is approaching r exponentially quickly.

All that remains to show is that the convergence is uniform in any Ck norm, as claimed
in the following result.

Proposition 3.7.2. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average
Ricci scalar r < 0. Then for every integer k > 0 there exists a constant Ck < ∞ such that for all
time 0 < t < ∞ we have

sup
x∈Σ

∣∣∣∇kR(x, t)
∣∣∣2 ≤ Cke

1
2 rt.

Proof. We will prove this using induction on k. The base case is implied by the following
Lemma, which provides yet another evolution equation.

Lemma 3.7.1. For any solution (Σ, g(t), g0) to the normalised Ricci flow, we have

∂t|∇R|2 = ∆|∇R|2 − |∇∇R|2 + (4R− 3r)|∇R|2. (3.30)

Proof of Lemma. Using our favourite identity (3.21) and the evolution equation for R (3.18),
we have

∂t(∇R) = ∇(∆R + R(R− r)) = ∆∇R +
3
2

R∇R− r∇R.

Using the evolution equation for gij (3.6), we then obtain

∂t|∇R|2 = ∂t

(
gij∇iR∇jR

)
= (R− r)|∇R|2 + 2

〈
∆∇R +

3
2

R∇R− r∇R,∇R
〉

.

We obtain the desired result by using R in the identity (3.22) and rearranging.

This evolution equation allows us to conclude that the desired constant C1 exists via

∂t|∇R|2 = ∆|∇R|2 − |∇∇R|2 + (4R− 3r)|∇R|2

≤ ∆|∇R|2 − |∇∇R|2 +
(
r + 4Cert) |∇R|2

≤ ∆|∇R|2 + 1
2

r|∇R|2,

for t large enough. An application of the maximum principle then gives the existence of
C1.

Now that the base case is established, the general case (assuming for 1 ≤ j ≤ k− 1) is
obtained by using commutators of the sort(

∇k∆− ∆∇k
)

R =
bk/2c

∑
j=0

(∇jR)⊗g (∇k−jR),

where b·c is the floor function and ⊗g denotes a finite linear combination of contractions
of tensors with respect to g(t). See Proposition 5.27 of [CK04] for the full proof.

- 54 -



3.7. NON-POSITIVE AVERAGE RICCI SCALAR

Next, we tackle the case with vanishing average Ricci scalar. Same as before, we know
that the solution exists for all time and that the metrics g(t) are uniformly equivalent.
Thus we have proved the case if we show that the Ricci scalar and all of its derivatives
vanish as t→ ∞.

We recall that in the case r = 0, the potential function satisfies

∆ f = R and ∂t f = ∆ f .

That is, the potential satisfies the heat equation. As time nears infinity, its ‘distribution’
will average out so that it becomes constant in space. Thus, its Laplacian will vanish, and
so will the Ricci scalar, as desired. We will keep this argument in mind as we explicitly
show that R vanishes. In this direction, we want to give decaying bounds for |∇ f |2 and
R + |∇ f |2, whose combination will give the desired bound for the Ricci scalar.

Proposition 3.7.3. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with Ricci
scalar R and average Ricci scalar r = 0. Then, there exist constants C1, C2 < ∞ dependent only
on g0 such that for all time 0 ≤ t < ∞, the potential function f satisfies

1.

sup
x∈Σ
|∇ f (x, t)|2 ≤ C1

1 + t
;

2.

sup
x∈Σ

(
|R(x, t)|+ 2 |∇ f (x, t)|2

)
≤ C2

1 + t
.

Consequently, the Ricci scalar R tends to 0 as t→ ∞.

Proof. 1. Applying the maximum principle to the evolution equation for |∇ f |2 (3.25),
we have the existence of some constant C′1 dependent on g0 such that |∇ f |2 ≤ C′1
for all time. Next, consider

∂t
(
t|∇ f |2

)
= |∇ f |2 + t

(
∆|∇ f |2 − 2|∇∇ f |2

)
≤ ∆

(
t|∇ f |2

)
+ |∇ f |2. (3.31)

Since ∆( f 2) = 2 f ∆ f + 2|∇ f |2, we have

∂t
(

f 2) = 2 f ∆ f = ∆
(

f 2)− 2|∇ f |2. (3.32)

Combining (3.31) and (3.32) gives

∂t
(
t|∇ f |2 + f 2) ≤ ∆

(
t|∇ f |2 + f 2) ,

and so the maximum principle yet again gives the existence of some C′′1 (dependent
on g0) such that

t|∇ f |2 + f 2 ≤ C′′1 .

From this we deduce |∇ f |2 ≤ C′′1 /t for non-zero t, and so combining this with the
previous estimate (C′1) we obtain the desired C1;
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2. For convenience, we make the following definition:

Ξ := R + 2|∇ f |2.

Next, using the evolution equations for R (3.18) and |∇ f |2 (3.25), we have

∂tΞ = ∆Ξ + R2 − 4|∇∇ f |2 ≤ ∆Ξ− R2,

where we have used

R2 = (∆ f )2 ≤ 2|∇∇ f |2.

In the same spirit as the proof of the first point, we have

∂t (tΞ) ≤ R + 2|∇ f |2 + ∆ (tΞ)− tR2, (3.33)

where our goal is to reduce this inequality to only the temporal derivative on the
left-hand side and the Laplacian term on the right-hand side. Seemingly complicat-
ing our lives for the moment, we write

−tR2 = −1
2

tR2 − 1
2

tΞ2 + 2t|∇ f |2
(

R + |∇ f |2
)

. (3.34)

We remark that by the first point in this proposition, there exists some c > 0
such that t|∇ f |2 ≤ c. Thus, inspecting the terms of the right-hand sides of (3.33)
and (3.34) that do not contain Ξ, we have

−1
2

tR2 + R + 2|∇ f |2 + 2t|∇ f |2
(

R + |∇ f |2
)
≤ −1

2
tR2 + (1 + 2c)R + 2(1 + c)|∇ f |2

≤ −
(√

t
2

R− 1√
2t
(1 + 2c)

)2

+
c′

t
,

for some c′ > 0. Putting (3.33) and (3.34) together with the previous inequality, we
obtain

∂t (tΞ) ≤ ∆ (tΞ)− 1
2

tΞ2 −
(√

t
2

R− 1√
2t
(1 + 2c)

)2

+
c′

t
.

From this we conclude that there is some c′′ > 0 large enough that if tΞ ≥ c′′, then

∂t (tΞ) ≤ ∆ (tΞ) ,

which, by the maximum principle, implies that Ξ = R + 2|∇ f |2 has the desired
decaying bound. Thus the desired result on the supremum follows, since |∇ f |2 is
uniformly bounded by the proof of the first point, and R is bounded by Proposi-
tion 3.6.3.

Next, we have the following result dealing with the derivatives of the Ricci scalar,
whose proof we skip over in the name of brevity.

Proposition 3.7.4. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average
Ricci scalar r = 0. Then for every integer k > 0 there exists a constant Ck < ∞ such that for all
time 0 < t < ∞ we have

sup
x∈Σ

∣∣∣∇kR(x, t)
∣∣∣2 ≤ Ck

(1 + t)k+2 .
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Idea of the proof. (See Proposition 5.33 of [CK04] for details.)
Similarly to Proposition 3.7.2, this is done with induction.

With the above results we can conclude the desired Theorem 3.4 in the case of vanish-
ing average Ricci scalar. In the next six sections we tackle the most difficult case: positive
average Ricci scalar.

3.8 Positive Average Ricci Scalar I: Introduction

The following sections provide the proof of the final part of Theorem 3.4, where r > 0.
New quantities will need to be defined, and we will be moving back and forth between
two cases, where the initial Ricci scalar is either non-negative or is of mixed sign (de-
pending on x ∈ Σ).

We state the following notation:

Rmin(t) := inf
x∈Σ

R(x, t) and Rmax(t) := sup
x∈Σ

R(x, t).

Now, consider the case where the initial Ricci scalar R(x, 0) is non-negative for all
x ∈ Σ. For notational convenience, we will write R(·, 0) ≥ 0 to signify a non-negative
Ricci scalar. Note that in this case, Rmin,0 is either zero or greater than zero. By the strong
maximum principle, if Rmin,0 is zero then some small time ε > 0 later it will be positive,
unless Rmin,0 = R = r = 0, in which case it is zero for all time (a case we have already
treated). So, unless R = 0, Rmin(t) > 0 for all t > 0, which means that up to restarting
the flow after some small time ε > 0, we may assume R(·, 0) > 0.

Following the strategy outlined in Section 3.5, we first wish to obtain reasonable
bounds for the metric. We thus have the following result, which gives bounds for the
metric on some time interval.

Lemma 3.8.1. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average Ricci
scalar r > 0 and, for some t0 ≥ 0 to be specified, write

I :=
[

t0, t0 +
1

2Rmax(t0)

]
.

Then,

1. For any t0 ∈ [0, ∞), the estimate

g(x, t) ≥ 1
e

g(x, t0),

holds for all x ∈ Σ and for all t ∈ I;

2. If R(·, 0) ≥ 0, then for any times 0 ≤ t0 ≤ t < ∞ we have

g(x, t) ≤ er(t−t0)g(x, t0);

3. If R(·, 0) changes sign, then for any times 0 ≤ t0 ≤ t < ∞ we have

g(x, t) ≤

er(t−t0)

(
1− r

s0

)
− e−rt(

1− r
s0

)
− e−rt0

 g(x, t0),
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where s(t) is the solution to the equation (3.13) with initial condition

s0 := s(0) =

{
0 if Rmin,0 ≥ 0,
Rmin,0 if Rmin,0 < 0.

That is,

s(t) =

0 if Rmin,0 ≥ 0,
r

1−
(

1− r
Rmin,0

)
ert

if Rmin,0 < 0.

In particular, the first two points give that if R(·, 0) ≥ 0, then for any t0 ∈ [0, ∞) the estimate

1
e

g(x, t0) ≤ g(x, t) ≤
√

eg(x, t0),

holds for all x ∈ Σ and for all t ∈ I.

Proof. We will use the following Lemma in the proof of the first point.

Lemma 3.8.2. Under the assumptions of Lemma 3.8.1, for any t0 ∈ [0, ∞), the estimate

Rmax(t) ≤ 2Rmax(t0),

holds for all x ∈ Σ and for all t ∈ I.

Proof of Lemma. Since r > 0, Rmax(t) > 0 for all time, and so the evolution equation for
R (3.18) gives that at a maximum (in space):

∂tR ≤ ∆R + R2.

The solution of {
∂tα = α2

α(t0) = Rmax(t0)
is α(t) =

1
R−1

max(t0) + t0 − t
,

so by the maximum principle we have our desired estimate within I.

Now, we consider each point in turn.

1. From the Ricci flow equation (3.3), we write

g(x, t) = exp
(∫ t

t0

(
r− R(x, t′)

)
dt′
)

g(x, t0).

If t ∈ I, then Lemma 3.8.2 gives

∫ t

t0

(
r− R(x, t′)

)
dt′ ≥ −

∫ t

t0

R(x, t′)dt′ ≥ −2
∫

I
Rmax(t0)dt′ = −1,

from which we conclude the result;
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2. The explicit form of s(t) gives∫ t

t0

(
r− R(x, t′)

)
dt′ ≥

∫ t

t0

(
r− s(t′)

)
dt′,

and so if Rmin,0 ≥ 0, then

g(x, t) ≤ exp
(∫ t

t0

(
r− s(t′)

)
dt′
)

g(x, t0) ≤ er(t−t0)g(x, t0),

as desired;

3. If Rmin,0 < 0, then we integrate our known expression for s(t):

−
∫ t

t0

s(t′)dt′ =
∫ t

t0

r

1−
(

1− r
Rmin,0

)
ert′

dt′ = log
(

e−rt′ −
(

1− r
Rmin,0

))∣∣∣∣t′=t

t′=t0

.

Using s0 = Rmin,0, we have

g(x, t) ≤ exp
(∫ t

t0

(
r− s(t′)

)
dt′
)

g(x, t0) ≤

er(t−t0)

(
1− r

s0

)
− e−rt(

1− r
s0

)
− e−rt0

 g(x, t0),

as desired.

The final conclusion arises by observation upon combining the first two points.

The following section inspects gradient Ricci solitons, which we will see to be an in-
termediate step on our way to constant curvature: we will show that (a modified version
of) the normalised Ricci flow with r > 0 tends metrics to become gradient Ricci solitons,
which (as we will see shortly) have constant curvature.

3.9 Positive Average Ricci Scalar II: Gradient Ricci Solitons

It took new innovations to understand the case of positive average Ricci scalar. One of
these was to consider gradient Ricci solitons. As we will see, when r > 0 they are always
of constant curvature, and thus can be thought of as attractor basins for the normalised
Ricci flow: metrics will want to tend towards them, and if the flow begins at a gradient
Ricci soliton then it will remain static. In the following section, we will define a quantity
called the entropy which will describe the tendency of the normalised Ricci flow with
r > 0 to turn metrics into gradient Ricci solitons.

To begin, recall the equation defining gradient Ricci solitons for a potential f :

(R− r)gij = 2∇i∇j f . (3.35)

By combining this with the defining equation of f (3.19), this equation is equivalent to
the vanishing of the following quantity.

Definition 3.9.1 (M tensor). For f a potential function, let M f = M be the following
symmetric 2-tensor:32

M f
ij = Mij := ∇i∇j f − 1

2
(∆ f )gij. (3.36)

32This is the trace-free part of the Hessian of f . We have dropped the f from our notation for succinctness.
Recall too that we have encountered this before, in (3.27).
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As can be verified by direct computation, it satisfies the following identity:

|M|2 = |∇∇ f |2 − 1
2
(∆ f )2, (3.37)

which is a restatement of (3.29).

This M tensor will allow us to encode the notion of a certain metric being a gradient
Ricci soliton by simply noting when it vanishes. Eventually, we will consider the follow-
ing Ricci-DeTurck flow (with DeTurck vector ∇ f ), first encountered in Example 3.1.2:

∂tgij = 2Mij = 2∇i∇j f − (R− r)gij = (r− R)gij +
(
L∇ f g

)
ij .

We will call it the gradient Ricci-DeTurck flow. Note that its fixed points are gradi-
ent Ricci solitons, and so similarly to the right-hand side of the usual normalised Ricci
flow (3.3) vanishing as t → ∞ and forming a constant curvature metric, when the right-
hand side of the gradient Ricci-DeTurck flow vanishes the metric will be a gradient Ricci
soliton. The following result claims that gradient Ricci solitons (when r > 0) are of con-
stant curvature.

Proposition 3.9.1. All gradient Ricci solitons on closed Riemannian 2-manifolds with r > 0
have constant curvature.33

Proof. Comparing the gradient Ricci soliton equation (3.35) to the conformal Killing
equation

∇iVj +∇jVi = λgij,

we notice that ∇ f is a Killing vector for λ = R − r. Letting J be the almost complex
structure describing a counter-clockwise rotation about the origin by π

2 ,34 it follows that
J(∇ f ) is a Killing vector:

∇k

(
Ji
j∇i f

)
+∇j

(
Ji
k∇i f

)
= Ji

j∇k∇i f + Ji
k∇j∇i f =

1
2
(R− r)(Jjk + Jkj) = 0,

by anti-symmetry. We then state the following Lemma.

Lemma 3.9.1. If (Σ, g) is a Riemannian 2-manifold with non-zero Killing vector V such that V
vanishes at q ∈ Σ, then (Σ, g) is rotationally symmetric about q.

Proof of Lemma. Consider the one-parameter family of isometries generated by V: that is,
ψλ : Σ→ Σ with λ ∈ R such that

d
dλ

ψλ(p) = V (ψλ(p)) and ψ0 = 1.

By construction, q is a fixed point of ψλ for all λ ∈ R, and so the push-forward

(ψλ(q))∗ : TqΣ→ TqΣ,

33The proof of this fact often calls upon the Uniformisation Theorem—as in Proposition 5.21 of [CK04],
for example, where it uses the Uniformisation-dependent Kazdan-Warner identity, or in Theorem 10.1
of [Ham88]—which we obviously want to avoid!

34This was introduced in Definition 2.5. Concretely, this almost complex structure is defined by

J(∂i) = J j
i ∂j where J(∂x) = ∂y and J(∂y) = −∂x,

from which it is clear that J2 = −1, as is desired for an almost complex structure.
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is an oriented isometry. Since the manifold is 2-dimensional, the oriented isometry group
of (TqΣ, gq) is SO(2) ∼= S1. We have two cases: either the assignment λ 7→ (ψλ(p))∗ is
the trivial homomorphism, in which case all maps (ψλ(p))∗ are zero maps. This is not
the case, since our Killing vector is non-trivial, so λ 7→ (ψλ(p))∗ is a non-trivial homo-
morphism, and thus (since the isometry group is S1) we can find some λ0 > 0 such that
(ψλ0)∗ = (ψ0)∗.35

Now we argue that isometries are uniquely defined by their push-forwards at a point.
Consider an isometry ψ whose push-forward (ψp)∗ is known for some p ∈ Σ. To deter-
mine ψ(q) we consider the geodesic γp,W (beginning at p with speed W) that extends
from p to q:36 we have q = expp(W). Applying ψ to both sides, we have

ψ(q) = ψ(expp(W)) = expψ(p)((ψp)∗(W)) = expp((ψp)∗(W))

where the second equality arises from ψ being an isometry. From this we can conclude
that (ψλ0)∗ = (ψ0)∗ implies ψλ0 = ψ0. Thus we have shown that a non-trivial isometric
action of S1 on (Σ, g), so the manifold is rotationally symmetric.

Since every gradient on a closed surface must vanish for some point, ∇ f and hence
(by anti-symmetry) J(∇ f ) must vanish at some q ∈ Σ. If ∇ f is trivial, then we have
constant curvature; so, we assume that it is non-trivial and hence J(∇ f ) is too. We can
then apply this Lemma to our context and write our metric in its rotationally symmetric
form as

g = d$2 + h($)2dθ2 for θ ∈ [0, 2π] and $ ∈ [0, A],

for some A > 0, where h($) is positive on (0, A) and vanishing at $ = 0 and $ = A by
compactness. We recall from Examples 2.1.5 and 2.2.4 that the (non-vanishing) Christoffel
symbols and Ricci scalar of this metric take the form

Γ$
θθ = −hh′, Γθ

$θ = Γθ
θ$ =

h′

h
and R = −2

h′′

h
, (3.38)

where (·)′ denotes a derivative with respect to $.
For a positive average Ricci scalar (which we take to be r = 2 without loss of general-

ity), the gradient Ricci soliton equation becomes(
−2

h′′

h
− 2
)

gij = 2∇i∇j f ,

where we can assume by rotational symmetry that the potential function is only radi-
ally dependent: f = f ($). Thus the right-hand side can be expanded and the equation
reduces to coupled ordinary differential equations (as g is diagonal):

−h′′

h
− 1 = f ′′ and − h′′h− h2 = hh′ f ′. (3.39)

Dividing the second equation by h2 and equating the right-hand sides gives

f ′′

f ′
=

h′

h
,

35Think of this λ0 as having ‘gone around the circle’ S1 to return to the original point.
36This exists because Σ is complete. See Chapter 2 for details (in particular Definitions 2.1.5 and 2.1.6),

with further elaboration in Appendix A.
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from which we obtain f ′ = ah for some constant a. Substituting this back into the left-
most soliton equation of (3.39) and multiplying by hh′, we obtain

−h′h′′ − hh′ = ahh′2. (3.40)

Integrating (3.40) along [0, A] gives

− 1
2

h′2
∣∣∣∣$=A

$=0
− 1

2
h2
∣∣∣∣$=A

$=0
= a

∫ A

0
h($)h′($)2d$. (3.41)

We required our manifold to be smooth everywhere. In particular, at $ = 0 and $ = A,
which require

h(0) = h(A) = 0 and h′(0) = −h′(A).

Thus the left-hand side of our integrated equation (3.41) is zero, and so we can conclude
by the positivity of the integrand of the right-hand side that a must also be zero. When
substituted back into f ′ = ah, we find f to be constant, and thus the right-hand side of
the left-most equation in (3.39) vanishes. From this we conclude that h′′ = −h, which can
be substituted into (3.38) to find a Ricci scalar constant and equal to 2, as desired.37

As hinted at this beginning of this section, we know turn to defining a quantity which
will encode the fact that the normalised Ricci flow tends metrics to be gradient Ricci
solitons: the entropy.

3.10 Positive Average Ricci Scalar III: Entropies

We now turn to a new quantity: the entropy, defined for a positive Ricci scalar—though
it will have an equivalent in the case where R(·, 0) changes sign. It will be constant on
gradient Ricci solitons (hence on metrics of constant curvature by Proposition 3.9.1), and
in any other case it will be decreasing.

Definition 3.10.1 (Entropy). For a closed 2-dimensional Riemannian manifold (Σ, g) with
positive Ricci scalar R > 0, we define the entropy, or surface entropy, N to be

N :=
∫

Σ
R log R. (3.42)

Note that typically entropies (integrals of a quantity multiplied by its logarithm) have
a negative sign, and are shown to increase, as in thermodynamics. Here, for no particular
reason other than to follow the literature, we have the opposite sign convention. Our goal
will be the following result.

Proposition 3.10.1. For a solution (Σ, g(t), g0) to the normalised Ricci flow with Ricci scalar
R(·, 0) > 0 (and thus with average Ricci scalar r > 0), the entropy N is decreasing unless
R(·, 0) = r, in which case N is constant.

It will be directly implied by the following result, which gives an explicit expression
for the time-derivative of the entropy.

37This can also be seen in the gradient Ricci soliton equation (3.35): since the right-hand side vanishes, our
metric is Einstein and thus of constant curvature by Proposition 2.2.1 and the discussion that follows it.
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Proposition 3.10.2. For a solution (Σ, g(t), g0) to the normalised Ricci flow with average Ricci
scalar r > 0 and initial Ricci scalar R(·, 0) > 0, the entropy N is decreasing:

dN
dt

= −
∫

Σ

|∇R + R∇ f |2
R

− 2
∫

Σ
|M|2 ≤ 0,

where f is the potential function defined by (3.19) and the M tensor is defined by (3.36). In
particular, the entropy is decreasing unless g(t) is a gradient Ricci soliton.

Proof. We first state a Lemma, which gives an intermediate form for the derivative of the
entropy.

