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The claim that renormalizable four-dimensional field theories in the infinite-temperature limit 
undergo a reduction to effective three-dimensional ones is analyzed in perturbation theory. An 
essential ingredient is the finite-temperature renormalization group in the imagina~'-time formal- 
ism. A precise criterion for the occurrence of complete dimensional reduction is given. This is 
satisfied only in exceptional cases, and is violated e.g. by ~4 and QCD. These theories dimension- 
ally reduce only up to a given order in perturbation theo~'. Illustrative one-loop calculations are 
given on the basis of a novel summation technique. The perturbative structure of QED and QCD 
at high temperature is examined in detail. Ward identities as well as explicit computations are 
used to explain why QED dimensionally reduces to all orders, but QCD does not. In addition, a 
potential instability deriving from an anomalous diagram is identified and cured. 

1. Introduction 

The complicated dynamics of interacting thermal field theories invites the search 
for a regime where these theories simplify in some sense. Conventional wisdom has 
it that the infinite-temperature limit provides such a regime, the pertinent simplifi- 
cation being one from a four- to a three-dimensional field theory. Such a dimen- 
sional reduction (DR) would set in for static correlation functions at small momenta 
(p/T<< 1, where T is the temperature). 

Dimensional reduction at high temperature was first unambiguously claimed to 
take place by Appelquist and Pisarski [1], who based their reasoning on the 
zero-temperature Appelquist-Carazzone (AC) decoupling theorem [2-6]. The basic 
idea is that the imaginary-time formulation of thermal field theory [7] produces a 
perturbation theory with free propagators of the form [k2+ (2TrnT)2+ m 2] l, 

where n ~ Z eventually has to be summed over. The term 2~rnT acts like a mass, so 
that in the limit T ~ ~ the nonstatic (n 4 0) modes ought to decouple. The zero 
modes obviously survive, and one is left with a three-dimensional theory whose 
parameters generically get renormalized by the decoupling process, as in the AC 
theorem [4]. 
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The realization of DR at high T has been checked in one-loop QCD by explicit 
computat ion [8], and its validity to all orders of perturbation theory is usually taken 
for granted [9-13]. However, as implicitly remarked already by Gross et al. [14], 
there is an important  caveat: the AC-theorem holds up to terms of order p / T  and 
m / T .  Now the effective three-dimensional theory typically generates a dynamical 
mass m ( T )  - g"T, where g is a coupling constant and n > 0. This implies that even 
at zero momentum,  DR takes place only up to terms of order g". Hence in contrast 

to the decoupling of heavy particles at zero temperature, the correction terms to DR 
do not vanish in the infinite mass / tempera ture  limit. The essential difference 

between the two cases is that at zero T a small mass m is an experimental input 
parameter,  which does not grow with the mass of a decoupling heavy particle, 

whereas the light mass m at finite T acquires a T-dependent contribution. In a sense 

this is a thermal analogue of the hierarchy problem [4]. 

Both the pro- and contra-DR parts of the above reasoning are rather vague and 
heuristic. The purpose of this paper is to clarify the major aspects of the alleged 
dimensional reduction at infinite temperature. In particular, we wish to explain the 
precise meaning of the temperature-dependent "masses",  and to state exactly when 
and to what extent DR indeed occurs. As we shall see, these goals can be achieved 
by exploiting recent technical advances in thermal field theory [15] and renormaliza- 
tion theory [16]. 

The present investigation is based on a simple question. An essential ingredient of 
the AC-theorem is that it holds only if a particular class of renormalization 
prescriptions is adopted [2,4], the decoupling being optimal in the BPHZ scheme 
[5,6]. So we ask: in which renormalization scheme would the decoupling of the 
nonzero modes at high T be maximal? As we shall see, the maximal decoupling 

scheme consists of BPHZ-like subtractions at zero momentum on the Feynman 
integral at temperature T. Thus we are led to a renormalization scheme with 
T-dependent counterterms [17], and an associated finite-temperature renormaliza- 

tion group equation [15]. The temperature-dependence of the renormalized "mass"  
m R = mR(T) ,  alluded to before, is governed by this equation. Indeed, the thermal 
mass derives its meaning from the thermal renormalization group, rather than 
having the usual interpretation of a mass. Dimensional reduction then holds up to 
corrections of order ( m R ( T ) / T )  2, which may or may not vanish in the infinite-tem- 
perature limit. 

Of  course, there is more to be said, and the plan of this paper is as follows. In 
sect. 2 we arrange the Matsubara formalism in a form allowing to regard thermal 
field theory as a vacuum theory with an infinite number of massive fields. We 
discuss general renormalization conditions, and adapt the finite-temperature renor- 
malization group to the imaginary-time formalism. Sect. 3 presents one-loop sample 
calculations in a scalar theory. To separate the static and nonstatic modes explicitly, 
we use a summation technique which combines dimensional and zeta-function 
regularization, and whose technical details are explained in the appendix. These 
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examples heuristically lead us to a maximal decoupling renormalization scheme, 
whose associated renormalization group equations are solved. 

