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Abstract

Since the dawn of quantum mechanics physicist have contemplated
if a hidden variable theory would be able to improve quantum theory.
The main goal of this paper is to look at the article ”The completeness
of quantum mechanics for predicting measurement outcomes” (2012) by
Colbeck and Renner. We try to examine the methods used, and the
proofs given in this paper. Through this, we try to make an evaluation
of the strength of the result obtained in this article. Our conclusion is
that one has to make additional assumptions about the hidden variable
theory, in order to complete the proof as given in the article.
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1 Introduction

Until the twentieth century, physics in principle provided the exact description of nature. Precise
knowledge of all variables that concerned a problem, gave evolution of that physical process in
space and time. Think, for example, of Newtonian mechanics. This principle of determinism
changed dramatically when quantum mechanics was discovered. Introduced as a method to pre-
dict the outcomes of measurements on microscopic systems such as particles, quantum mechanics
seems to clash with the notion of determinism.

Quantum mechanics describes only the probability of obtaining a certain measurement out-
come. This yields a stark contrast with classical physics. Another important difference between
classical physics and quantum mechanics is the influence the observer seems to have in the latter.
In most orthodox interpretations of quantum mechanics, performing a measurements causes a
collapse of the state of the system. Roughly speaking, the system suddenly changes from a su-
perposition of possible measurement outcomes, to the particular measurement outcome actually
obtained.

The birth of quantum mechanics occurred at the beginning of the twentieth century. The
probabilistic nature of quantum mechanics caused a great rift between the physicists of that time.
A large part of the community saw the future of physics in quantum mechanics, willing to accept
the loss of determinism. One of the more famous defendants of quantum mechanics was Niels
Bohr. The other part, smaller, of the community agreed with the powerful predictions quantum
mechanics provide, but thought quantum mechanics was just an intermediary theory: it had to
be incomplete. One of the most famous people on this side of the argument was Albert Einstein.
Bohr and Einstein are well known for their (initially oral) discussion concerning the nature and
problems of quantum mechanics. This discussion between Bohr and Einstein eventually led
Einstein, Podolsky and Rosen to publish a famous paper entitled: “Can Quantum Mechanical
Description of Physical Reality Be Considered Complete?” ([9]). This paper contains one of
the most elegant and clear ways to illustrate what seems so skewed about quantum mechanics.
Through this, the paper also gives a motivation why it should be reasonable and interesting to
look at the idea of a hidden variable.

Let’s consider an observer measuring the polarization of a photon using a polarized piece of
glass. He can measure the polarization of the photon either along a 0 degree axis, or a 90 degree
axis. If, when measuring at 0 degrees, a photon passes through the glass, the measurement
result is that this photon is polarized along the 0 degree axis. If it does not pass through, the
photon is polarized along the 90 degree axis. Nowadays, the EPR thought experiment is usually
reformulated in terms of the measuring of the polarization of an entangled pair of photons. This
measurement takes place in a configuration with two observers, ”Alice” and ”Bob”. Of the
photon pair, one reaches Alice, whilst to other reaches Bob. Alice and Bob agree to measure the
polarization of these photons either along a 0 degree axis, or a 90 degree axis. Quantum mechanics
can describe a special photon pair (an entangled pair) that either is measured by both observers
to have a polarization of 0 degrees (with a probability of 1

2 of this occurring), or a polarization
of 90 degrees. The photon pair before measurement is a superposition of these two measurement
outcomes. The surprising results occur when Alice and Bob are extremely far away from each
other. If Alice measures her photon to have a polarization of 0 degrees, she instantly knows Bob’s
photon will also have this polarization. Behold: when Alice has measured her photon as having
a polarization of 0 degrees, Bob will indeed always measure his photon to have a polarization
of 0 degrees as well. It does not matter how far away Alice is. This means that Bob’s photon
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somehow instantaneously knows the measurement result of Alice’s photon. Keeping in mind the
the theory of relativity assumes the speed of light to be an absolute limit, we are stuck with a
problem. But there seems to be a solution: a hidden variable. We can for example postulate
that, upon creation of the photon pair, both photons have a polarization along the same axis
(either the 0 degree or 90 degree axis). Alice and Bob just aren’t aware of which axis it is (it
is hidden from them), and neither is quantum mechanics. If the two possible polarizations each
have a probability of 1

2 of occurring, it gives rise to the same behavior, but there is no more
need for instantaneous interaction between the photons. We can say the information, of which
polarization the photons have, is determined by a variable, that is not accessible by quantum
mechanics. A hidden variable. This hidden variable theory seemed to be a viable way to solve
the friction between classical physics and quantum mechanics.

In 1964 John Steward Bell published a paper named “On the Einstein-Podolsky-Rosen Para-
dox” ([8]). In this paper he very elegantly proved that the assumption of a hidden variable that
reduces to both determinism and locality leads to a contradiction. Generally speaking, he proved
that every theory having the previously mentioned properties of determinism and locality, must
satisfy a so called “Bell inequality”. Quantum mechanics does not satisfy this inequality. The
fact that the inequality is not satisfied has been verified experimentally on numerous occasions.

Similar results such as the Conway-Kochen Free Will Theorem and everything else concerning
hidden variables has been the subject of numerous published papers. Quite recently, a new
claim was made in this territory by Roger Colbeck and Renato Renner. In two papers “No
extension of quantum theory can have improved predictive power”([2], Nature, 02 Aug. 2011)
and “The completeness of quantum theory for predicting measurement outcomes” ([3], arXiv, 20
Aug. 2012) the authors make the claim that a theory using hidden variables cannot give better
predictions than quantum mechanics, provided the hidden variable theory satisfies a number
of properties (notably a “free choice” assumption) that seem weaker than the assmption in
either Bell s theorem of the Free Will Theorem etc. Hence, this result would generalize previous
results like those of Bell. Both papers have attracted attention, most discussion revolving around
the assumption of free choice. The first paper “No extension of quantum theory can have
improved predictive power” ([2]) contains little detail on the actual proof. The second paper
“The completeness of quantum theory for predicting measurement outcomes” contains more
technical details on how to prove the actual claim, but especially the crux of the proof is still
largely left to the reader. My goal for this Bachelor thesis is to give the proof of the main claim
in a complete and clear way.

The main focus of this paper will be on the third paper published on this subject by Colbeck
and Renner ([3]). We have opted to keep both the assumptions made, and the structure of
the proof, quite similar to this paper. In this thesis we will look at one hidden variable with a
finite number of possible values. This hidden variable describes some property of the particle or
system we are measuring. To arrive at the final result, we must first specify what is meant by
probabilities given by a physical theory. This analysis is found in the first section. After that,
we must make clear when a “higher” theory is considered compatible with quantum mechanics,
and when it gives better predictions. We can then proceed by introducing quantities with which
we can prove the result for a very specific measurement and state. Finally we will expand this to
every state and measurement to obtain the final result mentioned in the article [3] by Colbeck
and Renner.

The result, may suggest that the topic of hidden variables is now closed once and for all:
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hidden variables do not improve quantum mechanical predictions. However, upon closer inspec-
tion one might criticize the methods employed by Colbeck and Renner. Notably, the somewhat
dubious notion of free choice, and the way in which measurements are generalized. The result
certainly is a step in the right direction, but not as strong and straightforward as previous results
such as Bell’s Theorem.
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2 Probabilities and quantum mechanics

In this paper we mainly make use of five random variables, called AN , BN , X, Y and Z (N ∈ N).
We assume there is a probability space Ω with a probability measure µ such that:

X,Y : Ω→ {0, 1}, (1)

AN : Ω→ AN = {0, 2 . . . , 2N − 2}, (2)

BN : Ω→ BN = {1, 3, . . . 2N − 1}, (3)

Z : Ω→ Z. (4)

We do not fix the value set Z of Z. The only restriction is for it to be finite. The probability of
general discrete random variable X having a value x is given by

P (X = x) = µ(X−1(x)). (5)

A conditional distribution function for two random variables X and Z is given by:

P (X = x | Z = z) =
P (X = x, Z = z)

P (Z = z)
, (6)

defined whenever P (Z = z) > 0. We will introduce some short-hand notation for our distribu-
tions. If we want to consider the probability distribution of X as a function (of x) we will write
PX . For the conditional probability we write PX|Z(· | z). The conditional probability is defined
for z ∈ Z such that PZ(z) 6= 0. For the whole collection of probabilities defined this way we
write PX|Z . If we consider two random variables X and Y , for the joint probability we introduce
the following notation:

P (X 6= Y ) :=
∑
x,y
x 6=y

PX,Y (x, y). (7)

In our application the random variable X describes a measurement by observer A (called Alice)
and takes possible values {0, 1}. Similarly, the random variable Y describes measurements by
observer B (called Bob). The probabilities of X or Y taking one of the possible values 0 and
1, then simply describe the probability that a measurement of X or Y has the result 0 or 1,
respectively. The random variables AN and BN describe the possible settings of the measurement
by observers A and B; AN takes values a in AN , BN takes values b in BN . An important thing
to consider is what we mean by PX and PY (or PX,Y ) without considering the values of AN
and BN . The observers (A and B) carry out the experiment. For A, measurement of X gives
results which the observer can see. The setting of AN can either be hidden from the observer,
giving the distribution PX , or it can be accessed by the observer, giving the distribution PX|AN .
In case the setting of AN is hidden, in our probabilistic setting the results of PX are effectively
averaged over the values a that AN can take. The same process applies to observer B.

Now that we have established our notation, we can consider the question how we obtain such
probabilities. The main goal of this paper is to compare probabilities given by a hypothetical
theory T having an extra variable Z, with the probabilities given by quantum theory. There is
no need to specify how the probabilities for theory T are obtained, as actual measurements only
concern the probabilities it produces. The probabilities quantum theory produce have so far been
confirmed by experiments, so it is natural to assume T is compatible with quantum mechanics
(this will be explained in greater detail below), in the sense that averaging over the extra variable
Z gives the same predictions as quantum mechanics. From now on, if we consider a probability
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P that explicitly uses the hidden variable Z, we assume the probability to be derived using the
theory T .

A (pure) quantum-mechanical state ψ is a unit vector in some Hilbert space H. It describes
the state of a quantum-mechanical system. An observer can preform measurements on this
system. Quantum mechanics gives probabilities for possible outcomes of such measurements for
every possible state ψ. Therefore, when we are looking at the probabilities of a specific ψ, we
write Pψ both for the quantum mechanical prediction and the predictions given by our theory
T . What is actually being measured in a state ψ is some observable O, which corresponds with a
hermitian operator O on H. In the scope of this thesis, the operator O has a discrete spectrum of
eigenvalues {λi}. We have dim(H) <∞ typically. Quantum mechanics postulates the following
properties:

• The outcome of a measurement of some observable O is one of the eigenvalues λ of O.

