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Abstract. A nonzero 2-cocycl€ e Zz(g, R) on the Lie algebrg of a compact Lie grou defines
a twisted version of the Lie—Poisson structure on the dual Lie algebtfaading to a Poisson algebra
C“(gi‘r)). Similarly, a multiplierc € Z2(G, U(1)) on G which is smooth near the identity defines

a twist in the convolution product ofi, encoded by the twisted grodf*-algebraC*(G, ¢).

Further to some superficial yet enlightening analogies betwéé?mgzkr)) andC*(G, c), it is
shown that the latter is a strict quantization of the former, where Planck’s coiistastimes values
in (Z\{O})_l. This means that there exists a continuous field falgebras, indexed by € 0 U
@\{0) 1, for which 2% = Cq(g*) andA" = C*(G, ¢) for h # 0, along with a cross-section of
the field satisfying Dirac’s condition asymptotically relating the commutatd/irto the Poisson
bracket orCOO(gZ‘r)). Note that the ‘quantization’ df does not occur for = 0.
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1. Introduction

There now exists a satisfying*-algebraic definition of quantization, which en-
ables one to link Poisson and symplectic geometry with operator algebras and
noncommutative geometry. The main functional-analytic idea behind this goes
back to Rieffel [1], who showed how the idea of ‘formal’ deformation quanti-
zation [2] may be adapted to an operator-algebraic context. Later modifications
by Rieffel himself and by the author have culminated in the following definition
(see [3] for references and comments). Recall hafP) is the commutative*-
algebra of continuous functions ah which vanish at infinity, equipped with the
supremum-norm.

DEFINITION 1. A continuous quantization of a Poisson maniféictonsists of
a subset! C R (containing 0 as an accumulation point), a continuous field of
C*-algebras({2"}ser, € C [The; A with 2A° = Co(P), a Poisson algebral®
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which lies densely irCo(P), and a distinguished collectiof@(f)} ;.50 C € of
cross-sections, such that

Qo(f) = f; (1)
Qr(f*) = Qr( Y )

forall 2 € I and f € 2°. Finally, Dirac’s condition
. i
}llano Il E[@h(f)v @r(®)]—@n({f.gh) I=0 )

should hold for allf, g € 2°.

We refer to Dixmier [4] for the concept of a continuous field@f-algebras;
the collection® of cross-sections determines a continuity structurédny;.;, and
has to satisfy a number of conditions which are listed in [4]. It should be noted that
Definition 1 guarantees the property

lim || @y())@i(8) ~ @n(f8) =0 (4)

for all 7, g € 2°. In addition, the functio: —| @,(f) | is continuous or, so
that, in particular, one has

lim [ @(f) =1l £ llee- (5)
where the right-hand side is the supremum-nornf o€onversely, one has

LEMMA 1. Suppose one has a Poisson maniféida family {2"},c; of C*-
algebras indexed by a discrete subgetc R containing0 as an accumulation
point, a Poisson algebra&(® whose (sup-norm) closure % = Co(P), and a
collection of linear map$@,: A° — A"}, satisfying(1)—(5)

There exists a familg c [],., making({A"};<,, €) into a continuous field of
C*-algebras, such that contains all map$@;(f)}nes, f € A°.

The continuous field in question is uniquely determined when thmsg'g‘)}feﬂo
is dense ir(" for all 2 € I, but we shall not need this. A proof of this lemma may
be found in [3].

Apart from its more stringent definition of convergence, strict quantization as
defined by Definition 1 differs from deformation quantization in the sense of [2],
as well as from the corresponding notion in [1], in tigi(2A°) is not necessarily
closed under multiplication (i("). If it is, and if @, is nondegenerate in that
Qy(f) = 0iff f = 0 for eachi, one may define an associative ‘deformed’
product, in 2A° with the property@,(f)@x(g) = @x(f -» g) (and, of course,
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f-0g = fg)-The conditions on a strict quantization may then be rephrased in terms
of this product in the obvious way, leading to the framework of [1]. However, there
are many examples of strict quantization that are not deformation quantizations,
including the ones in this paper that correspond to nontrivial group extensions.

A conceptually rather pleasing class of examples of strict quantization (in the
original definition of [1]) was discovered by Rieffel [5]. Consider a Lie gra®p
with Lie algebrag. The dualg* of g is a Poisson manifold under the well-known
Lie—Poisson bracket [6]

{f. 8}(0) = —6(dfp, dgo D). (6)

The symplectic leaves of a Poisson manifdtd(along with their covering
spaces) play the role of ‘classical’ irreducible representations of the corresponding
Poisson algebra° (P) [3]. As shown by Kirillov [7] (also cf. [6]), the symplectic
leaves ofg* with respect to this Poisson structure are (the connected components
of) its coadjoint orbits. This result is reminiscent of the bijective correspondence
between the (nondegenerate) irreducible representations of the @tealgebra
C*(G) and the irreducible unitary representations({8]. Since the latter may
be seen as the quantum counterparts of the coadjoint orhits Kirillov’s result
already suggests that*(G) should be theC*-algebraic analogue of the Poisson
algebraC>(g*).