Lemma 3.10.1. Under the assumptions of the proposition,

dN
dt

= −
∫

Σ

|∇R|2
R

+
∫

Σ
(R− r)2.

Proof. Using the evolution equations of R (3.18) and the volume element dA (3.10), we
have

∂t(RdA) =
(
∂tR
)
dA + R

(
∂t(dA)

)
= (∆R + R(R− r))dA + R(r− R)dA = ∆RdA.

Using this and the evolution equation of R (3.18) once more, we have

dN
dt

=
∫

Σ

(
∂t log R

)
RdA +

∫
Σ

log R
(
∂t(RdA)

)
=
∫

Σ
(∆R + R(R− r)) +

∫
Σ

log R ∆R

=
∫

Σ
R(R− r)−

∫
Σ
(∇ log R + 1) R

=
∫

Σ
(R− r)2 −

∫
Σ

|∇R|2
R

,

where in the final step we have integrated by parts (using that Σ is closed so the integral
of ∇R vanishes on it) and used ∫

Σ
r(R− r) = 0, (3.43)

by definition of r (3.1).

We now make several further computations. Using the definition of f (3.19), integrat-
ing by parts and using our favourite identity (3.21), we obtain:∫

Σ
(R− r)2 =

∫
Σ
(∆ f )2

= −
∫

Σ
〈∇ f ,∇∆ f 〉

= −
∫

Σ

(
〈∇ f , ∆∇ f 〉 − 1

2
R|∇ f |2

)
=
∫

Σ

(
|∇∇ f |2 + 1

2
R|∇ f |2

)
.

Using the identity satisfied by |M|2 (3.37) and the previous computation we have∫
Σ
|M|2 =

∫
Σ

(
|∇∇ f |2 − 1

2
(∆ f )2

)
=

1
2

∫
Σ

(
(R− r)2 − R|∇ f |2

)
.
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Next, consider the first integral in our desired evolution equation of N. Using the
definition of f (3.19) and integrating by parts we have∫

Σ

|∇R + R∇ f |2
R

=
∫

Σ

(
|∇R|2

R
+ R|∇ f |2 + 2 〈∇R,∇ f 〉

)
=
∫

Σ

(
|∇R|2

R
+ R|∇ f |2 − 2R(R− r)

)
=
∫

Σ

(
|∇R|2

R
+ R|∇ f |2 − 2(R− r)2

)
,

where in the final step we have used that R and r integrate to the same result as in (3.43).
Combining these with our Lemma, we obtain

0 ≥ −
∫

Σ

|∇R + R∇ f |2
R

− 2
∫

Σ
|M|2 = −

∫
Σ

|∇R|2
R

+
∫

Σ
(R− r)2 =

dN
dt

, (3.44)

as desired.
The final claim is clear when noticing the positivity of the integrands in: if both inte-

grands vanish, then equality is satisfied. So we want to show that the integrands vanish
on gradient Ricci solitons. The numerator of the first integral is zero on gradient Ricci
solitons because of the following short Lemma.

Lemma 3.10.2. Consider a potential function f . When R > 0, the gradient Ricci soliton equa-
tion (3.35) implies that log R + f is a constant.

Proof of Lemma. Because the gradient Ricci soliton equation implies that M vanishes, if
we consider the divergence of M when R > 0, we have

∇j Mji = ∇j
(
∇j∇i f − 1

2
gij∆ f

)
=

1
2
(∇i∆ f + R∇i f ) =

1
2
(R∇i f +∇iR) ,

where we have used the definitions of f (3.19) and M (3.36) as well as our identity (3.21).
If we now assume that the divergence of M is zero, then

R∇i f +∇iR = 0 ⇐⇒ ∇ (log R + f ) = 0,

so log R + f is constant in space.

From this Lemma, we can conclude that on gradient Ricci solitons (where the curva-
ture is constant by Proposition 3.9.1), R∇(log R + f ) vanishes, which is the numerator
of the first integral of (3.44). The second integrand is simply |M|2, which vanishes on
gradient Ricci solitons by definition of M (3.36).

The equation for the change in entropy given by Proposition 3.10.2 is interesting for
several reasons. Continuing or metaphor of (normalised) Ricci flow being a heat-like
equation, constant entropy would correspond to thermal equilibrium, and so gradient
Ricci solitons can be thought of as equilibria. This proposition also allows us to conclude
the proof of Proposition 3.10.1 as follows.

Proof of Proposition 3.10.1. That the entropy is decreasing is clear from Proposition 3.10.2,
unless it is constant—whence it is a gradient Ricci soliton and thus of constant curvature,
and remains so for all time. If it becomes constant at some time t0 ∈ [0, ∞), then the M
tensor is zero at t0, and so g(t0) is a gradient Ricci soliton. By Proposition 3.9.1, at this
time the curvature is constant (R(·, t0) = r) and so g(t) = g(t0) for all times t > t0. The
key point here is that as soon as the solution becomes a gradient Ricci soliton (and thus
of constant curvature), it remains so for all time.
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The previous results only hold for the initially positive Ricci scalar, since the entropy
is not defined for the case where R(·, 0) changes sign. To resolve this, consider the follow-
ing. For r > 0 and an initial condition38 s0 := s(0) < Rmin,0 we recall that the ordinary
differential equation39

∂ts = s(s− r) has the solution s(t) =
r

1−
(

1− r
s0

)
ert

. (3.45)

We also have the following evolution equation:

∂t
(

R− s
)
= ∆(R− s) + (R− r + s)(R− s).

Since initially Rmin,0 > s0, the maximum principle applied to the above gives R > s for
as long as the solution exists. This motivates the following definition.

Definition 3.10.2 (Modified entropy). For R and s described as above on a closed Rieman-
nian 2-manifold (Σ, g), we define the modified entropy, or modified surface entropy, N̂
to be

N̂(g, s) :=
∫

Σ
(R− s) log(R− s). (3.46)

Unfortunately, unlike in the R(·, 0) > 0 case, the modified entropy is not decreasing
in general. Instead, we will show that it is bounded from above, as stated in the following
result.

Proposition 3.10.3. For a solution (Σ, g(t), g0) to the normalised Ricci flow with average Ricci
scalar r > 0, there exists a constant C ∈ R depending only on g0 such that the modified entropy
N̂ satisfies

N̂(g, s) ≤ C,

for s(t) the solution (3.45).

Proof. This will be proved in several steps. First, we have the following Lemma, which
gives a form of the derivative of the modified entropy.

Lemma 3.10.3. Under the assumptions of Proposition 3.10.3, the modified entropy N̂ satisfies
the following evolution equation:

dN̂
dt

= −
∫

Σ

|∇R + (R− s)∇ f |2
R− s

− 2
∫

Σ
|M|2 − s

∫
Σ

(
|∇ f |2 + s− r− (R− s) log(R− s)

)
,

(3.47)

where f is the potential function and the M tensor is defined by (3.36).

Proof of Lemma. We will prove this in a similar fashion to our proof of Proposition 3.10.2.
Writing Υ := R− s and using the evolution equations for R (3.18), dA (3.10) and s (3.45),
the quantity ΥdA has the following evolution equation:

∂t
(
ΥdA

)
= (∆Υ + (R− r + s)Υ)dA + Υ(r− R)dA = (∆Υ + sΥ)dA.

38For clarity: this initial condition is required for our desire for the quantity R− s to be positive, so that it
can take the role of R in our previous definitions, where R(·, 0) > 0.

39As is standard in the literature, we have used s instead of α. This is to remind us that s is to be used only
under our current assumptions, whereas α is for any application of the maximum principle.
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This allows us to write

dN̂
dt

=
∫

Σ

(
∂t log Υ

)
ΥdA +

∫
Σ

log Υ
(
∂t(ΥdA)

)
=
∫

Σ
(∆Υ + (R− r + s)Υ) +

∫
Σ

log Υ(∆Υ + sΥ)

=
∫

Σ
(R− r + s + s log Υ)Υ−

∫
Σ
(∇ log Υ + 1)∇Υ

=
∫

Σ
(R− r + s + s log Υ)Υ−

∫
Σ

|∇Υ|2
Υ

=
∫

Σ
(R− r + s + s log(R− s))(R− s)−

∫
Σ

|∇R|2
R− s

,

where we integrated by parts twice and used that Σ is closed to ignore boundary terms.
We can also expand the first two terms of our desired form (3.47) as

−
∫

Σ

|∇R + (R− s)∇ f |2
R− s

= −
∫

Σ

(
|∇R|2
R− s

− 2R(R− r) + (R− s)|∇ f |2
)

,

and

−2
∫

Σ
|M|2 =

∫
Σ

(
R|∇ f |2 − R(R− r)

)
.

Combining these three equations gives the desired result.

The only term in our evolution equation for N̂ that is positive (and hence likely to
cause problems when we attempt to bound N̂) is the one containing−s|∇ f |2, since s < 0.
To control this term, we have the following Lemma.

Lemma 3.10.4. Under the assumptions of Proposition 3.10.3 (where we assume the solution g(t)
to exist for times 0 ≤ t < T for some T > 0), there exists a constant C′ depending only on g0
such that ∫ T

0
e−rt

∫
Σ
|∇ f |2dA dt ≤ C′,

for f the potential function.

Proof of Lemma. Using the evolution equations of f (3.23) and dA (3.10), we have

d
dt

(
e−rt

∫
Σ

f dA
)
= −re−rt

∫
Σ

f dA + e−rt
∫

Σ

((
∂t f
)
dA + f ∂t(dA)

)
= −re−rt

∫
Σ

f + e−rt
∫

Σ
(∆ f + r f + f (r− R))

= e−rt
∫

Σ
(∆ f − f ∆ f )

= e−rt
∫

Σ
|∇ f |2,

where in the last line we have integrated by parts. We then integrate this along [0, T] and
use the bound on f from (3.24) to find∫ T

0
e−rt

∫
Σ
|∇ f |2dA dt =

(
e−rt

∫
Σ

f dA
)∣∣∣∣t=T

t=0
≤ C′,

as desired.
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Now, from the explicit form of s(t) (3.45), there exists a C′′ > 0 depending only on g0
such that −C′′e−rt ≤ s ≤ 0. From this fact and the evolution equation for N̂ (3.47), we
have

dN̂
dt
≤ −s

∫
Σ

(
|∇ f |2 + s− r− (R− s) log(R− s)

)
≤ C′′e−rt

∫
Σ
|∇ f |2 + C′′e−rt ∣∣N̂∣∣ .

Integrating this inequality, we obtain

N̂ ≤
∫ T

0

(
C′′e−rt

∫
Σ
|∇ f |2 + C′′e−rt ∣∣N̂∣∣)dt ≤ C,

where we have used the Lemma in the final inequality and have taken advantage of the
positivity of |N̂|.

The entropy estimates of this past section encode the tendency of the normalised Ricci
flow to make a metric become closer to a metric whose entropy is unchanging. They will
also allow us to obtain uniform upper bounds for the Ricci scalar, as we shall soon see.
Before turning once more to evolution equations and maximum principles, we will state
bounds for the Ricci scalar, the diameter and the injectivity radius.

3.11 Positive Average Ricci Scalar IV: Key Bounds

This section will present upper bounds for the Ricci scalar and the diameter, both in the
case of a positive initial Ricci scalar and in general. The section will then close with a
lower bound for the injectivity radius, which we will not prove. We begin with a result
that does not depend on the initial sign of R.

Lemma 3.11.1. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average Ricci
scalar r ≥ 0 and Ricci scalar |R(·, 0)| ≤ k for some constant k > 0. Then there exists a constant
C < ∞ such that the estimate

sup
x∈Σ
|∇R|(x, t) ≤ C

k√
t
,

holds for all times 0 < t ≤ 1/(kC).

Proof. For convenience, define

ζ := t|∇R|2 + R2.

We will want to use the maximum principle on its evolution equation. Using the evolu-
tion equation of R (3.18), we find

∂t
(

R2) = 2R∂tR = 2R (∆R + R(R− r)) = ∆
(

R2)− 2|∇R|2 + 2R2(R− r). (3.48)

Using the evolution equation of |∇R|2 (3.30),

∂t
(
t|∇R|2

)
= ∆

(
t|∇R|2

)
− 2t|∇∇R|2 + (t(4R− 3r) + 1) |∇R|2. (3.49)

Adding (3.48) and (3.49), we have

∂tζ ≤ ∆ζ + (4tR− 1)|∇R|2 + 2R3. (3.50)
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To be able to properly apply the maximum principle on this evolution equation, we will
need to estimate |R| on some time interval.

At a (spatial) minimum of R, we have

∂tR ≥ R(R− r) =⇒ Rmin(t) ≥ min {0, Rmin,0} ≥ −k.

On the other hand, at a maximum,

∂tR ≤ R2,

since Rmax ≥ 0. By inspection for the minimum case and by the maximum principle
applied to the maximum case, we thus have

|R| ≤ k
1− kt

for t ∈
[

0,
1
k

)
. (3.51)

By noting that the maximum of the right-hand side of (3.51) on the interval 0 ≤ t ≤ 1
2k

occurs at 1
2k (since the function is increasing), we have |R| ≤ 2k on 0 ≤ t ≤ 1

2k . This
implies 4t|R| ≤ 1 while 0 ≤ t ≤ 1

8k , so that our gradient term in (3.50) can be ignored and
we can write

∂tζ ≤ ∆ζ + (4tR− 1)|∇R|2 + 2R3 ≤ ∆ζ + 16k3 for t ∈
[

0,
1
8k

]
.

Finally, noting that at t = 0 we have ζ0 = R2 ≤ k2, and using the maximum principle yet
again, we have

ζ ≤ k2 + 16k3t ≤ k2 +
16k3

8k
= 3k2 for t ∈

[
0,

1
8k

]
.

Rearranging this gives the desired inequality.

Using this, we can find an upper bound for the Ricci scalar. In the case of R(·, 0) ≥ 0,
recall that (by the strong maximum principle) up to restarting the flow after some small
time ε > 0, we may assume R(·, 0) > 0. Then for all time, R is bounded from below by 0,
and by Proposition 3.6 we have

R ≤ Cert,

for a constant C > 0 depending only on the initial metric g0. Before stating our upper
bounds on R and on the diameter of our manifold, we state the following result (some-
times called Klingenberg’s Lemma) without proof, which will be used in coming proofs.

Lemma 3.11.2 (Klingenberg). Consider a Riemannian manifold (Σ, g) such that the Ricci cur-
vature is bounded40 by some constant c > 0 in the following way:

Ric(V, V) ≤ cg(V, V) for all vectors V.

Then, the injectivity radius defined in Definition 3.3.1 satisfies the following bound:

inj(Σ, g) ≥ min

{√
2π√
c

, half the length of the shortest closed geodesic on Σ

}
.

40The original formulation applies to n-manifolds and requires that only the sectional curvature be
bounded.
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Idea of the proof. (See Theorem III.2.4 of [Cha06] for details.)
Consider a unit speed geodesic γ(t) whose endpoints p and q are conjugate to one

another (that is, there exists a non-trivial Jacobi field41 along γ that vanishes at p and q).
Then Theorem II.6.3 of [Cha06] states that the earliest t where this can occur is inversely
proportional to the square-root of the bound (here called c) of the (sectional) curvature.

Denote C(p) to be the set of all points such that there are multiple geodesics con-
necting them to p (this is called the cut locus of p, though this definition is not quite
complete—see [Cha06]). Now, if q is the closest point in C(p) to p, then if q is not conju-
gate to p along a geodesic connecting p and q then it is the mid-point of a closed geodesic
beginning and ending at p (this can be proved by contradiction). Combining these facts
proves the desired result.

We can now state our bounds for the Ricci scalar and the diameter.

Lemma 3.11.3. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with initial Ricci
scalar R(·, 0) > 0 (and thus with average Ricci scalar r > 0). Then,

1. There exists a constant C > 1 depending only on g0 such that

sup
(x,t)∈Σ×[0,∞)

R(x, t) ≤ C;

2. There exists a constant C′ > 0 depending only on g0 such that

diam(Σ, g(t)) ≤ C′.

Proof. 1. We make the following definitions:

k1 := max
(x,t)∈Σ×[0,1]

R(x, t) and k(T) := max
(x,t)∈Σ×[0,T]

R(x, t) ≥ k1,

where T > 1. Both of these are well-defined since we have time-dependent bounds
for R. Our goal is to show that k(T) is bounded independently of T, from which we
will conclude our result. We will often write k = k(T) from here onward.

First, assume k(T) > max{k1, 1
4}, so T > 1. Now, let (x1, t1) ∈ Σ× [0, ∞) be a point

such that R(x1, t1) = k (that is, it maximises R) and let t0 := t1 − 1
4k > 0.

From the proof of Lemma 3.11.1, when |R| ≤ k for the interval t0 ≤ t ≤ t1,

|∇R(x, t)| ≤ 2k√
t− t0

for all (x, t) ∈ Σ× (t0, t1].

In particular, at time t = t1, we have

|∇R(x, t1)| ≤ 4k
3
2 for all x ∈ Σ.

Write B for the ball centred at x1 with radius 1/
√

64k, computed using the metric
g(t1),42 and consider some y ∈ B. Connect y to x1 using a geodesic γ(t′) with unit

41Loosely, a Jacobi field describes the behaviour of geodesics in a neighbourhood of a given geodesic. See
the definition on page 78 of [Cha06] directly preceding Theorem II.5.1, or Chapter VIII.1 of [KN69].

42Note that by our notation of (3.14),

B := Bg(t1), 1√
64k
(x1),

which is unwieldy.
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speed. Then, by the Fundamental Theorem of Calculus,

R(x1, t1)− R(y, t1) =
∫

γ
∂t′
(

R(γ(t′), t1)
)

dt′ ≤
∫

γ
|∇R(γ(t′), t1)|dt′ ≤ 4k

3
2

8k
1
2
=

k
2

,

so R(y, t1) ≥ k
2 for all y ∈ B, since R(x1, t1) = k by definition.

By the strong maximum principle, R(·, t1) > 0, so the entropy N is well-defined at
t1, and by Proposition 3.10.2 we can bound it from above by some C > 0. Using
that the minimum of R log R is −e−1, we have

C ≥ N(g(t1)) :=
∫

Σ
R log R ≥

∫
B

R log R− 1
e

vol(Σ, g(t1)).

Inspecting the first term, we have∫
B

R log R ≥ k
2

log
(

k
2

)
vol(B, g(t1)),

so that together these inequalities imply

C ≥ k
2

log
(

k
2

)
vol(B, g(t1))−

1
e

vol(Σ, g(t1)) ≥ c log
(

k
2

)
,

where the constant c > 0 exists by volume comparison results.43 Thus, k has a
uniform upper bound and therefore R is bounded as desired.

2. Consider points (pi)
m
i=1 on Σ such that

dg(t)(pi, pj) ≥
2π√

Rmax(t)
for all 1 ≤ i < j ≤ m.

By Klingenberg’s Lemma 3.11.2,

inj(Σ, g(t)) ≥
√

2π√
Rmax(t)

,

so that the balls centred at pi with radius
√

2π/
√

Rmax(t), computed using the met-
ric g(t1), are pairwise disjoint—call them Bi. The volume comparison result men-
tioned in the proof of the previous point gives the existence of ε > 0 such that

vol(Σ, g(t)) ≥
m

∑
i=1

vol(Bi, g(t)) ≥ m
ε

Rmax(t)
,

which, when combined with the upper bound C > 0 for R obtained in the first
point of this result, gives

m ≤ Rmax(t)
ε

vol(Σ, g(t)) ≤ Cvol(Σ, g(t)),

so the number of points is bounded since we have a compact manifold, and thus
the diameter is finite.

43See Chapter III.4 of [Cha06] for details.
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Note that the upper bound for the Ricci scalar obtained in this result, combined with
its time-dependent upper bound in (3.28) establish that the Ricci scalar will not blow-up
during the normalised Ricci flow (at least when R(·, 0) > 0, as this is what Lemma 3.11.3
grants us). As long as we can prove that the case R(·, 0) of mixed sign turns into the R > 0
case, we therefore have our long-time existence result Proposition 3.4.1, which depended
on R being uniformly bounded. Now, before moving to the case of a general initial Ricci
scalar, we state the following result without a full proof.

Lemma 3.11.4. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average Ricci
scalar r > 0. Denote the maximum (over all space) Ricci scalar by Rmax(t). Then for all time
0 ≤ t < ∞, the injectivity radius satisfies

inj (Σ, g(t)) ≥ min

{
inj (Σ, g0) , min

t′∈[0,t]

√
2π√

Rmax(t′)

}
.

Idea of the proof. (See Proposition 5.65 of [CK04] for details.)
Klingenberg’s Lemma 3.11.2 states that a lower bound for the injectivity radius is

the smaller of half the length of the shortest closed geodesic or
√

2π/
√

Rmax(t). But as
long as the length of the shortest closed geodesic is less than 2

√
2π/

√
Rmax(t), it will

be increasing in time (and thus the claim follows). This can be proved by noting the
following facts:

1. A closed geodesic of length less than 2
√

2π/
√

Rmax(t) is stable44 when it is the
shortest closed geodesic on the manifold (see Lemma 5.69 of [CK04]);

2. The integral of the Ricci scalar R over stable closed geodesics is non-positive (see
Lemma 5.70 of [CK04]);

3. For a one-parameter family of closed geodesics γλ, the derivative with respect to
λ of the length (at λ = λ̊) is proportional to the integral along γλ̊ of r − R (see
Lemma 5.71 of [CK04]), which gives a lower bound of this derivative (at λ = λ̊) in
terms of the length of γλ̊ (see Corollary 5.72 of [CK04]);

4. For any shortest closed geodesic at a time t, one can find a shorter closed geodesic
at any time t′ < t, and so the length is increasing (see Lemma 5.73 of [CK04]).

Now, we turn to the case where the initial Ricci scalar is of mixed sign. Here, we
have similar bounds, proved with the help of our modified entropy estimates and the
injectivity bound above.