• Let Pλ be a projection that projects on the eigenspace of O spanned by the eigenvectors
with eigenvalue λ. The probability of measuring λ in a state φ ∈ H is given by (the Born
rule):

PφO(λ) = 〈φ, Pλ(φ)〉 . (8)

The Born rule is a postulate. At present it does not seem possible to derive the rule without
introducing other, often questionable assumptions.
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3 Variational distance and correlation measure

We now define two important concepts which will be used to prove the main theorem. First we
construct a metric on the space of probabilities with that have the same value set.

Definition 1. Let X : Ω → X and Y : Ω → X be two random variables. For the corresponding
probability distributions PX and PY the variational distance between PX and PY is given by

D(PX , PY ) =
1

2

∑
x∈X

|PX(x)− PY (x)|. (9)

As the probabilities are functions in L1 this metric is actually the same as (half) the canonical
metric d1(., .) on L1. The fact that the variational distance as defined above is a metric, as well
as other important properties, is summarized in the following lemma:

Lemma 1. The variational distance D(., .) has the following properties:

1. D(., .) is a metric on the space of probability distributions PX on X.

2. For all probability distributions PX and PY : 0 ≤ D(PX , PY ) ≤ 1.

3. Suppose we have random variables X,X ′ : Ω → X and Y, Y ′ : Ω → Y. For the joint
probability distributions PX,Y and PX′,Y ′

D(PX , PX′) ≤ D(PX,Y , PX′,Y ′).

4. D(., .) is convex: let {αi}i∈I be a finite set satisfying ∀i ∈ I : αi ≥ 0 and∑
i∈I

αi = 1. Let {PXi}i∈I and {PYi)}i∈I be sets of probability distributions. Then we have:

D(
∑
i∈I

αiPXi ,
∑
i∈I

αiPYi ≤
∑
i∈I

αiD(PXi , PYi).

5.
D(PX , PY ) ≤ P (X 6= Y ).

Proof. 1:

• It is clear that D(PX , PY ) ≥ 0, as it is a sum over positive terms.

• Suppose D(PX , PY ) = 0. We know that

∀x : |PX(x)− PY (x)| ≥ 0

=⇒

∀x : |PX(x)− PY (x)| = 0.

This means PX = PY . Suppose PX = PY , then

∀x : |PX(x)− PY (x)| = 0

=⇒

D(PX , PY ) = 0.
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• As |PX(x)− PY (x)| = |PY (x)− PX(x)| we have D(PX , PY ) = D(PY , PX).

• Suppose we have probability distributions PX , PX′ and PX′′ . We see that:

D(PX , PX′) =
1

2

∑
x

|PX(x)− PX′′(x) + PX′′(x)− PX′(x)|

≤ 1

2

∑
x

|PX(x)− PX′′(x)|+ 1

2

∑
x

|PX′′(x)− PX′(x)|.

This means D(PX , PX′) ≤ D(PX , PX′′) +D(PX′′ , PX′).

2:
As
∑
x
PX(x) = 1 and

∑
x
PY (x) = 1 we can see that:

D(PX , PY ) ≤ 1

2

∑
x

|PX(x)|+ |PY (x)| = 1.

3:

D(PX , PX′) =
1

2

∑
x

|PX(x)− PX′(x)|

=
1

2

∑
x

∑
y

|PX,Y (x, y)− PX′,Y ′(x, y)|

≤ 1

2

∑
x

∑
y

|PX,Y (x, y)− PX′,Y ′(x, y)|.

≤ D(PX,Y , PX′,Y ′).

4:

D

(∑
i

αiPXi ,
∑
i

αiPYi

)
=

1

2

∑
x

|
∑
i

αi(PXi(x)− PYi(y))|

≤ 1

2

∑
i

αi
∑
x

|PXi(x)− PYi(y)|

≤
∑
i

αiD (PXi , PYi) .

5:
See lemma 6 in the Colbeck and Renner article ([3]).

We now introduce the so-called correlation measure.

Definition 2. If PX,Y |AN ,BN is a collection of conditional probabilities, in the context of equa-
tions (1) -(4), we define, for N ∈ N, the correlation measure IN as:

IN (PX,Y |AN ,BN ) = P (X = Y |AN = 0, BN = 2N − 1) +
∑

a∈AN ,b∈BN
|a−b|=1

P (X 6= Y |a, b). (10)
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We will extensively use this correlation measure on a special state in the space C2 ⊗ C2,
namely the maximally entangled state defined as follows.

Definition 3. Let HA = C2 and HB = C2 be two Hilbert spaces (of dimension 2) . The
maximally entangled state ψ0 ∈ HA ⊗HB is defined by

ψ0 =
1√
2

((
1
0

)
⊗
(

1
0

)
+

(
0
1

)
⊗
(

0
1

))
. (11)

In a more general sense, if we define a orthonormal basis on C2 by choosing e1 and e2, we
can write

ψ0 =
1√
2

(e1 ⊗ e1 + e2 ⊗ e2) .
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4 Compatability of theories

We will be comparing the probabilities given by quantum mechanics with those of a theory T that
has access to a hidden variable Z. All experiments so far have shown us that measurements agree
with the predictions obtained by quantum theory. So in order to still explain the measurement
results, our hidden variable theory T should be compatible with quantum mechanics. By this
we mean that, if we calculate measurement outcomes with our theory T without having access
to the extra parameter Z (effectively summing over all possible values of Z), we should obtain
the same predictions as given by quantum theory.

Definition 4. Suppose we have random variables X, AN and Z. For measurements on a quan-
tum state ψ, our hidden variable theory is compatible with quantum mechanics if

∀a, x : PψX|AN (x | a) =
∑
z∈Z

PψX,Z|AN (x, z | a). (12)

Here PψX,Z|AN are the probabilities produced by our theory T , whereas PψX|AN is the probability

obtained from quantum mechanics.

In order to compare the predictions given by quantum mechanics with those given by the
hidden variable theory, we have to specify what it means for our theory T to be more infor-
mative.

Definition 5. Suppose we have random variables x, AN and Z. Let the hidden variable theory
T be compatible with quantum mechanics. For measurement on a quantum state ψ quantum
mechanics is as least as informative as the hidden variable theory T if

∀x, a, z(for which PZ|AN (z | a) > 0): PψX|AN (x | a) = PψX|AN ,Z(x | a, z). (13)

In other words, knowing z adds nothing to the predictions done on a measurement on ψ.
From now on we always assume our hidden variable theory T to be compatible with quantum
mechanics. This means we do not have to worry about distinguishing probabilities given by both
theories without using the hidden variable Z, as these probabilities are the same.
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5 Free parameters

A theory (T ) that describes our (hypothetical) measurements uses certain parameters. Common
sense would dictate some of these parameters can be chosen ”freely”. We expect a theory to
predict outcomes for every initial condition. For a physically relevant theory we demand that the
parameter AN is not correlated to other parameters, except to those parameters in the causal
future of AN . If this is the case we can consider AN to be a free parameter. First we will have
to define an semi-order on the parameters of our theory T . A semi-order has all the properties
of a normal order, but is not necessarily anti-symmetric.

Definition 6. Let V be a set. A semi-order on V is a binary relation ≤ that is both reflexive
and transitive. In other words:

∀v ∈ V : v ≤ v, (14)

∀v, w, x ∈ V : If v ≤ w and w ≤ x⇒ v ≤ x. (15)

If Γ is the set of all parameters of our theory T , we can define a causal order on this set.

Definition 7. Let Γ be the set of all parameters of our theory T . A causal order is a semi-order
 on Γ . From now on we say X lies in the causal future of AN if AN  X.

The use of the the symbol indicates the central idea of ordering the parameters: we would
like the causal order to be compatible with relativity. For example, the result of a measurement
(X) should be free in relation to the parameters that describe the setting of the experiment (AN ),
but the setting could possibly affect the measurement result. So: ¬(X  AN ) but AN  X. To
be compatible with relativity we demand that in the causal order we only have R  S if S lies
in the future light-cone of R. With this in mind, we define the causal order as follows:

Definition 8. Let Γ be the set of all parameters with the causal order  . We say AN ∈ Γ is a
free parameter if:

∀X ∈ Γ with ¬(AN  X) : PX,AN = PAN · PX . (16)
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6 Bipartite setup

In this paper we consider a specific measurement setup in quantum mechanics. As mentioned
before there are two observers A (Alice) and B (Bob). The possible quantum states for each
observer individually are described by the Hilbert spaces HA = C2 for A, and HB = C2 for
B. The space HA ⊗ HB describes the states in the composite system that contains both A
and B. As mentioned before, the random variables X and Y describe the measurement results
for observers A and B, respectively (with possible results in {0, 1}). The random variables
AN and BN describe the possible setting of the experiment. AN has N possible values a in
AN = {0, 2, . . . , 2N − 2}, whilst BN has N possible values b in BN = {1, 3, . . . , 2N − 1}. We
refer to this situation as a bipartite setup. For a bipartite setup we want the causal order to
have the following properties:

AN  X,BN  Y, (17)

¬(AN  Z),¬(BN  Z), (18)

¬(AN  Y ),¬(BN  X). (19)

(20)

If either A or B preforms a measurement, the resulting quantum state in the total system
HA ⊗ HB will be a projection of our initial state onto a certain subspace, namely for a given
vector v ∈ H we can define a projection onto the subspace spanned by this vector. This projection
Pv : H → C · v is given by

∀x ∈ H : Pv(x) = 〈x, v〉 v, (21)

where 〈 , 〉 is the inner product of H (taken to be linear in the second variable). We can also
project onto a subspace spanned by multiple vectors. If Y is a subspace of H spanned by the
vectors {ν1, . . . , νn} we write for the projection of x onto the subspace Y

ProjY =

n∑
i=1

Pν(x). (22)

Suppose HA and HB are two Hilbert spaces. If Pν is a projection on HA and Pω is a projection
on HB (so ν ∈ HA, ω ∈ HB), we can construct a projection Pν⊗Pω : HA⊗HB → (C · ν)⊗(C · ω)
by taking:

Pν ⊗ Pω

∑
i,j

αi ⊗ βj

 =
∑
i,j

(Pν(αi)⊗ Pω(βj)). (23)

These projections on HA ⊗HB are used to find the resulting state after some measurement by
A and B. In our bipartite setup we preform a measurement using the following vectors in C2:

• eax = π
2 ( a

2N + x), Eax =
(
cos(eax)
sin(eax)

)
;

• f bx = π
2 ( b

2N + y), F by =
(
cos(fby)

sin(fby)

)
.

