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Abstract. A nonzero 2-cocycle0 ∈ Z2(g,R) on the Lie algebrag of a compact Lie groupG defines
a twisted version of the Lie–Poisson structure on the dual Lie algebrag∗, leading to a Poisson algebra
C∞(g∗

(0)
). Similarly, a multiplierc ∈ Z2(G, U(1)) on G which is smooth near the identity defines

a twist in the convolution product onG, encoded by the twisted groupC∗-algebraC∗(G, c).
Further to some superficial yet enlightening analogies betweenC∞(g∗

(0)
) andC∗(G, c), it is

shown that the latter is a strict quantization of the former, where Planck’s constanth̄ assumes values
in (Z\{0})−1. This means that there exists a continuous field ofC∗-algebras, indexed bȳh ∈ 0 ∪
(Z\{0})−1, for whichA0 = C0(g

∗) andAh̄ = C∗(G, c) for h̄ 6= 0, along with a cross-section of
the field satisfying Dirac’s condition asymptotically relating the commutator inAh̄ to the Poisson
bracket onC∞(g∗

(0)
). Note that the ‘quantization’ of̄h does not occur for0 = 0.
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1. Introduction

There now exists a satisfyingC∗-algebraic definition of quantization, which en-
ables one to link Poisson and symplectic geometry with operator algebras and
noncommutative geometry. The main functional-analytic idea behind this goes
back to Rieffel [1], who showed how the idea of ‘formal’ deformation quanti-
zation [2] may be adapted to an operator-algebraic context. Later modifications
by Rieffel himself and by the author have culminated in the following definition
(see [3] for references and comments). Recall thatC0(P ) is the commutativeC∗-
algebra of continuous functions onP which vanish at infinity, equipped with the
supremum-norm.

DEFINITION 1. A continuous quantization of a Poisson manifoldP consists of
a subsetI ⊆ R (containing 0 as an accumulation point), a continuous field of
C∗-algebras({Ah̄}h̄∈I ,C ⊂ ∏

h̄∈I Ah̄) with A0 = C0(P ), a Poisson algebrãA0
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182 N. P. LANDSMAN

which lies densely inC0(P ), and a distinguished collection{Q(f )}
f∈Ã0 ⊂ C of

cross-sections, such that

Q0(f ) = f ; (1)

Qh̄(f
∗) = Qh̄(f )∗; (2)

for all h̄ ∈ I andf ∈ Ã0. Finally, Dirac’s condition

lim
h̄→0
‖ i

h̄
[Qh̄(f ),Qh̄(g)] −Qh̄({f, g}) ‖= 0 (3)

should hold for allf, g ∈ Ã0.

We refer to Dixmier [4] for the concept of a continuous field ofC∗-algebras;
the collectionC of cross-sections determines a continuity structure on{Ah̄}h̄∈I , and
has to satisfy a number of conditions which are listed in [4]. It should be noted that
Definition 1 guarantees the property

lim
h̄→0
‖ Qh̄(f )Qh̄(g)−Qh̄(fg) ‖= 0 (4)

for all f, g ∈ Ã0. In addition, the function̄h →‖ Qh̄(f ) ‖ is continuous onI , so
that, in particular, one has

lim
h̄→0
‖ Qh̄(f ) ‖=‖ f ‖∞, (5)

where the right-hand side is the supremum-norm off . Conversely, one has

LEMMA 1. Suppose one has a Poisson manifoldP , a family {Ah̄}h̄∈I of C∗-
algebras indexed by a discrete subsetI ⊂ R containing0 as an accumulation
point, a Poisson algebrãA0 whose (sup-norm) closure isA0 = C0(P ), and a
collection of linear maps{Qh̄: Ã0→ Ah̄}h̄∈I satisfying(1)–(5).

There exists a familyC ⊂ ∏h̄∈I making({Ah̄}h̄∈I ,C) into a continuous field of

C∗-algebras, such thatC contains all maps{Qh̄(f )}h̄∈I , f ∈ Ã0.

The continuous field in question is uniquely determined when the set{Qh̄(f )}
f∈Ã0

is dense inAh̄ for all h̄ ∈ I , but we shall not need this. A proof of this lemma may
be found in [3].