Lemma 3.11.5. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average Ricci
scalar r > 0. Then,

1. There exists a constant C > 0 depending only on g0 such that

sup
(x,t)∈Σ×[0,∞)

R(x, t) ≤ C;

2. There exists a constant C′ > 0 depending only on g0 such that

diam(Σ, g(t)) ≤ C′.
44A closed geodesic is stable if nearby closed geodesics have greater lengths. See Definition 5.68 of [CK04]

for a precise definition.
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Idea of the proof. (See Lemma 5.74 and Corollary 5.75 of [CK04] for details.)
Similarly to Lemma 3.11.3, this is proved by defining k(T) and showing that it is

bounded independently of T. Using the modified entropy estimate found in Proposi-
tion 3.10.3, the injectivity radius bound from Lemma 3.11.4, and volume comparisons re-
sults from Chapter III.4 of [Cha06] provide the upper bound for R. The diameter bound
arises from a near-identical argument to the one in Lemma 3.11.3.

This now grants us our desired bound on the Ricci scalar R, which we know will not
blow up under any circumstance during the normalised Ricci flow. Thus, our long-time
existence result Proposition 3.4.1 holds.

With upper bounds for the Ricci scalar and diameter and a lower bound for the in-
jectivity radius in hand, we turn once more to evolution equations and the maximum
principle. The following section introduces what are known as Harnack inequalities,
which will be useful in finding uniform (positive) lower bound for our Ricci scalar, after
which we will be able to conclude our desired Uniformisation Theorem.

3.12 Positive Average Ricci Scalar V: Harnack Inequalities

The goal of this section will be to bound the Ricci scalar at some point (x2, t2) from below
in terms of the Ricci scalar at an earlier45 point (x1, t1). Inequalities of this form are called
Harnack inequalities, and are either in differential or classical (integrated) form. In the
same spirit as our entropies, we will define new quantities and modified versions of
these quantities, and their evolution equations will allow us to find Harnack inequalities
described above.

Definition 3.12.1 (L and Q scalars). 1. For a positive Ricci scalar R > 0, we define L
and Q to be the following scalar quantities:

L := log R and Q := ∆L + R− r; (3.52)

2. Let L̂ and Q̂ be the following scalar quantities

L̂ := log (R− s) and Q̂ := ∆L̂ + R− r, (3.53)

where s(t) is the solution

s(t) =
r

1−
(

1− r
s0

)
ert

to

{
∂ts = s(s− r),
s0 < Rmin,0 < 0.

(3.54)

To motivate the definition of Q (and its modified version), we note that on gradient
Ricci solitons Q = 0, because of the following argument. Recall from the discussion
following Lemma 3.10.2 (within the proof of Proposition 3.10.2) that on gradient Ricci
solitons, the quantity ∇R + R∇ f = 0 is constant. Thus the divergence of its quotient by
R must vanish:

0 = ∇
(
∇R + R∇ f

R

)
= ∇ (∇ log R +∇ f ) = ∆L + R− r = Q.

As previously mentioned, quantities that are constant on solitons are useful in deriving
bounds for other quantities, often via the maximum principle applied to their evolution

45That is, having t1 < t2.
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equations. In the case of Q and Q̂, this procedure will directly give us what are known as
Harnack inequalities for the Ricci scalar R. Note that the above motivation works only for
a positive Ricci scalar; the modified versions of L and Q are motivated by the definitions
of our modified entropy.

The scalars satisfy the following evolution equations.

Proposition 3.12.1. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average
Ricci scalar r > 0. Now,

1. If R(·, 0) > 0, then

∂tL = ∆L + |∇L|2 + R− r, (3.55)

∂tQ = ∆Q + 2 〈∇Q,∇L〉+ 2
∣∣∣∣∇∇L +

1
2
(R− r)g

∣∣∣∣2 + rQ, (3.56)

where L and Q are defined in Definition 3.12.1;

2. If R(·, 0) is of mixed sign, then

∂t L̂ = ∆L̂ + |∇L̂|2 + R− r + s, (3.57)

∂tQ̂ = ∆Q̂ + 2
〈
∇Q̂,∇L̂

〉
+ 2

∣∣∣∣∇∇L̂ +
1
2
(R− r)g

∣∣∣∣2 + s
∣∣∇L̂

∣∣2 + (r− s)Q̂ + s(R− r),

(3.58)

where L̂ and Q̂ are defined in Definition 3.12.1.

Proof. 1. Using the evolution equation of R (3.18), we have

∂t log R =
1
R
(∆R + R(R− r))

=

(
∆R
R
− |∇R|2

R2

)
+
|∇R|2

R2 + R− r

= ∆ log R + |∇ log R|2 + R− r.

Using the above and the evolution equation of ∆ (3.8) (along with ∂tR = R∂tL, by
definition of L) we have

∂tQ =
(
∂t∆
)

L + ∆
(
∂tL
)
+ R

(
∂tL
)

= (R− r)∆L + ∆
(
∆L + |∇L|2 + R− r

)
+ R

(
∆L + |∇L|2 + R− r

)
.

Now using the definition of Q (3.52), the identity (3.22) on the ∆|∇L|2 term and the
identity (3.21) on the resulting ∆∇L term, we have

∂tQ = ∆Q + 2 〈∆∇L,∇L〉+ 2|∇∇L|2 + R
(
2∆L + |∇L|2 + R− r

)
− r∆L

= ∆Q + 2
〈
∇∆L +

1
2

R∇L,∇L
〉
+ 2|∇∇L|2 + R

(
2∆L + |∇L|2 + R− r

)
− r∆L.

Now we substitute ∆L = Q− (R− r) to obtain

∂tQ = ∆Q + 2 〈∇Q−∇R,∇L〉+ 2|∇∇L|2 + R
(
2∆L + 2|∇L|2 + R− r

)
− r∆L

= ∆Q + 2 〈∇Q,∇L〉+ 2|∇∇L|2 + R(R− r) + 2R∆L− r∆L + 2R|∇L|2 − 2 〈∇R,∇L〉 .
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The final two terms cancel because of

〈∇R,∇L〉 = 〈R∇L,∇L〉 = R|∇L|2,

and the third and fourth terms of the desired evolution equation (3.56) appear as

2
∣∣∣∣∇∇L +

1
2
(R− r)g

∣∣∣∣2 + rQ = 2|∇∇L|2 + (R− r)2 + 2(R− r)∆L + r(∆L + R− r)

= 2|∇∇L|2 + R(R− r) + 2R∆L− r∆L,

allowing us to conclude.

2. Similar computations give the results for the modified evolution equations. See
Equation (5.41) and Lemma 5.59 of [CK04] for details.

To make use of these evolution equations we will call upon the maximum principle.
From (3.56) we have

∂tQ ≥ ∆Q + 2 〈∇Q,∇L〉+ Q2 + rQ, (3.59)

since for any symmetric 2-tensor τ we have

2|τ|2 = 2gikgjlτijτkl ≥
(

gijτij

)2
= (trτ)2,

where Q is the trace of ∇∇L + 1
2 (R− r)g (which plays the role of τ). Thus, to apply the

maximum principle to Q, the corresponding ordinary differential equation to inspect is

∂tα = α2 + rα with α0 := α(0) < −r < 0.

This has the solution

α(t) = − rα0ert

α0ert − α0 − r
= − Crert

Cert − 1
where C :=

α0

α0 + r
> 1.

This grants us our first Harnack inequalities.

Proposition 3.12.2. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average
Ricci scalar r > 0 and bounded Ricci scalar R. Then,

1. Differential Harnack inequality:

∂t log R− |∇ log R|2 ≥ − Crert

Cert − 1
,

where C > 1 is a constant only depending on g0;

2. Classical Harnack inequality: there exist constants C′1 > 1 and C′ > 0 only depending
on g0 such that the estimates

R(x2, t2)

R(x1, t1)
≥ e−

A
4

C′1ert1 − 1
C′1ert2 − 1

≥ e−
A
4 −C′(t2−t1), (3.60)

hold for all points x1, x2 ∈ Σ and times 0 ≤ t1 < t2, where A = A(x1, x2, t1, t2) is defined
by

A := inf
γ

∫ t2

t1

∣∣∣∣dγ

dt

∣∣∣∣2 dt, (3.61)

where the infimum is taken over all curves γ : [t1, t2] → Σ such that γ(t1) = x1 and
γ(t2) = x2.
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Proof. 1. By inspecting the definition of Q (3.52) and evolution equation for L (3.55)
we obtain

Q = ∂t log R− |∇ log R|2,

which, combined with our discussion of the maximum principle applied to the evo-
lution inequality of Q (3.59) gives the desired inequality;

2. For points (x1, t1), (x2, t2) ∈ Σ× [0, ∞) and a curve γ as described, the Fundamental
Theorem of Calculus gives

log
R(x2, t2)

R(x1, t1)
=
∫ t2

t1

d
dt
(

log R(γ(t), t)
)
dt

=
∫ t2

t1

(
∂t log R(γ(t), t) +

〈
∇ log R,

dγ

dt

〉)
dt

≥
∫ t2

t1

(
|∇ log R|2 − Crert

Cert − 1
− |∇ log R|

∣∣∣∣dγ

dt

∣∣∣∣)dt

≥
∫ t2

t1

(
− Crert

Cert − 1
− 1

4

∣∣∣∣dγ

dt

∣∣∣∣2
)

dt

= −1
4

∫ t2

t1

∣∣∣∣dγ

dt

∣∣∣∣2 dt− log(Cert2 − 1) + log(Cert1 − 1),

where the differential Harnack inequality is used the first inequality. Exponentiat-
ing both sides and inserting the definition of A (3.61) gives the result. The second
inequality of (3.60) is a simplification of the first.

We now want to provide analogous result in the case where the initial Ricci scalar
has arbitrary sign. Inspecting the evolution equation for Q̂ (3.58), we note that there is
a problematic negative term: s|∇L̂|2. This makes using the maximum principle trickier
than before, though by considering the quantity Q̂ + sL̂ we can circumvent this problem,
as done in the proof of the result below.

Proposition 3.12.3. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average
Ricci scalar r > 0. Then,

1. Modified differential Harnack inequality:

∂t log(R− s)− |∇ log(R− s)|2 − s ≥ −C,

where C > 0 is a constant only depending on g0;

2. Modified classical Harnack inequality: there exists a constant C′ > 0 only depending
on g0 such that the estimate

R(x2, t2)− s(t2)

R(x1, t1)− s(t1)
≥ e−

A
4 −C′(t2−t1), (3.62)

holds for all points x1, x2 ∈ Σ and times 0 ≤ t1 < t2, where A = A(x1, x2, t1, t2) is defined
as in (3.61).
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Proof. 1. By inspecting the evolution equation for Q (3.56) we obtain

Q̂ = ∂t log(R− s)− |∇ log(R− s)|2 − s.

Thus, if we can bound Q̂ by below by some constant −C < 0, then we are done.
As hinted in the discussion preceding the statement of the result, we consider the
quantity P̂ := Q̂ + sL̂. By the evolution equations of s (3.54) and L̂ (3.57), we have

∂t
(
sL̂
)
= ∆

(
sL̂
)
+ s

∣∣∇L̂
∣∣2 + s(R− r + s) + (s− r)

(
sL̂
)

.

Now, there exists some c > 0 such that L̂ ≥ −c(1 + t), and we can write

s
∣∣∇L̂

∣∣2 = 2
〈
∇
(
sL̂
)

,∇L̂
〉
− s

∣∣∇L̂
∣∣2 ,

which makes the gradient of sL̂ explicitly appear in contraction with a vector field.
This allows us to state

∂t
(
sL̂
)
≥ ∆

(
sL̂
)
+ 2

〈
∇
(
sL̂
)

,∇L̂
〉
− s

∣∣∇L̂
∣∣2 − c′,

for some constant c′ > 0. Using this and the evolution equation of Q̂ (3.58), we have

∂tP̂ = ∂tQ̂ + ∂t
(
sL̂
)

≥ ∆P̂ + 2
〈
∇P̂,∇L̂

〉
+ Q̂2 + (r− s)Q̂− c′′,

for some c′′ > 0. Now since sL̂ is bounded, there exists some C̃ > 0 such that

Q̂2 + (r− s)Q̂− c′′ ≥ 1
2
(
Q̂ + 2sL̂Q̂2 + s2 L̂2 − C̃2) = 1

2
(

P̂2 − C̃2) .

Finally, an application of the maximum principle on the evolution equation of P̂
gives some C > 0 such that

P̂ ≥ min
{

min
x∈Σ

P̂(x, 0),−C
}

,

which, recalling P̂ = Q̂ + sL̂ and that sL̂ is bounded give the desired bound on Q̂;

2. For points (x1, t1), (x2, t2) ∈ Σ× [0, ∞) and a curve γ as described, we have

log
R(x2, t2)− s(t2)

R(x1, t1)− s(t1)
=
∫ t2

t1

d
dt
(

log(R(γ(t), t)− s(t))
)
dt

≥
∫ t2

t1

(
−C + s(t)− 1

4

∣∣∣∣dγ

dt

∣∣∣∣2
)

dt,

where the same procedure has been followed as in the proof of the non-modified
case (Proposition 3.12.2). Integrating s using its definition (3.54), exponentiating
both sides and inserting the definition of A (3.61) gives the result.

We have now assembled the necessary bits and pieces to conclude our proof.
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3.13 Positive Average Ricci Scalar VI: Conclusion

This section will allow us to conclude the proof of the Uniformisation Theorem using the
tools devised throughout this chapter. The remaining piece was the case of the proof of
Theorem 3.4 in which the average Ricci scalar was positive (r > 0). We will first prove the
result for the case of a positive initial Ricci scalar R(·, 0) > 0. Afterwards, we will show
that in the case of an initial Ricci scalar of mixed sign, the Ricci scalar eventually becomes
positive, which allows us to conclude by restarting the flow at that time and using the
first case.

We first need to show that the Ricci scalar is uniformly bounded from below by a
positive constant.

Proposition 3.13.1. For a solution (Σ, g(t), g0) to the normalised Ricci flow with Ricci scalar
R(·, 0) > 0, there exists a constant C > 0 depending only on g0 such that

R(x, t) ≥ C > 0 for all (x, t) ∈ Σ× [0, ∞).

Proof. From the classical Harnack inequality (3.60), we have

R(x2, t2)

R(x1, t1)
≥ e−

A
4 −C′(t2−t1).

Note that if 0 ≤ t ≤ 1 (choosing t1 = 0 in the above, or considering Proposition 3.2.1),
then R ≥ c′e−r for some c′ > 0, so we have a bound in this case. Now, consider the case
t ≥ 1. Choose x1 ∈ Σ such that

r ≤ R(x1, t− 1) ≤ Rmax(t− 1).

Then,

R(x, t) ≥ e−
A
4 −CR(x1, t− 1) ≥ re−C e−

A
4 ,

so that it suffices to find a uniform upper bound for A(x1, t − 1, x, t). From the upper
bound on R from Lemma 3.11.3 and the bounds on g from Lemma 3.8.1, we have

e−Cg(t− 1) ≤ g(t′) ≤ erg(t− 1) for all t′ ∈ [t− 1, t].

Consider a geodesic γ of constant speed joining x to x1 parametrised by arc-length:∣∣γ̇(t′)∣∣g(t) = dg(t)(x, x1).

Now, we bound the desired A from above as follows:

A ≤
∫ t

t−1

∣∣γ′(t′)∣∣2g(t′) dt′ ≤ er+C
∫ t

t−1

∣∣γ′(t′)∣∣2g(t) dt′ ≤ er+C
(

dg(t)(x, x1)
)2

,

which is finite because the diameter is bounded.

We will use this lower bound for the Ricci scalar to apply the maximum principle
once more, this time on the evolution equation of our M tensor (which we have yet to
calculate). This evolution equation will allow us to determine a decaying bound for |M|.
In this direction, we turn to what we previously called the gradient Ricci-DeTurck flow
and our discussion of gradient Ricci solitons.
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By Proposition 3.9.1, we know that gradient Ricci solitons have constant curvature,
and that the vanishing of the M tensor implies a solution is a gradient Ricci soliton. Thus,
if we can show that M (and its derivatives, to satisfy our demand that convergence is in
any Ck norm) vanishes as t → ∞, then we can conclude that the limiting metric is of
constant curvature, as desired. Recall the gradient Ricci-DeTurck flow:

∂tgij = 2Mij = 2∇i∇j f − (R− r)gij = (r− R)gij +
(
L∇ f g

)
ij . (3.63)

It has solutions that differ from our usual the normalised Ricci flow (3.3) by pulling-back
by a one-parameter family of diffeomorphisms ψt generated by the one-parameter family
of vector fields ∇ f (t). To see this, consider a solution g(t) to the gradient Ricci-DeTurck
flow above and define

ḡ(t) := ψ∗t g(t),

for ψt a one-parameter family of diffeomorphisms.46 Now,

∂t ḡ(t) = ∂λ (ψ
∗
t+λg(t + λ))|λ=0

= ψ∗t (∂tg(t)) + ∂λ (ψ
∗
t+λg(t))|λ=0

= ψ∗t

(
(r− R)g(t) + L∇ f (t)g(t)

)
+ ∂λ

((
ψ−1

t ◦ ψt+λ

)∗
ψ∗t g(t)

)∣∣∣
λ=0

= (r− R)ḡ(t) + ψ∗t

(
L∇ f (t)g(t)

)
−L(ψ−1

t )∗∇ f (t)ψ
∗
t g(t)

= (r− R)ḡ(t).

Now, since |M|2 is invariant under diffeomorphism, if a bound for it can be found
supposing the gradient Ricci-DeTurck flow, then the bound will also hold under the usual
normalised Ricci flow. First, however, we need to calculate the evolution equation for M.

Proposition 3.13.2. For a metric undergoing the normalised Ricci flow, the tensor M defined
as (3.36) satisfies

∂t M = ∆M + (r− 2R)M; (3.64)

∂t|M|2 = ∆M− 2|∇M|2 − 2R|M|2. (3.65)

Proof. First, we compute the following combination of derivatives of the potential:

∇i∇j∆ f = ∇i∇j∇k∇k f

= ∇i∇k∇j∇k f −∇i

(
Rjl∇l f

)
= ∇k∇i∇j∇k f − Rl

ikj∇l∇k f − Ril∇j∇l f − Rjl∇i∇l f −
(
∇iRjl

)
∇l f

= ∆∇i∇j f −∇k
(

Rl
ikj∇l f

)
− Rl

ikj∇l∇k f − Ril∇j∇l f − Rjl∇i∇l f −
(
∇iRjl

)
∇l f

= ∆∇i∇j f − 1
2

(
∇iR∇j f +∇jR∇i f − gij∇kR∇k f

)
− 2R

(
∇i∇j f − 1

2
gij∆ f

)
,

where we have repeatedly used the Riemann tensor identities (2.7) and (3.20), their traces,
and our favourite identity (3.21).

46Recall that we argued this would be true in our discussion of the short-time existence of Ricci flow in
Section 3.5.
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Next, using the defining equations of M (3.36) and f (3.19) as well as the evolution
equations of f (3.23), Γk

ij (3.7) and R (3.18), we have

∂t Mij = ∂t

(
∇i∇j f − 1

2
(R− r)gij

)
= ∇i∇j

(
∂t f
)
−
(

∂tΓk
ij

)
∇k f − 1

2
gij
(
∂tR
)
− 1

2
(R− r)

(
∂tgij

)
= ∇i∇j(∆ f + r f ) +

1
2

(
δk

j∇iR + δk
i∇jR− gij∇kR

)
∇k f − 1

2
gij (∆R + R(R− r))

+
1
2
(R− r)2gij

= ∇i∇j∆ f +
1
2

(
∇iR∇j f +∇jR∇i f − gij∇kR∇k f

)
− 1

2
gij∆R + rMij.

Now, we use our computation of ∇i∇j∆ f to cancel the term in parentheses to find

∂t Mij = ∆∇i∇j f − 2R
(
∇i∇j f − 1

2
gij∆ f

)
− 1

2
gij∆R + rMij.

Using the definitions of M (3.36) and f (3.19) once more, we obtain

∂t Mij = ∆∇i∇j f − 1
2

gij∆R + (r− 2R)Mij

= ∆
(
∇i∇j f − 1

2
(R− r)gij

)
+ (r− 2R)Mij

= ∆M + (r− 2R)M,

as desired. Finally, using the evolution equations for gij (3.6) and M (3.64), we have

∂t|M|2 = ∂t

(
gikgjl Mij Mkl

)
= 2 〈M, ∆M + (r− 2R)M〉+ 2(R− r)|M|2

= ∆|M|2 − 2|∇M|2 − 2R|M|2,

where we have used the identity (3.22) on M.

With the evolution equation for M in hand, we can apply the maximum principle to
to bound it.

Lemma 3.13.1. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average Ricci
scalar r > 0 and the M tensor defined as (3.36). Then, there exists a constant C > 0 such that

|M| ≤ Ce−rt,

and so the M tensor vanishes exponentially quickly as t→ ∞.

Proof. Proposition 3.13.1 grants us a lower bound for R, we can use the maximum prin-
ciple on the evolution equation for |M|2 (3.65) to find the desired bound.

This holds for both the normalised Ricci flow (3.3) and the gradient Ricci-DeTurck
flow (3.63) by diffeomorphism invariance. The following result gives bounds for the
derivatives of M, for a given solution of the gradient Ricci-DeTurck flow, which we will
then convert back to being bounds for derivatives of R in the usual the normalised Ricci
flow context.
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Lemma 3.13.2. Consider a solution (Σ, g(t), g0) to the gradient Ricci-DeTurck flow (3.63) with
average Ricci scalar r > 0 and the M tensor defined as (3.36). Then, for every integer k > 0 there
exist constants Ck, C′k < ∞ depending only on g0 such that∣∣∣∇k M

∣∣∣2 ≤ Cke−C′kt.

Proof. A similar procedure to prove this as the one used in the case of r ≤ 0 (see, for
example, Propositions 3.7.2 and 3.7.4). See Corollary 5.63 of [CK04] for details.

With vanishing M and derivatives of M, it follows that derivatives of R are similarly
bounded with constants ck and c′k (for integers k > 0). Now, by diffeomorphism invari-
ance, these bounds for |∇kR| must hold for the usual normalised Ricci flow, allowing us
to conclude the R(·, 0) > 0 case of Theorem 3.4.

To finish our proof of Theorem 3.4, we need to resolve the case where R(·, 0) changes
sign. As previously mentioned, it suffices to show that in finite time, the Ricci scalar will
become positive, so that the R(·, 0) > 0 case allows us to conclude by restarting the flow
once R is positive.