For a fixed value of a, the measurement of A can have two possible outcomes X = 0 and
X = 1 which are described by projecting onto Ea0 and Ea1 , respectively. The same goes for B.
This means we have a probability distribution for the measurement in our bipartite setup on
ψ ∈ HA ⊗HB given by

PψX,Y |AN ,BN (x, y | a, b) =
〈
ψ,
(
PEax ⊗ PF by

)
ψ
〉
.
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An important property of this bipartite setup in combination with the maximally entangled state
and the correlation measure is given in the following lemma.

Lemma 2. According to quantum mechanics, the correlation measure of the maximally entangled
state ψ0 in a bipartite setup with fixed N ∈ N is equal to:

IN (Pψ0

X,Y |AN ,BN ) = 2N sin2(
π

4N
) ≤ π2

8N
. (24)

Proof. First, we calculate Pψ0

X,Y |AN ,BN (x, y | a, b).

〈
ψ0, PEax ⊗ PF by (ψ0)

〉
=

1

2
〈[
(

1

0

)
⊗
(

1

0

)
+

(
0

1

)
⊗
(

0

1

)
], [cos(eax)Eax ⊗ cos(f by)F by

+ sin(eax)Eax ⊗ sin(f by)F by ]〉

=

〈
1

2
(

(
1

0

)
⊗
(

1

0

)
, cos(eax)Eax ⊗ cos(f by)F by

〉
+

〈
1

2
(

(
1

0

)
⊗
(

1

0

)
, sin(eax)Eax ⊗ sin(f by)F by

〉
+

〈
1

2
(

(
0

1

)
⊗
(

0

1

)
, cos(eax)Eax ⊗ cos(f by)F by

〉
+

〈
1

2
(

(
0

1

)
⊗
(

0

1

)
, sin(eax)Eax ⊗ sin(f by)F by

〉
=

1

2
(cos2(eax) cos2(f by) + 2 cos(eax) cos(f by) sin(eax) sin(f by)

+ sin2(eax) sin2(f by))

=
1

2
(cos(eax) cos(f by) + sin(eax) sin(f by))2

=
1

2
cos2(eax − f by) =

1

2
cos2(

π

2
(
a− b
2N

+ x− y)). (25)

14



Now we will calculate IN :

IN (Pψ0

X,Y |AN ,BN ) =
〈
ψ0, PE0

0
⊗ PF 2N−1

0
(ψ0)

〉
+
〈
ψ0, PE0

1
⊗ PF 2N−1

1
(ψ0)

〉
+

∑
|a−b|=1

〈
ψ0, PEa0 ⊗ PF b1 (ψ0)

〉
+
〈
ψ0, PEa1 ⊗ PF b0 (ψ0)

〉
= cos2(

2N − 1

4N
π)

+
∑
|a−b|=1

1

2
(cos2(

a− b
4N

π − 1

2
π) + cos2(

a− b
4N

π +
1

2
π))

= sin2(
1

4N
π) +

∑
|a−b|=1

sin2(
a− b
4N

π)

= sin2(
1

4N
π) + 2N sin2(

1

4N
π)− sin2(

1

4N
π)

= 2N sin2(
1

4N
π)

≤ 2N(
π

4N
)2 =

π2

8N
. (26)
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7 Main theorem

Our ultimate goal is to prove that the assumptions of free variables and compatibility with
quantum mechanics lead to the conclusion that the hidden variable Z does not give improved
predictions compared with quantum mechanics. In order to build towards this goal, we will first
derive a direct consequence of our free variables. It turns out that free-variables force our higher
theory T to be no-signaling. The concept will be explained in the next subsection. Subsequently
we prove our claim for a very specific state and measurement. This is the second subsection.
Then, in order to generalize, we need a process called ”embezzlement”. This process is described
in the third subsection. Finally, the last subsection will state the claim, and use all the previous
work to prove the main claim of Colbeck and Renner: i.e. that hidden variables do not improve
quantum mechanics.

7.1 No-signaling

Lemma 3. The causal order satisfying the conditions in equations (17), (18) and (19) imply:

PX,Z|AN ,BN = PX,Z|AN and PY,Z|AN ,BN = PY,Z|BN .

We call a theory with this property a no-signaling theory.

Proof.

PX,Z|AN ,BN (x, z, a, b) =
PX,Z,AN ,BN (x, z, a, b)

PAN ,BN (a, b)

=
PBN (b)PX,Z,AN (x, z, a)

PAN (a)PBN (b)
(As BN is free w.r.t

by the causal order: eq (17), (18), (19))

= PX,Z|AN (x, z | a).

The same holds for PY,Z|AN ,BN .

7.2 Claim for the entangled state

During this whole subsection, we will be working in the bipartite setup (using the measurement
described above). This means we know the value sets of X, Y , AN , BN and Z(see equation (1)
to (4)). The state for which we calculate all the probabilities and correlations below is ψ0, the
maximally entangled state.

Lemma 4. Suppose the distribution Pψ0

X,Y |AN ,BN is a no-signaling theory. We introduce the

uniform distribution defined by:

PX(0) =
1

2
;

PX(1) =
1

2
.

We then have the following inequality:

∀a, b :
〈
D(Pψ0

X|AN ,BN ,Z(· | a, b, z), PX
〉
Z
≤ 1

2
IN (Pψ0

X,Y |AN ,BN ), (27)

where 〈 , 〉Z is the average over z ∈ Z, where the z are distributed according to Pψ0

Z|AN ,BN (· | a, b).
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Proof. We will omit the ψ0 in the probabilities, and write a0 = 0, b0 = 2N − 1.

IN (PX,Y |AN ,BN ,Z(·, · | ·, ·, z)) = P (X = Y |AN = a0, BN = b0, Z = z)

+
∑

a∈AN ,b∈BN
|a−b|=1

P (X 6= Y | AN = a,BN = b, Z = z)

Lemma 1
≥ D(1− PX|AN ,BN ,Z(x | a0, b0, z), PY |AN ,BN (y | a0, b0, z))

+
∑

a∈AN ,b∈BN
|a−b|=1

D(PX|AN ,BN ,Z(x | a, b, z), PY |AN ,BN ,Z(y | a, b, z))

Lemma 3
= D(1− PX|AN ,Z(x | a0, z), PY |BN ,Z(y | b0, z))

+
∑

a∈AN ,b∈BN
|a−b|=1

D(PX|AN ,Z(x | a, z), PY |BN ,Z(y | b, z)).

As D( , ) is a metric, we have, using the triangle inequality,

D(1− PX|AN ,Z(· | a0, z), PX|AN ,Z(· | a0, z)) ≤
D(1− PX|AN ,Z(· | a0, z), PY |BN ,Z(· | b0, z)) +D(PX|AN ,Z(· | a0, z), PY |BN ,Z(· | b0, z)).

Now for the second term D(PX|AN ,Z(· | a0, z), PY |BN ,Z(· | b0, z)), by using the triangle inequality
multiple times can get an expression which only contains a ’s and b’s which have a distance of
one. For a0 = 0, b0 = 2N − 1 we have:

D(PX|AN ,Z(· | a0, z), PY |BN ,Z(· | b0, z)) ≤ D(PX|AN ,Z(· | a0, z), PY |BN ,Z(· | 1, z))
+D(PX|AN ,Z(· | 1, z), PY |BN ,Z(· | b0, z))
≤ D(PX|AN ,Z(· | a0, z), PY |BN ,Z(· | 1, z))
+D(PX|AN ,Z(· | 1, z), PY |BN ,Z(· | 2, z))
+D(PX|AN ,Z(· | 2, z), PY |BN ,Z(· | b0, z))

. . .

≤
∑

a∈AN ,b∈BN
|a−b|=1

D(PX|AN ,Z(x | a, z), PY |BN ,Z(y | b, z)).

which gives us

IN (PX,Y |AN ,BN ,Z(·, · | ·, ·, z) ≥ D(1− PX|AN ,Z(· | a0, z), PX|AN ,Z(· | a0, z)) (28)

=
1

2

∑
x

|1− PX|AN ,Z(x | a0, z)− PX|AN ,Z(x | a0, z)|

= 2(
1

2

∑
x

|1
2
− PX|AN ,Z(x | a0, z)|)

= 2D(PX|AN ,BN ,Z(· | a0, b0, z), PX)). (29)

Note that the probability PX|AN ,BN ,Z(· | a0, b0, z) for ψ0 only depends on the distance of a and
b modulus 2N − 1. For a0 and b0 above the distance (modulo 2N − 1) is 1. This means we can
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replace a0 and b0 for any a and b with distance 1. Eventually we only use a0 (equation 28), so
equation 29 hold for all a and b. We now average both sides of inequality (29) over all z ∈ Z.
Taking the average on the left hand side (IN (PX,Y |A,B,Z(·, · | ·, ·, z)) will complete the proof of
the lemma. Note that as AN and BN are free variables, we have for all z, a, b:

PZ|AN ,BN (z | a, b) =
PZ,AN ,BN (z, a, b)

PAN ,BN (a, b)

=
PZ,AN ,BN (z, a, b)

PAN (a)PBN (b)
(as ¬(AN  BN ))

=
PZ(z)PAN (a)PBN (b)

PAN (a)PBN (b)
(as ¬(AN  Z),¬(AN  BN )

and ¬(BN  Z),¬(BN  AN ))

= PZ(z).

Using the fact that for all z one has PZ|AN ,BN (z | a, b) = PZ(z), we can average IN over z:

〈IN (PX,Y |AN ,BN ,Z(·, · | ·, ·, z)〉Z : =
∑
z

PZ|AN ,BN (z | a, b)IN (PX,Y |AN ,BN ,Z(·, · | ·, ·, z)

=
∑
z

PZ(z)IN (PX,Y |AN ,BN ,Z(·, · | ·, ·, z)

=
∑
z

PZ|AN ,BN (z | a0, b0)P (X = Y |AN = a0, BN = b0, Z = z)

+
∑

a∈AN ,b∈BN
|a−b|=1

∑
z

PZ|AN ,BN (z | a, b)P (X 6= Y |AN = a,BN = b, Z = z)

= P (X = Y |AN = a0, BN = b0)

+
∑

a∈AN ,b∈BN
|a−b|=1

P (X 6= Y |AN = a,BN = b)

= IN (PX,Y |AN ,BN ).