The correspondence between the coadjoint orbitg*iand the unitary irre-
ducible representations df is at its best (namely, bijective and functorial) when
G is nilpotent, connected, and simply connected. In that case, Rieffel [5] showed
that C*(G) is related toC*(g*) by a strict quantization, witdh = R. Under the
stated assumption@ is exponential, so that one may identdywith g. Translated
into the setting of Definition 1, the quantization mapsare given by

. a0 oxom
Qu(f): X — /g i @O, 7)

Here f € 2A° = $(g*), the Schwartz space of test functionsgin

In Section 2, we show that an analogous statement holds for arbitrary compact
Lie groups; given the results on strict quantization on Riemannian manifolds in
[9], this is a simple exercise. In Section 3 we modify the Lie—Poisson structure on
g* by a nonzero 2-cocycl€ on g, and show thaC*(G) should then be replaced
by the twisted groupC*-algebraC*(G, ¢), defined by a multipliee on G which
is smooth near the identity. Similar representation-theoretic analogies as in the
untwisted case then hold. The main point of this Letter is made in Section 4, where
we extend the strict quantization of the Lie—Poisson structure to the twisted case.
That is, whenl" is the derivative ofc in a suitable sense, we show that &
algebraC*(G, c) and the twisted Poisson algebra (g}, are related by a strict
guantization. Surprisingly, this only works if the interval= R is replaced by the
discrete sef = 0U (Z\{0})~1. The quantization maps, however, are still given by

(7).
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2. Strict Quantization of the Lie—Poisson Structure for Compact Lie Groups

In this section we modify (7) so as to make it applicable to compact Lie groups.
Firstly, the Fourier transform of e L(g*) is defined by

N B do 00X)
F0) = fg S @ 1O) (8)

where d6 is Lebesgue measure gh >~ R”, whose normalization is fixed by that
of the Haar measurexdon G, as follows. Whenf has support nea#, we can
write [, dx f(x) = fg d*X J(X) f(Exp(X)), where d X is a Lebesgue measure
on g, andJ is some Jacobian. The normalization is now fixed by the condition
J(0) = 1. Inturn, the normalization of the Lebesgue meastfeath g* is fixed by
requiring the inversion formulg (9) = fg @' X e X £(X). We defineC(g*)

as the class of functions gt whose Fourier transfornf isin C>*(g). This is a
Poisson subalgebra 6f*°(g?).

We choose a smooth cutoff functianon g which equals 1 in a neighbourhood
N of 0, is invariant under inversiod — —X, and has support in the neighbour-
hood & of 0 on which Exp is a diffeomorphism. Whef is compact one may
assume that is Ad-invariant, i.e., satisfies(Ad(y)X) = «(X) forall y € G. This
may always be achieved by averaging.

We now modify (7) as follows: fox ¢ Exp() we put@,(f)(x) = 0, whereas
for x € Exp(NV') we put

@n(f)(x) = A"k (Exp(x)) f (Exp (x)/h). 9)

The restrictionf € C,(g*) implies that for small enoughthe operato, ( f)
is independent of.

THEOREM 1. Supposé is ann-dimensional compact Lie group. The collection
of maps@;: C(g*) — C*(G) defined by(9) and preceding text, where <
R\{0}, satisfieg1)—(5) Hence, there exists a strict quantization (cf. Definition 1)
of g* onI = R for which?® = C2(g*), A° = Co(g*), andA* = C*(G) for

h ¢ 0, the maps2;,(f) being cross-sections of the associated continuous field of
C*-algebras.

