Twisted Lie Group C^* -Algebras as Strict Quantizations

N. P. LANDSMAN*

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands. e-mail:npl@wins.uva.nl

(Received: 26 June 1998)

Abstract. A nonzero 2-cocycle $\Gamma \in Z^2(\mathfrak{g},\mathbb{R})$ on the Lie algebra \mathfrak{g} of a compact Lie group G defines a twisted version of the Lie–Poisson structure on the dual Lie algebra \mathfrak{g}^* , leading to a Poisson algebra $C^{\infty}(\mathfrak{g}^*_{(\Gamma)})$. Similarly, a multiplier $c \in Z^2(G, \mathrm{U}(1))$ on G which is smooth near the identity defines a twist in the convolution product on G, encoded by the twisted group C^* -algebra $C^*(G, c)$.

Further to some superficial yet enlightening analogies between $C^{\infty}(\mathfrak{g}^*_{(\Gamma)})$ and $C^*(G,c)$, it is shown that the latter is a strict quantization of the former, where Planck's constant \hbar assumes values in $(\mathbb{Z}\setminus\{0\})^{-1}$. This means that there exists a continuous field of C^* -algebras, indexed by $\hbar\in 0\cup (\mathbb{Z}\setminus\{0\})^{-1}$, for which $\mathfrak{A}^0=C_0(\mathfrak{g}^*)$ and $\mathfrak{A}^\hbar=C^*(G,c)$ for $\hbar\neq 0$, along with a cross-section of the field satisfying Dirac's condition asymptotically relating the commutator in \mathfrak{A}^\hbar to the Poisson bracket on $C^{\infty}(\mathfrak{g}^*_{(\Gamma)})$. Note that the 'quantization' of \hbar does not occur for $\Gamma=0$.

Mathematics Subject Classifications (1991): 81S99, 46L60, 22D25.

Key words: quantization, C^* -algebras, Poisson manifolds.

1. Introduction

There now exists a satisfying C^* -algebraic definition of quantization, which enables one to link Poisson and symplectic geometry with operator algebras and noncommutative geometry. The main functional-analytic idea behind this goes back to Rieffel [1], who showed how the idea of 'formal' deformation quantization [2] may be adapted to an operator-algebraic context. Later modifications by Rieffel himself and by the author have culminated in the following definition (see [3] for references and comments). Recall that $C_0(P)$ is the commutative C^* -algebra of continuous functions on P which vanish at infinity, equipped with the supremum-norm.

DEFINITION 1. A continuous quantization of a Poisson manifold P consists of a subset $I \subseteq \mathbb{R}$ (containing 0 as an accumulation point), a continuous field of C^* -algebras $(\{\mathfrak{A}^h\}_{h\in I},\mathfrak{C}\subset\prod_{h\in I}\mathfrak{A}^h)$ with $\mathfrak{A}^0=C_0(P)$, a Poisson algebra $\tilde{\mathfrak{A}}^0$

^{*} Supported by a fellowship from the Royal Netherlands Academy of Arts and Sciences (KNAW).

which lies densely in $C_0(P)$, and a distinguished collection $\{\mathcal{Q}(f)\}_{f\in\tilde{\mathfrak{A}}^0}\subset\mathfrak{C}$ of cross-sections, such that

$$Q_0(f) = f; (1)$$

$$Q_{\hbar}(f^*) = Q_{\hbar}(f)^*; \tag{2}$$

for all $h \in I$ and $f \in \tilde{\mathfrak{A}}^0$. Finally, Dirac's condition

$$\lim_{\hbar \to 0} \| \frac{i}{\hbar} [\mathcal{Q}_{\hbar}(f), \mathcal{Q}_{\hbar}(g)] - \mathcal{Q}_{\hbar}(\{f, g\}) \| = 0$$
(3)

should hold for all $f, g \in \tilde{\mathfrak{A}}^0$.