Apart from its more stringent definition of convergence, strict quantization as
defined by Definition 1 differs from deformation quantization in the sense of [2],
as well as from the corresponding notion in [1], in thatQh̄(Ã

0) is not necessarily
closed under multiplication (inAh̄). If it is, and if Qh̄ is nondegenerate in that
Qh̄(f ) = 0 iff f = 0 for eachh̄, one may define an associative ‘deformed’
product·h̄ in Ã0 with the propertyQh̄(f )Qh̄(g) = Qh̄(f ·h̄ g) (and, of course,
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TWISTED LIE GROUPC∗-ALGEBRAS AS STRICT QUANTIZATIONS 183

f ·0g = fg).The conditions on a strict quantization may then be rephrased in terms
of this product in the obvious way, leading to the framework of [1]. However, there
are many examples of strict quantization that are not deformation quantizations,
including the ones in this paper that correspond to nontrivial group extensions.

A conceptually rather pleasing class of examples of strict quantization (in the
original definition of [1]) was discovered by Rieffel [5]. Consider a Lie groupG

with Lie algebrag. The dualg∗ of g is a Poisson manifold under the well-known
Lie–Poisson bracket [6]

{f, g}(θ) = −θ([dfθ , dgθ ]). (6)

The symplectic leaves of a Poisson manifoldP (along with their covering
spaces) play the role of ‘classical’ irreducible representations of the corresponding
Poisson algebraC∞(P ) [3]. As shown by Kirillov [7] (also cf. [6]), the symplectic
leaves ofg∗ with respect to this Poisson structure are (the connected components
of) its coadjoint orbits. This result is reminiscent of the bijective correspondence
between the (nondegenerate) irreducible representations of the groupC∗-algebra
C∗(G) and the irreducible unitary representations ofG [8]. Since the latter may
be seen as the quantum counterparts of the coadjoint orbits ofG, Kirillov’s result
already suggests thatC∗(G) should be theC∗-algebraic analogue of the Poisson
algebraC∞(g∗).

The correspondence between the coadjoint orbits ing∗ and the unitary irre-
ducible representations ofG is at its best (namely, bijective and functorial) when
G is nilpotent, connected, and simply connected. In that case, Rieffel [5] showed
that C∗(G) is related toC∞(g∗) by a strict quantization, withI = R. Under the
stated assumptionsG is exponential, so that one may identifyG with g. Translated
into the setting of Definition 1, the quantization mapsQh̄ are given by

Qh̄(f ): X→
∫
g∗

dnθ

(2πh̄)n
eiθ(X)/h̄f (θ). (7)

Heref ∈ Ã0 = S(g∗), the Schwartz space of test functions ong∗.
In Section 2, we show that an analogous statement holds for arbitrary compact

Lie groups; given the results on strict quantization on Riemannian manifolds in
[9], this is a simple exercise. In Section 3 we modify the Lie–Poisson structure on
g∗ by a nonzero 2-cocycle0 on g, and show thatC∗(G) should then be replaced
by the twisted groupC∗-algebraC∗(G, c), defined by a multiplierc on G which
is smooth near the identity. Similar representation-theoretic analogies as in the
untwisted case then hold. The main point of this Letter is made in Section 4, where
we extend the strict quantization of the Lie–Poisson structure to the twisted case.
That is, when0 is the derivative ofc in a suitable sense, we show that theC∗-
algebraC∗(G, c) and the twisted Poisson algebraC∞(g∗(0)) are related by a strict
quantization. Surprisingly, this only works if the intervalI = R is replaced by the
discrete setI = 0∪ (Z\{0})−1. The quantization maps, however, are still given by
(7).
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184 N. P. LANDSMAN

2. Strict Quantization of the Lie–Poisson Structure for Compact Lie Groups

In this section we modify (7) so as to make it applicable to compact Lie groups.
Firstly, the Fourier transform off ∈ L1(g∗) is defined by

f̀ (X) =
∫
g∗

dnθ

(2π)n
eiθ(X)f (θ), (8)

where dnθ is Lebesgue measure ong∗ ' Rn , whose normalization is fixed by that
of the Haar measure dx on G, as follows. Whenf has support neare, we can
write