This is the expression given in the lemma.

Now we average over z the right hand side of equation (29):〈
D(PX|AN ,BN ,Z(· | a, b, z), PX

〉
Z

:=
∑
z

PZ|AN ,BN (z | a0, b0)D(PX|AN ,BN ,Z(· | a, b, z), PX)

=
∑
z

PZ|AN ,BN (z | a0, b0)(
1

2

∑
x

|PX|AN ,BN ,Z(x | a, b, z)− PX(x)|)

=
1

2

∑
x,z

|PX|AN ,BN ,Z(x | a, b, z)PZ|AN ,BN (z | a0, b0)

− PX(x)PZ|AN ,BN (z | a0, b0)|
= D(PX,Z|AN ,BN (·, · | a, b), PXPZ|AN ,BN (· | a0, b0)). (30)

Now we will use Lemma 2 and Lemma 4 (which we have just proven) on Pψ0

X,Y |AN ,BN .
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Lemma 5.

∀x, a, z (such that Pψ0

Z|AN (z | a) > 0): Pψ0

X|AN ,Z(x | a, z) = Pψ0

X|AN (x | a). (31)

Proof. It is easy to see that PX(x) = Pψ0

X|AN ,BN (x | a, b). In combination with the average (30)

we just calculated, and the previous lemma (4), this gives the inequality

D(Pψ0

X,Z|AN ,BN (·, · | a, b), Pψ0

X|AN ,BN (· | a, b)Pψ0

Z|AN ,BN (· | a0, b0)) ≤ 1

2
IN (PX,Y |AN ,BN ).

The idea is to take the limit N → ∞. By doing this we increase the range of possible values
taken by AN and BN . The quantum-mechanical probabilities Pψ0

X|AN ,BN are given by projecting

onto the vector Eax =
(
cos(eax)
sin(eax)

)
(where eax = π

2 ( a
2N + x)). If we choose N ′ = kN(k ∈ N) and

a′ = ak we project on the same vector. So

Pψ0

X|AN ,BN (x | a, b) = Pψ0

X|AkN ,BkN (x | ak, bk).

Increasing N does not change the probability of Pψ0

X|AN ,BN (· | a, b) as long as we scale a and b

accordingly. However, for PX,Z|AN ,BN (x, z | a, b) we cannot directly conclude that scaling gives
the same probabilities. A condition we have to place on our theory T is that for the same
physical measurement, the probabilities given by T stay the same. Thus if we scale a and b as
above, we are measuring the state ψ0 along the same angles, therefore physically giving the same
measurement. From this we can conclude:

PX,Z|AN ,BN (x, z | a, b) = PX,Z|AkN ,BkN (x, z | ak, bk).

The last term Pψ0

Z|AN ,BN can easily be scaled as:

Pψ0

Z|AN ,BN = Pψ0

Z = Pψ0

Z|AkN ,BkN .

Now it follows that:

D(Pψ0

X,Z|AN ,BN (·, · | a, b), Pψ0

X|AN ,BN (· | a, b)Pψ0

Z|AN ,BN (· | a0, b0))

= D(Pψ0

X,Z|AkN ,BkN (·, · | ak, bk), Pψ0

X|AkN ,BkN (· | ak, bk)Pψ0

Z|AkN ,BkN (· | a0k, b0k))

≤ 1

2
IN (PX,Y |AkN ,BkN )

≤ π2

16kN
.

Taking the limit k →∞ now forces the metric to zero, making the distributions equal, which in
turn gives:

Pψ0

X,Z|AN ,BN (·, · | a, b) = Pψ0

X|AN ,BN (· | a, b)Pψ0

Z|AN ,BN (· | a0, b0);

=⇒

Pψ0

X|AN ,Z(x | a, z) = Pψ0

X|AN (x | a) (if Pψ0

Z|AN (z | a) ≥ 0).
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7.3 Ordering coefficients of states

Before we continue to build a construction to exploit the results we have so far, we need to
introduce some notation and facts that are needed in the next sections.

Definition 9. Let φ =
∑n
i=1 αiei be a state in Hilbert space H of dimension m. We define the

sequence {α↓ir} (where 1 ≤ r ≤ n) to be the sequence of coefficients αi ordered in descending
order.

To be clear, if for example α5 is the largest coefficient, we define i1 = 5, such that α↓i1 = α5.
We use this idea of rearranging coefficient in descending order to compare different states.

Definition 10. Suppose we have two states φ =
∑n
i=1 αiei and ψ =

∑n
j=1 βjej in Hilbert space

H. We write: φ � ψ if

k∑
r=1

(|α↓ir |)
2 ≥

k∑
r=1

(|β↓ir |)
2 for all k ∈ {1, . . . , n}

It turns out maximally entangled states are “minimal“ in this sense.

Lemma 6. Suppose we have a Hilbert space H of dimension m. Let ψm =
∑m
i=1

1√
m
ei be the

maximally entangled state of rank m and let φ =
∑m
i=1 αiei be another state in H. We have

φ � ψm.

Proof. We will use induction on the number of elements we sum over. First we claim |α↓i1 | ≥
1
m .

Suppose |α↓i1 | <
1
m . This implies |α↓ir | <

1
m for all r, as α↓i1 is the largest coefficient. But then

we have

1 >

n∑
r=1

|α↓ir |
2 =

n∑
i=1

|αi|2 = 1.

So this is a contradiction with φ having norm 1. Suppose now that we know for all l < k :∑l
r=1 |α

↓
ir
|2 ≥

∑l
i=1

1
m . We again prove by contradiction, so suppose

∑k
r=1 |α

↓
ir
|2 <

∑k
i=1

1
m .

This means

|α↓ik |
2 <

1

m
−

(
k−1∑
r=1

|α↓ir |
2 −

k−1∑
i=1

1

m

)

|α↓ir |
2 <

1

m
for all r > k

m∑
r=1

|α↓ir |
2 <

k∑
r=1

|α↓ir |
2 +

m∑
k+1

1

m

m∑
r=1

|α↓ir |
2 <

m∑
i=1

1

m
= 1

This is a contradiction with φ having norm 1, so φ � ψm.

This idea can also be expanded to states which consists of tensor products.

Corollary 1. Suppose we have state φ =
∑m
i=1 αiei and the maximally entangled state

ψm =
∑m
i=1

1√
m
ei of rank m in Hilbert space H of dimension m. Let ψ =

∑n
j=1 βj be another

state in Hilbert space H ′ of dimension n. Then φ⊗ ψ � ψm ⊗ ψ
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Proof. The coefficients of φ⊗ ψ are of the form αiβj , those of ψm ⊗ ψ are 1
mβj . We know from

the previous lemma that φ � ψm. Looking at the sum of the k largest | 1
mβj | squared, we know

there are k αi, such that the sum over these αi squared is greater than k
m (as φ � ψm). This

means the sum over the coefficients which consists of the bj of the k largest coefficients of ψm⊗ψ
paired with these αi is larger than the sum over the k largest | 1

mβj | squared

7.4 Embezzlement ([5], [6])

To generalize the previous results to the main theorem we are trying to prove, we are going to
make use of a construction called the embezzling state. These embezzling states are vectors in the
space

⊗nC2 ' C2n . For C2 we take the basis vectors |1〉 =
(

1
0

)
and |0〉 =

(
0
1

)
. A tensor product

over n such vectors may, for example, have the form |1〉⊗|0〉⊗ . . .⊗|0〉⊗|0〉. Any natural number
i such that 1 ≤ i ≤ 2n−1 can be written in base 2: b2(i) = kn−12n−1 +kn−22n−2 + . . .+k12+k0

(kj ∈ {0, 1}). For this decomposition in base two we write i = (kn . . . k0)2. We now define a
basis of

⊗n C2 as

Definition 11. For n ∈ N we decompose any 0 ≤ i ≤ 2n − 1 in base two. If b2(i) = (kn . . . k0)2

we take:
n⊗

C2 3 ei+1 := |kn〉 ⊗ . . .⊗ |k0〉 . (32)

The {ei}i=1,...2n are pairwise orthonormal and therefore form a basis of
⊗nCn. Using this

basis we now define a special collection of vectors µn.

Definition 12. Take HÃ =
⊗nC2 ' C2n and HÃ = HB̃. For all n ∈ N we have an embezzling

state µn defined as:

HÃ ⊗HB̃ 3 µn :=
1√
Cn

2n∑
j=1

1√
j
e
HÃ
j ⊗ eHB̃j , (33)

where Cn =
j=2n∑
j=1

1
j (to normalize this µn).

We look at HA′ =
⊗m C2 = C2m and HB′ = HA′ . Suppose, for an arbitrary m, we are

given a bipartite state in HA′ ⊗ HB′ = C2m ⊗ C2m , written in its Schmidt decomposition as

φ =
2m∑
i=1

αiθ
HA′
i ⊗ θHB′i , where θ

HA′
i ⊗ θHB′i ∈ HA′ ⊗HB′ . The αi are greater than 0.

The situation for this embezzlement protocol is very similar to the bipartite setup. We have
observers A and B. This time, the states belonging to A are in the Hilbert spaces HA′ and HÃ.
Those of B in spaces HB′ and HB̃ . The idea behind these embezzling states is to transform the

initial state e
HA′
1 ⊗ eHB′1 ⊗ µn to a vector arbitrarily close to φ ⊗ µn, but doing it without any

communication between observers A and B. This means we can only use unitary transformations
on HA′ and HÃ for A, and unitary transformation on HB′ and HB̃ for B. Such transformations
are called local unitary transformations. The ability to extract an arbitrary φ from the
initial state will enable us to apply our previous results for the maximally entangled states on
more general measurements.