We refer to Dixmier [4] for the concept of a continuous field of C^* -algebras; the collection $\mathfrak C$ of cross-sections determines a continuity structure on $\{\mathfrak A^{\hbar}\}_{\hbar\in I}$, and has to satisfy a number of conditions which are listed in [4]. It should be noted that Definition 1 guarantees the property

$$\lim_{\hbar \to 0} \| \mathcal{Q}_{\hbar}(f)\mathcal{Q}_{\hbar}(g) - \mathcal{Q}_{\hbar}(fg) \| = 0 \tag{4}$$

for all $f, g \in \tilde{\mathfrak{A}}^0$. In addition, the function $\hbar \to \parallel \mathcal{Q}_{\hbar}(f) \parallel$ is continuous on I, so that, in particular, one has

$$\lim_{h \to 0} \| \mathcal{Q}_h(f) \| = \| f \|_{\infty}, \tag{5}$$

where the right-hand side is the supremum-norm of f. Conversely, one has

LEMMA 1. Suppose one has a Poisson manifold P, a family $\{\mathfrak{A}^h\}_{h\in I}$ of C^* -algebras indexed by a discrete subset $I\subset \mathbb{R}$ containing 0 as an accumulation point, a Poisson algebra $\tilde{\mathfrak{A}}^0$ whose (sup-norm) closure is $\mathfrak{A}^0=C_0(P)$, and a collection of linear maps $\{\mathcal{Q}_h\colon \tilde{\mathfrak{A}}^0\to \mathfrak{A}^h\}_{h\in I}$ satisfying (1)–(5).

There exists a family $\mathfrak{C} \subset \prod_{h \in I}$ making $(\{\mathfrak{A}^h\}_{h \in I}, \mathfrak{C})$ into a continuous field of C^* -algebras, such that \mathfrak{C} contains all maps $\{\mathcal{Q}_h(f)\}_{h \in I}$, $f \in \tilde{\mathfrak{A}}^0$.

The continuous field in question is uniquely determined when the set $\{Q_{\hbar}(f)\}_{f \in \tilde{\mathfrak{A}}^0}$ is dense in \mathfrak{A}^{\hbar} for all $\hbar \in I$, but we shall not need this. A proof of this lemma may be found in [3].

Apart from its more stringent definition of convergence, strict quantization as defined by Definition 1 differs from deformation quantization in the sense of [2], as well as from the corresponding notion in [1], in that $\mathcal{Q}_{\hbar}(\tilde{\mathfrak{A}}^0)$ is not necessarily closed under multiplication (in \mathfrak{A}^h). If it is, and if \mathcal{Q}_{\hbar} is nondegenerate in that $\mathcal{Q}_{\hbar}(f) = 0$ iff f = 0 for each \hbar , one may define an associative 'deformed' product h in $\tilde{\mathfrak{A}}^0$ with the property $\mathcal{Q}_{\hbar}(f)\mathcal{Q}_{\hbar}(g) = \mathcal{Q}_{\hbar}(f \cdot_{\hbar} g)$ (and, of course,

 $f \cdot_0 g = fg$). The conditions on a strict quantization may then be rephrased in terms of this product in the obvious way, leading to the framework of [1]. However, there are many examples of strict quantization that are not deformation quantizations, including the ones in this paper that correspond to nontrivial group extensions.

A conceptually rather pleasing class of examples of strict quantization (in the original definition of [1]) was discovered by Rieffel [5]. Consider a Lie group G with Lie algebra \mathfrak{g} . The dual \mathfrak{g}^* of \mathfrak{g} is a Poisson manifold under the well-known Lie–Poisson bracket [6]

$$\{f, g\}(\theta) = -\theta([\mathsf{d}\,f_\theta, \mathsf{d}g_\theta]). \tag{6}$$

The symplectic leaves of a Poisson manifold P (along with their covering spaces) play the role of 'classical' irreducible representations of the corresponding Poisson algebra $C^{\infty}(P)$ [3]. As shown by Kirillov [7] (also cf. [6]), the symplectic leaves of \mathfrak{g}^* with respect to this Poisson structure are (the connected components of) its coadjoint orbits. This result is reminiscent of the bijective correspondence between the (nondegenerate) irreducible representations of the group C^* -algebra $C^*(G)$ and the irreducible unitary representations of G [8]. Since the latter may be seen as the quantum counterparts of the coadjoint orbits of G, Kirillov's result already suggests that $C^*(G)$ should be the C^* -algebraic analogue of the Poisson algebra $C^{\infty}(\mathfrak{g}^*)$.