∫
G

dx f (x) = ∫g dnX J (X)f (Exp(X)), where dnX is a Lebesgue measure
on g, andJ is some Jacobian. The normalization is now fixed by the condition
J (0) = 1. In turn, the normalization of the Lebesgue measure dnθ ong∗ is fixed by
requiring the inversion formulaf (θ) = ∫

g
dnX e−iθ(X)f̀ (X). We defineC∞PW(g∗)

as the class of functions ong∗ whose Fourier transform̀f is in C∞c (g). This is a
Poisson subalgebra ofC∞(g∗±).

We choose a smooth cutoff functionκ ong which equals 1 in a neighbourhood
Ñ of 0, is invariant under inversionX → −X, and has support in the neighbour-
hoodN of 0 on which Exp is a diffeomorphism. WhenG is compact one may
assume thatκ is Ad-invariant, i.e., satisfiesκ(Ad(y)X) = κ(X) for all y ∈ G. This
may always be achieved by averaging.

We now modify (7) as follows: forx /∈ Exp(N ) we putQh̄(f )(x) = 0, whereas
for x ∈ Exp(N ) we put

Qh̄(f )(x) = h̄−nκ(Exp−1(x))f̀ (Exp−1(x)/h̄). (9)

The restrictionf ∈ C∞PW(g∗) implies that for small enough̄h the operatorQh̄(f )

is independent ofκ.

THEOREM 1. SupposeG is ann-dimensional compact Lie group. The collection
of mapsQh̄: C∞PW(g∗) → C∗(G) defined by(9) and preceding text, wherēh ∈
R\{0}, satisfies(1)–(5). Hence, there exists a strict quantization (cf. Definition 1)
of g∗ on I = R for which Ã0 = C∞PW(g∗), A0 = C0(g

∗), andAh̄ = C∗(G) for
h̄ /∈ 0, the mapsQh̄(f ) being cross-sections of the associated continuous field of
C∗-algebras.

The conclusion of the theorem is immediate from Lemma 1. To prove that the
assumptions of the lemma are satisfied, we identifyC∗(G) with πL(C∗(G)), where
πL is the left-regular representation onL2(G) [8]; this representation is faithful
because compact groups are amenable. Also, we identifyC∞(g∗) as a Poisson
algebra with the subalgebraC∞(T ∗G)R of right-invariant smooth functions on
T ∗G, equipped with the canonical cotangent bundle Poisson bracket [6]. This
identification is inherited byC∞PW(g∗) ' C∞PW(T ∗G)R, where on the right-hand side
the classC∞PW is defined relative to the Fourier transform in the fiber direction [9, 6];
recall thatT ∗x G ' g∗.
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TWISTED LIE GROUPC∗-ALGEBRAS AS STRICT QUANTIZATIONS 185

A compact Lie groupG admits a right-invariant Riemannian metricg, such that
the exponential map expe obtained fromg coincides with the map Exp defined
by the Lie group structure [10]. Using such a metric, the generalized Weyl quan-
tization prescription on Riemannian manifolds of [9], restricted toC∞PW(T ∗G)R,
coincides withQh̄ as defined by (9). All claims then follow from Theorem 1 in
[9]. 2

3. The Twisted Lie–Poisson Algebra vs the Twisted Group Algebra

Let 0 ∈ Z2(g,R) be a 2-cocycle ong with values inR [6]. This leads to a modi-
fication of the Lie–Poisson structure ong∗, in which one adds a term−0(df, dg)

to the right-hand side of (6). In canonical co-ordinates ong∗ (relative to a basis
{Ta}a=1,...,n of g), the ensuing bracket reads

{f, g}(0)
± = −(Cc

abθc + 0ab)
∂f

∂θa

∂g

∂θb

, (10)

where theCc
ab are the structure constants ofg in the given basis, and0ab =

0(Ta, Tb). We denote the spaceg∗, seen as a Poisson manifold through (10), by
g∗(0), with associated Poisson algebraC∞(g∗(0)).