Definition 13. Take HÃ = HB̃ =
⊗n C2 ' C2n and HA′ = HB′ =

⊗m C2 ' C2m . For
µn ∈ HÃ ⊗HB̃ the embezzling state, and φ ∈ HA′ ⊗HB′ an arbitrary state (ie. unit vector), the
vector

φ⊗ µn =
∑
j,i

γi,j((θ
HA′
i ⊗ θHB′i ))⊗ (e

HÃ
j ⊗ eHB̃j ),
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(in HA′ ⊗ HB′ ⊗ HÃ ⊗ HB̃) gives us coefficients {γi,j}i,j. Taking the 2n largest of those and

ordering them as a descending sequence we obtain a sequence γ↓ir,jr such that γ↓i1,j1 ≥ γ↓i2,j2 ≥
. . . ≥ γ↓i2m ,j2n . For this sequence and the given unit vector φ we define the embezzlement of
φ as

E(φ)n,m :=
1√
Cn

r=2n∑
r=1

1√
r

((θ
HA′
ir
⊗ θHB′ir

)⊗ (e
HÃ
jr
⊗ eHB̃jr )). (34)

This E(φ)n,m is also a vector in HA′ ⊗HB′ ⊗HÃ ⊗HB̃.

This embezzlement of φ is important because we are able to transform µn to E(φ)n,m using
only local unitary transformations.

Lemma 7. Let {eHA′1 . . . ẽ
HB′
2m } be an orthonormal basis of

⊗m C2 ' C2m . With e
HA′
1 ⊗ eHB′1

we can consider the state

(e
HA′
1 ⊗ eHB′1 )⊗ (µn) =

1√
Cn

n∑
j=1

1√
j

(e
HA′
1 ⊗ eHB′1 )⊗ (e

HÃ
j ⊗ eHB̃j ),

in HA′ ⊗HB′ ⊗HÃ ⊗HB̃. There exist local isometries Un,m;φ(for A) on HA′ ⊗HÃ and Vn,m;φ

on HB′ ⊗HB̃ (for B) such that these transform (e
HA′
1 ⊗ eHB′1 )⊗ (µn) to E(φ)n,m.

Proof. We will prove this lemma for Un,m;ψ on HA′ ⊗HÃ. The proof for Vn,m;ψ is exactly the
same, only this time taking place on HB′⊗HB̃ (which is effectively the same space as HA′⊗HÃ).

The space HA′ ⊗HÃ is isomorphic to the space C2n+m

. We have two orthonormal bases on

this space. Basis one is e
HA′
i ⊗ eHÃj with j = 1, . . . 2n and i = 1, . . . , 2m. The vectors e

HA′
1 ⊗ eHÃ1

are part of this basis. The second base is θ
HA′
i ⊗ e

HÃ
j (θ

HA′
i ∈ HA′) with j = 1, . . . 2n and

i = 1, . . . , 2m. The vectors θ
HA′
ir
⊗ eHÃjr are part of this basis.

A basis transform between two orthogonal basis is unitary. Therefore, we take Un,m;φ to be

the basis transformation that maps basis vector e
HA′
1 ⊗ eHB′j to

√
Cn(θ

HA′
ij
⊗ eHÃjj ). We let Vn,m;φ

be the basis transform that maps e
HB′
1 ⊗ eHB̃j to

√
Cn(θ

HB′
ij
⊗ eHB̃jj ). We want to apply Un,m;φ

and Vn,m;φ to (e
HA′
1 ⊗ eHB′1 )⊗µn. Note that Un,m;φ⊗Vn,m;φ is a map on HA′ ⊗HÃ⊗HB′ ⊗HB̃ .

So to apply this map we have to permute the order of the Hilbert spaces. Let T be such a
permutation, i.e.

T : HA′ ⊗HB′ ⊗HÃ ⊗HB̃ → HA′ ⊗HÃ ⊗HB′ ⊗HB̃ .

We can then transform (e
HA′
1 ⊗ eHB′1 )⊗ µn to E(φ)n,m with aid of the unitary transformation

T−1(Un,m;φ ⊗ Vn,m;φ)T.

Now that we know how to create such a state E(φ)n,m from (e
HA′
1 ⊗eHB′1 )⊗µn, we complete our

embezzlement procedure by showing that if we take n to be large enough, E(φ)n,m is arbitrarily
close to µn ⊗ φ.

Lemma 8. Take a fixed HA′ ⊗HB′ 3 φ =
2m∑
i=1

αiθ
HA′
i ⊗ θHB′i (where θ

HA′
i ⊗ θHB′i ∈ HA′ ⊗HB′)

and a fixed ε (0 < ε < 1). If n ≥ m
ε the following inequality holds:

| 〈φ⊗ µn, E(φ)n,m〉 | ≥ 1− ε. (35)
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Proof. We will first fully expand the state φ⊗µn, after which we will give estimates for the inner
product 〈φ⊗ µn, E(φ)n,m〉. The proof given here is similar to the proof provided by [5]. We
know

φ⊗ µn =

(
2m∑
i=1

αiθ
HA′
i ⊗ θHB′i

)
⊗

 1√
Cn

2n∑
j=1

1√
j
e
HÃ
j ⊗ eHB̃j


=

1√
Cn

∑
j,i

αi√
j

(θ
HA′
i ⊗ θHB′i )⊗ (e

HÃ
j ⊗ eHB̃j ) (j = 1 . . . 2n, i = 1 . . . 2m).

Remember that E(φ)n,m := 1√
Cn

r=2n∑
r=1

1√
r
((θ

HA′
ir
⊗ θHB′ir

)⊗ (e
HÃ
jr
⊗ eHB̃jr )). Using the fact that the

ej and θi are orthonormal we can conclude:

| 〈φ⊗ µn, E(φ)n,m〉 |

= |

〈
1√
Cn

∑
j,i

αi√
j

(θ
HA′
i ⊗ θHB′i )⊗ (e

HÃ
j ⊗ eHB̃j ),

1√
Cn

r=2n∑
r=1

1√
r

((θ
HA′
ir
⊗ θHB′ir

)⊗ (e
HÃ
jr
⊗ eHB̃jr ))

〉
|

=
1

Cn

∑
i,j,r

αi√
jr

〈
e
HÃ
j , e

HÃ
jr

〉〈
e
HB̃
j , e

HB̃
jr

〉〈
θ
HA′
i , θ

HA′
ir

〉〈
θ
HB′
i , θ

HB′
ir

〉
(j, r = 1 . . . 2n; i = 1 . . . 2m)

=

2n∑
r=1

αir√
jrCn

1√
rCn

.

So we have a sum over the 2n largest coefficients of φ ⊗ µn (which are by definition the 2n

coefficients of E(φ)n,m) times the first 2n coefficients of µn. We will now verify that in fact, the
j-th coefficient of E(φ)n,m is smaller than the corresponding coefficient of µn. This observation
and the proof come from [5].

For a fixed t and i, we define N t
i to be the number of coefficients αi√

jCn
that are stricly greater

than 1√
tCN

. Saying αi√
jCn

is stricly greater than 1√
tCN

, is equivalent to taking j ’s such that

1 ≤ j < a2
i t. From this it follows N t

i < α2
i t. As φ is a vector of length one, we have

∑2m

i=1 α
2
i = 1.

This gives us
∑2m

i=1N
t
i = t. This is an upper bound on the number of coefficients of E(φ)n,m

that are strictly bigger than 1√
tCn

. As the coefficients of E(φ)n,m are in descending order, this

means for 1 ≤ k ≤ 2n we have: γik,jk <
1√
Cnk

. This means

| 〈φ⊗ µn, E(φ)n,m〉 | ≥
1

Cn

2n∑
r=1

αir
jr

2
.

We have φ⊗µn � ψ′m⊗µn by Corollary 1. Here ψ′m is the maximally entangled state of rank 2m

in the basis θi⊗θi. This means the sum over the 2n largest coefficients of φ⊗µn squared is greater

than or equal too the first 2n coefficients of ψ′m ⊗ µn. We know ψm ⊗ µn =
∑2m

i=1

∑2n

j=1
1√

Cnj2m
.
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This gives us:

1

Cn

2n∑
r=1

αir
jr

2
≥

2n−m∑
j=1

2m∑
i=1

1

Cnj2m

=

2n−m∑
j=1

1

Cnj

=
Cn−m
Cn

.

The Cn can be estimated using the natural logarithm.
∑2n

i=1
1
i is the Riemann-sum for

∫ 2n+1

1
1
xdx

(where we evaluate on the left of every interval). This implies:

Cn =

2n∑
i=1

1

i

≥
∫ 2n+1

1

1

x
dx

≥ ln(2n).

Note that
∑n+1
i=1

1
i −

∑n
i=1

1
i = 1

n+1 and that ln(n + 1) − ln(n) = ln(1 + 1
n ). We know that

1
n−1 ≤ ln(1 + 1

n ) which, for every n, implies:

Cn − ln(2n) ≥ Cn+1 − ln(2n+1) ≥ 0. (36)

Write: α := Cn−m−ln(2n−m)
ln(2) and β := Cn−ln(2n)

ln(2) . As α > β (because of equation (36)) we know

αn ≥ β(n−m)

⇒
n(n−m) + αn ≥ (n−m)n+ (n−m)β

⇒
n(n−m+ α) ≥ (n−m)(n+ β)

⇒
n−m+ α

n+ β
≥ n−m

n

⇒
ln(2n−m) + Cn−m − ln(2n−m)

ln(2n) + Cn − ln(2n)
≥ n−m

n

⇒
Cn−m
Cn

≥ 1 +
m

n
.

So we have proven:
| 〈φ⊗ µn, E(φ)n,m〉 | ≥ 1− ε. (37)

24



7.5 Generalization

Suppose we have a general measurement quantum-system S. We are measuring some observable
M with corresponding operator M . The state of the system prior to measurement is called
ψ, which is a unit vector in Hilbert space HS . We describe the measurement as a projective

measurement with K possible outcomes. This means M =
K∑
i=1

λiProjλi . Here, λi are the K

eigenvalues of this operator. Each Projλi projects onto the eigenspace of HS belonging to the
eigenvalue λi. With this measurement we have the associated probabilities

PψM (λi) = 〈ψ, Projλiψ〉 .

We write pi = PψM (λi). Right after the measurement with result λi, the state of the system is

given by ρi :=
Projλiψ√

pi
. Note that the ρi are a set of K orthonormal vectors in HS . This is

what we consider a general measurement. With this general measurement we can state the main
claim.

Theorem 1. Let M be a general measurement on ψ ∈ HS with K possible outcomes. Firstly
we assume our hidden variable theory T is compatible with quantum mechanics (as defined in
section 4). Secondly, we demand that for the specific measurement on ψ0 in the bipartite setup,
the variables AN and BN are free, w.r.t the causal order defined in equations (17), (18) and (19).
Then quantum mechanics is at least as informative as T , i.e., for any λi ∈ σ(M) and z ∈ Z we
have

PψM (λi) = PψM |Z(λi | z).