Proposition 3.13.3. Consider a solution (Σ, g(t), g0) to the normalised Ricci flow with average
Ricci scalar r > 0. Then there exists T < ∞ such that

inf
(x,t)∈Σ×[T,∞)

R(x, t) > 0.

Proof. We first want find a lower bound for R− s, where s(t) is defined by (3.54). Simi-
larly to our proof of Proposition 3.13.1, consider t ≥ 1 and choose x1 ∈ Σ such that

0 < r ≤ R(x1, t− 1) ≤ Rmax(t− 1).

Now, the modified classical Harnack inequality (3.62) gives

R(x, t)− s(t) ≥ e−C (R(x1, t− 1)− s(t− 1)) e−
A
4 ≥ e−Cre−

A
4 , (3.66)

so we will once more attempt to find an upper bound for A = A(x1, t− 1, x, t). Using our
bounds for the metric from Lemma 3.8.1, for any t′ ≥ t− 1 we have

cg(x, t− 1) ≤ g(x, t′) ≤ Cg(x, t− 1) for some constants c < C < ∞.

From this we have in a similar manner to Proposition 3.13.1 that A is bounded from above
by the diameter, which is in turn bounded by Lemma 3.11.5. Now that R− s is bounded
from below, we take an infimum over x ∈ Σ on the bound (3.66), so there exists a constant
ε > 0 such that

Rmin(t) ≥ ε− s(t).

Now, s→ 0 as t→ ∞, so we indeed have that the Ricci scalar becomes positive.

Since the curvature now becomes positive, we can restart the normalised Ricci flow
at this (finite) time, and use the conclusion from the initially positive Ricci scalar case to
resolve our result Theorem 3.4 for the r > 0 case. Thus we have completed our proof of
the Uniformisation Theorem.
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Chapter 4

General Relativity

With a thorough understanding of Ricci flow in hand, we turn to the second topic of this
text: General Relativity. We will see that the (2+ 1)-dimensional case is best tackled with
the Uniformisation Theorem in hand. General Relativity gives a description of classical
gravity in terms of the curvature of a spacetime manifold in an elegant geometric way
that its predecessor, first studied by Newton, did not address.

Newtonian gravity faced many challenges. A glaring one was revealed by Einstein’s
theory of Special Relativity, which postulated that no information could move faster than
the speed of light.1 Classical Newtonian gravity broke this rule by asserting that changes
in position or in mass of elements in a gravitational system were instantaneously felt by
all elements of the system. This meant that if the Earth doubled in mass all of a sudden,
the Sun would immediately sense the weight gain—the information travelling from the
Earth to the Sun faster than the speed of light! To solve this problem (and others), Einstein
(and others) set out to find improved laws of gravity.

Overview. Section 4.1 introduces the Einstein equations and the Einstein-Hilbert action.
Section 4.2 discusses causal assumptions on spacetime and Cauchy surfaces. Section 4.3
explores embedded Riemannian submanifolds and their extrinsic curvature. Section 4.4
defines the Teichmüller space and relates it to the Uniformisation Theorem and the space
of solutions to the Einstein equations. Section 4.5 applies the ADM (or Hamiltonian)
formalism to the Einstein equations, splitting spacetime into space and time. The two
following sections explicitly demonstrate the reduction of the Einstein equations to dy-
namics on the cotangent bundle of the Teichmüller space of a Cauchy surface, first for
the case of a greater-than-unit genus (Section 4.6) and then for genera of zero or unity
(Section 4.7). Section 4.8 discusses the equations satisfied by the lapse and the shift, as
well as the Einstein equations as coupled flow equations.

Reference Guide. A basic introduction to General Relativity (from a physics perspective)
is found in [Car19], and a standard text for the (2+ 1)-dimensional case is [Car03]. Classic
advanced texts are [MTW73] and [Wal10]. A mathematical text on Einstein manifolds
(with some discussion of General Relativity) is found in [Bes07]. A great discussion of
causal structures is found in [HE73]. A rigorous book dedicated to the Cauchy problem in
General Relativity is [Rin09], and a similarly well-rounded (that is, geometry- and partial
differential equation-based) approach to the Einstein equations is found in [CB08]. The
spacetime split formalism is well-presented in [Gou12]. Relevant Teichmüller theory can
be found in [Tro92]. The original paper performing the Hamiltonian spacetime split of the

1We choose our units so that the speed of light is unity, as well as Newton’s gravitational constant—these
are sometimes called geometric units.
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Einstein equations is [ADM59]. The original paper detailing the reduction of the Einstein
equations to the cotangent bundle of the Teichmüller space is [Mon89].

4.1 Einstein Equations

In 1915, Einstein (see [Ein15]) succeeded on his quest and wrote down the equations that
bear his name, founding the theory of General Relativity.

Definition 4.1.1 (Einstein equations). For a Lorentzian manifold (M, g), the Einstein ten-
sor Gµν (introduced in Definition 2.2.2) must satisfy the Einstein equations:

Gµν + Λgµν = 8πTµν,

for the energy-momentum tensor Tµν. (We have included the cosmological constant,
Λ ∈ R, though it was added in 1917; see [Ein22].) The energy-momentum tensor con-
tains all of the information of the mass and energy distribution throughout a spacetime.
Sometimes, the cosmological constant is seen as the energy of the vacuum and thus is ab-
sorbed into Tµν—we will leave Λ to the side for now and return to it later. Note too that
these coupled partial differential equations require initial data to be a solvable system
whose solution is the spacetime metric gµν.

In 2 dimensions Gµν vanishes, so the only non-trivial solution of the Einstein equa-
tions has an energy-momentum tensor equal to the vacuum energy. In other words, when
n = 2, every metric satisfies the Einstein equations! For this reason, we assume that
n ≥ 3, eventually restricting ourselves to the n = 3, or (2 + 1)-dimensional, case. By
tracing the Einstein equations we obtain

R = 2
nΛ− 8πT

n− 2
,

where T := Tµ
µ . This allows us to rewrite the Einstein equations as

Rµν = 8πTµν + 2
Λ− 4πT

n− 2
gµν,

which contains the exact same amount of information as the original formulation.2

Next, we note that the Einstein equations are (seemingly paradoxically) both over-
determined and under-determined. Since not all possible given initial data give rise to
solutions, we call the equations over-determined; and since for any solution g and dif-
feomorphism ψ ofM we obtain another solution, ψ∗g, making them under-determined.
This can be seen by noting that the Einstein tensor is diffeomorphism-equivariant: it sat-
isfies G(ψ∗g) = ψ∗G(g),3 and we require Tµν to behave in a similar fashion.

Finally, it can be shown that in the ‘Newtonian limit’ these equations reduce to the
Newtonian gravitational equation (see Example 2.3.1), as one would hope.

We have not explicitly explained what shape the energy-momentum tensor takes, and
will not consider it in any detail in this text. The only example we give is the following,
which we will assume throughout.

2In fact, this reversed version (omitting the cosmological constant Λ) was how Einstein first formulated
it.

3See the discussion at the beginning of Chapter 3 about the diffeomorphism equivariance of the Ricci
tensor.
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Example 4.1.1 (Vacuum energy-momentum tensor). In a vacuum, the energy-momentum
tensor is identically zero: Tµν = 0. The Ricci scalar then becomes

R =
2nΛ
n− 2

,

and so we obtain the vacuum Einstein equations:

Rµν =
2Λ

n− 2
gµν.

When Λ = 0, this is simply the requirement that spacetime be Ricci-flat. In our dimension
of concern, n = 3, this becomes Rµν = 2Λgµν, which was the definition of an Einstein
metric in Definition 2.2.

We often content ourselves with solving the vacuum equations, since solving the Ein-
stein equations with a given energy-momentum tensor is often very challenging. Even
this task is arduous, however. Thankfully, it did not take long for interesting solutions
to appear, such as those describing one of the most famous predictions of Einstein’s the-
ory of General Relativity: the existence of black holes. We now state two examples of
solutions to the vacuum Einstein equations.

Example 4.1.2 (Minkowski metric). The Minkowski metric ηµν given by (2.2) is a trivial
solution to the vacuum Einstein equations with no cosmological constant.

Example 4.1.3 (Bañados-Teitelboim-Zanelli metric). An example of a (2+ 1)-dimensional
black hole is given by the Bañados-Teitelboim-Zanelli metric, or BTZ metric:

gBTZ := −N2dt2 + N−2dr2 + r2(dφ + Nφdt)2, (4.1)

where the lapse N and shift Nφ functions are defined as

N :=

√
−M +

r2

`2 +
J2

4r2 and Nφ := − J
2r2 ,

and the black hole is characterised by the angular momentum J and the mass M. It is a
solution to the Einstein equations with cosmological constant Λ = −`−2 and has Killing
vectors ∂t and ∂φ (a metric with these properties is often called stationary and axially
symmetric). This example is discussed at length in [Car95a].

Before turning to the geometric tools required to understand the Einstein equations
and their solutions, we make the following definition that shines light on the origin of
the equations themselves.

Definition 4.1.2 (Einstein-Hilbert action). The action4 that gives rise to the vacuum Ein-
stein equations is the Einstein-Hilbert action SEH given on a Lorentzian manifold (M, g)
by

SEH(g) :=
∫
M

(R− 2Λ) ,

4Recall that in mechanics, the action of a system is the integral of the Lagrangian—this will be more
properly recalled in Section 4.5 when we employ the Hamiltonian approach to General Relativity. Using
the calculus of variations, one can vary the action to find the Euler-Lagrange equations, which dictate the
mechanics of the system. For example, in electromagnetism, we have the Maxwell action

SM := −1
4

∫
M

FµνFµν,

for the electromagnetic field tensor Fµν, which gives rise to the Maxwell equations. For details on the deriva-
tion of the Euler-Lagrange equations, see Chapter 8 of [Eva10].
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for Ricci scalar R and cosmological constant Λ. Note that as usual, we have omitted the
volume form in our integrand: there is an implicit

√
−det g term.

We note that varying this action with respect to the metric g requires computing how
three terms vary:

√
−det g (arising from integrating overM), g−1 and Ric (both arising

from the definition of R). This computation is lengthy and will not be done here,5 though
it turns out that the variation of the Ricci tensor only contributes a divergence-like term,
which vanishes upon integration, as we assume our manifold to be closed.6

Before decomposing the Einstein equations and viewing them as coupled partial dif-
ferential equations, we need to build up more machinery to understand the structure of
spacetime. First, we will inspect the causal structure of Lorentzian manifolds and make
several important definitions of properties that we will assume our universal manifold
to satisfy to make the Einstein equations well-posed.

4.2 Causal Structure and Cauchy Surfaces

One may ask how different this chapter’s Lorentzian context is from the Riemannian
one of Chapter 3. How much of an effect can one different sign in the signature of the
metric have on both geometric intuition and computations? How special is this ‘time’
direction? This section attempts to address these questions, revealing just how beautiful
a Lorentzian manifold description of the universe is, complete with a precise notion of
causality. The goal of this section is to determine the demands that are necessary and
sufficient to write our spacetime manifold asM ∼= Σ× [0, 1], where just as in the previ-
ous chapter Σ is a Riemannian (hence spatial) manifold, and the interval [0, 1] is a time
interval. Effectively this is a split of spacetime into ‘space’ and ‘time.’

On a Lorentzian manifold, the lack of positive-definiteness of the metric gives the
possibility of three lengths of vectors: positive, zero and negative.

Definition 4.2.1 (Timelike, null and spacelike vectors and curves). On a Lorentzian man-
ifold (M, g), a non-zero vector Vp at a point p ∈ M is called

1. Timelike if gp(Vp, Vp) > 0;

2. Null if gp(Vp, Vp) = 0;

3. Spacelike if gp(Vp, Vp) < 0.

A curve (on in general any subset of a manifold) is described as timelike, null, or space-
like if its tangent vector at every point satisfies the corresponding requirement above. A
vector or curve is causal if it is timelike or null—named as such because while light trav-
els on null curves and massive matter on timelike curves, moving on a spacelike curve
will require a greater velocity than the speed of light, which is not allowed in relativity.

(We may now revisit Definition 2.1.5 to properly define the length of curves and the
distance function in the Lorentzian context, both of which only consider causal curves.)

The above definition now brings to light the importance of the ‘time’ coordinate in
our Lorentzian metric.

5See Chapter 4.3 of [Car19] for a derivation or Chapter 4 of [Bes07] for a more thorough one.
6See the footnote directly after Proposition 3.1.1 for some motivation of the connection between the Ein-

stein equations and the Einstein-Hilbert action.
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Definition 4.2.2 (Time-orientable). If a metric admits a timelike vector field then it is
called time-orientable, and a choice of such a field gives a time-orientation. We will
always assume the existence of a time function t :M→ R such that

∇t = g](dt),

is always timelike and t is nowhere-vanishing—this certainly satisfies the previous time-
orientable condition. A spacetime is a connected, oriented, time-oriented Lorentzian
manifold.

Frequently this time function is implicitly assumed: often authors will simply write
t = t for the zeroth coordinate. We will not mention t explicitly many times, as we assume
all of our Lorentzian manifolds from now onward to be spacetimes.

Consider a causal curve that returns to its starting point. If matter (or information)
were to travel along this curve, the notions of past, present and future would be erased,
since ‘later’ on its journey it would return to the same point in spacetime where it ‘be-
gan’ its journey. The notion of causality may seem delicate; nevertheless, we make the
following definition.

Definition 4.2.3 (Causal). A spacetime is called causal if it contains no closed causal
curves.

Despite this, we will require a stronger property than the above for our considered
spacetimes. We are interested in characterising spacetimes completely based only on data
given on a subset of the manifold (as is usual in the formulation of an initial value prob-
lem of a partial differential equation). Considering information to propagate on causal
curves, we define another subset of spacetime which includes all points that can be af-
fected (or have been affected by) the points in the original subset.

Definition 4.2.4 (Future- and past-directed). For a timelike vector field7 T on a spacetime
(M, g), a causal vector Vp (at a point p ∈ M) is called future-directed if

gp(Vp, Tp) < 0.

A curve is future-directed if each of its tangent vectors are. Similarly, a vector Vp is past-
directed if −Vp is future-directed, and a curve is past-directed if all of its tangent vectors
are past-directed.

If there exists a future-directed causal curve from p ∈ M to q ∈ M then we write
p ≤ q. Similarly, p � q if there exists a future-directed timelike curve from p to q.8 We
write

J+(p) := {q ∈ M | p ≤ q}, J−(p) := {q ∈ M | q ≤ p} and J±(U ) :=
⋃

p∈U
J±(p),

for U ⊂ M a subset of spacetime. The first two of these sets are known as the causal
future and causal past of a point p and can be thought of the points that can be impacted
by events at p, and those that could have impacted p, respectively (with the union of
these spaces allowing for many points acting like p in the two previous characterisations).
Finally, we define the causal double-cone J(p, q) for points p� q inM to be

J(p, q) := J+(p) ∩ J−(q),

7This is often considered to be the gradient of a time function, though any timelike vector field suffices
here.

8Note that these both define transitive relations.
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which can be thought of as the set of all points that can both be impacted by events at p
and can impact events at q (forming a diamond-like shape in the Minkowski case).

Finally, we can define a stronger notion than causality, which we will assume all of
our spacetimes to have from here on out.

Definition 4.2.5 (Globally hyperbolic). A spacetime (M, g) is globally hyperbolic if

1. All of the definable sets J(p, q) are compact;

2. It is strongly causal: any neighbourhood of any point p ∈ M contains an open set
Up such that any causal curve with endpoints in Up lies entirely within Up.

To see the usefulness of the above definition, we need to define a Cauchy surface,
whose definition relies on the notion of extendibility of curves.

Definition 4.2.6 (Extendible). On a semi-Riemannian manifold (M, g), a (smooth) curve
γ : [a, b)→M is

1. Future-extendible if it has an extension γ : [a, b] →M and future-inextendible if
it does not;

2. Incomplete if inextendible and has finite arc-length and complete otherwise.

Similarly, for a curve γ : (a, b] → M we define the notions of past-(in)extendible and
(in)complete.

Now, we have the following crucial definitions.

Definition 4.2.7 (Cauchy surface and developments). Consider a spacetime (M, g) and
a subset Σ ⊂M. Then,

1. We call Σ a Cauchy surface if every inextendible timelike curve inM intersects it
exactly once;

2. The domain of dependence, or Cauchy development, D+(Σ) is the set of all points
p ∈ M such that every past-directed timelike curve starting at p intersects Σ;

3. The domain of influence D−(Σ) is the set of all points p ∈ M such that every
future-directed timelike curve starting at p intersects Σ.

Cauchy surfaces are exactly the subsets of spacetime on which we need initial data
for the Einstein equations to be well-posed. The following important properties of the
above definitions summarise their usefulness.

Proposition 4.2.1. A spacetime (M, g) is globally hyperbolic if and only if it contains a Cauchy
surface Σ. If this is the case, then

1. D+(Σ) ∪ D−(Σ) =M;

2. Any other Cauchy surface is diffeomorphic to Σ;

3. M can be written as a foliation of Cauchy surfaces Σt called time-slices (known also as
leaves of the foliation):

M =
⋃

t∈[0,1]

Σt or M =
⋃
t∈R

Σt,

where the Σt are non-intersecting, and so has the topology M ∼= [0, 1] × Σ, as we will
assume in this text (orM∼= R× Σ, which we will not consider);
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4. Every inextendible causal curve intersects Σ;

5. Σ is achronal:9 no two points p and q in Σ have p� q.

Proof. See Chapter 8 of [Wal10] or Chapter 4.3 of [Lan18] for details.

The above proposition allows us to consider any globally hyperbolic spacetime to be
a foliation of level sets of our time function t:

Σt = {p ∈ M | t(p) = t}.

When these sets arise from a time function as in Definition 4.2.2, they are spacelike sets
and therefore have an induced Riemannian metric. (We will make this assumption for
our submanifold Σ throughout this text.) Now, if we are given initial data on a single
time-slice, we expect that because of the globally hyperbolic nature of spacetime we can
understand events occurring at all other points. This allows us to write the Einstein
equations as an initial value problem, where the data is specified on any Cauchy surface.
For the rest of the text we assume all of our spacetimes to be globally hyperbolic.

With an understanding of time-slices and foliations of spacetime under our belts, we
turn to the mathematical subject of submanifolds. This will allow us to look at level sets
of the time function as distinct manifolds embedded within spacetime.

4.3 Submanifolds and Extrinsic Curvature

Much of Einstein’s ingenuity came from considering spacetime as a single manifold, ef-
fectively treating time and space on the same level, an idea dating back to Minkowski.
Nevertheless, we have split our manifoldM ∼= Σ× [0, 1], and so hope to split the Ein-
stein equations so that time and space are seen explicitly. To do so, we will consider slices
of our manifold that will represent the spatial part of spacetime at various fixed times.
This notion becomes precise when we delve into the study of embedded submanifolds.

Definition 4.3.1 (Submanifold). For manifolds Σ (usually referred to as the submanifold
itself) andM (the ambient manifold), a map ψ : Σ→M defines a submanifold ψ(Σ) ⊂
M if10

1. ψ is a homeomorphism onto its image;

2. For all q ∈ Σ, the push-forward (ψ∗)q : TpΣ→ Tψ(q)M is injective.

A hypersurface is a submanifold with a codimension11 of 1.12 For (M, g) a semi-Riemannian
manifold, the induced metric13 of Σ is the restriction of g to T Σ.

Considering the tangent space T Σ as a subspace of T M we encounter a new vector
bundle: the normal bundle.14

9In particular, any Cauchy surface is spacelike.
10It is also possible (and equivalent) to define a submanifold starting from a subset of a manifold and

requiring the subset to have properties such as local trivialisations.
11Recall that the codimension of a subspace is the difference between the dimension of the ambient space

and the dimension of the subspace.
12Therefore, Cauchy surfaces are hypersurfaces.
13This is also called the first fundamental form of the submanifold.
14Section A.2 of the appendix contains more developed discussions of vector bundles in general.
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Example 4.3.1 (Normal bundle). For a semi-Riemannian manifold (M, g), the normal
bundle (whose total space is written NΣ) of a submanifold Σ ⊂ M is composed of
normal spaces NqΣ defined for points q ∈ Σ as

NqΣ := (TqΣ)⊥,

where the perpendicularity is with respect to the inner product g. This allows us to
decompose the tangent spaces of the ambient manifold at points q ∈ Σ as

TqM = TqΣ⊕ NqΣ,

which in turn induces tangential and normal projections

proj> : T M → T Σ and proj⊥ : T M → NΣ.

As a notational tool, we will write V> := proj>(V) and V⊥ := proj⊥(V) for the images
of the projections for some vector V.

Finally, we define a normal vector η to the submanifold Σ to be a vector such that

g(V, η) = 0 for all V ∈ T M.

It is unit if g(η, η) = ±1 (where the positive sign is for a Riemannian manifold and the
negative sign is for a Lorentzian manifold).

The above example allows us to use these projections to decompose objects that live
on the tangent bundle of the ambient manifoldM. If we write ∇M for the Levi-Civita
connection onM we can do the following decomposition at any point q ∈ Σ:

∇MV W = (∇MV W)> + (∇MV W)⊥,

for vectors V and W in T Σ.
We then have the following definition, which helps describe the curvature of the sub-

manifold within the ambient one.

Definition 4.3.2 (Extrinsic curvature). For a hypersurface15 Σ with unit normal η of a
semi-Riemannian manifold (M, g) with Levi-Civita connection ∇, the extrinsic curva-
ture is a (2, 0)-tensor κ given on vector fields V and W by16

κ(V, W) = g(η,∇VW),

which is the coefficient17 of the normal projection of∇VW. It can be verified to be a tensor
by it being C∞-linear in each entry. The trace of this tensor is the mean extrinsic curvature
and is written κ, which will hopefully not cause confusion: the extrinsic curvature will
always have explicit vector inputs or will be written with indices.

We write RM and ∇M for the Riemann (4, 0)-tensor and the Levi-Civita connection
associated to the manifoldM (and similarly for Σ ⊂ M). The extrinsic curvature then
satisfies the following properties.

15It is possible to define the extrinsic curvature for a submanifold of general codimension. For details, see
Chapter VII of[KN69].

16Note that there is a choice of sign in this definition, and many authors have the opposite convention
from this text.