The 2-cocycle0 defines a central extensiong0 of g as well. As a vector space
one hasg0 = g ⊕ R; denoting the central element byT0 (this is a basis vector in
the extensionR), the new Lie bracket is[X,Y ]0 = [X,Y ] + 0(X, Y )T0. This also
equips the dualg∗0 with the Lie–Poisson structure. Letω0 be the basis element in
g∗0 dual toT0. ThenJ1 : g∗(0)→ g0 given byJ1(θ) = θ+ω0 (whereg∗ is embedded
in g∗0 as the annihilator of the extensionR) is a Poisson map.

PROPOSITION 1.The canonical identification ofC∞(g∗0)/ ker(J ∗1 ) withC∞(g∗(0))

is a Poisson isomorphism.
Proof. This is immediate from the definitions and (10). 2

The identification between the symplectic leaves ing∗ with respect to the Lie-
Poison structure and the coadjoint orbits has the following generalization to the
twisted case [6, 3]. Letγ be a symplectic cocycle onG with the property that
0(X, Y ) = −(d/dt)γ (Exp(tX))(Y )|t=0. The symplectic leaves ofg∗(0) then coin-
cide with theG-orbits ing∗ under the twisted coadjoint action Coγ (x)θ = Co(x)θ+
γ (x), where Co stands for the usual coadjoint action.

We pass from Poisson algebras toC∗-algebras. The role of0 is now played by
a multiplier c ∈ Z2(G, U(1)) on G which is smooth near the identity [11, 3]. The
quantum analogue of the twisted Poisson algebraC∞(g∗(0)) is the twisted group
algebraC∗(G, c). This is defined as a suitableC∗-completion ofL1(G), under the
twisted convolution product

f ∗ g(x) =
∫

G

dy c(xy−1, y)f (xy−1)g(y), (11)
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and the twisted involution

f ∗(x) = c(x, x−1)f (x−1). (12)

The bijective correspondence between the nondegenerate (irreducible) repre-
sentations ofC∗(G) and the continuous unitary (irreducible) representations of
G is generalized to a bijective correspondence between the nondegenerate (irre-
ducible) representations ofC∗(G, c) and the continuous projective unitary
(irreducible) representations ofG with multiplier c; see [12, 3].

Furthermore, a multiplierc defines a central extensionGc of G by U(1) [11]. A
quantum analogue of Proposition 1 is as follows.

PROPOSITION 2. Let G be a compact Lie group with multiplierc, and write
πk for the representation ofC∗(Gc) corresponding to the representationUk(Gc)

induced byUk(U(1)), wherek ∈ Z andUk(z) = zk for z ∈ T = U(1). For each
k ∈ Z there are isomorphisms

C∗(G, ck) ' πk(C∗(Gc)) ' C∗(Gc)/ ker(πk). (13)

Explicitly, under the first isomorphism the functionπk(f ) ∈ C∗(G, ck) is

πk(f ): x →
∫
T

dz zkf (x, z). (14)

Here dz is the normalized Haar measure onT. Given a projective represen-
tation U(G) with multiplier ck, one defines an associated representationUck of
Gc by Uck(x, z) = zkU(x), and verifies thatUck is unitarily equivalent to the
representationUk(Gc) induced byUk(U(1)). 2

This proposition is closely related to the decomposition

C∗(Gc) ' ⊕k∈Zπk(C∗(Gc)), (15)

which follows from the isomorphismC∗(Gc) = πL(C∗(Gc)) and the Peter-Weyl
theorem applied toGc.

4. Strict Quantization of the Twisted Lie–Poisson Structure for
Compact Lie Groups

Comparing the comment after the proof of Proposition 1 with the one following
(12), and also comparing Propositions 1 and 2, it is clear that the twisted group
C∗-algebraC∗(G, c) is indeed a quantum version of the twisted Poisson algebra
C∞(g∗(0)). Inspired by the analogies in question, we now generalize Theorem 1 to
the twisted case.