The correspondence between the coadjoint orbits in \mathfrak{g}^* and the unitary irreducible representations of G is at its best (namely, bijective and functorial) when G is nilpotent, connected, and simply connected. In that case, Rieffel [5] showed that $C^*(G)$ is related to $C^{\infty}(\mathfrak{g}^*)$ by a strict quantization, with $I = \mathbb{R}$. Under the stated assumptions G is exponential, so that one may identify G with \mathfrak{g} . Translated into the setting of Definition 1, the quantization maps \mathcal{Q}_{\hbar} are given by

$$\mathcal{Q}_{\hbar}(f): X \to \int_{\mathfrak{g}^*} \frac{\mathrm{d}^n \theta}{(2\pi \,\hbar)^n} \,\mathrm{e}^{i\theta(X)/\hbar} f(\theta). \tag{7}$$

Here $f \in \tilde{\mathfrak{A}}^0 = \mathscr{S}(\mathfrak{g}^*)$, the Schwartz space of test functions on \mathfrak{g}^* .

In Section 2, we show that an analogous statement holds for arbitrary compact Lie groups; given the results on strict quantization on Riemannian manifolds in [9], this is a simple exercise. In Section 3 we modify the Lie-Poisson structure on \mathfrak{g}^* by a nonzero 2-cocycle Γ on \mathfrak{g} , and show that $C^*(G)$ should then be replaced by the twisted group C^* -algebra $C^*(G,c)$, defined by a multiplier c on G which is smooth near the identity. Similar representation-theoretic analogies as in the untwisted case then hold. The main point of this Letter is made in Section 4, where we extend the strict quantization of the Lie-Poisson structure to the twisted case. That is, when Γ is the derivative of c in a suitable sense, we show that the C^* -algebra $C^*(G,c)$ and the twisted Poisson algebra $C^{\infty}(\mathfrak{g}^*_{(\Gamma)})$ are related by a strict quantization. Surprisingly, this only works if the interval $I=\mathbb{R}$ is replaced by the discrete set $I=0\cup (\mathbb{Z}\setminus\{0\})^{-1}$. The quantization maps, however, are still given by (7).

2. Strict Quantization of the Lie-Poisson Structure for Compact Lie Groups

In this section we modify (7) so as to make it applicable to compact Lie groups. Firstly, the Fourier transform of $f \in L^1(\mathfrak{g}^*)$ is defined by

$$\hat{f}(X) = \int_{\mathfrak{q}^*} \frac{\mathrm{d}^n \theta}{(2\pi)^n} \, \mathrm{e}^{i\theta(X)} f(\theta),\tag{8}$$

where $d^n\theta$ is Lebesgue measure on $\mathfrak{g}^* \simeq \mathbb{R}^n$, whose normalization is fixed by that of the Haar measure dx on G, as follows. When f has support near e, we can write $\int_G dx \, f(x) = \int_{\mathfrak{g}} d^n X \, J(X) \, f(\operatorname{Exp}(X))$, where $d^n X$ is a Lebesgue measure on \mathfrak{g} , and J is some Jacobian. The normalization is now fixed by the condition J(0) = 1. In turn, the normalization of the Lebesgue measure $d^n\theta$ on \mathfrak{g}^* is fixed by requiring the inversion formula $f(\theta) = \int_{\mathfrak{g}} d^n X \, e^{-i\theta(X)} \, \mathring{f}(X)$. We define $C_{\operatorname{PW}}^{\infty}(\mathfrak{g}^*)$ as the class of functions on \mathfrak{g}^* whose Fourier transform \mathring{f} is in $C_c^{\infty}(\mathfrak{g})$. This is a Poisson subalgebra of $C^{\infty}(\mathfrak{g}_+^*)$.

We choose a smooth cutoff function κ on $\mathfrak g$ which equals 1 in a neighbourhood $\tilde{\mathcal N}$ of 0, is invariant under inversion $X\to -X$, and has support in the neighbourhood $\mathcal N$ of 0 on which Exp is a diffeomorphism. When G is compact one may assume that κ is Ad-invariant, i.e., satisfies $\kappa(\mathrm{Ad}(y)X)=\kappa(X)$ for all $y\in G$. This may always be achieved by averaging.