17Note that closely related to the extrinsic curvature is the second fundamental form II (read ‘two’) given
by II(V, W) := (∇MV W)⊥.
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Proposition 4.3.1. The extrinsic curvature κ of a hypersurface Σ ⊂ M (with unit normal η) is
symmetric and satisfies

1. The Gauss formula, or the Gauss-Weingarten equation:

∇MV W = ∇Σ
VW ± κ(V, W)η,

where vector fields V and W in T Σ have been arbitrarily extended to T M and ± refers to
Riemannian (+) and Lorentzian (−);

2. The Gauss-Codazzi equations for vector fields U, V, W and X onM:

RM(η, V, W, X) = (∇Wκ)(V, X)− (∇Vκ)(W, X), (4.2)

RM(U, V, W, X) = RΣ(U, V, W, X)± κ(U, X)κ(V, W)∓ κ(U, W)κ(V, X), (4.3)

where in the lower equation the ±,∓ refers to Riemannian and Lorentzian, read top to
bottom. In particular, if Σ is embedded in a flat manifold, the left-hand sides of the above
equations will vanish.

Proof. 1. Symmetry follows from the computation:

κ(V, W) = g(η,∇VW) = g(η,∇WV) = κ(W, V),

by the torsion-free nature of the Levi-Civita connection;

2. The Gauss formula follows from the definition of κ;

3. The Gauss-Codazzi equations follow from several calculations, which we omit here.
See Chapter 3.5 of [Gou12] or Chapter 6.3 of [Lan18] for details.

We will translate this knowledge of hypersurfaces into the context of a Cauchy surface
Σ embedded in a spacetimeM. This Cauchy surface will be of considerable interest, not
only because it contains all of the topological information ofM (since our time interval
[0, 1] is topologically trivial), but because it is a Riemannian 2-manifold. As such, we can
apply our Uniformisation Theorem (usually in the form (2.2)) to a Cauchy surface. With
this in mind, we return the space of all possible Riemannian metrics of a manifold, first
discussed in Section 2.4.

4.4 Reduction to Teichmüller Space

Consider a (2 + 1)-dimensional spacetime (M, g) with a 2-dimensional Cauchy surface
Σ that satisfies the Einstein equations. In the following section, we will split the Einstein
equations so that Riemannian metric on Σ can be used to reconstruct the full spacetime
metric that solves the Einstein equations. As such, we now focus on Σ and its possi-
ble Riemannian metrics, supposing that there exists a partial differential equation on Σ
whose solution is a Riemannian metric on Σ. We recall that the largest possible solution
space for such a set-up is the space of all Riemannian metrics M (Σ) = M . Since the Ein-
stein equations do not allow for every element of M to be a solution (upon reconstruction
of the Lorentzian metric as described above), they restrict this possible solution space.
This section will inspect how else this infinite-dimensional space M can be reduced.
Our goal is to motivate the following assertion: the space of Riemannian metrics for Σ
modulo diffeomorphisms and modulo conformal equivalences (here the Uniformisation
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Theorem makes its appearance) is isomorphic to the cotangent bundle of the space of
non-biholomorphically equivalent complex structures on Σ (seen as a Riemann surface),
which is known as the Teichmüller space of Σ. Riemannian metrics (modulo conformal
equivalences and diffeomorphisms) will parametrise the Teichmüller space, and a modi-
fied version of the extrinsic curvature (which will be called the gravitational momentum
π) will parametrise the cotangent space above any point of the Teichmüller space.

In this section we will often reinstate our notation of s as a Sobolev parameter, no
longer requiring our functions to be C∞-smooth.18 From Chapter 2 we retrieve the fol-
lowing function spaces associated to a manifold Σ, where Σ is withheld from our notation
for brevity:

1. D : the group of diffeomorphisms; we will write D0 for the diffeomorphisms which
are homotopic to the identity;19

2. H s: the Sobolev space of functions whose weak s-times derivatives are in L 2;

3. M : the space of Riemannian metrics; Mλ ⊂ M denotes those with Ricci scalar
R = λ ∈ R;

4. C : the space of complex structures (when Σ is seen as a Riemann surface);

5. A : the space of almost complex structures (when Σ is seen as a Riemannian mani-
fold).

We recall that a Riemann surface is a 2-dimensional complex manifold whose atlas is
called a complex structure c ∈ C . It turns out that diffeomorphisms are not equivalent
to biholomorphisms in the complex case (unlike in the real case). However, we do have
that the pull-back of a complex structure by a diffeomorphism gives rise to another Rie-
mann surface, biholomorphic to the first via this diffeomorphism, as succinctly put in the
following result, which we state without proof.

Proposition 4.4.1. For a Riemann surface (Σ, c), a diffeomorphism ψ : Σ → Σ is a biholomor-
phism from (Σ, c) to (Σ, ψ∗c), where the pull-back complex structure ψ∗c ∈ C is given by

ψ∗c := (ψ−1(Uα), ϕα ◦ ψ)α.

Using this pull-back action, we can act with diffeomorphisms on our space of complex
structures. This leads to the following definitions of moduli spaces, which are used to
study Riemann surfaces which are not biholomorphic.

Definition 4.4.1 (Teichmüller space). For a Riemann surface Σ, the Riemann moduli
space R(Σ) = R is given by

R := C /D ,

where the quotient is with respect to the conformal action described in Definition 2.5.3.
The Teichmüller space T (Σ) = T is given by20

T := C /D0.
18For more discussion on this matter, return to Section 2.3. A great resource is [FT84].
19This is sometimes called the connected component of the identity.
20The difference between these spaces is more clear when using physics terminology: elements of D0 are

known as ‘small’ diffeomorphisms, since they are formed by exponentiating and composing infinitesimal
transformations (hence they lie close to the identity, which is the exponential of the trivial transformation).
This induces the naming of elements of D \ D0 as ‘large’ diffeomorphisms. An example of a large diffeo-
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Teichmüller spaces will be crucial in our study of (2 + 1)-dimensional General Rela-
tivity. They satisfy the following wonderful property, discovered by Riemann himself.

Proposition 4.4.2. The Teichmüller space of a Riemann surface Σ with genus g(Σ) has the fol-
lowing dimension:

dimT =


0 if g(Σ) = 0;
2 if g(Σ) = 1;

6g(Σ)− 6 if g(Σ) > 1.

Proof. This is a standard result in complex geometry. See [FT84], [Dir51] or Chapter 0
of [Tro92] for details.

Now that we have a function space of finite dimension, we need to link it back to our
study of spaces of metrics. We will use our space of almost complex structures A as an
intermediary, recalling that by Proposition 2.5.1 these are equivalent (in 2 dimensions) to
complex structures via a bijection $ : C → A . With this in mind, we can act on A at a
point p ∈ Σ with diffeomorphisms f ∈ D via

( f ∗ J)p := ( f∗)−1
p J f (p)( f∗)p, (4.4)

which behaves nicely, as stated in the following proposition.

Proposition 4.4.3. The bijection$ : C → A from Proposition 2.5.1 is diffeomorphism-equivariant:
for f ∈ D , we have

$( f ∗c) = f ∗$(c),

where the left-hand pull-back action is from Proposition 4.4.1 and the right-hand action is (4.4).

Proof. Let ϕ ∈ c and ϕ ◦ f ∈ f ∗c for some f ∈ D . Then,

(ϕ ◦ f )−1
∗ Ĵ(ϕ ◦ f )∗ = f−1

∗ (ϕ−1
∗ Ĵϕ∗) f∗.

Now,$( f ∗c) is the left-hand side and f ∗$(c) is the right-hand side, so we are done.

We next recall the discussion in Section 2.5 that described almost complex structures
are being the bridge between Riemannian 2-manifolds and Riemann surfaces. Impor-
tantly, for an area element dAg associated to a metric g ∈M , we can consider the follow-
ing map:21

Φ : M → A , Φ(g) = −g−1dAg.

morphism on a torus is a Dehn twist: the handle is cut along a closed curve (giving a cylinder), then one
end is twisted by 2π before re-gluing. See Appendix A of [Car03] for details about the Dehn twist. Some-
times in the Riemannian context, R is called conformal superspace and T is quantum conformal superspace
(see [FM96a], for example), which underlines the ability of the quantum context to differentiate things that
the classical case cannot. These spaces represent the degrees of freedom of a system, as discussed in [Dir50]
and [Dir51].

21This is an explicit description of the notion that metrics provide measurement of angles, and this induces
the notion of rotation in a tangent space by π

2 , which is an almost complex structure.
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Locally, this takes the form Φ(g)i
j = −gik (dAg

)
jk, which can be verified to be an almost

complex structure. It can be shown that it is invariant under quotient by a positive func-
tion (that is, we can pass to the quotient M /C∞ by the conformal action), and that the
resulting function Φ : M /C∞ → A is a diffeomorphism of Hilbert manifolds.22

The discussion on the previous pages can be summarised in the following series of
diffeomorphisms (as Hilbert manifolds):

M /C∞

D0

∼=
A

D0

∼=
C

D0
=: T , (4.5)

where we have not included a Sobolev parameter s, which could appear in the numera-
tors of the first two steps. This equivalence allows us to speak of the conformal classes of
solution metrics to the Einstein equations (once they have been split, as was described at
the beginning of this section) as elements of a Teichmüller space. By Proposition 4.4.2, this
space is now finite-dimensional, which is a great reduction from the infinite-dimensional
beginnings of M .

The numerator of the left-most space in (4.5) begs to be simplified by the Uniformisa-
tion Theorem. As remarked at the end of Chapter 2, its statement allows us to write

M /C∞ ∼= Mλ, where λ =


1 if g(Σ) = 0;
0 if g(Σ) = 1;
−1 if g(Σ) > 1.

(4.6)

Combining this expression of the Uniformisation Theorem with our knowledge of the
dimension of the Teichmüller space from Proposition 4.4.2 and our equivalences (4.5)
gives us the following:

M1

D0

∼= R0,
M0

D0

∼= R2 and
M−1

D0

∼= R6g−6.

This is suggestive of the notion that the zero genus case of (2 + 1)-dimensional General
Relativity is empty, because there are no dimensions to work with.23 We will discuss
this further in several sections, when we analytically inspect the three genus-dependent
cases.

For the final portion of this section we will consider the g(Σ) > 1 case, which will be
the one that we inspect most closely in the sections to come. For reasons that will become
clearer in future sections, we wish to scrutinise the quotient map M−1 → M−1/D0. It
turns out that it comes with a fibre bundle structure. In fact, it is a principle bundle,
which uses Lie group actions to affix a space to each point of a manifold, instead of vector
spaces, as for vector bundles.24

Definition 4.4.2 (Principal bundle). For a Lie group25 G (called the structure group), a
principal bundle, or principal G-bundle, over a manifoldM is an open surjective map
π : P →M such that the following conditions hold:

22It is more correct to work with a Sobolev parameter s here, and state that Φ : M s/H s → A s is the
function in question. However, it reduces to the smooth case without too much difficulty—see [FT84] or
Chapter 1 of [Tro92] for details.

23And thus by a footnote from Definition 4.4.1, no degrees of freedom.
24For details of vector bundles, see Section A.2 of the appendix.
25Recall that a Lie group is a smooth manifold G that is also a group: its inversion and composition maps

must be smooth. Symbolically, we require that the map Υ : G × G → G given by Υ(χ,υ) = χ−1υ is smooth.
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1. For every point p ∈ M, G acts (on the right) freely26 on the fibres Pp := π−1(p);27

2. Every point p ∈ M has a neighbourhood U ⊂ M with corresponding local trivial-
isation ϕU : π−1(U )→ U × G such that the following diagram commutes:

π−1(U ) U × G

U

ϕU

π prU

and the local trivialisations are compatible with the G action.

A principal bundle morphism is a map φ : P → Q between principal G-bundles
π : P → M and $ : Q → N that commutes with the G-action. Note that if G ′ ⊂ G is
a closed compact subgroup of G then the quotient map G → G/G ′ is a trivial principal
G ′-bundle, and (like with vector bundles) a bundle is trivial if and only if a global section
can be found.28

This detour is useful because of the following result, which we state without proof.

Proposition 4.4.4. The quotient map M−1 →M−1/D0 defines a trivial principal bundle.

Proof. See [Mon89] or Chapter 2.5 of [Tro92].

The use of the above result will become apparent when we consider a global section
of it (whose existence is guaranteed by triviality), which will help us to see the Einstein
equations in (2+ 1) dimensions as a Hamiltonian evolution on the cotangent bundle of a
Teichmüller space. With this goal in mind, we turn to our time-space split of the Einstein
equations.

4.5 ADM Decomposition

The time-space split of the Einstein equations employs the Hamiltonian formalism of
mechanics, of which we give a brief reminder here.

Definition 4.5.1 (Hamiltonian mechanics). On a closed n-manifold M, the action S is
given by the integral overM of the Lagrangian (density) L:

S =
∫
M
L =

∫
L(t)dt,

where L(t) is the Lagrangian associated to the Lagrangian density L. This describes the
Lagrangian mechanics of a physical system via the principle of least action, wherein the
variation of the action is equal to zero.29 This gives rise to the Euler-Lagrange equations,

26Recall that a group action is free if the only element that fixes points is the identity.
27Note that the fibres inherit a G action that is free and transitive (any two elements can be linked by a

group element acting one of them).
28In physics, G-bundles are useful in gauge theory, and a global section of a principal bundle corresponds

to a global choice of gauge.
29Note that all of these details can be made precise using the calculus of variations, which we will not go

into here. See, for example, Chapter IV of [CH53] or Chapter 8 of [Eva10].
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which express the evolution of generalised coordinates (qi)i in a parameter λ (often writ-
ten t to signify time) as

d
dλ

(
∂L
∂q̇i

)
=

∂L
∂qi

where we write q̇i := ∂λqi.
If we wish to change the dependence of our dynamics on the variables (q̇i)i to vari-

ables (pi)i, known as generalised momenta, or conjugate momenta, given by

pi :=
∂L
∂q̇i ,

then we perform a Legendre transformation30 on the Lagrangian to find the Hamiltonian
H given by

H := q̇i pi − L.

Now the dynamics of the system evolve via the Hamilton-Jacobi equations:

q̇i =
∂H
∂pi and ṗi = −

∂H
∂qi ,

which give rise to Hamiltonian mechanics.
Suppose a particular generalised coordinate q̊ only appears in the Lagrangian via a

multiplicative factor:

L = L′ + q̊Ω

where L′ does not depend on q̊, and its λ-derivative does not appear at all (implying that
it has no conjugate momentum). We call such a coordinate a Lagrange multiplier, since
it implies the existence of a constraint:

Ω = 0,

which is obtained by either the Euler-Lagrange or Hamilton-Jacobi equations. Note too
that this process allows one to include a desired constraint to a system, by adding a
Lagrange multiplier term to the Lagrangian.

Finally, the pairs (qi, pi)i parametrise what is known as the phase space, which is a
manifold in its own right. The submanifold of the phase space where the constraints (if
any) are satisfied is known as the constraint surface.

We recall from Definition 4.1.2 that the action in the context of General Relativity is
the Einstein-Hilbert action, given on a Lorentzian 3-manifold (M, g) by

SEH =
∫
M

(R− 2Λ) . (4.7)

If we considerM to be a closed spacetime with a compact Cauchy surface Σ, then this
integral can be split over [0, 1] and Σ.31 With this in mind, we hope to decompose our

30A Legendre transformation has a precise definition which we will not explore here, merely giving the
transition from Lagrangian to Hamiltonian mechanics as an example of its use. Details can be found in
Chapter 3.3 of [Eva10].

31We have assumed our manifold to be compact; in general, this interval can have bounds ti and tf, where
the initial and final times may be infinite in extent.
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spacetime metric g and our Ricci scalar R into forms which involve the metric and Ricci
scalars on Σ. Having two versions of objects, one residing onM and the other on Σ may
cause confusion and for this reason we introduce prescript notation: the pre-superscript
denotes the dimensionality of an object, whenever such confusion may arise. Thankfully,
objects with explicit indices will often be safe from confusion, as those with Greek indices
include the time coordinate and those with Latin indices are purely spatial.

We choose coordinates adapted to the foliation M ∼= ∪tΣt, such that the zeroth co-
ordinate t is the parameter of the foliation Σt, and local spatial coordinates (x1, x2) on
the spacelike time-slices Σt so that there are natural tangent vectors (∂i)i=1,2 to Σt and a
natural 1-form dt. In this coordinate system, we can now let the lapse N(t, xi) be

N =
1√

−g(∇t,∇t)
,

where we could have written t to refer back to our time function t : M → R, but we
have used t for notational simplicity. In partnership to the notion of lapse, the shift vector
Ni(t, xi) is defined such that ∂0 − Ni(t, xi)∂i (where ∂0 is the vector dual to the covector
dt) is orthogonal to Σt. Using these we can write the overall spacetime metric as32

(3)g = −N2dt2 + (2)gij

(
dxi + Nidt

) (
dxj + N jdt

)
.

More compactly, we make the following definitions, valid in the coordinate system
described above, which we will assume to hold in the text that follows.

Definition 4.5.2 (Lapse and shift). For a spacetime (M, g) in (2 + 1) dimensions (with a
Cauchy surface Σ) and coordinates described above, we define the lapse and shift as

N :=
1√
− (3)g00

and Ni := (3)g0i.

Note that the shift will have its index raised and lowered by (2)g, since it only runs
through spatial directions. These give the spacetime metric and its inverse the follow-
ing forms:

(3)g =

(
−N2 + NiNi Ni

Ni
(2)gij

)
and (3)g−1 =

1
N2

(
−1 Ni

Ni (2)gijN2 − NiN j

)
.

Note that normal coordinates from Definition 2.1.6 here mean taking shift Ni = 0; fur-
ther, geodesic coordinates mean taking lapse N = 1. Together (that is, geodesic normal
coordinates), these simplify the relation between the metric of the spacetime and the
submanifold to

(3)ggnc = −dt2 + (2)gijdxidxj,

with both the spacetime metric and its inverse being block diagonal.

The following result (whose proof we omit) allows us to neglect the shift in many of
our computations, as it shows that it is always possible to choose geodesic coordinates
globally.

32These are the same lapse and shift as appeared in our BTZ metric from Example 4.1.3.
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Proposition 4.5.1. Let (M, g) an n-dimensional globally hyperbolic spacetime with Cauchy
surface Σ. Then it is isometric to the product R× Σ, where the metric takes the form

(n)g = −N2dt2 + (n−1)g,

where (n−1)g is a Riemannian metric on Σ, N is non-zero, and t : R× Σ → R is the projection
(and a time function).

Proof. See Theorem 1.1 of [BS05].

Because of this, we will not focus our attention on the lapse and the shift, knowing
that in the end we will want to use geodesic normal coordinates. Our final ingredient
is the extrinsic curvature: if ηµ is the normal to the Cauchy surface Σ, we recall that the
extrinsic curvature κµν (always written with indices to differentiate it from its trace κ, the
mean extrinsic curvature) of Σ is given locally by

κµν = (3)∇µην. (4.8)

This arises from Definition 4.3.2, which, in taking a contraction with the normal vector,
only preserves components normal to the submanifold. We will choose a normal propor-
tional to the zeroth component (the ‘time’ direction), and as such we will focus solely on
the components κij.

We now have all of the tools for the Hamiltonian treatment of General Relativity.

Definition 4.5.3 (ADM formalism). Consider a (2 + 1)-dimensional spacetime (M, g)
with lapse N, shift Ni, and Cauchy surface Σ (whose metric is (2)g). The ADM formalism,
named after Arnowitt, Deser and Misner,33 uses a normal to the Cauchy surface that
points in the ‘time’ direction: ηµ = (N, 0, 0). This gives the following form to the extrinsic
curvature of Σ (which will be proved shortly):

κij = −
1

2N

(
∂tgij − (2)∇iNj − (2)∇jNi

)
. (4.9)

This decomposition splits the action integral over M as integrals over [0, 1] and Σ.
Using (traces of) the Gauss-Codazzi equations (4.2), our Einstein-Hilbert action (4.7) takes
the form

(3)SEH =
∫
[0,1]

dt
∫

Σ
d2x

√
(2)gN

(
(2)R− 2Λ + κijκ

ij − κ2
)

, (4.10)

where we note that indices are raised and lowered by (2)g, as will be the custom for any
object living in 2 dimensions from now on, and boundary terms have been disregarded
as they do not contribute. Note that the time-derivatives of the shift and the lapse do
not appear in the Lagrangian, so they do not have conjugates and are thus treated as
Lagrange multipliers.

Now, the gravitational momentum πij conjugate34 to gij is given by35

πij :=
∂

∂(∂tgij)

(√
(2)gN

(
(2)R− 2Λ + κijκ

ij − κ2
))

=
√

(2)g
(

κij − gijκ
)

, (4.11)

33Their seminal work [ADM59] was in (3 + 1) dimensions, though, and has been adapted accordingly.
34The conjugate to (k, l)-tensor appearing in the Lagrangian is a (l, k)-tensor.
35Note that this is actually a tensor density, which is defined to be a tensorial object that picks up a factor

of the Jacobian during a change of coordinates. Here, the factor of
√

(2)g in its definition makes it as such,
which arises from us using the Lagrangian instead of the Lagrangian density in its definition. However, the
difference between tensors and tensor densities in our discussion is not sufficient enough to warrant lengthy
investigation, so we will ignore it for now.
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where only the extrinsic curvature contains terms with ∂tgij so it alone contributes. It
is symmetric and we write its trace π. (Note that a choice of sign convention for the
extrinsic curvature may impact the sign of the conjugate, but we are consistent in our
choices in this text.)

Finally, we define the ADM action:

(3)SADM :=
∫
[0,1]

dt
∫

Σ
d2x

(
πij∂tgij − NH− NiHi

)
. (4.12)

In the above expression we have made two important definitions: the Hamiltonian con-
straintH and the momentum constraintHi, which are given by

H :=
1√
(2)g

(
πijπ

ij − π2
)
−
√

(2)g
(
(2)R− 2Λ

)
and Hi := −2 (2)∇jπ

ij. (4.13)

These are named as such because the variation of the shift and lapse within the action
(acting as Lagrange multipliers) give rise to the Hamiltonian and momentum constraints:

H = 0 and Hi = 0. (4.14)

As usual in the Hamiltonian formalism, the pairs (gij, πij)i,j parametrise the phase
space, and the solutions to the above constraints will lie on the constraint surface. Finally,
the form above of the ADM action gives our first glimpse of the Hamiltonian:

H =
(
∂tgij

)
πij −L = NH+ NiHi,

which vanishes when the constraints are satisfied (and where are usual we use that Σ is
closed to ignore boundary terms).36

We state the above as results, which arise from standard manipulations.