We identifyR in g0 = g⊕R with the Lie algebrauc(1) of the central subgroup
U(1) ⊂ Gc defining the extension, and write Exp:u(1)→ U(1) for the exponential
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map, conventionally realized as Exp(X) = exp(−iX). In a neighbourhoodNe×Ne

of (e, e) we can writec = Exp(χ), whereχ : Ne × Ne → uc(1). Then define
0: g× g→ R by

0(X, Y ) = d

ds

d

dt
[χ(Exp(tX), Exp(sY ))−

− χ(Exp(sY ), Exp(tX))]|s=t=0. (16)

It is easy to see that0 ∈ Z2(g,R) whenc ∈ Z2(G, U(1)).

THEOREM 2. SupposeG is ann-dimensional compact Lie group, with multiplier
c ∈ Z2(G, U(1)), and define a 2-cocycle0 ∈ Z2(g,R) on g by (16). Regard
C∞PW(g∗(0)) as a Poisson subalgebra ofC∞(g∗(0)) with respect to the Poisson bracket
(10), and regard(9) as a map fromC∞PW(g∗(0)) to Ah̄ = C∗(G, c1/h̄), whereh̄ ∈
(Z\{0})−1.

The collection of mapsQh̄, thus construed, satisfies(1)–(5). Hence, there exists
a strict quantization (cf. Definition1) of g∗(0) for which Ã0 = C∞PW(g∗(0)), A

0 =
C0(g

∗
(0)), andAh̄ = C∗(G, c1/h̄) for h̄ ∈ (Z\{0})−1, the mapsQh̄(f ) being cross-

sections of the associated continuous field ofC∗-algebras.

It is obvious that (2) holds. The proof of the other properties is based on the
analogy between Propositions 1 and 2. Extendf ∈ C∞PW(g∗) to a functionf̃ ∈
C∞PW(g∗0), such thatf (θ) = f̃ (1, θ) and

f̃ (θ0 6= 1, θ) < f̃ (θ0 = 1, θ) = f (θ); (17)

in particular, one has

‖ f ‖∞=‖ f̃ ‖∞ . (18)

In view of (10) this automatically means that

{f̃ , g̃}(1, θ) = {f, g}0(θ), (19)

since the left-hand side does not involve derivatives with respect toθ0.
We denote (9) as defined onC∞PW(g∗(0)), taking values inC∗(G, c1/h̄), by Qh̄,

whereas the map defined in the same way, but now onC∞PW(g∗0), taking values
in C∗(Gc), is written asQ̃h̄. A short computation using (14) and an elementary
oscillatory integral shows that

π1/h̄(Q̃h̄(f̃ )) = Qh̄(f ) (20)

for h̄ ∈ (Z\{0})−1 small enough so that the right-hand side is independent ofκ.
In particular, the left-hand side only depends on the value off̃ at θ0 = 1; this is
a special case of the fact that, forh̄ small enough,πk(Q̃h̄(f̃ )) only depends on
f̃ (θ0 = kh̄). This follows by a similar calculation as the one leading to (20).
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188 N. P. LANDSMAN

Theorem 1 applied toGc implies that lim̄h→0 ‖ Q̃h̄(f̃ ) ‖=‖ f̃ ‖∞. On the other
hand, according to (15) one has‖ A ‖= supk∈Z ‖ πk(A) ‖ for all A ∈ C∗(Gc).
Combining the two of these equations with the last remark of the preceding para-
graph and the property (17), we conclude that

lim
h̄→0
‖ Q̃h̄(f̃ ) ‖= lim

h̄→0
‖ π1/h̄(Q̃h̄(f̃ )) ‖=‖ f̃ ‖∞ . (21)

Together with (18) and (20) this proves (5).
Equations (4) and (3) now follow from (20), Proposition 2, (19), Theorem 1

(once again applied toGc), and the inequality‖ πk(A) ‖6 ‖ A ‖ in C∗(Gc). 2

While proved for compactG, Theorem 2 may hold in other situations. For ex-
ample, letG ' g∗ = R

2n , with 0 given by0(Pi, Pj ) = 0(Qi,Qj ) = 0 and
0(Pi,Q

j ) = −δ
j

i , and c defined byc((u, v), (u′, v′)) = ei(uv′−vu′)/2. Then the
statement of Theorem 2 holds as well.
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