We have the general measurement S on ψ (with ψ in Hilbert space HS). We will describe
this measurement in two alternative ways. First, in a system consisting of the combination of
S with a system called the measurement device D (specified by yet another Hilbert space
HD). Secondly, we will describe the measurement in an even larger space. On this last space
we will use embezzlement together with our previous results to extract the claim. Using this
embezzlement, we will finally try to reduce the situation to the original measurement on ψ.

7.5.1 Measurement device

We now describe the measurement M on the state ψ in an alternative way. Consider a Hilbert
space HD of dimension K. Choose an orthonormal basis given by eHD1 , . . . eHDN . Now define

HS ⊗HD 3 φ :=

K∑
i=1

√
piρi ⊗ eHDi . (38)

This, together with the projections 1S ⊗ PeHDi , gives rise to probabilities:

PφM ′(λi) =
〈
φ,1S ⊗ PeHDi φ

〉
= pi 〈ρi, ρi〉

〈
eHDi , eHDi

〉
= 〈ψ, Projλiψ〉

= PψM (λi).
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After the measurement with result λi, the state collapses to

(1S ⊗ PeHDi )φ√〈
φ, (1S ⊗ PeHDi )φ

〉 =

√
piρi ⊗ eHDi√

pi

= ρi ⊗ eHDi .

This means that after measurement on HS ⊗HD with result λi the HS-part of φ collapses to ρi
just as it would when measuring ψ on HS with result λi.

7.5.2 Embezzlement on measurement device

As a last step we consider φ as defined above in a larger Hilbert space, on which we use embez-
zlement. This space is

H := HS ⊗HD ⊗HS′ ⊗HD′ ⊗HS̃ ⊗HD̃.

Looking back to the previous subsection on embezzlement, the space HS̃ and HD̃ correspond to
HÃ and HB̃ , whereas HS′ and HD′ correspond to HA′ and HB′ . For the sizes of these spaces,
take HS̃ and HD̃ to be

⊗n C2. We will take HS′ and HD′ to be
⊗r C2. The exact choice for

n and r will be determined below, as it is dependent on how close of an approximation we are
trying to achieve via embezzlement. We can chose a vector in HS′⊗HD′ to embezzle. We choose

a maximally entangled state of rank m, which is ψm = 1√
m

∑m
i=1 e

HS′
i ⊗ eHD′i (in HS′ ⊗HD′).

Note that due to the fact that H ′S and H ′D have dimension 2r, we can have ψ1 up to ψ2r .

Corollary 2. For a fixed ε (0 < ε < 1) and n ∈ N: ∀r ≤ n there exist local isometrics Un,r;ψm

and Vn,r;ψm such that

T−1(Un,r;ψm ⊗ Vn,r;ψm)T : (e
HS′
1 ⊗ eHD′1 )⊗ µn 7→ E(ψm)n,r,

with: | 〈ψm ⊗ µn, E(ψm)n,r〉 | ≥ 1− ε.

Here T again permutes the order of the Hilbert spaces to let Un,r;ψm ⊗ Vn,r;ψm map

(e
HS′
1 ⊗ eHD′1 )⊗ µn.

Proof. It is evident that this corollary is just embezzlement applied to the specific state ψm. The
validity of the inequality is guaranteed by lemma 8.

With transformations Un,r;ψm and Vn,r;ψm , we construct the following map on H:

Û ⊗ V̂ =

K∑
i=1

K∑
j=1

Pρi ⊗ PeHDj ⊗ T−1(Un,r;ψmi ⊗ Vn,r;ψmj )T. (39)

This is a unitary map we can apply to H 3 Φ := φ⊗ (e
HS′
1 ⊗ eHD′1 )⊗ µn. For the i-th position

in the sum, we embezzle to extract a maximally entangled state of rank mi. We do this in order
to embezzle the Φ to a state that looks very much like a maximally entangled state. This opens
up ways to apply the previous results in this more general setting. The next lemma describes
which vectors we end up with after embezzlement via Û ⊗ V̂ .

Lemma 9. Applying the operator Û ⊗ V̂ on Φ gives, for appropriate choices for mi, r and n, a

state arbitrarily close to H 3 Ψ := ( 1√
2r

∑N
i=1

∑mi
j=1 ρi ⊗ e

HD
i ⊗ eHS′j ⊗ eHD′j ) ⊗ µn in the sense

that for every 0 > ε > 1 we have |
〈

(Û ⊗ V̂ )Φ,Ψ
〉
| ≥ 1− ε.
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Proof. We want to use the triangle inequality. For this we need to establish a connection between
the norm and the inequality assumed in the lemma. The norm ‖ · ‖ is given by ‖ψ‖ =

√
〈ψ,ψ〉.

Suppose for a real number ε (0 < ε < 1) and two vectors ν and ω of norm 1 we have
‖ν − ω‖ ≤

√
2ε. An easy calculation gives us:

‖ν − ω‖ =
√
〈ν − ω, ν − ω〉

⇐⇒√
〈ν − ω, ν − ω〉 ≤

√
2ε

〈ν, ν〉 − 〈ν, ω〉 − 〈ω, ν〉+ 〈ω, ω〉 ≤ 2ε

2− 2ε ≤ 〈ν, ω〉+ 〈ω, ν〉
1− ε ≤ Re(〈ν, ω〉)
1− ε ≤ | 〈ν, ω〉 |.

Thus we can conclude that the following are equivalent:

| 〈ν, ω〉 | ≥ 1− ε⇐⇒ ‖ν − ω‖ ≤
√

2ε.

First we look at the what applying the operator Û ⊗ V̂ to Φ does:

(Û ⊗ V̂ )(Φ)

= (
∑
i,j

Pρi ⊗ PeHDj ⊗ T−1Un,r;ψmi ⊗ Vn,r;ψmj T )((
∑
k

√
pkρk ⊗ eHDk ⊗ (e

HS′
1 ⊗ eHD′1 )⊗ µn

=
∑
i,j,k

√
pk 〈ρi, ρk〉 ρi ⊗

〈
eHDj , eHDk

〉
eHDj

⊗ (T−1(Un,r;ψmi ⊗ Vn,r;ψmj )T ((e
HS′
1 ⊗ eHD′1 )⊗ µn)

=

K∑
i=1

√
piρi ⊗ eHDi (T−1(Un,r;ψmi ⊗ Vn,r;ψmi )T ((e

HS′
1 ⊗ eHD′1 )⊗ µn)

=: Φ̂.

Now, when we embezzle by applying the operator U ⊗ V we obtain something close to:∑
i

√
piρi ⊗ eHDi ⊗ ( 1√

mi

∑mi
j=1 e

HS′
j ⊗ eHD′j )⊗ µn, which we will call Φemb ∈ H.

Φemb :=
∑
i

√
piρi ⊗ eHDi ⊗ (

1
√
mi

mi∑
j=1

e
HS′
j ⊗ eHD′j )⊗ µn

=

K∑
i=1

(

√
pi
mi

mi∑
j=1

ρi ⊗ eHDi ⊗ eHS′j ⊗ eHD′j )⊗ µn.

We would like the state Φemb to be close to a state of this form:

H 3 Ψ := (
1√
2r

K∑
i=1

mi∑
j=1

ρi ⊗ eHDi ⊗ eHS′i ⊗ eHD′j )⊗ µn.

Not surprisingly, this can be accomplished to arbitrary precision by choosing the appropriate mi

and n. Each mi describes the rank of entanglement we achieve by embezzlement in the i − th
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position of the sum. The n was a parameter in the embezzlement to control the precision. We
want pi

mi
to be close to 1

2r , choosing the mi such that
∑K
i=1mi = 2r.

This means we have to choose the natural number mi close to 2rpi. We do this by taking
mi = bpi2rc for i = 1 . . .K − 1 and for mK = 2r − (m1 + m2 + . . . + mK−1). This satisfies the
condition that the sum of the mi is equal to 2r. Note that mK is always well defined, as

m1 +m2 . . .+mK−1 ≤ (p1 + . . .+ pK−1)2r < 2r.

We know the distance between mi and pi2
r is bounded. For i = 1 . . .K − 1 we know

|mi − 2rpi| ≤ 1.

For the K-th m we have |mK − pK2r| ≤ K − 1. Therefore,∣∣∣∣∣
√

1

2r
−
√

pi
mi

∣∣∣∣∣ ≤
√∣∣∣∣ 1

2r
− pi
mi

∣∣∣∣
≤

√∣∣∣∣mi − 2rpi
2rmi

∣∣∣∣
≤
√
K − 1

2rmi

≤
√
K − 1

2r
.

Looking at ‖Φemb −Ψ‖, we can now easily see that

‖Φemb −Ψ‖ ≤

√
K

(
K − 1

2r

)
. (40)

With these estimates, we are able to complete the proof of the lemma. Let ε be a real number
such that 0 < ε < 1. Choose an r such that ‖Φemb − Ψ‖ ≤ 1

2

√
2ε (see equation (40)). Then we

pick n ≥ r
1
4 ε

, and the mi as defined above. Looking at Φ̂ and Φemb and using lemma 8 we can

conclude they are close as well:

〈
Φ̂,Φemb

〉
=

K∑
i=1

pi

〈
T−1Un,mi;ψm ⊗ Vn,mj ;ψmT (e

HS′
i ⊗ eHD′i ⊗ µn), (

1
√
mi

mi∑
j=1

e
HS′
j ⊗ eHD′j )⊗ µn

〉

≥
K∑
i=1

pi(1−
1

4
ε)

≥ 1− 1

4
ε.

This implies ‖Φ̂ − Φemb‖ ≤ 1
2

√
2ε, which implies ‖Φ̂ − Ψ‖ ≤ ‖Φ̂ − Φemb‖ + ‖Φemb − Ψ‖ ≤

√
2ε.

This, implies:
〈

Φ̂,Ψ
〉
≥ 1− ε. This concludes the proof of the lemma.

Let us quickly summarize what we have done until now. We have introduced a unitary
operator Û ⊗ V̂ on H which transforms Φ to Ψ up to arbitrary precision. Taking a closer look at
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Ψ = ( 1√
2r

∑N
i=1

∑mi
j=1 ρi ⊗ e

HD
i ⊗ eHS′j ⊗ eHD′j )⊗ µn, we see it consists of a sum of 2r orthogonal

vectors in H. This is very much like the result of taking the tensor product of the maximally
entangled state of order 2 (previously written as ψ0) r times. This allows us to use our previous
results concerning measurements on such a ψ0.