We now modify (7) as follows: for $x \notin \operatorname{Exp}(\mathcal{N})$ we put $\mathcal{Q}_h(f)(x) = 0$, whereas for $x \in \operatorname{Exp}(\mathcal{N})$ we put

$$\mathcal{Q}_{\hbar}(f)(x) = \hbar^{-n} \kappa(\operatorname{Exp}^{-1}(x)) \dot{f}(\operatorname{Exp}^{-1}(x)/\hbar). \tag{9}$$

The restriction $f \in C^{\infty}_{PW}(\mathfrak{g}^*)$ implies that for small enough \hbar the operator $\mathcal{Q}_{\hbar}(f)$ is independent of κ .

THEOREM 1. Suppose G is an n-dimensional compact Lie group. The collection of maps $\mathcal{Q}_{\hbar}: C^{\infty}_{PW}(\mathfrak{g}^*) \to C^*(G)$ defined by (9) and preceding text, where $\hbar \in \mathbb{R}\setminus\{0\}$, satisfies (1)–(5). Hence, there exists a strict quantization (cf. Definition 1) of \mathfrak{g}^* on $I = \mathbb{R}$ for which $\tilde{\mathfrak{A}}^0 = C^{\infty}_{PW}(\mathfrak{g}^*)$, $\mathfrak{A}^0 = C_0(\mathfrak{g}^*)$, and $\mathfrak{A}^{\hbar} = C^*(G)$ for $\hbar \notin 0$, the maps $\mathcal{Q}_{\hbar}(f)$ being cross-sections of the associated continuous field of C^* -algebras.

The conclusion of the theorem is immediate from Lemma 1. To prove that the assumptions of the lemma are satisfied, we identify $C^*(G)$ with $\pi_L(C^*(G))$, where π_L is the left-regular representation on $L^2(G)$ [8]; this representation is faithful because compact groups are amenable. Also, we identify $C^\infty(\mathfrak{g}^*)$ as a Poisson algebra with the subalgebra $C^\infty(T^*G)^R$ of right-invariant smooth functions on T^*G , equipped with the canonical cotangent bundle Poisson bracket [6]. This identification is inherited by $C^\infty_{\mathrm{PW}}(\mathfrak{g}^*) \simeq C^\infty_{\mathrm{PW}}(T^*G)^R$, where on the right-hand side the class C^∞_{PW} is defined relative to the Fourier transform in the fiber direction [9, 6]; recall that $T^*_rG \simeq \mathfrak{g}^*$.

A compact Lie group G admits a right-invariant Riemannian metric \mathbf{g} , such that the exponential map \exp_e obtained from \mathbf{g} coincides with the map Exp defined by the Lie group structure [10]. Using such a metric, the generalized Weyl quantization prescription on Riemannian manifolds of [9], restricted to $C_{pw}^{\infty}(T^*G)^R$, coincides with \mathcal{Q}_{\hbar} as defined by (9). All claims then follow from Theorem 1 in [9].

3. The Twisted Lie-Poisson Algebra vs the Twisted Group Algebra

Let $\Gamma \in Z^2(\mathfrak{g}, \mathbb{R})$ be a 2-cocycle on \mathfrak{g} with values in \mathbb{R} [6]. This leads to a modification of the Lie–Poisson structure on \mathfrak{g}^* , in which one adds a term $-\Gamma(\mathrm{d}f,\mathrm{d}g)$ to the right-hand side of (6). In canonical co-ordinates on \mathfrak{g}^* (relative to a basis $\{T_a\}_{a=1,\dots,n}$ of \mathfrak{g}), the ensuing bracket reads

$$\{f, g\}_{\pm}^{(\Gamma)} = -(C_{ab}^c \theta_c + \Gamma_{ab}) \frac{\partial f}{\partial \theta_a} \frac{\partial g}{\partial \theta_b}, \tag{10}$$

where the C_{ab}^c are the structure constants of \mathfrak{g} in the given basis, and $\Gamma_{ab} = \Gamma(T_a, T_b)$. We denote the space \mathfrak{g}^* , seen as a Poisson manifold through (10), by $\mathfrak{g}_{(\Gamma)}^*$, with associated Poisson algebra $C^{\infty}(\mathfrak{g}_{(\Gamma)}^*)$.