Proposition 4.5.2. For the definitions given above, we have the following:

1. The extrinsic curvature from (4.8) does reduce to the form in (4.9);

2. The ADM action (4.12) is equal to the Einstein-Hilbert action (4.10).

Proof. 1. This proof is computational, uses the definition of the Levi-Civita connec-
tions for the metrics (3)g and (2)g.37 For ηµ = (N, 0, 0), the purely-spatial compo-
nents of the extrinsic curvature are

κij =
(3)∇iηj := ∂iηj − (3)Γα

ijηα

= −1
2

Ng0β
(
∂igβj + ∂jgβj − ∂βgij

)
= −1

2
N
(
− 1

N2 ∂iNj +
Nk

N2 ∂igjk −
1

N2 ∂jNi +
Nk

N2 ∂jgik +
1

N2 ∂0gij −
Nk

N2 ∂kgij

)
= − 1

2N

(
∂0gij − ∂iNj − ∂jNi + Nk (∂igjk + ∂jgik − ∂kgij

))
= − 1

2N

(
∂tgij − (2)∇iNj − (2)∇jNi

)
,

as desired.
36This gives rise to the statement that a closed (2 + 1)-dimensional universe has zero total energy.
37See Section 2.1 for details.
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2. This proof will be accomplished in several steps. First, we invert the definition of
πij (4.11):

κij =
1√
(2)g

(
πij − gijπ

)
. (4.15)

Next, using the forms of the extrinsic curvature (4.9) and (4.15), we have

πij∂tgij = πij
(

2Nκij +
(2)∇iNj +

(2)∇jNi

)
= 2N

1√
(2)g

(
πijπij − π2

)
+ Ni

(
−2∇jπ

ij
)

,

where we have used that πij is symmetric and have integrated by parts (discarding
the boundary term that appears as it does not contribute to the action), noticing the
momentum constraint appearing in the right-most term. Introducing the Hamilto-
nian constraint (4.13) gives

πij∂tgij = 2NH+ 2N
√

(2)g
(
(2)R− 2Λ

)
+ NiHi.

We can then write the ADM action (4.12) as

(3)SADM =
∫
[0,1]

dt
∫

Σ
d2x

(
πij∂tgij − NH− NiHi

)
=
∫
M

d3x 2N
(

NH+
√

(2)g
(
(2)R− 2Λ

))
=
∫
M

d3x
√

(2)gN
(
(2)R− 2Λ +

1
det (2)g

(
πijπ

ij − π2
))

.

Finally, using the relation between the extrinsic curvature and the gravitational mo-
mentum (4.11) once more, we find

(3)SADM =
∫
M

d3x
√

(2)gN
(
(2)R− 2Λ +

1
det (2)g

(
πijπ

ij − π2
))

=
∫
M

d3x
√

(2)gN
(
(2)R− 2Λ +

(
κij − gijκ

) (
κij − gijκ

)
−
(

gij (κij − gijκ
))2
)

=
∫
[0,1]

dt
∫

Σ
d2x

√
(2)gN

(
(2)R− 2Λ + κijκ

ij − κ2
)
= (3)SEH,

as desired.

The ADM form of the action is useful because the constraints are explicitly present,
and thus once we assume our solution to the dynamical equations to satisfy them (that
is, we assume they vanish), we will easily be able to simplify the action.

We now divide our attention between three cases, which arise from characterising the
Cauchy surface Σ as having a genus of 0, 1, or greater than 1. This split arises from our
Uniformisation Theorem (4.6), and much like our proof in Chapter 3, the different cases
require vastly different amounts of work.
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4.6 Genus Case Studies: Higher Genera Surfaces

When the cosmological constant Λ is zero in (2 + 1) dimensions, the vacuum Einstein
equations (4.1.1) imply that not only is spacetime Ricci-flat, it is (Riemann-)flat, since we
know that the Riemann tensor and the Ricci tensor are related by (2.8). If Λ 6= 0, then we
obtain a spacetime of constant curvature 6Λ. Physically, these facts imply that there do
not exist gravitational waves in (2 + 1) dimensions, as we require mass to create curva-
ture in the space. Physicists would say that the theory has no local degrees of freedom, as
was discussed in Section 4.4. Globally, there are no degrees of freedom (hence a vacuous
problem) if the space has trivial fundamental group—that is, if it has zero genus.38 This
is discussed in depth in [Car03].

From another perspective, one could guess from our Teichmüller space exploration
in Section 4.4, the case of a (2 + 1)-dimensional spacetime with a Cauchy surface Σ that
has genus g(Σ) = 0 is simple. The dimension of the Teichmüller space is zero, leaving no
possible non-trivial dynamics.

If the spacetime has non-trivial fundamental group, then one can think of the di-
mension of the Teichmüller space as counting the (finite!) number of global degrees of
freedom. It turns out that in the unit genus case, the explicit form of the Hamiltonian can
be found, as is done in Chapter 3.3 of [Car03] as well as in [Mon89]. Despite this, we will
first focus our efforts the higher genera case (g > 1), before returning to the case g(Σ) = 1
in the following section to comment on its solution.

We wish to demonstrate that for spacetimes with Cauchy surfaces of genus g(Σ) > 1
the above ADM dynamics actually occur (given certain assumptions) on the cotangent
bundle of the Teichmüller space of Σ, which would align with our earlier analysis. In
doing so, we will find an implicitly-defined form of the Hamiltonian of the system.

First, we have the following definition of a particularly nice kind of tensor, of which
we will make great use of in the coming pages.

Definition 4.6.1 (Transverse and traceless). On a semi-Riemannian manifold (Σ, g) with
Levi-Civita connection ∇, a rank-2 tensor τ is transverse if ∇iτ

ij = 0 and traceless if
τi

i = 0. We denote the transverse and traceless part of a tensor τij with an over-line: τij.39

Note that transverse and traceless tensors40 are transverse and traceless with respect
to the whole conformal class of the metric with respect to which they are originally trans-
verse and traceless. That is, if τij is transverse and traceless with respect to g then it is
with respect to e−2λg for any λ ∈ C∞(Σ).

We now have the following Lemma, which will allow us to decompose symmetric
tensors into their transverse and traceless part and two other parts.

Lemma 4.6.1. Any symmetric rank-2 tensor τ on a closed semi-Riemannian 2-manifold (Σ, g)
can be decomposed as

τij = τij + f gij +
(
∇iYj +∇jYi − gij∇kYk

)
, (4.16)

for some vector field Y and f ∈ C∞(Σ). The term in parentheses is known as the conformal
Killing form of Y and is traceless. Note that the decomposition is unique up to the addition of

38Recall that the fundamental group π1 is the group of equivalence classes (called homotopy classes)
under homotopy of closed curves on a topological space.

39In the literature this is often written τijTT
, which is cumbersome, though more descriptive.

40Symmetric transverse traceless tensors are called holomorphic quadratic differentials in the study of
Riemann surfaces.
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another conformal Killing vector to Y. We also have that the three terms in the decomposition are
L 2-orthogonal, and f = 1

2 gijτ
ij.

Proof. We have f = 1
2 gijτ

ij by tracing both sides of (4.16), and the pair-wise L 2-orthogonality
because the first and third terms are traceless and so vanish when integrated against the
second term, and their orthogonality arises from the computation∫

Σ
τij
(
∇iYj +∇jYi − gij∇kYk

)
=
∫

Σ
∇i

(
τijYj

)
+∇j

(
τijYi

)
−
(

τijgij

)
∇kYk = 0,

where we have used that the manifold has no boundary to integrate out a total derivative
and that τij is transverse and traceless.

Now, we have the following Lemma, which relates various objects relating to confor-
mal metrics.

Lemma 4.6.2. For conformal Riemannian metrics g and ĝ := e2λg on a 2-manifold Σ, we have
the following relations (where we use hats to designate objects associated to ĝ):

1. The determinants det g and det ĝ are related by

det ĝ =
(

e2λ
)2

det g;

2. For vectors V and W, the Levi-Civita connections ∇ and ∇̂ are related by

∇̂VW = ∇VW + V(λ)W + W(λ)V − g(V, W)grad(λ),

where the gradient of a function λ is the vector field grad(λ) given by

grad(λ) := g](dλ);

3. The Christoffel symbols Γk
ij and Γ̂k

ij are related by

Γ̂k
ij = Γk

ij + (∂iλ)δ
k
j + (∂jλ)δ

k
i − (gkl∂lλ)gij;

4. For a vector field V, the weighted (by the square-root of the determinant of the metric)
conformal Killing forms are invariant:√

ĝ
(
∇̂iV j + ∇̂jVi − ĝij∇̂kVk

)
=
√

g
(
∇iV j +∇jVi − gij∇kVk

)
,

where the left-hand side’s indices are raised and lowered by ĝ and the right-hand side’s by g;

5. The Ricci scalars R and R̂ are related by41

R̂ = e−2λ
(
−2∆gλ + R

)
.

41If g(M) > 1 then the equation

∆gλ =
1
2

(
R + e2λ

)
,

has a unique solution and thus by the final point ĝ can be taken to have R̂ = −1. This is an alternate way
of looking at the g(M) > 1 case of the Uniformisation Theorem, and can be proved with partial differential
equation methods. For details, see Chapter 10 of [Don11].
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Proof. Each point can be proved by direct computation, starting from ĝ := e2λg and using
the definitions of each quantity. We have not done it here because it is not illuminating.

We now restrict ourselves to the case where g(Σ) > 1, and we write ĝ for a Riemannian
metric on Σ with associated Ricci scalar R̂ = −1. Note that since ĝ is only defined in two
dimensions we will not need prescript notation.

We now decompose our gravitational momentum in the following result.

Proposition 4.6.1. Gravitational momentum πij on a Cauchy surface Σ (with g > 1) of constant
mean extrinsic curvature κ (that is, ∂iκ = 0) that solves the momentum constraint Hi = 0 can
be decomposed as

πij = πij − 1
2

κ
√

(2)ggij. (4.17)

Proof. We first note that the trace of πij is

π := gijπ
ij = −

√
(2)gκ,

so Lemma 4.6.1 gives

πij = πij − 1
2

κ
√

(2)ggij + e−2λ
√

(2)g
(
(2)∇iY j + (2)∇jYi + gij (2)∇lYl

)
. (4.18)

Here, the vector Yi is uniquely determined as the solution to the equation

(2)∇i

(
πij +

1
2

κ
√

(2)ggij
)
= (2)∇i

(
e−2λ

√
(2)g

(
(2)∇iY j + (2)∇jYi − gij (2)∇lYl

))
.

Now, if we impose the momentum constraint (4.14)—namely, asking πij to be transverse—
and assume that Σ is a hypersurface of constant mean extrinsic curvature (∂iκ = 0), then
the left-hand side of the above expression vanishes. We can then use Lemma 4.6.2, which
asserts the invariance of conformal Killing forms under a change to a conformal metric.
We are then left with

∇i

(√
ĝ
(

ĝil∇̂l
(

ĝjmYm)+ ∇̂jYi − δi
j∇̂mYm

))
= 0.

The unique solution of this equation is Yi = 0, since a compact 2-manifold with con-
stant negative curvature has no non-trivial conformal Killing fields. (This is implied by
Theorem 4.44 of [Bes07], as mentioned in Remark 3.3 of [BK17].) Thus our decomposi-
tion (4.18) simplifies to the desired expression (4.17).

We now assume that the momentum constraintHi = 0 holds, as it did in the previous
proposition. Seeing the usefulness of the transverse and traceless part of the gravitational
momentum, we make the following definition.

Definition 4.6.2 (Conformal momentum). The conformal momentum pij is a completely
transverse and traceless (where we will keep the over-line to emphasise this property)
symmetric rank-2 tensor (density) defined by

pij := e2λπij. (4.19)
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Having already imposed the momentum constraint Hi = 0, we now turn to the
Hamiltonian constraintH = 0.

Proposition 4.6.2. In the case g > 1 and using the definition of the conformal momentum (4.19),
the Hamiltonian constraint (4.14) takes the form

∆ĝλ = β+e2λ + β−e−2λ + β0, (4.20)

where we have defined the coefficients

β+ :=
1
4

κ2, β− := −1
2

ĝik ĝjl pij pkl

det ĝ
, and β0 :=

1
2

R̂ = −1
2

.

Recalling that κ is the trace of the extrinsic curvature, the solutions are classified into the
following cases.

1. If κ2 = 0, then there are no solutions;

2. If κ2 > 0, and ĝij and pij are smooth, then a unique solution λ exists and is smooth;

3. If κ2 > 0, and ĝij and pij are in H s and H s−1, respectively, then a unique solution λ

exists and is in H s+1.

Proof. See [Mon86] for details.

Working backwards, our procedure above can therefore be outlined as follows.

1. Choose a Riemannian metric ĝ on a spacelike hypersurface Σ (with g(Σ) > 1 and
constant non-zero mean extrinsic curvature κ) with R̂ = −1, which exists by the
Uniformisation Theorem;

2. Choose a symmetric transverse and traceless (with respect to ĝ) tensor (density) pij;

3. Solve (4.20) for λ;

4. Set

gij = e2λ ĝij and πij = e−2λ pij − 1
2

κ
√

(2)ggij. (4.21)

In this way we go from the space M−1 and a choice of pij and obtain a metric in M and
its conjugate momentum πij.

One may wonder what has happened to our lapse N and our shift Ni, even though
we anticipate taking simple choices of these (if allowed). We have already required the
time-slices to have constant non-zero mean extrinsic curvature κ, which can be thought of
as a temporal gauge fixing, specifying the lapse. As a spatial gauge we require our metric
ĝ to remain within its original global section throughout the dynamics, which specifies
the shift. We will state the explicit equations that N and Ni must satisfy in Section 4.8,
though for now we assume that they are being satisfied.

Our next step is to translate the above steps into terms that involve our Teichmüller
space T (Σ), which is diffeomorphic to the quotient M−1/D0 (we will omit the Sobolev
parameter s and focus on smooth maps only). Recall that since our principal bundle
M−1 → M−1/D0 is trivial by Proposition 4.4.4, it has global sections diffeomorphic to
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R6g−6 (for genus g := g(Σ)). We set (qα)6g−6
α=1 to be coordinates on this space, allowing us

to express any global section as a smooth set of metrics ĝ:

(qα)6g−6
α=1 →

{
ĝij(xk, qα) and R̂ (ĝ (qα)) = −1

}
,

where we have chosen coordinates (xk)k=1,2 on the hypersurface. With points on our Te-
ichmüller space in mind, we hope to find corresponding covectors, which will parametrise
the cotangent bundle.42 In this direction, we make the following definition.

Definition 4.6.3 (Momentum components). Let ĝij(xk, q̊α) be a point on a global section
of the trivial bundle M−1 → M−1/D0, and pij(xk) a symmetric transverse and traceless
tensor (density) with respect to it. We define momentum components (pα)

6g−6
α=1 of pij(xk)

conjugate to (qα)6g−6
α=1 to be

pα :=
∫

Σ

(
pij(xk)

∂ĝij

∂qα
(xk, qβ)

)∣∣∣∣
qα=q̊α

.

Note that we will often write (pα)α and (qα)α without specifying the range of α, which
will always be from 1 to 6g− 6 (when g > 1).

We now have the following result.

Proposition 4.6.3. The components (pα)
6g−6
α=1 uniquely determine pij(xk).

Idea of a proof. (See [Mon89] for details.)
This result follows from the fact that the space of symmetric transverse and trace-

less rank-2 tensor densities at a point ĝij(xk, q̊α) has dimension 6g− 6, as is the space of

tangent vectors ∂ĝij
∂qα (xk, qβ)

∣∣∣
qα=q̊α

. Noting that pij(xk) integrated over Σ against some ten-

sor field (LV ĝ)ij vanishes (for some vector field V on Σ), one can argue that pα indeed
specifies pij(xk).

With the above result we may consider (pα)α to be components of a covector of our
Teichmüller space T (Σ) ∼= R6g−6 above a point (q̊α)α. Thus, (qα, pα)

6g−6
α=1 are coordinates

on the cotangent bundle of the Teichmüller space: T ∗T (Σ) ∼= R12g−12. We know that the
points of T ∗T (Σ) label the D0-equivalence classes of solutions to the constraint equa-
tions (4.14) with constant non-zero mean extrinsic curvature κ 6= 0.

Translating our previous procedure to include the current terms: for a spacelike hy-
persurface Σ with g(Σ) > 1 and constant non-zero mean extrinsic curvature κ, choosing
a point (qα, pα)α on T ∗T (Σ) determines a Riemannian metric ĝij(xk, qα) with R̂ = −1
and a symmetric transverse and traceless (with respect to ĝ) tensor (density) pij(xk). We
can then solve (4.20) for λ and set our gij and πij as in (4.21).

Finally, we wish to determine the exact (implicit) form of the Hamiltonian whose
dynamics resides on T ∗T (Σ). Note that the constraint terms Hi and H have vanished
since we assume our solution parametrised by some (xk, qα, pα, κ) to solve them—we

42This procedure is a natural in the Hamiltonian formalism of mechanics and symplectic geometry in
general. We will not explore the details of this field here, simply remarking that cotangent bundles are not
so foreign as one may expect.
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denote this assumption with an asterisk on the action. We substitute our expressions for
πij and gij into the action (4.12) to find

(3)SADM∗ =
∫
[0,1]

dt
∫

Σ
d2x

(
πij∂tgij

)
=
∫
M

d3x
(

e−2λ pij − 1
2

κ
√

ĝĝij
)

∂t

(
e2λ ĝij

)
=
∫
M

d3x
(

pij∂t ĝij − κ
√

ĝ∂te2λ − 1
2

e2λκ
√

ĝĝij∂t ĝij

)
,

where we have simply expanded all of the terms. Now, using ĝij∂t ĝij = −ĝij∂t ĝij and
absorbing factors of κ

√
ĝ into the time-derivatives, we have

(3)SADM∗ =
∫
M

d3x
(

pij∂t ĝij − κ
√

ĝ∂te2λ +
1
2

e2λκ
√

ĝĝij∂t ĝij
)

=
∫
M

d3x
(

pij∂t ĝij − ∂t

(
e2λκ

√
ĝ
)
+ e2λ ĝij∂t

(
1
2

κ
√

ĝĝij
))

.

Next, using our (gauge) choice that κ is constant over Σ, we find

(3)SADM∗ =
∫
M

d3x
(

pij
∂ĝij

∂qα

dqα

dt
− ∂t

(
e2λκ

√
ĝ
)
+

dκ

dt
e2λ
√

ĝ + e2λ ĝijκ∂t

(
1
2

√
ĝĝij

))
.

(4.22)

We claim that the final term of the right-hand side of (4.22) vanishes. To see this, note that
the vector ∂t ĝij is an element of the tangent space TĝM−1, so by Theorem 8.2 of [FT84] it
can be decomposed (in an L 2-orthogonal way) as

∂t ĝij = ξij + (LV ĝ)ij ,

for V some vector field (which is unique) and ξ ij is transverse and traceless with respect to
ĝ. As argued in [Mon89], from this we find an expression for ∂t

( 1
2

√
ĝĝij) that is traceless

with respect to ĝ, and so indeed the final term of (4.22) vanishes.
Using this, introducing the momentum components pα from Definition 4.6.3 and in-

tegrating a total time-derivative, (4.22) becomes

(3)SADM∗ =
∫
[0,1]

dt
(

pα
dqα

dt
+

dκ

dt

∫
Σ

d2x
√

(2)g
)
−
∫

Σ
d2x

(
κ
√

(2)g
)∣∣∣∣t=1

t=0
. (4.23)

We have almost reached our goal. The final term of (4.23) will vanish because the
boundary terms will not contribute to the action. Also, we have already assumed our
Cauchy surface to be of constant mean extrinsic curvature, but we still have the ability to
choose what time-slicing to make so that (4.23) takes an even simpler form. We make the
following definition of our desired time-slicing.

Definition 4.6.4 (York time). The time-slicing given by York time T is defined for a hy-
persurface of constant non-zero mean extrinsic curvature κ by

T := −κ,

seen as a time function onM. It was first introduced in [YJ72].
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By employing York time to fix the time coordinate t = T, our reduced action (4.23)
takes the elegant form

(3)SADM∗ =
∫

dT
(

pα
dqα

dT
−
∫

Σ
d2x

√
(2)g

)
. (4.24)

By inspecting this action integral we make the following definition.

Definition 4.6.5 (ADM Hamiltonian). The ADM Hamiltonian HADM is given by

HADM(qα, pα, T) :=
∫

Σ
d2x

√
(2)g =

∫
ΣT

d2x
(

e2λ
√

ĝ
)
(qα, pα, T).

This is the area functional for the hypersurface ΣT,43 where we have included the sub-
script as a reminder of the dependence on the York time.

This Hamiltonian is independent of the choice of global section of M−1 → M−1/D0,
since the volume functional is independent of the choice of section, and so the Hamilto-
nian is as well. Though implicitly defined, this is a remarkable Hamiltonian as it informs
us that the areas of the Cauchy surfaces that foliate spacetime into time-slices are what
determine the Hamiltonian dynamics of the system, taking place on the cotangent bundle
of the Teichmüller space T ∗T (Σ).

It also gives the desired form of the action as

(3)SADM∗ =
∫

dT
(

pα
dqα

dT
− HADM

)
,

where we recognise the integrand as taking the form L = q̇i pi − H.
The following section gives a brief overview of the zero and unit genus cases of the

same problem addressed in this section: reducing the Einstein equations to a discussion
of Teichmüller spaces.