The conclusion of the theorem is immediate from Lemma 1. To prove that the
assumptions of the lemma are satisfied, we iderdtif¢G) with 7 (C*(G)), where
m; is the left-regular representation @¥(G) [8]; this representation is faithful
because compact groups are amenable. Also, we idefififyg*) as a Poisson
algebra with the subalgebr@>(7*G)* of right-invariant smooth functions on
T*G, equipped with the canonical cotangent bundle Poisson bracket [6]. This
identification is inherited by"35(g*) ~ C33(T*G)R, where on the right-hand side
the classC3y, is defined relative to the Fourier transform in the fiber direction [9, 6];

recall that7*G =~ g*.
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A compact Lie grougs admits a right-invariant Riemannian metgicsuch that
the exponential map exmbtained fromg coincides with the map Exp defined
by the Lie group structure [10]. Using such a metric, the generalized Weyl quan-
tization prescription on Riemannian manifolds of [9], restrictedC83(T*G)*,
coincides with@, as defined by (9). All claims then follow from Theorem 1 in
[9]. O

3. The Twisted Lie—Poisson Algebra vs the Twisted Group Algebra

LetI" € Z%(g, R) be a 2-cocycle og with values inR [6]. This leads to a modi-
fication of the Lie—Poisson structure gh in which one adds a termI"(df, dg)
to the right-hand side of (6). In canonical co-ordinatesgdr{relative to a basis
{T.}a=1...n OF g), the ensuing bracket reads

df og
00, 06},
where theC¢, are the structure constants gfin the given basis, andl,, =
I'(7,, T,). We denote the spagg, seen as a Poisson manifold through (10), by
9(r, With associated Poisson algeter& (g(.,).

The 2-cocycld™ defines a central extensigi of g as well. As a vector space
one hagir = g @ R; denoting the central element [y (this is a basis vector in
the extensiorR), the new Lie bracket igX, Y]r = [X, Y] + I'(X, Y) T,. This also
equips the duag}. with the Lie—Poisson structure. Lef be the basis element in
gr dual toTo. ThenJs : gi) — gr given byJi(9) = 6 +w° (Whereg* is embedded
in gf- as the annihilator of the extensid) is a Poisson map.

{f, &) = —(C,0. 4+ Tup) (10)

PROPOSITION 1.The canonical identification > (gr) / ker(J;) with C*(g{y-)
is a Poisson isomorphism.
Proof. This is immediate from the definitions and (10). O

The identification between the symplectic leavegyinwith respect to the Lie-
Poison structure and the coadjoint orbits has the following generalization to the
twisted case [6, 3]. Ler be a symplectic cocycle o6 with the property that
I'(X,Y) = —(d/dr)y (Exp(zX))(Y) =0 The symplectic leaves af., then coin-
cide with theG-orbits ing* under the twisted coadjoint action Ga)6 = Co(x)6+
y (x), where Co stands for the usual coadjoint action.

We pass from Poisson algebras@®-algebras. The role df is now played by
a multiplierc € Z?(G, U(1)) on G which is smooth near the identity [11, 3]. The
quantum analogue of the twisted Poisson algebidg() is the twisted group
algebraC*(G, ¢). This is defined as a suitab&-completion ofL*(G), under the
twisted convolution product

f gl = /G dy cCry % ) ey Hg(y). (11)
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and the twisted involution

[ =cle,x H f(xh. 12)

The bijective correspondence between the nondegenerate (irreducible) repre-
sentations ofC*(G) and the continuous unitary (irreducible) representations of
G is generalized to a bijective correspondence between the nondegenerate (irre-
ducible) representations of*(G,c) and the continuous projective unitary
(irreducible) representations 6f with multiplier ¢; see [12, 3].

Furthermore, a multiplier defines a central extensi@n. of G by U(1) [11]. A
guantum analogue of Proposition 1 is as follows.

PROPOSITION 2. Let G be a compact Lie group with multiplier, and write
m* for the representation of *(G.) corresponding to the representati@nt(G.)
induced byU, (U(1)), wherek € Z and U (z) = zX for z € T = U(1). For each
k € Z there are isomorphisms

C*(G, ") ~ 7%(C*(G,)) ~ C*(G,)/ ker(z"). (13)
Explicitly, under the first isomorphism the functisfi( f) € C*(G, ¢*) is

7k (f)ix — /dzzkf(x,z). (14)
T

Here ¢ is the normalized Haar measure @n Given a projective represen-
tation W(G) with multiplier ¢*, one defines an associated representatignof
G, by Ux(x,z) = z*U(x), and verifies that/. is unitarily equivalent to the
representatio/*(G.) induced byU, (U(1)). O

This proposition is closely related to the decomposition
C*(Ge) = Brez 7 (C*(GL)), (15)

which follows from the isomorphisn€*(G.) = =, (C*(G,.)) and the Peter-Weyl
theorem applied t@..

4. Strict Quantization of the Twisted Lie—Poisson Structure for
Compact Lie Groups

Comparing the comment after the proof of Proposition 1 with the one following
(12), and also comparing Propositions 1 and 2, it is clear that the twisted group
C*-algebraC*(G, ¢) is indeed a quantum version of the twisted Poisson algebra
C>(g{r,)- Inspired by the analogies in question, we now generalize Theorem 1 to
the twisted case.