The 2-cocycle Γ defines a central extension \mathfrak{g}_{Γ} of \mathfrak{g} as well. As a vector space one has $\mathfrak{g}_{\Gamma} = \mathfrak{g} \oplus \mathbb{R}$; denoting the central element by T_0 (this is a basis vector in the extension \mathbb{R}), the new Lie bracket is $[X,Y]_{\Gamma} = [X,Y] + \Gamma(X,Y)T_0$. This also equips the dual \mathfrak{g}_{Γ}^* with the Lie–Poisson structure. Let ω^0 be the basis element in \mathfrak{g}_{Γ}^* dual to T_0 . Then $J_1:\mathfrak{g}_{(\Gamma)}^* \to \mathfrak{g}_{\Gamma}$ given by $J_1(\theta) = \theta + \omega^0$ (where \mathfrak{g}^* is embedded in \mathfrak{g}_{Γ}^* as the annihilator of the extension \mathbb{R}) is a Poisson map.

PROPOSITION 1. The canonical identification of $C^{\infty}(\mathfrak{g}_{\Gamma}^*)/\ker(J_1^*)$ with $C^{\infty}(\mathfrak{g}_{(\Gamma)}^*)$ is a Poisson isomorphism.

Proof. This is immediate from the definitions and
$$(10)$$
.

The identification between the symplectic leaves in \mathfrak{g}^* with respect to the Lie-Poison structure and the coadjoint orbits has the following generalization to the twisted case [6, 3]. Let γ be a symplectic cocycle on G with the property that $\Gamma(X,Y) = -(\mathrm{d}/\mathrm{d}t)\gamma(\mathrm{Exp}(tX))(Y)_{|t=0}$. The symplectic leaves of $\mathfrak{g}^*_{(\Gamma)}$ then coincide with the G-orbits in \mathfrak{g}^* under the twisted coadjoint action $\mathrm{Co}^{\gamma}(x)\theta = \mathrm{Co}(x)\theta + \gamma(x)$, where Co stands for the usual coadjoint action.

We pass from Poisson algebras to C^* -algebras. The role of Γ is now played by a multiplier $c \in Z^2(G, \mathrm{U}(1))$ on G which is smooth near the identity [11, 3]. The quantum analogue of the twisted Poisson algebra $C^{\infty}(\mathfrak{g}^*_{(\Gamma)})$ is the twisted group algebra $C^*(G,c)$. This is defined as a suitable C^* -completion of $L^1(G)$, under the twisted convolution product

$$f * g(x) = \int_{G} dy \, c(xy^{-1}, y) f(xy^{-1}) g(y), \tag{11}$$

and the twisted involution

$$f^*(x) = \overline{c(x, x^{-1}) f(x^{-1})}. (12)$$

The bijective correspondence between the nondegenerate (irreducible) representations of $C^*(G)$ and the continuous unitary (irreducible) representations of G is generalized to a bijective correspondence between the nondegenerate (irreducible) representations of $C^*(G,c)$ and the continuous projective unitary (irreducible) representations of G with multiplier c; see [12, 3].

Furthermore, a multiplier c defines a central extension G_c of G by U(1) [11]. A quantum analogue of Proposition 1 is as follows.

PROPOSITION 2. Let G be a compact Lie group with multiplier c, and write π^k for the representation of $C^*(G_c)$ corresponding to the representation $U^k(G_c)$ induced by $U_k(U(1))$, where $k \in \mathbb{Z}$ and $U_k(z) = z^k$ for $z \in \mathbb{T} = U(1)$. For each $k \in \mathbb{Z}$ there are isomorphisms

$$C^*(G, c^k) \simeq \pi^k(C^*(G_c)) \simeq C^*(G_c) / \ker(\pi^k). \tag{13}$$

Explicitly, under the first isomorphism the function $\pi^k(f) \in C^*(G, c^k)$ is

$$\pi^k(f): x \to \int_{\mathbb{T}} dz \, z^k f(x, z). \tag{14}$$

Here dz is the normalized Haar measure on \mathbb{T} . Given a projective representation U(G) with multiplier c^k , one defines an associated representation U_{c^k} of G_c by $U_{c^k}(x,z) = z^k U(x)$, and verifies that U_{c^k} is unitarily equivalent to the representation $U^k(G_c)$ induced by $U_k(U(1))$.