4.7 Genus Case Studies: Zero and Unit Genus

The analysis in the previous section was done in the case g > 1. We made the comment
at the beginning of last section that the zero genus case was vacuous, because of the lack
of Teichmüller dimensions. This can also be explicitly seen with the new tools we have
developed. Consider the Hamiltonian constraint in the form given by Proposition 4.6.2:

∆ĝλ = β+e2λ + β−e−2λ + β0. (4.25)

In the case g = 0, the β-coefficients take different forms than before. According to [Mon89],
β− will vanish as a direct consequence of having a Teichmüller space of zero dimension
(since this is a measure of the transverse-traceless symmetric 2-tensors on a space, which
vanishes on S2). We also discover that β0 > 0, and when ĝ is taken to be the round met-
ric on S2 then β0 = 1

2 R = 1 (see Example 2.2.3). With these in mind it can be shown
that (4.25) has no solutions.

We now turn to the final case, where g = 1. With our Uniformisation Theorem, we
can now assume any given metric on such a space to be conformal to a flat metric ĝ. The

43Note that since the Hamiltonian is dependent on time, energy is not conserved by evolution of the
mechanics of the system. This is because the surfaces ΣT, though diffeomorphic to one another, do not have
equal area.
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same arguments follow as in the last section, and one obtains that the vectors Yi found
in the decomposition of the gravitational momentum πij (4.18) are Killing vectors with
respect to ĝ. These fields form a 2-dimensional space.

Another 2-dimensional space that one finds is the space of conformal momenta pij

defined by (4.19), which, in the unit genus case are arbitrary transverse and traceless
(with respect to ĝ) symmetric tensor densities. Now, β0 = 0 since the Ricci scalar of ĝ
vanishes by flatness, and both β+ and β− are constant because of the covariantly-constant
nature of pij. This reduces our Hamiltonian constraint to

∆ĝλ = β+e2λ + β−e−2λ. (4.26)

If one of β+ or β− vanishes, then (4.26) only has a solution when the other is also zero,
which implies that λ is a constant. By discussion in the Appendix of [Mon86], a unique
solution in the case of β+ and β− both non-zero exists via

e4λ = −β−
β+

< 0.

In this case, too, λ is a constant.
Consider the case where κ > 0. Instead of employing York time, we fix our time

coordinate as

κ = exp
(

t
(2π)2

)
. (4.27)

(For simplicity, we will not introduce a new font—such as for the York time T—instead
keeping t as the time coordinate.) Along with this choice, we can choose coordinates
(qα)α=1,2 and momentum components (pα)α=1,2 to parametrise the 2-dimensional Teich-
müller space and its associated cotangent space. If we consider the conformal momenta
pij and the metric ĝ to be expressed in terms of these canonical variables (qα, pα)α=1,2,
then the reduced action (found in (4.24) for the g > 1 case) takes the form

(3)SADM∗ =
∫

dt

pα
dqα

dt
−
(

2ĝik ĝjl pij pkl

det ĝ

) 1
2
+ boundary terms.

The fixing of the time coordinate (4.27) ensures that the explicit Hamiltonian above is
independent of time. The evolution equations induced by this Hamiltonian can be solved
explicitly, as found in [Mar84].44 In this way, (2 + 1)-dimensional General Relativity can
be ‘solved.’

Our final section returns to the lapse and the shift, inspecting the equations they must
satisfy, before presenting the spacetime split Einstein equations, called the ‘Einstein flow.’

4.8 Lapse, Shift and Einstein Flow

Much of the analysis in the previous sections ignored the specifics of the lapse N and
the shift Ni. This was partly because of Proposition 4.5.1 allowing us to choose a glob-
ally vanishing shift. We had also introduced normal coordinates (N = 1) and geodesic
coordinates (Ni = 0), whose choice greatly simplifies the formulation of the Einstein

44See [Car95b] for details, as well.
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equations in the ADM formalism. However, as noted in [Mon89], geodesic normal coor-
dinates may encounter difficulties (known as geodesic focusing), and so it is worthwhile
to explore the specific equations that the lapse and the shift must satisfy. As with our
genus case studies, more effort has been made to explore the case g > 1.

Proposition 4.8.1. For metric ĝ with Ricci scalar R̂ = −1 on a (2 + 1)-dimensional spacetime
with Cauchy surface Σ with constant non-zero mean extrinsic curvature κ and genus g(Σ) > 1,
the equation satisfied by the lapse N is

e2λ ∂κ

∂t
= −∆ĝN + NP, (4.28)

where we have defined

P :=
e−2λ

det ĝ

(
ĝik ĝjl pij pkl +

1
2

e4λκ2 det ĝ
)

.

It has a unique smooth solution N, which is positive on Σ if and only if ∂tκ > 0.

Idea of a proof. (See [Mon89] for details.)
The function P is positive, so by linear elliptic partial differential equation theory

(see Chapter 6 of [Eva10] for the general theory), there is a unique solution N. By the
maximum principle, if ∂tκ > 0 then N > 0. Thus our choice t = T gives a unique smooth
positive solution N.

In the case of g = 1, fixing the time as in (4.27) gives a unique solution to the corre-
sponding equation (4.28) for the lapse:

N =
1

(2π)2κ
.

(See [Mon89] for details.)
Though Proposition 4.5.1 grants us the ability to choose a vanishing shift, we will still

briefly discuss the equation it must satisfy under certain gauge conditions.

Definition 4.8.1 (CMCSH). Consider a fixed background Riemannian metric g̃, denote
its associated Christoffel symbols Γ̃k

ij and let a vector field V be defined locally as

Vk := ĝij
(

Γ̂k
ij − Γ̃k

ij

)
.

If we require Vk = 0, then we have spatial harmonic coordinates. Often these are com-
bined with our coordinate choice of York time: the extrinsic mean curvature κ is propor-
tional to the time coordinate (that is, κ = −t). This is called the constant mean curvature
coordinate choice, and together these are known as constant mean curvature and spatial
harmonic coordinates, or CMCSH.

With the above definition in mind, we have the following equation for the shift under
the choice of CMCSH coordinates.

Proposition 4.8.2. In CMCSH coordinates and under the same assumptions as Proposition 4.8.1,
the equation satisfied by the shift Ni is

hij
(

Γ̂k
ij − Γ̃k

ij

)
− 1

2

(
∇̂ihk

i + ∇̂ihik − ∇̂khi
i

)
= 0, (4.29)
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where indices are raised and lowered by ĝ (with associated Christoffel symbols Γ̂k
ij) and we have

defined

hij := −2Nκij + ∇̂iNj + ∇̂jNi.

Under (4.29) and the equation satisfied by the lapse (4.28), the CMCSH ‘gauge fixing’ is
preserved throughout the dynamics of the system.

Proof. See [Mon07] for details.

Note that (4.29) does admit a choice of zero shift, as we hoped. Also, one reason
for imposing the CMCSH conditions is that now the Einstein equations with these con-
straints form what is known as an elliptic-hyperbolic system, as the Einstein equations
can be written in hyperbolic form (see the discussion at the end Section 4.1, or in com-
pleteness throughout [Rin09]), and the equations for the shift and the lapse are elliptic.

Using the decomposition from the previous sections, we are able to write the Ein-
stein equations as coupled equations dictating the time-evolution of the metric and the
extrinsic curvature of the Cauchy surface.

Definition 4.8.2 (Einstein flow). For a (2+ 1)-dimensional spacetime (M, g) with a Cauchy
surface Σ (whose induced metric, Levi-Civita connection and Ricci tensor are gij, ∇i and
(2)Rij) with extrinsic curvature κij (with trace κ), lapse N and shift Ni, the Einstein equa-
tions (with zero cosmological constant here for simplicity) can be written in a form called
the Einstein flow:

∂tgij = −2Nκij +∇iNj +∇jNi;

∂tκij = N
(
(2)Rij − 2κikκk

j + κκij

)
−∇i∇jN + Nk∂kκij + κik∂jNk + κjk∂iNk.

If we place ourselves in geodesic normal coordinates, where the lapse is unity and the
shift vanishes, these take the simpler form:

∂tgij = −2κij and ∂tκij =
(2)Rij − 2κikκk

j + κκij,

where the spatial derivatives have vanished, leaving us with coupled ordinary differen-
tial equations.45

The Einstein flow is combined with the constraints that arise from the Gauss-Codazzi
equations (4.2), namely:

∇jκij −∇iκ = 0 and (2)R + κ2 − κijκ
ij = 0,

which are simply the Hamiltonian and momentum constraints (4.14).

45In [Mon89], Moncrief writes that

this choice [of geodesic normal coordinates] eliminates all spatial derivatives in the evolu-
tion equations and thus effectively reduces them to decoupled systems of ordinary differential
equations along each normal geodesic. Certain particular solutions (including those obtained
by taking quotients of Minkowski space by suitably chosen discrete subgroups of the Lorentz
group) can in fact be globally foliated by geodesic normal slices. In general, however, one
expects Gaussian normal coordinate systems to develop singularities unrelated to the natural
boundaries of the space-times under study. In any case the solution of Einstein’s equations
through the use of Gaussian coordinates does not really realize Witten’s objective to reduce
these equations to a finite-dimensional Hamiltonian system defined on the cotangent bundle
of Teichmüller space.

This will not be explored further, though we expect that a better understanding of the possible alternative
foliation of spacetime by null hypersurfaces, as explored in Chapters 3 and 4 of [Are13], among other sources.
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As we had hoped, we have the following.

Proposition 4.8.3. The Einstein flow equations with constraints form a system of partial differ-
ential equations giving the time-evolution of the metric and the extrinsic curvature of an embedded
Cauchy surface of a spacetime manifold.

Proof. As mentioned above, the constraint equations arise from the Gauss-Codazzi equa-
tions: taking two traces and using a normal coordinate system to simplify calculations—
since a tensor identity is valid in any coordinates—gives the desired result. The evolu-
tion equations for the metric and the extrinsic curvature come from the Hamilton-Jacobi
equations for the ADM action; equivalently, they arise from a long computation first done
in the original ADM paper [ADM59] involving manipulations of the Einstein equations
themselves. Note that the evolution of the metric is seen in (4.9), but the evolution of the
extrinsic curvature requires significant effort to find.

Until now, we have not explicitly mentioned the initial value (Cauchy) problem in
General Relativity. Entire textbooks—for example, see [Rin09] or [CB08]—have been
written on the subject of viewing the Einstein equations as partial differential equations,
and as such we will keep our discussion brief. Though they appeared in 1915, it was
not until 1952 that Choquet-Bruhat (in her paper [CB52], using the covariant formalism;
in [CBR83], she proved this for the time-space split formalism) proved that under certain
gauge choices, the Einstein equations can be written as a quasi-linear hyperbolic system
of equations, and form a well-posed initial value problem given data on a Cauchy surface
(as it was later formulated). The quickest way to argue that this is the case is to note that
they can be written as

gµν(u)∂µ∂νu = F(u, ∂u),

for u = gµν the solution metric and F(u, ∂u) the function containing all terms that are not
of highest (second) order. The left-hand side appears for similar reasons as when it does
in the linearisation of Ricci flow—see (3.17)—and since the coefficients gµν(u) depend on
u, the equations are quasi-linear. To see hyperbolicity, return to Definition 2.3.1 and note
that since the coefficients gµν are (the inverse of) a Lorentzian metric, we will indeed get
one eigenvalue of opposite sign.46

The hyperbolic nature of the Einstein equations allows us to draw the comparison
with the canonical hyperbolic equation: the wave equation (2.9) (along the same vein as
in Ricci flow when we made qualitative comparisons to the heat equation (2.10)). From
this, the postulate of relativity that information cannot propagate faster than the speed of light
appears in the guise of gravitational waves: the waves arising from the hyperbolic nature
of the Einstein equations propagate at the speed of light!

46If the metric was Riemannian then the operator gµν(u)∂µ∂ν would be elliptic—a Laplacian!

- 109 -



CHAPTER 4. GENERAL RELATIVITY

- 110 -



Chapter 5

Conclusions

At the onset of this project, a broad goal of combining Ricci flow and General Relativity
was established. Several possible paths were explored, and eventually this text was born.
The primary objectives were to inspect the Einstein equations and Ricci flow in the same
dimension, and to hope that one could learn from the other via comparisons. In the end,
the text used the Uniformisation Theorem to link the 2(-spatial)-dimensional versions of
the two subjects, first using the normalised Ricci flow to give a proof of the Uniformi-
sation Theorem, before applying it to General Relativity. In the latter part, it split the
discussion into three parts (divided by their conformal class) and allowed one to work in
the simpler case of a metric with constant curvature, which was related to an initial given
metric by a conformal transformation.

Though this is the end result, several avenues for future exploration of intersections
between Ricci flow and General Relativity lie in wait. We have presented these as ex-
amples, and have kept discussion informal, presenting resources for interested readers
instead of bogging down the concluding chapter with technical details.

Example 5.1 (As forming singularities). Though our discussions in Chapter 3 had the
conclusion that in 2 dimensions the normalised Ricci flow does not encounter singulari-
ties, the general case is vastly different. Much of the early work on Ricci flow (see [Ham82],
for a start) dealt with the case of positive curvature, wherein (for n ≥ 3) singularities form
as the curvature blows up. Major steps in confronting these difficulties were made by
Perelman in his proof of the Poincaré Conjecture (Theorem 3.1) in the papers [Per02], [Per03a]
and [Per03b], where he showed that a method called surgery can be employed indefi-
nitely to deal with singularities.

On the other hand, stemming from the work of Penrose in [Pen65] and Hawking
in [Haw66], singularities in General Relativity began to be explored rigorously.1 In (2 +
1)-dimensional General Relativity, no solutions to the Einstein equations that have cur-
vature singularities have been found (though in higher dimensions, many such metrics
exist: see any reference on General Relativity for details), though an interesting exam-
ple of a (2 + 1)-dimensional black hole can be found in Example 4.1.3, and in [MR93] it
is shown that an initial metric (describing ‘dust’) in (2 + 1) dimensions may collapse to
form the BTZ metric (4.1).

Nevertheless, the Einstein flow as presented in Section 4.8 (and its higher-dimensional
counterparts) may encounter singular points, as discussed in the footnote following Defi-
nition 4.8.2. As noted in the footnote, a starting point could be to explore null foliations of

1Loosely, Penrose studied black hole-type singularities, while Hawking’s results dealt with Big Bang-type
singularities.
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spacetime (an introduction to this can be found in Chapters 3 and 4 of [Are13]). Perhaps
the study of singularities in General Relativity could learn from techniques developed
for Ricci flow.

Example 5.2 (Space of metrics). Both Ricci flow and the Einstein equations are partial
differential equations whose solutions are semi-Riemannian metrics. The abstract tools
of Hilbert manifolds developed in Section 2.4 allow one to see the solutions of these
equations as subsets of a space of metrics M (possibly with a Sobolev parameter s to
keep track of differentiability). We have described the solution to Ricci flow as a curve
g(t) : [0, ∞) → M , and the solution to the Einstein equations as a subspace (quotiented
by diffeomorphisms).

It could be interesting to inspect the space M and its properties in more detail: with
an ILH structure it becomes a smooth (Hilbert) manifold, to which we can associate
a (Hilbert-)Riemannian metric (see Definition 2.4.1). Though it is infinite-dimensional,
what information can we glean about its topology? Or, depending on what metric we
grant it, what do geodesics look like? Thus far, we have only introduced an intrinsic
metric induced by the inner product associated to the underlying Hilbert space, as well
as our L 2-metric described in Example 2.4.2. Could a metric exist whose geodesics are
exactly the curves g(t) that are Ricci flow solutions?

On a similar vein, Einstein metrics play a role in both (normalised) Ricci flow and the
Einstein equations: they are fixed points of the former (see Example 3.1.3) and solutions
of the latter (see Example 4.1.1). In fact, Andersson and Moncrief explored in [AM11] to
what extent Einstein metrics are ‘attractors’ for the Einstein flow.2 In [IMS11], Isenberg
et al. state that the size of the neighbourhood in M of a constant curvature metric ĝ on
which Ricci flow has ĝ as an attractor is of interest. As promising as those two statements
may seem, it is entirely possible that no information can be connected via this link, as
many partial differential equations may have Einstein metrics as solutions or fixed points
because of the simple definition of Einstein metrics.

The following idea arose from a conversation with Dr. Pau Figueras, and has a more
physical perspective than the above examples.

Example 5.3 (Black holes in Anti-de Sitter space). In 1983, Hawking and Page (see [HP83])
studied black holes at thermal equilibrium in Anti-de Sitter space (with cosmological
constant Λ < 0).3 They discovered that for temperatures above a critical temperature
T0 = 1

2π

√
−Λ, there exist two possible masses for black holes at equilibrium, amounting

to two real solutions of a quadratic equation for their radii. These ‘large’ and ‘small’ black
holes are thermodynamically stable and unstable, respectively.

Note that mass may be defined in the ADM formalism—called the ADM mass—by
considering asymptotically flat (globally hyperbolic) spacetimes and defining the energy
E to be proportional to the integral over increasingly-large spheres S$ (whose radii $ tend
to infinity) of the normal projection of a difference of derivatives of the metric g on the
Cauchy surface:

E :=
1

16π
lim
$→∞

∫
S$

(
∂µgµν − ∂νgµ

µ

)
ην.

2As they note in the paper, the end result is parallel to the results presented in [AMT97] and [Mon07], a
simpler version of which roughly forms the contents of our Chapter 4.

3This can be thought of as black holes confined to a finite-sized box, as Anti-de Sitter has natural boundary
conditions similar to those imposed by a box at some finite radius. For details, see Chapter 5.2 of [HE73].
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(See Chapter 11.2 of [Wal10] for the precise definition.) The important point to note is that
the ‘large’ and ‘small’ black holes described above have different, well-defined masses.

In 2006, Headrick and Wiseman (see [HW06]) considered the following form of Ricci
Flow

∂tgµν = −2Rµν + 2Λgµν. (5.1)

They suggested that this could be used to flow a metric describing the unstable ‘small’
black hole to either the ‘large’ black hole or to ‘hot empty space.’ In the first instance, the
black hole simply grows in size. However, this is peculiar, since Woolgar (see [Woo08])
studied the conservation of mass along Ricci flow—though via a different formulation
than (5.1)—and showed that (under some assumptions) it is conserved. The second
instance—going from the ‘small’ black hole to ‘hot empty space’—is also of interest, since
going from the presence of a black hole to empty space involves a change in topology—
therefore a singularity must arise in the flow.
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Appendix A

Supplement to Section 2.1

The following appendix includes basic constructions of manifolds (Section A.1), vector
bundles (Section A.2) and connections (Section A.3), which are abstractions on the defini-
tions found in the main text, as well as a handful of additional definitions (Section A.4).
It has been written to be self-contained, though most of its information can be read in
partnership with Section 2.1 of the main text. These definitions can be found in every
differential geometry textbook: for example, see [Lee13].

A.1 Manifolds

The study of physics often is described by partial differential equations. The first gener-
alisation of the real n-dimensional space Rn on which these equations live is the concept
of a space that locally looks like Rn: a manifold.

Definition A.1.1 (Topological manifold). An n-dimensional manifold, or n-manifold, de-
notedM, is a paracompact Hausdorff1 space such that every point has a neighbourhood
that is homeomorphic to an open set in Rn.

The above defines a topological n-manifold, of which we give two brief examples.

Example A.1.1 (Euclidean space). Trivially, n-dimensional Euclidean space Rn is an n-
manifold.

Example A.1.2 (Product manifold). ForM an m-manifold anN an n-manifold, the prod-
uct manifoldM×N is an (m+ n)-manifold, where the topology is the product topology.

We are more interested in manifolds with the additional structure of differentiability,
or smoothness. As such, we consider the maps between the open sets of the manifold
and Rn more closely so as to define coordinate patches and transition functions between
the patches.

Definition A.1.2 (Differentiable manifold). LetM be an n-manifold. Then,

1. For U ⊂ M an open set (called a coordinate patch) and ϕ : U → Rn an open
and injective map (called a coordinate system, or chart), we write the coordinates
(xi)n

i=1 of a point x in U for xi = ϕi(x), where ϕi : U → R are the slices of ϕ along
the standard Euclidean basis of Rn;

1A topological space is Hausdorff if any two points can be separated by non-intersecting open sets and
paracompact if every covering has a refinement that is locally finite (that is, every point has a neighbour-
hood that only intersects a finite number of elements of the refinement). Note that a Hausdorff space is
paracompact if and only if every cover admits a partition of unity subordinate to it.
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2. The transition functions between coordinate systems ϕα : Uα → Rn and ϕβ : Uβ →
Rn are the maps ϕβ ◦ ϕ−1

α and ϕα ◦ ϕ−1
β , which, when Uα ∩ Uβ is non-empty, are

defined from the image of this intersection in Rn to Rn—and thus we have a well-
established notion of differentiability of such functions;

3. An atlas onM is an open coveringM = ∪αUα equipped with coordinate systems
ϕα : Uα → Rn and is called Ck (where k is a positive integer or infinity) if all well-
defined transition functions between its coordinate systems are Ck. A Ck-structure
onM is an equivalence class of Ck-atlases where two are equivalent if their union is
once again a Ck-atlas (we will always assume our atlas is maximal to this property:
any atlas compatible with it will be contained in it), and a smooth manifold is a
manifold with a C∞-structure (a smooth structure);

4. If all transition functions in an atlas preserve orientation (that is, have positive Ja-
cobian), thenM is called orientable, and an orientation onM is an atlas satisfying
this condition;

5. A manifold is called closed if it is compact and boundaryless, a property most of
the manifolds in this text possess.

This sharpens the definition of a topological manifold to that of a differentiable man-
ifold; in this text, all manifolds are equipped with an atlas and will be smooth and ori-
entable unless explicitly stated otherwise. We now use this smooth structure to define
smooth functions on the manifold, smooth maps between manifolds, and the isomor-
phisms of smooth manifolds: diffeomorphisms.

Definition A.1.3 (Smoothness). LetM be a smooth manifold. Then,

1. A function f :M→ R is called smooth, or of class C∞(M), if for every coordinate
system ϕα in the atlas, f ◦ ϕ−1

α is smooth in the usual sense;

2. For manifolds M and N , a function ψ : M → N is called smooth if for each
f ∈ C∞(N ), the function f ◦ ψ : M → R is smooth. If ψ is bijective with smooth
inverse then ψ is a diffeomorphism. IfN =M, the group (with composition given
by function composition) formed by the set of all such (orientation-preserving) dif-
feomorphisms is called the diffeomorphism group ofM and is written D(M).

One example of a particularly nice manifold is one that is also a group.

Example A.1.3 (Lie group). A group G is a Lie group if it is a smooth manifold and its
inversion and composition maps are smooth. Symbolically, we require the smoothness
of the mapping Υ : G × G → G given by

Υ(χ,υ) = χ−1υ.