We now try to make the idea that Ψ looks like a tensor product of maximally entangled states
more explicit. Remember that HS′ = HD′ =

⊗r C2. Let us look at the tensor product of r
such maximally entangled states ψ0. To make sure we are still distinguishing the Hilbert spaces
belonging to S and those belonging to D correctly, we will write Hs′ = Hd′ = C2. Write:

ψ0 =
1√
2

(
e
Hs′
1 ⊗ eHd′1 + e

Hs′
2 ⊗ eHd′2

)
.

We look at the tensor product of r such entangled states, which gives

(Hs′ ⊗Hd′)⊗ . . .⊗ (Hs′ ⊗Hd′) 3
r⊗
i=1

1√
2

(
e
Hs′
1 ⊗ eHd′1 + e

Hs′
2 ⊗ eHd′2

)
=

∑
ij∈{1,2}
j=1,...,r

(e
Hs′
i1
⊗ eHd′i1

)⊗ . . .⊗ (e
Hs′
ir
⊗ eHd′ir

).

Now introduce an operator Tσ. This Tσ changes the order of all Hilbert spaces in question such
that it groups those belonging to S and those belonging to D, i.e.

Tσ ((Hs′ ⊗Hd′)⊗ . . .⊗ (Hs′ ⊗Hd′)) = (Hs′ ⊗ . . .⊗Hs′)⊗ (Hd′ ⊗ . . .⊗Hd′) .

This operator is an isometry. Now applying Tσ to the tensor product of maximally entangled
states gives the vector we will call ψ⊗r0 :

ψ⊗r0 : = Tσ

 ∑
ij∈{1,2}
j=1,...,r

(e
Hs′
i1
⊗ eHd′i1

)⊗ . . .⊗ (e
Hs′
ir
⊗ eHd′ir

)


=

∑
ij∈{1,2}
j=1,...,r

(e
Hs′
i1
⊗ . . .⊗ eHs′ir

)⊗ (e
Hd′
i1
⊗ . . .⊗ eHd′ir

)

=
1√
2r

2r∑
i=1

e
HS′
i ⊗ eHD′i .

The last step going from (e
Hs′
i1
⊗ . . . ⊗ eHs′ir

) ⊗ (e
Hd′
i1
⊗ . . . ⊗ eHd′ir

) to e
HS′
i ⊗ eHD′i is exactly the

construction of the basis of
⊗r C2 introduced in Definition 11.

We want to implement our ψ⊗r0 in H, so we define the vector: H 3 Ψent = ρ1⊗eHD1 ⊗ψ⊗r0 ⊗µn.
Both Ψ and Ψent are vectors in H consisting of 2r orthonormal vectors. This means we can easily
transform Ψ into Ψent using local unitary transformations (just like U and V in the embezzlement

procedure). Let S be a unitary operator on HS ⊗ HS̃′ that transforms a vector ρi ⊗ eHS′j to

ρ1 ⊗ eHS′k . W is a unitary operator on HD ⊗HD′ that transforms eHDi ⊗ eHD′j to eHD1 ⊗ eHD′k .
Again using the operator T to change the order of the Hilbert-spaces we have(

T−1(S ⊗W )T
)

Ψ = Ψemb.
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Corollary 3. For every 0 < ε < 1 there is a Φ̃ with |
〈

Φ, Φ̃
〉
| ≥ 1− ε such that

(T−1W ⊗ ST )(Û ⊗ V̂ )Φ̃ = Ψemb.

Proof. From lemma 9 we know that there is an r such that |
〈

(Û ⊗ V̂ )Φ,Ψ
〉
| ≥ 1− ε. We know

that T−1S ⊗WT is unitary, so

|
〈

(T−1S ⊗WT )(Û ⊗ V̂ )Φ,Ψemb

〉
| ≥ 1− ε.

For Φ̃ we take

Φ̃ =
[
(T−1W ⊗ ST )(Û ⊗ V̂ )

]∗
(Ψemb).

It follows that Φ̃ with |
〈

Φ, Φ̃
〉
| ≥ 1− ε.

There is one last thing we need to consider before we can finally prove our claim. We have
a several vectors that are close. It is quite intuitive that, when the vectors are close, projective
measurements on such vectors give similar results. This intuitive idea is made precise in the
following lemma.

Lemma 10. Consider a general measurement of some observable M with outcomes λi, with
λi ∈ σ(M). Let ν and ω be two states. If there is an 0 < ε < 1 such that | 〈ν, ω〉 | ≥ 1− ε, then

for the probability distributions PφM (λi) and PψM (λi) we have

D(P νM , P
ω
M ) ≤

√
1− | 〈ν, ω〉 | ≤

√
2ε.

Proof. The proof will not be given. See Chapter 9 in the book [4].

An important matter is how the hidden variable theory behaves for measurements on states
that are close. We assume the hidden variable theory to be compatible with quantum mechanics
(as described in section 4), but this alone is not enough to guarantee that the hidden variable
theory also given similar probabilities on similar states. To follow the proof as given in the
Colbeck and Renner article ([3]), we do need such a property in order to complete the proof. We
will say the theory T exhibits continuous behavior if measurements on close states give rise
to a probability distributions that are close (in the variational distance).

Definition 14. Consider a general measurement of some observable M with outcomes λi. Let
ν and ω be two states. We say the hidden variable theory T has continuous behaviour if the
follow holds: for every ε > 0, there is a 0 < δ < 1 such that if 〈ν, ω〉 ≥ 1− δ we have

D
(
P νM |Z(· | z), PωM |Z(· | z)

)
≤ ε

7.6 Proof of Theorem 1

Now that we know how to reach, from a general measurement, something resembling the rank
two maximally entangled state, we can introduce a measurement on Φ. First let us introduce
some notations. We will name the operator, that transforms Φ to something close to Ψemb, U.
So

U := T−1(W ⊗ S)T (Û ⊗ V̂ ).
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Next, we would like to make the projections introduced in the bipartite setup r times on the
HS′ ⊗HD′ part of Ψemb, leaving all the other spaces unaltered. We define

Or
~x,~a;~y,~b

:= 1HS⊗HD ⊗ Tσ

(
r⊗
i=1

PEaixi
⊗ P

F
bi
yi

)
T ∗σ ⊗ 1HS̃⊗HD̃ .

Again we quickly recap. We start with the state Φ. Using the operator U (which only uses
local unitary transformations), we know U(Φ) is close to Ψemb. This is equivalent to saying there
is a Φ̃ close to Φ which gets mapped to Ψemb by U (by corollary 3). On this Ψemb we can apply
Or
~x,~a;~y,~b

to achieve the projections on the maximally entangled state. We now use the following

operator to describe measurements on Φ:

U∗Or
~x,~a;~y,~b

U.

We first transform to something resembling a maximally entangled state using U, perform pro-
jective measurements on this maximally entangled state (with the operator Or

~x,~a;~y,~b
), after which

we transform back using U∗.

This measurement is described by random variables ~X, ~Y , ~AN and ~BN . The new random
variable ~X consists of r copies of X, in the sense that the possible values of ~X are vectors ~x of
length r, with xi ∈ {0, 1}. In other words, ~x ∈ {0, 1}r. The same holds for ~Y . The variables ~AN
and ~BN work the same way; they take values ~a (and ~b) in the r-fold Cartesian product of AN
(and BN ) which we write as A×rN (and B×rN ). Using the operator U∗Or

~x,~a;~y,~b
U as a projective

measurement on Φ we obtain the following probabilities:

PΦ
~X,~Y | ~AN , ~BN

(~x, ~y | ~a,~b) :=
〈

Φ,U∗Or
~x,~a;~y,~b

U(Φ)
〉

=
〈
UΦ,Or

~x,~a;~y,~b
U(Φ)

〉
.

This same measurement on Φ̃, the state close to Φ gives (using U(Φ̃) = Ψemb)

P Φ̃
~X,~Y | ~AN , ~BN

(~x, ~y | ~a,~b) =
〈
UΦ̃,Or

~x,~a;~y,~b
UΦ̃

〉
=
〈

Ψemb,O
r
~x,~a;~y,~b

Ψemb

〉
=

〈
ψ⊗r0 , Tσ

(
r⊗
i=1

PEaixi
⊗ P

F
bi
yi

)
T ∗σψ

⊗r
0

〉

=

r∏
i=1

〈
ψ0, PEaixi

⊗ P
F
bi
yi

(ψ0)
〉

=

r∏
i=1

Pψ0

X,Y |AN ,BN (xi, yi | ai, bi).
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Let us sum this over all possible ~y ∈ {0, 1}r

P Φ̃
~X| ~AN , ~BN

(~x | ~a,~b) =
∑

~y∈{0,1}

P Φ̃
~X,~Y | ~AN , ~BN

(~x, ~y | ~a,~b)

=
∑

~y∈{0,1}

r∏
i=1

Pψ0

X,Y |AN ,BN (xi, yi | ai, bi)

=

r∏
i=1

(
Pψ0

X,Y |AN ,BN (xi, 0 | ai, bi) + Pψ0

X,Y |AN ,BN (xi, 1 | ai, bi)
)

=

r∏
i=1

Pψ0

X|AN ,BN (xi | ai, bi). (41)

Note that, when we assume that AN and BN are free variables for the bipartite setup, the

probabilities above are independent of ~b. Let us look more closely at P Φ̃
~X|AN ,BN

, for ~AN = ~a0

with ~a0 = (0, . . . , 0).
Writing it in a slightly different way, yields

P Φ̃
~X| ~AN , ~BN

(~x | ~a0,~b) =

〈
ψ⊗r0 , Tσ

(
r⊗
i=1

PE0
xi
⊗ 1Hd′

)
T ∗σψ

⊗r
0

〉

=

〈
ψ0, Tσ

r⊗
i=1

(
PE0

xi
⊗ 1Hd′ψ0

)〉

=

〈
ψ0,

1√
2r
Tσ

[
r⊗
i=1

(
PE0

xi
⊗ 1Hd′ e

Hs′
1 ⊗ eHd′1

)
+
(
PE0

xi
⊗ 1Hd′ e

Hs′
2 ⊗ eHd′2

)]〉

=

〈
ψ⊗r0 ,

1√
2r
e
HS′
k ⊗ eHD′k

〉
(for a certain k ∈ {1, . . . , 2r})

=

〈
Ψemb,

1√
2r
ρ1 ⊗ eHD1 ⊗ eHS′k ⊗ eHD′k ⊗ µn

〉
=

〈
Ψ,

1√
2r
ρi ⊗ eHDi ⊗ eHS′j ⊗ eHD′j ⊗ µn

〉
(for certain i ∈ {1, . . . ,K}, j ∈ {1, . . .mi}).