This proposition is closely related to the decomposition

$$C^*(G_c) \simeq \bigoplus_{k \in \mathbb{Z}} \pi^k(C^*(G_c)), \tag{15}$$

which follows from the isomorphism $C^*(G_c) = \pi_L(C^*(G_c))$ and the Peter-Weyl theorem applied to G_c .

4. Strict Quantization of the Twisted Lie-Poisson Structure for Compact Lie Groups

Comparing the comment after the proof of Proposition 1 with the one following (12), and also comparing Propositions 1 and 2, it is clear that the twisted group C^* -algebra $C^*(G,c)$ is indeed a quantum version of the twisted Poisson algebra $C^{\infty}(\mathfrak{g}^*_{(\Gamma)})$. Inspired by the analogies in question, we now generalize Theorem 1 to the twisted case.

We identify \mathbb{R} in $\mathfrak{g}_{\Gamma} = \mathfrak{g} \oplus \mathbb{R}$ with the Lie algebra $\mathfrak{u}_{c}(1)$ of the central subgroup $U(1) \subset G_{c}$ defining the extension, and write Exp: $\mathfrak{u}(1) \to U(1)$ for the exponential

map, conventionally realized as $\operatorname{Exp}(X) = \exp(-iX)$. In a neighbourhood $\mathcal{N}_e \times \mathcal{N}_e$ of (e,e) we can write $c = \operatorname{Exp}(\chi)$, where $\chi \colon \mathcal{N}_e \times \mathcal{N}_e \to \mathfrak{u}_c(1)$. Then define $\Gamma \colon \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ by

$$\Gamma(X,Y) = \frac{\mathrm{d}}{\mathrm{d}s} \frac{\mathrm{d}}{\mathrm{d}t} \left[\chi(\mathrm{Exp}(tX), \mathrm{Exp}(sY)) - \chi(\mathrm{Exp}(sY), \mathrm{Exp}(tX)) \right]_{|s=t=0}.$$
(16)

It is easy to see that $\Gamma \in Z^2(\mathfrak{g}, \mathbb{R})$ when $c \in Z^2(G, U(1))$.

THEOREM 2. Suppose G is an n-dimensional compact Lie group, with multiplier $c \in Z^2(G, U(1))$, and define a 2-cocycle $\Gamma \in Z^2(\mathfrak{g}, \mathbb{R})$ on \mathfrak{g} by (16). Regard $C_{PW}^{\infty}(\mathfrak{g}_{(\Gamma)}^*)$ as a Poisson subalgebra of $C^{\infty}(\mathfrak{g}_{(\Gamma)}^*)$ with respect to the Poisson bracket (10), and regard (9) as a map from $C_{PW}^{\infty}(\mathfrak{g}_{(\Gamma)}^*)$ to $\mathfrak{A}^h = C^*(G, c^{1/h})$, where $h \in (\mathbb{Z} \setminus \{0\})^{-1}$.

The collection of maps \mathcal{Q}_{\hbar} , thus construed, satisfies (1)–(5). Hence, there exists a strict quantization (cf. Definition 1) of $\mathfrak{g}^*_{(\Gamma)}$ for which $\tilde{\mathfrak{A}}^0 = C^{\infty}_{PW}(\mathfrak{g}^*_{(\Gamma)})$, $\mathfrak{A}^0 = C_0(\mathfrak{g}^*_{(\Gamma)})$, and $\mathfrak{A}^{\hbar} = C^*(G, c^{1/\hbar})$ for $\hbar \in (\mathbb{Z} \setminus \{0\})^{-1}$, the maps $\mathcal{Q}_{\hbar}(f)$ being crosssections of the associated continuous field of C^* -algebras.

It is obvious that (2) holds. The proof of the other properties is based on the analogy between Propositions 1 and 2. Extend $f \in C^{\infty}_{PW}(\mathfrak{g}^*)$ to a function $\tilde{f} \in C^{\infty}_{PW}(\mathfrak{g}^*)$, such that $f(\theta) = \tilde{f}(1,\theta)$ and

$$\tilde{f}(\theta_0 \neq 1, \theta) < \tilde{f}(\theta_0 = 1, \theta) = f(\theta);$$
 (17)

in particular, one has

$$\parallel f \parallel_{\infty} = \parallel \tilde{f} \parallel_{\infty}. \tag{18}$$

In view of (10) this automatically means that

$$\{\tilde{f}, \tilde{g}\}(1, \theta) = \{f, g\}^{\Gamma}(\theta), \tag{19}$$

since the left-hand side does not involve derivatives with respect to θ_0 .