In the dimensions of interest to this text, we have the following result.

Proposition A.1.1. Any homeomorphic smooth n-manifolds are diffeomorphic if n ≤ 3.

The above definitions allow us to understand and eventually differentiate functions
that live on manifolds. An example of such a function is the temperature function on the
Earth. Unfortunately, on a general manifold, it is not possible to ‘subtract’ nearby points
to find a vector that points from one to the other, like it is in Rn. To generalise this notion,
we define the concept of a tangent vector defined at a point on the manifold2 as follows.

2Note that we now transition from using x as our typical point on the manifold to p, because x will be
associated to the coordinates (xi)n

i=1 associated to some patch around p ∈ M.
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Definition A.1.4 (Tangent vector). At a point p ∈ M, we define a tangent vector, or
derivation, to be an R-linear function Vp : C∞(M)→ R that satisfies a Leibniz-type rule:

Vp( f g) = Vp( f )g(p) + f (p)Vp(g) for f , g ∈ C∞(M).

These are named as such because the set of all tangent vectors at p ∈ M forms a vector
space TpM known as the tangent space3 at p ∈ M. If we choose a tangent vector at
every point on the manifold such that for all f ∈ C∞(M) the function Vp( f ) is in C∞(M)
(varying points p ∈ M), then we obtain the vector field V :M×C∞(M)→ R.

We note that for coordinates (xi)n
i=1, the partial derivatives along these coordinate

directions

∂i :=
∂

∂xi ,

form a basis for the tangent space. These local coordinates are often used in physics and
will simplify our notation once we begin to work with tensors.

The previous definition of a tangent vector does not seem to relate nearby points
until the link is drawn by the following equivalent definition of a tangent vector, this
time using curves4 along the manifold.

Definition A.1.5 (Tangent vector #2). Consider a curve γ : (−ε, ε)→M such that γ(0) =
p. Then the velocity of this curve at p ∈ M is a tangent vector Vp defined on a function
f ∈ C∞(M) as5

Vp( f ) =
d
dt

f (γ(λ))
∣∣∣∣
λ=0

.

This definition is useful because much of this text will involve the inspection of curves
on manifolds. We will be interested in the lengths of these curves, but before we enter
the realm of metric geometry (where this is possible), we take a detour into the world of
vector bundles, which nicely generalise the above notions.

A.2 Vector Bundles

Consider affixing to every point of a manifold a space. This is a general construction
known as a fibre bundle, the simplest of which is where the space affixed is a vector
space. To make this idea more precise we make the following definition.

Definition A.2.1 (Vector bundle). A k-dimensional vector bundle over a manifold M
(called the base space) is an open surjective map π : E → M (where E is a manifold
known as the total space) such that the following conditions hold:

3To build on the example of a Lie group from Example A.1.3: a Lie algebra is a vector space g equipped
with an antisymmetric bilinear map [·, ·] : g× g→ g (called the Lie bracket) satisfying the Jacobi identity:

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, for all u, v, w ∈ g.

Note that for a Lie group G, the tangent space at the identity e ∈ G forms the Lie algebra associated to
the Lie group G when the commutator of vector fields is taken as the Lie bracket, which can be checked to
satisfy the Jacobi identity.

4Here we use the word curve as meaning a function from a real interval to a manifold, ignoring com-
pletely the troubles of other areas of mathematics with this word.

5Note that we will use λ instead of the traditional t as the parameter of the curve because of the important
role of time in this text.
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1. For every point p ∈ M, the fibre over p, Ep := π−1(p), is a k-dimensional vector
space;

2. Every point p ∈ M has a neighbourhood U ⊂ M with corresponding diffeomor-
phism ϕU : π−1(U ) → U ×Rk called a local trivialisation such that the following
diagram commutes:

π−1(U ) U ×Rk

U

ϕU

π prU

where prU is the projection: prU (q, v) = q for q ∈ U and v ∈ Rk;

3. The local trivialisations are fibre-wise linear: for all q ∈ U , ϕU |Eq
: Eq → {q} ×Rk

is R-linear.

We call a right-inverse of π (that is, s :M→ E such that π ◦ s = 1) a section, and denote
by Γ(E) the set of all sections of the vector bundle π : E → M. We assume our sections
to be smooth, and equip Γ(E) with a vector space structure by the following relation for
sections s, ς ∈ Γ(E):

(αs + βς)(p) = αs(p) + βς(p),

where α and β are real numbers and p ∈ M. If α and β are taken to be in C∞(M) then
the above expression (with α and β evaluated at p on the right-hand side) gives Γ(E) a
C∞(M)-module structure.

We define a vector bundle morphism to be a map φ : E → F between vector bundles
π : E →M and $ : F → N such that the following diagram commutes:

E F

M

φ

π $

If the map is also a diffeomorphism than it is an isomorphism of vector bundles.

Before inspecting several key examples of the above abstract definitions, we introduce
two fundamental notions: the pull-back and the push-forward, which will be recurring
tools in our study of differential geometry.

Definition A.2.2 (Pull-back and push-forward). LetM and N be manifolds. Then,

1. For ψ : M→ N a smooth map and f ∈ C∞(N ), the pull-back of f by ψ is written
ψ∗ f , is given by

ψ∗ f := ψ ◦ f ,

and is in C∞(M);

2. For ψ :M→ N a smooth map between manifolds, the push-forward (or differen-
tial) of ψ at a point p ∈ M is a linear map (ψ∗)p : TpM→ Tψ(p)N given by

(ψ∗)p(Vp)( f ) := Vp( f ◦ ψ),

for Vp ∈ TpM and f ∈ C∞(M).
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We now have the following useful examples of vector bundles.

Example A.2.1 (Trivial bundle). The manifoldM×Rk is a k-dimensional vector bundle
over M, known as the trivial bundle by considering the trivial projection of the space
M. A general vector bundle is trivial if it is isomorphic to the trivial bundle, and an
elementary result is that a bundle is trivial if and only if it has a global section—that is,
a section defined on the whole base manifold.

A sub-example of this would be to consider the cylinder, which is a one-dimensional
vector bundle (also known as a line bundle) over the circle S1.

Example A.2.2 (Dual bundle). Given a vector bundle π : E → M we can form the dual
bundle, whose base space is E∗, has dimension equal to the dimension of E and whose
fibres are defined as the dual vector spaces of the original bundle’s fibres:

(E∗)p := (Ep)
∗.

The rest of the conditions of being a vector bundle are met by dualising objects of π :
E →M (such as sections) in the expected way.

Example A.2.3 (Pull-back bundle). For a vector bundle π : E → N and a map of mani-
folds ψ :M→ N , the pull-back bundle ψ∗π : ψ∗E →M is given fibre-wise by

(ψ∗E)p := Eψ(p).

The sections of this bundle are pull-backs of sections of the original bundle: if s ∈ Γ(E)
then ψ∗s := ψ ◦ s is in Γ(ψ∗E).
Example A.2.4 (Tensor product bundle). Given two vector bundles π : E → M and
$ : F →M over the same base space, their tensor product bundle is the unique bundle
π⊗ $ : E ⊗F →M such that the fibre over any point p ∈ M is the tensor product of the
fibres over that point in the original vector bundles in the usual tensor product of vector
spaces sense:

(E ⊗ F )p := Ep ⊗Fp.

Sections of this bundle take the form sE ⊗ sF for sE ∈ Γ(E) and sF ∈ Γ(F ). While this
example may seem abstract now, it will allow us to define tensors, which will be the
central characters of semi-Riemannian geometry.

Example A.2.5 (Tangent bundle). Over an n-manifold M, by considering the union of
all tangent spaces TpM (each n-dimensional) we obtain the tangent bundle, whose total
space is written T M and has 2n dimensions. Sections of this bundle are vector fields,
whose space is sometimes denoted X(M), though we will stick to Γ(T M). Using local
coordinates we can see that the vector ∂i ∈ TpM sends a function f ∈ C∞(M) to ∂i f (p).

Furthermore, the push-forward of a map ψ : M → N gives a vector bundle mor-
phism from the tangent bundle ofM to that of N as the following diagram commutes:

T M T N

M N

ψ∗

ψ

When the map ψ : M → N is a diffeomorphism, we note that vector fields V ∈
Γ(T M) can be pushed-forward to vector fields ψ∗V ∈ Γ(T N ), given at a point q ∈ N
by

(ψ∗(V))q := ψ∗
(

Vψ−1(q)

)
.
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Example A.2.6 (Cotangent bundle). By considering the dual space of each tangent space,
we obtain fibres

T ∗p M := (TpM)∗,

of what is known as the cotangent bundle over the n-manifold M (whose total space
is written T ∗M, which is also 2n-dimensional). Sections are known as covectors, or 1-
forms, and the space of 1-forms is often denoted Ω1(M). This nomenclature is clear
when considering the wedge product of tangent spaces: we can form a bundle ∧kT ∗M
by taking the kth wedge product power of the vector spaces T ∗p M (for points p ∈ M).
The sections of this bundle are called k-forms,6 and their natural vector space is written
Ωk(M).7

When we consider the local coordinates (xi)n
i=1 around a point p ∈ M and corre-

sponding basis of TpM given by (∂i)
n
i=1 we define the dual basis (dxi)n

i=1 of T ∗p M as the
set of n covectors satisfying

dxi(∂j) = δi
j, where i, j ∈ {1, . . . , n}.

This basis allows us to define the covector d f at a point p ∈ M, or the differential of
f ∈ C∞(M) at p, as

d f |p :=
∂ f
∂xi

∣∣∣∣
p

dxi,

where we have finally employed the Einstein summation convention: repeated indices are
summed over, which we will use throughout this text. This expression can also be seen
without reference to local coordinates as

d f (V) = V( f ), (A.1)

6Note that an n-manifold is orientable if and only if there exists a nowhere-vanishing n-form. This will
become crucial in defining integration over manifolds.

7To complete the picture, we define the exterior derivative to be the map d : C∞(M) → Ω1(M) (where
smooth functions are thought of as 0-forms) that sends a function f ∈ C∞(M) to the form d f ∈ Ω1(M)
described in (A.1). We then extend this map to one from k-forms to (k + 1)-forms as being the unique map
of this kind such that

1. It squares to zero: d2 = 0;

2. It satisfies a Leibniz-type rule:

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α is a k-form, and we have used that when α and β are forms, so is α ∧ β (whose rank is the
sum of the ranks α and β).

This allows us to write Stokes’ Theorem for a manifoldM with boundary ∂M in a neat form:∫
∂M

ω =
∫
M

dω,

for any k-form ω onM. The exterior derivative also allows us to form the de Rham cochain complex:

0→ C∞(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)→ 0,

whereM is an n-manifold. Thus we can define the de Rham cohomology as

Hk
dR(M) :=

ker
(

d : Ωk(M)→ Ωk+1(M)
)

im
(
d : Ωk−1(M)→ Ωk(M)

) .
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for some tangent vector V ∈ TpM where d f is the unique map satisfying the above.
An extension of the ideas above leads to the definition of tensors, as found in Defi-

nition 2.1.2. We now turn to the final primary subject of this appendix: connections on
vector bundles.

A.3 Connections

We introduce the concept of a connection on a vector bundle, which allows us to differen-
tiate sections (not only tensors) of any vector bundle. Crucially, we note that connections
are not unique (though at least one always exists) and therefore there are many ways of
taking said derivatives.

Definition A.3.1 (Connection). For a vector bundle π : E → M a connection on E is a
linear operator ∇ : Γ(E)→ Γ(T ∗M⊗E) satisfying the following Leibniz-type rule:

∇( f s) = d f ⊗ s + f∇(s),

for f ∈ C∞(M) and s ∈ Γ(E). Note that the first term on the right-hand side prevents ∇
from being C∞(M)-linear. A section s ∈ Γ(E) is called parallel if ∇(s) = 0.

We now give several examples of connections. Given our focus will be on connections
on tangent bundles, our examples have been geared as such.

Example A.3.1 (Trivial connection). For the trivial bundle prM : M× Rn → M, we
declare that ∇(si) = 0 for each section si(x) = (x, ei), where (ei)

n
i=1 is the canonical basis

of Rn. Since all other sections are linear combinations of (si)
n
i=1, we find that a general

section can be written s = f isi for f i ∈ C∞(M). By the Leibniz-type rule we have

∇( f isi) = d f i ⊗ si,

and so we note that the connection is simply the derivative of the coefficients of s ∈
Γ(M×Rn).

Example A.3.2 (Tensor connection). For vector bundles π : E → M and $ : F → M
with connections ∇E and ∇F , we can define a connection ∇E⊗F on the tensor bundle
π ⊗ $ : E ⊗ F →M as

∇E⊗F (sE ⊗ sF ) := ∇E (sE )⊗ sF + sE ⊗∇F (sF ),

for sections sE ∈ Γ(E), sF ∈ Γ(F ) and sE ⊗ sF ∈ Γ(E ⊗ F ). We will use this connection
implicitly very often throughout this text, as our tensors will be living on various bundles
but will need connections on their tensor products.

Example A.3.3 (Covariant derivative). When a connection is on the tangent bundle we
call it a covariant derivative, or linear connection. Because the connection takes vector
fields to elements of Γ(T ∗M⊗ TM), we can think of it as associating to every vector
field V ∈ Γ(T M) a linear operator∇V : Γ(T M)→ Γ(T M) satisfying (for f ∈ C∞(M))
the following

1. The assignment V 7→ ∇V is C∞(M)-linear:

∇ f V(W) = f∇V(W),

for W ∈ Γ(T M);
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2. It satisfies a Leibniz-type rule:

∇V( f W) = V( f )W + f∇V(W).

This describes the derivative of a vector W along the direction V, and depends only upon
the value of V at the point p ∈ M where all of this is taking place and the values of W
in the coordinate patch in which p lives. Thus, we can make our focus local and consider
the above in some coordinate patch. Suppose that for every p in this patch, (ei(p))n

i=1
form a basis of TpM (restricted to the patch in question). From this perspective we find
that the covariant derivative is completely determined by the connection coefficients Ak

ij
defined by

Ak
ijek := ∇ei(ej),

where we make the important remark that despite the index notation, the connection
coefficients are not tensors, though the covariant derivative of a tensor remains a tensor.
Finally, note that in parallel our previous coordinate-shorthand, we will write

∇i := ∇∂i .

Example A.3.4 (Dual (linear) connection). For a tangent bundle π : T M →M with co-
variant derivative ∇ we define the dual (linear) connection ∇∗ on the cotangent bundle
as the map satisfying the following Leibniz-type rule for all vector fields V ∈ Γ(T M):

V (〈ς, s〉) = 〈∇∗V(ς), s〉+ 〈ς,∇V(s)〉,

where, for vector fields s ∈ Γ(T M) and covector fields ς ∈ Γ(T ∗M), the natural pairing
between T M and T ∗M has been written 〈ς, s〉 = ς(s) ∈ C∞(M).

Example A.3.5 (Pull-back (linear) connection). Given a tangent bundle π : T N → N , a
covariant derivative ∇, and a map of manifolds ψ : M → N , we define the pull-back
(linear) connection ψ∗∇ on the pull-back bundle ψ∗π : ψ∗T N →M by

(ψ∗∇)V(ψ
∗s) := ψ∗

(
∇ψ∗(V)(s)

)
,

where V ∈ Γ(ψ∗T N ) and ψ∗s a general section when s is a section.

From here we can introduce the Levi-Civita connection, as in Definition 2.1.8. To
conclude this appendix we include the following extra definitions.

A.4 Additional Definitions

Definition A.4.1 (Torsion tensor). The torsion tensor τ of a connection ∇ on a manifold
M is a (2, 1)-tensor defined by

τ(V, W, ω) := ω (∇VW −∇WV − [V, W]) ,

where V and W are vectors and ω is a covector.
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Definition A.4.2 (Symmetric space). A semi-Riemannian manifold (M, g) is locally sym-
metric if every point p ∈ M has a normal neighbourhood Np ⊂ M and an isometry
`p : Np → Np (called a geodesic reflection) satisfying

`p

(
expp(Vp)

)
= expp(−Vp) for all Vp ∈ exp−1

p (Np).

The manifold is symmetric if the above holds for Np =M.8

Proposition A.4.1. For the geodesic reflection `p defined above,

1. It squares to the identity: `2
p = 1Np ;

2. It satisfies both `p(p) = p and (`p,∗)p = −1TpM, restricted appropriately.

Proof. The first statement is clear from the definition of `p. The second follows from
noting that p = expp(0) and so

`p(p) = `p(expp(0)) = expp(−0) = p,

as well as from the following computation:

(`p,∗)p

(
d

dλ
expp(λVp)

∣∣∣∣
λ=0

)
=

d
dλ

`p
(

expp(λVp)
)∣∣∣∣
λ=0

=
d

dλ
expp(−λVp)

∣∣∣∣
λ=0

= −Vp,

where we have used d
dλ expp(λVp)

∣∣∣
λ=0

= Vp, by definition.

Proposition A.4.2. Symmetric spaces are complete. Further, the isometry group of a symmetric
space acts transitively on the manifold.

Proof. The geodesic reflection `p extends geodesics, ensuring completeness.

Proposition A.4.3. The Riemann tensor Riem (or Ri
jkl) on an n-dimensional semi-Riemannian

manifold (M, g) satisfies the following (where we have lowered the upper index in the usual way
for the first point):

1. (Anti-)Symmetries: Rijkl = Rklij = −Rjikl = −Rijlk;

2. Bianchi identities:

Ri
jkl + Ri

kl j + Ri
l jk = 0 and ∇mRi

jkl +∇l Ri
jmk +∇kRi

jlm = 0.

3. It has 1
12 n2(n2 − 1) independent components—importantly, in 2 dimensions, it has only

one independent component (greatly reducing computations), and in 3 dimensions it has 6;

4. If (M, g) is locally symmetric, then the Riemann tensor is parallel:9 ∇(Riem) = 0.

Definition A.4.3 (Weyl tensor). Consider a semi-Riemannian manifold (M, g). In dimen-
sions n > 2, Weyl tensor is defined as

Wijkl := Rijkl +
2

n− 2
(

gil Rjk − gikRjl + gjkRil − gjl Rik
)
+

2R
(n− 1)(n− 2)

(gikgjl − gil gjk),

is thought of as the trace-free portion of the Riemann tensor.

8Note that if a manifold is complete, simply-connected and locally symmetric then it is symmetric. See
Chapter 6 of [KN63] for details.

9This is sometimes given as the definition of a symmetric space.
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Appendix B

(More) Accessible Overview

When we look at the surface of the Earth—ignoring the mountains and valleys, rivers and
oceans—it appears to be planar. Indeed, from a close enough viewpoint, many objects
and shapes resemble flat space: a straight line in one dimension, a plane in two, and so
on. For instance, to a tiny microbe, the surface of a mug will appear to be a plane. Any
smooth line drawn on a piece of paper that does not cross itself (if we forget sharp corners
for the moment) appears to be straight if peered at closely enough.

Spaces that have these characteristics are called manifolds in mathematics. They al-
low mathematicians to work with functions, derivatives, and many more mathematical
objects on an arbitrary space, instead of being confined to the unnatural world of graph
paper. One famous example of a manifold is the fabric of the universe itself: spacetime
is a four-dimensional manifold, containing one temporal dimension and three spatial di-
mensions, each interacting with one another. The study of spacetime and the resulting
gravity is known as General Relativity, as first introduced by Einstein in the early twen-
tieth century.

General Relativity used the mathematical language of manifolds that had been de-
veloped in the late nineteenth century and spurred further work in geometry because
of its renewed pertinence to physics. In the past hundred years, General Relativity has
been investigated by hundreds of physicists and mathematicians, many of whom hope to
understand its intricacies in rigorous detail and to explain its behaviour in mathematical
language. One exciting outcome of General Relativity is the existence of black holes and
other types of singularities—points where things go wrong: densities increase to infinity,
the causal structure of spacetime faces difficulties, or other peculiarities occur.

The plan for this project was to compare General Relativity with Ricci flow, a math-
ematical subject introduced in the 1980s that also encounters singular points. Ricci flow
deals with a diffusion-type equation on a manifold. In a diffusion (or heat-like) equation,
a distribution—such as temperature in a room—evolves so that it eventually becomes
constant throughout space: if one part of a room is hot then eventually that heat will
spread. Instead of a heat distribution, Ricci flow spreads the curvature of the manifold,
so that as time passes it tends to become a space of constant curvature. This process can
encounter singularities, such as the one depicted in Figure B.1.1

A mathematical result entitled the Uniformisation Theorem was chosen to unify the
pillars of Ricci flow and General Relativity. The Uniformisation Theorem, which has
been known to hold true since the mid-nineteenth century, classifies all two-dimensional
manifolds as being related (via a relation called conformal equivalence) to a manifold of
constant curvature. Manifolds of constant curvature include flat planes, perfect spheres,

1This appears as Figure 3.3 in Section 3.3 of the main text.
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Figure B.1: An example of a singularity appearing during Ricci flow: the end result is two
spheres, each having constant curvature. Since the goal of Ricci flow is to ‘smoothen’ the
curvature of the space, this result is satisfactory; however, during Ricci flow, the manifold
fractures into two pieces, which breaks down the mathematical description of the space.

and other spaces. (Because the Uniformisation Theorem deals with manifolds in two
dimensions, the focus of this project was two spatial2 dimensions.)

In 2006, a proof was completed that used Ricci flow to prove the Uniformisation The-
orem.3 This new proof is interesting because it gives a constructive proof: Ricci flow gives
the conformal relation between the starting manifold and the resulting manifold of con-
stant curvature. Rather than simply stating that there exists a connection between these
manifolds (which would be a non-constructive proof), Ricci flow is that relationship.

As stated in the title, the Uniformisation Theorem is seen as a ‘bridge’ between Ricci
flow and General Relativity because once a study of Ricci flow provides a proof, the
Uniformisation Theorem is then repeatedly employed in an analysis of General Relativity.
While most of the work contained herein has already been published in the mathematics
literature, the hope of this project is to compile work found scattered throughout papers,
textbooks, and monographs into one accessible document.

2The emphasis on spatial here is because our study of General Relativity is actually three-dimensional,
since we must include one extra temporal dimension.

3The final piece of the puzzle appeared in a short paper by Chen, Lu and Tian [CLT06].
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