So the distribution for ~X having a value of ~x corresponds to
〈

Ψ, 1√
2r
ρi ⊗ eHDi ⊗ eHS′j ⊗ eHD′j ⊗ µn

〉
for certain i and j (on the state Φ̃). These i and j are uniquely determined by the k because

T−1(S⊗W )T (e
HS′
k ⊗eHD′k ) = ρi⊗eHDi ⊗eHS′j ⊗eHD′j . The k is again uniquely determined by how

we have constructed the basis on
⊗r C2. To express this connection between the ~x and the i and j

to which ~x corresponds, we will write ~xij for the vector corresponding to ρi⊗eHDi ⊗e
HS′
j ⊗eHD′j ⊗µn.

This relation also allows us to group the 2r vectors ~xij in K sets, such that every set contains all

~xij with a fixed i and j ranging from 1 to mi. Such a set we write as

Si = {~xij | j ∈ {1, . . . ,mi}}.

In order to keep the notation short, we replace the random variable ~X with S. The variable S
takes value λi if ~X ∈ Si. The choice for λi will become clear if we look at the probability for
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~X ∈ Si for the original state Φ. Looking at the probabilities for Φ̃, we get

P Φ̃
S| ~AN , ~BN

(λi | ~a0,~b) := P Φ̃( ~X ∈ Si | ~AN = ~a0, ~BN = ~b)

=
∑
~x∈Si

P Φ̃
~X| ~AN , ~BN

(~x | ~a0,~b)

=

〈
Ψ,

1√
2r
ρi ⊗ eHDi ⊗

mi∑
j=1

e
HS′
j ⊗ eHD′j

⊗ µn〉 .
This also implies, by definition of Φ̃, that

PΦ
S| ~AN , ~BN

(λi | ~a0,~b)

=
∑
~x∈Si

PΦ
~X| ~AN , ~BN

(~x | ~a0,~b)

=
〈

Φ,
√
piρi ⊗ eHDi ⊗

[
T−1Un,2r;ψmi ⊗ Vn,2r;ψmiT

(
e
HS′
1 ⊗ eHD′1 ⊗ µn

)]〉
=
〈
φ,1HS ⊗ PeHDi φ

〉
= PψM (λi) (42)

= pi.

We are now able to prove Theorem 1.

Proof. We are going to use a proof by contradiction. For a general measurement M we assume
the following:

• The hidden variable theory T is compatible with quantum mechanics

• For the measurement in the bipartite setup, the variables AN and BN are free w.r.t the
causal order defined by equations (17), (18) and (19).

• The theory T has continuous behavior (per definition 14)

• For a z ∈ Z we have D(PψM , P
ψ
M |Z(· | z)) > ε.

As illustrated by equation (42), describing the measurement M as applying U∗Or
~x,~a;~y,~b

U to Φ

(and summing over all ~xij ∈ Si) is equivalent to applying M to ψ. As both distributions describe
the same measurement, we necessarily have

PΦ
S| ~AN , ~BN

(· | ~a0,~b) = PψM . (43)

and
PΦ
S| ~AN , ~BN ,Z

(· | ~a0,~b, z) = PψM |Z(· | z). (44)

We have finally established a connection between the original measurement on ψ, and the more
complicated measurement (using embezzlement) on Φ.

We assume AN and BN to be free variables (in the bipartite setup). This, together with
lemma 5, means

Pψ0

X|AN ,BN (x | a, b) = Pψ0

X|AN (xi | a)

= Pψ0

X|AN ,Z(xi | a, z).
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We know that P Φ̃
~X| ~AN , ~BN

(~x | ~a,~b) =
∏r
i=1 P

ψ0

X|AN (xi | ai). The distributions for the measurement

on the maximally entangled state are independent of Z (as proven in lemma 5). The distribution
for Φ is just a product of distributions for ψ0, so is independent of Z as well. This gives

P Φ̃
S| ~AN , ~BN

(λi | ~a0,~b) = P Φ̃
S| ~AN , ~BN ,Z

(λi | ~a0,~b, z). (45)

Using corollary 3, we can conclude that we can choose r1 (and the mi associated with it)
such that 〈

Φ, Φ̃
〉
≤ 1− ε2

8
.

Using lemma 10 this implies

D
(
PΦ
S| ~AN , ~BN

(· | ~a0,~b), P
Φ̃
S| ~AN , ~BN

(· | ~a0,~b)
)
≤ 1

2
ε.

Next, using the constraint that the theory T has continuous behavior, we know that for 1
2ε, there

is a δ such that when
〈

Φ, Φ̃
〉
≥ 1− δ we know

D
(
PΦ
S| ~AN , ~BN ,Z

(· | ~a0,~b, z), P
Φ̃
S| ~AN , ~BN ,Z

(· | ~a0,~b, z)
)
≤ 1

2
ε.

We can choose r2, such that
〈

Φ, Φ̃
〉
≥ 1− δ. We want to use both inequalities, so define r to be

the maximum of r1 and r2:
r = max(r1, r2).

Combining the above inequalities, we are able to give an upper bound on the variational
distance between PψM and PψM |Z(· | z).

D
(
PψM , P

ψ
M |Z(· | z)

)
≤ D

(
PψM , P

Φ̃
S| ~AN , ~BN

(· | ~a0,~b)
)

+D
(
PψM |Z(· | z), P Φ̃

S| ~AN , ~BN
(· | ~a0,~b)

)
≤ D

(
PψM , P

Φ̃
S| ~AN , ~BN

(· | ~a0,~b)
)

+D
(
PψM |Z(· | z), P Φ̃

S| ~AN , ~BN ,Z
(· | ~a0,~b, z)

)
≤ D

(
PΦ
S| ~AN , ~BN

(· | ~a0,~b), P
Φ̃
S| ~AN , ~BN

(· | ~a0,~b)
)

+D
(
PΦ
S| ~AN , ~BN ,Z

(· | ~a0,~b, z), P
Φ̃
S| ~AN , ~BN

(· | ~a0,~b)
)

≤ ε.

We have used equations (45), (43) and (44). This is a contradiction with the assumption that

D
(
PψM , P

ψ
M |Z(· | z)

)
> ε. As this construction is possible for every ε > 0, it follows that

PψM = PψM |Z(· | z).
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8 Conclusions and Discussion

The main goal has been achieved. We have constructed a proof for the claim of Colbeck and Ren-
ner that, under some natural assumptions, hidden variables do not improve the predictions made
by quantum mechanics. If some hidden variable theory has free choice (to deduce no-signaling)
and it is compatible with quantum mechanics, quantum mechanics is at least as informative as
the hidden variable theory.

The compatibility states, in more detail, that the predictions given by quantum mechan-
ics should be identical to those provided by a hidden variable theory that is averaged over the
hidden variable. As quantum predictions seem sound, this assumption is non-negotiable. The
assumption on free variables however, is more controversial. In the paper “About possible ex-
tensions of quantum theory” ([7]) by Ghirardi and Romano, a dummy higher theory is suggested
which does not conform to the notion of free choice. On the other hand, it does have the no-
signaling property and seems to be a legitimate hidden variable theory. This implies the free
choice as described by Colbeck and Renner is actually an assumption stronger than no-signaling,
and therefore somewhat redundant. Assuming just no-signaling, the proof can be completed in
exactly the same way. It can even be slightly simplified by, describing the settings AN and BN
as fixed parameters in the form of angels, instead of describing the settings by random variables
with N possible values. This would make the proof of lemma 5 somewhat easier, as one does
not have to use the limit of N →∞ anymore. But in general, the main proof would remain the
same.

A far more pressing matter is contained in the crux of the proof, namely the generalization
from one state and one measurement to any state and any measurement. This is achieved by
describing the original general measurement (on ψ) as an alternative measurement (on Φ) in a
larger Hilbert Space. One can show that the predictions given by both descriptions are the same.
After measurement with a certain result, in both cases we collapse to the same eigenstate (in
the S part of the system). The question remains though, if this again implies the predictions
using the hidden variable theory T are the same. Intuitively, the predictions made by T should
be the same if we have equivalent descriptions of the same measurement. As the hidden variable
is assumed to be a property of the system, one might expect that as long as we are describing
the same experiment, equivalent descriptions of this measurement should give rise to the same
predictions, even using the hidden variable theory. But it is not really clear that the measurement
via embezzlement we perform in the larger Hilbert space is in fact an equivalent description of the
general measurement. But this fact is crucial in tying the general measurement and the specific
projections on the maximally entangled state together. Therefore, in our view, the result is not
complete without a specification on when exactly the theory T should give the same predictions
for alternative descriptions of a measurement.

Secondly, in order to complete the proof, we have to assume an additional property for a
hidden variable theory, that is not mentioned in the Colbeck and Renner article. Throughout
the proof of the claim, we make use of states that are close. For a given r, the probabilities
obtained for Φ̃ are equal to a product of r probabilities obtained by measurement on ψ0 in the
bipartite setup. But Φ and Φ̃ are now only guaranteed to be close up to a bound determined by
r. If we want them to be closer, we have to choose a larger r, which leads to a different Φ̃ and
operator U∗Or

~x,~a;~y,~b
U. There is no reason to assume that the construction for one particular

r would yield a Φ̃ equal to Φ. For quantum mechanics, we know when the states are close,
the probability distributions associated with a measurement on these states are close as well.

35



For T we have, a priori, no reason to assume the probability distributions for measurements
on close states are close. In order to say something about the predictions given by T for our
measurement on Φ (which is equivalent with the general measurement on ψ), we use knowledge
about the predictions of T on Φ̃. We have assumed the theory T to have an extra property we
have called continuous behavior, which enables us to compare the probabilities given by T on Φ
and Φ̃, if Φ and Φ̃ are close. Without this assumption, we cannot compare the predictions given
by T on Φ and Φ̃.

In conclusion, we have reached our goal. But along the way, we had to make some concessions
in the form of extra assumptions on how the hidden variable theory T relates to quantum
mechanics. Therefore, I think the result of Colbeck and Renner is not quite strong enough to
exclude the existence of a hidden variable theory which assumes compatibility with quantum
mechanics and free choice in a bipartite setup.
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