We identifyR in gr = g @ R with the Lie algebrai.(1) of the central subgroup
U(1) c G, defining the extension, and write Exgl) — U(1) for the exponential
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map, conventionally realized as E¥p) = exp(—i X). In a neighbourhoodV, x N,
of (e, e) we can writec = Exp(x), whereyx: &, x N, — u.(1). Then define
Igxg— Rby

d
[x (Exp(rX), EXp(sY)) —

— X (Exp(sY), Exp(z X))]|s=1=0- (16)
It is easy to see thdt € Z%(g, R) whenc € Z%(G, U(2)).

THEOREM 2. Supposés is ann-dimensional compact Lie group, with multiplier
c € Z%(G,U(1)), and define a 2-cocyclE€ e Z?(g,R) on g by (16). Regard
Cenlg(r) as a Poisson subalgebra 6 (g(;-,) with respect to the Poisson bracket
(10), and regard(9) as a map fromCy(gfy) to A" = C*(G, "), whereh e
(Z\{op~.

The collection of map&;, thus construed, satisfi€$)—(5) Hence, there exists
a strict quantization (cf. Definitiorl) of g, for which A0 = Conlgir), A0 =
Co(gir), andA" = C*(G, ") for h e (Z\{0})~!, the maps2,(f) being cross-
sections of the associated continuous field'tfalgebras.

It is obvious that (2) holds. The proof of the other properties is based on the
analogy between Propositions 1 and 2. Extghé& Cgy(g*) to a function f €
C2(gk), such thatf () = £(1,6) and

fOo#1.0) < fBo=1,0) = f(6): (17)
in particular, one has

I f loo=Il £ lloo - (18)
In view of (10) this automatically means that

{(f.8)L.0)={f. g} 6. (19)

since the left-hand side does not involve derivatives with respefgt to

We denote (9) as defined affy (g}, taking values inC*(G, ¢'/"), by @,
whereas the map defined in the same way, but nowCgi(g;), taking values
in C*(G,), is written as@,. A short computation using (14) and an elementary
oscillatory integral shows that

7 @n(f)) = Qi (f) (20)

for h e (Z\{0})~* small enough so that the right-hand side is independent of
In particular, the left-hand side only depends on the valug af 6, = 1; this is
a special case of the fact that, forsmall enoughy*(@,(f)) only depends on
f (8o = kh). This follows by a similar calculation as the one leading to (20).
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Theorem 1 applied tG . implies that lim_o || @:(f) =] f |le. On the other
hand, according to (15) one hsA ||= sup..; || 7%(A) || for all A € C*(G,).
Combining the two of these equations with the last remark of the preceding para-
graph and the property (17), we conclude that

lim | @4 (f) lI= lim || 7*(@n(H)) 1=l f oo - 21)

Together with (18) and (20) this proves (5).
Equations (4) and (3) now follow from (20), Proposition 2, (19), Theorem 1
(once again applied t6.), and the inequality| 7¥(A) | <|| A || in C*(G,). O

While proved for compact;, Theorem 2 may hold in other situations. For ex-
ample, letG ~ g* = R?, with I" given by['(P;, P;) = I'(Q', /) = 0 and
(P, Q)) = =8/, andc defined byc((u, v), (', v")) = €“'~)/2 Then the
statement of Theorem 2 holds as well.

References

1. Rieffel, M. A.: Comm. Math. Physl22(1989), 531-562.
2. Bayen, F,, Flato, M., Fronsdal, C., Lichnerowicz, A. and SternheimeAh: Phys. (NY110
(1978), 61-110, 111-151.
3. Landsman, N. PMathematical Topics between Classical and Quantum MechaBprénger,
New York, 1998.
4. Dixmier, J.C*-Algebras North-Holland, Amsterdam, 1977.
5. Rieffel, M. A.: Amer. J. Math112(1990), 657—686.
6. Libermann, P. and Marle, C.-MSymplectic Geometry and Analytical Mechanios Reidel,
Dordrecht, 1987.
7. Kirillov, A. A.: Russian Math. Surveyi (1976), 55-75.
8. Pedersen, G. K.C*-Algebras and their Automorphism Groyp&cademic Press, London,
1979.
9. Landsman, N. P1. Geom. Physl2 (1993), 93-132.
10. Milnor, J.:Adv. Math.21 (1976), 293—-329.
11. Tuynman, G. M. and Wiegerinck, W. A. J. J.Geom. Phys} (1987), 207-258.
12. Busby, R. C. and Smith, H. ATrans. Amer. Math. S0449(1970), 503-537.