We denote (9) as defined on $C_{\text{PW}}^{\infty}(\mathfrak{g}_{(\Gamma)}^*)$, taking values in $C^*(G, c^{1/\hbar})$, by \mathcal{Q}_{\hbar} , whereas the map defined in the same way, but now on $C_{\text{PW}}^{\infty}(\mathfrak{g}_{\Gamma}^*)$, taking values in $C^*(G_c)$, is written as $\tilde{\mathcal{Q}}_{\hbar}$. A short computation using (14) and an elementary oscillatory integral shows that

$$\pi^{1/h}(\tilde{\mathcal{Q}}_h(\tilde{f})) = \mathcal{Q}_h(f) \tag{20}$$

for $\hbar \in (\mathbb{Z} \setminus \{0\})^{-1}$ small enough so that the right-hand side is independent of κ . In particular, the left-hand side only depends on the value of \tilde{f} at $\theta_0 = 1$; this is a special case of the fact that, for \hbar small enough, $\pi^k(\tilde{\mathcal{Q}}_{\hbar}(\tilde{f}))$ only depends on $\tilde{f}(\theta_0 = k\hbar)$. This follows by a similar calculation as the one leading to (20).

Theorem 1 applied to G_c implies that $\lim_{h\to 0} \| \tilde{\mathcal{Q}}_h(\tilde{f}) \| = \| \tilde{f} \|_{\infty}$. On the other hand, according to (15) one has $\| A \| = \sup_{k\in\mathbb{Z}} \| \pi^k(A) \|$ for all $A \in C^*(G_c)$. Combining the two of these equations with the last remark of the preceding paragraph and the property (17), we conclude that

$$\lim_{\hbar \to 0} \parallel \tilde{\mathcal{Q}}_{\hbar}(\tilde{f}) \parallel = \lim_{\hbar \to 0} \parallel \pi^{1/\hbar}(\tilde{\mathcal{Q}}_{\hbar}(\tilde{f})) \parallel = \parallel \tilde{f} \parallel_{\infty}. \tag{21}$$

Together with (18) and (20) this proves (5).

Equations (4) and (3) now follow from (20), Proposition 2, (19), Theorem 1 (once again applied to G_c), and the inequality $\|\pi^k(A)\| \leq \|A\|$ in $C^*(G_c)$.

While proved for compact G, Theorem 2 may hold in other situations. For example, let $G \simeq \mathfrak{g}^* = \mathbb{R}^{2n}$, with Γ given by $\Gamma(P_i, P_j) = \Gamma(Q^i, Q^j) = 0$ and $\Gamma(P_i, Q^j) = -\delta_i^j$, and c defined by $c((u, v), (u', v')) = e^{i(uv'-vu')/2}$. Then the statement of Theorem 2 holds as well.

References

- 1. Rieffel, M. A.: Comm. Math. Phys. 122 (1989), 531-562.
- Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D.: Ann. Phys. (NY) 110 (1978), 61–110, 111–151.
- Landsman, N. P.: Mathematical Topics between Classical and Quantum Mechanics, Springer, New York, 1998.
- 4. Dixmier, J. C*-Algebras, North-Holland, Amsterdam, 1977.
- 5. Rieffel, M. A.: Amer. J. Math. 112 (1990), 657–686.
- Libermann, P. and Marle, C.-M.: Symplectic Geometry and Analytical Mechanics, D. Reidel, Dordrecht, 1987.
- 7. Kirillov, A. A.: Russian Math. Surveys 31 (1976), 55–75.
- Pedersen, G. K.: C*-Algebras and their Automorphism Groups, Academic Press, London, 1979
- 9. Landsman, N. P.: J. Geom. Phys. 12 (1993), 93–132.
- 10. Milnor, J.: Adv. Math. 21 (1976), 293–329.
- 11. Tuynman, G. M. and Wiegerinck, W. A. J. J.: J. Geom. Phys. 4 (1987), 207-258.
- 12. Busby, R. C. and Smith, H. A.: Trans. Amer. Math. Soc. 149 (1970), 503–537.