The core of the paper is sect. 4, in which we give a precise formulation of the 
Appelquist-Carazzone decoupling theorem, and its connection with DR at high 
temperature. We derive the exact criterion for DR to occur, and stress the essential 
difference between the zero- and the finite-T situation as far as decoupling is 
concerned. 

In sects. 5 and 6 we present explicit one-loop computations for QED and QCD, 
respectively. Being gauge theories, these models exhibit the phenomenon that 
certain counterterms necessary for DR cannot be obtained by a redefinition of 
parameters in a bare lagrangian. In this respect, diagrams with four external electric 
photons c. q. gluons have a particularly interesting structure, and form a potential 
source of instability. This turns out to be harmless, while nevertheless leading to an 
interesting connection with anomalies. We will show that QED has special abelian 
features leading to DR to all orders. In contrast, QCD dimensionally reduces only 
up to a particular order in perturbation theory, which depends on the process under 
consideration. 

Finally, in the conclusion we discuss some of the consequences of our results, in 
particular for QCD and for Kaluza-Klein theories. 

2. General structure of thermal renormalization 

2.1. COMPACTIFICATION AND RENORMALIZATION 

We explain the basic setting for a theory of a bare scalar field ePu(X ) with quartic 
self-interaction. Its thermal bare Green functions are given by [7] 

GB(X 1 ..... XN)= fB.c.[dg~BI~B(Xl)...Cpu(XN)e SEI~B], (2.1) 

where the thermal euclidean action is given by 

fo f 1 1 2 2 SE[qOB]= Bdr d3x[~(O~,egB)2+srn, qoB+(XB/4!)ep4], (2.2) 

with/9 = 1/T. The boundary condition B.C. on the path integral prescribes that the 
fields be periodic in imaginary time. In the context of this paper, the path integral in 
eq. (2.1) is defined by a suitable renormalized perturbation expansion. 

The basic message of a paper by Jourjine [18] on the present subject is that it 
helps very much to regard the analysis of DR as a problem in vacuum renormaliza- 
tion theory. We therefore rewrite eq. (2.2) as a three-dimensional zero-tempera~,~re 
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action in terms of an infinite number of massive fields. The theory is multiplica- 
tively renormalized at the same instant. Accordingly, 

L i{o.-r CpB('r, X) = Z ' / 2 T  1/2 % ( x ) e  , (2.3) 3 
pl ~ oc 

with the well-known [7] Matsubara frequencies ~,, = 2~rnT. The mass and the 
coupling constant are renormalized by 

m 2 = Z1Z[~m 2, X B = Z2Z322~. (2.4) 

We omit the subscript R on renormalized quantities; %, rn, and 2~ are understood 
to depend on the renormalization prescription R. 

The action is now additively composed of six pieces 

&[q0] = f d 3 x  (5°f ~ +S/~ +5,%~ + ~ n  + S ~  + 2 G ) .  (2.5) 

The first three terms describe the static (zero mode) sector. We here adopt some of 
Collins' terminology [4]: the free (static) lagrangian 

] 2 2 ( 2 . 6 )  ,~(gfs = 1 ( 0 i q % ) 2  q_ 2m q)o 

generates the free static propagator, while the basic (static) interaction lagrangian 

~o; = ~4 x T{p4 (2.7) 

generates the basic interaction vertex. The unsubtracted static Feynman amplitudes 
are determined by eqs. (2.6) and (2.7). Subtractions are implemented by the (static) 
counterterm lagrangian 

5°~,2 = ~(Z 3 - 1)( O; %)2 + ~ ( Z  t _ 1 ) m 2 %  + d4(Z 2 _ 1)2, T@.  (2.8) 

The three terms of the nonstatic action have an analogous meaning, and we have 

1 t 2 ~ofn= ~ E  %(--A + rn2+ w,,) cp . . . .  (2.9) 
tl 

£P~, = ~ X T  Y2' 3 (n l  + n2 + n3 + n4)%,%fp,,9~,, ,  (2.10) 
l 1 1  . . .  I I  4 

after which the reader may easily write down the expression for ~ t .  The prime in 
the sum means that the term with all n 's equal to zero is to be omitted. Even so, 5°( 
of course contains interactions of the static field with the nonstatic fields. 
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2.2. TEMPERATURE-DEPENDENT RENORMALIZATION CONDITIONS 

The amputated momentum space N-point Green functions of the four- and the 
three-dimensional theory are obviously related by 

G(BN)amp(Pl . . . . .  PN 1, m B ,  XB,  T )  

= 7 - N / 2 T  1 N/2 t '7 (N)amp { n 
~ 3  a "dn I ..... .,, ~ , t ' l  . . . . .  PN 1, m , { ~ % } , X T ) ,  (2-111 

with pO = 2~rniT" The temperature dependence of the three-dimensional theory 
enters via the coupling XT as well as via the "masses"  % in nonstatic loops. In 
addition, X and m, as well as G itself, depend on the renormalization scheme, which 
might carry explicit T-dependence. 

Each renormalization constant Z, (i = 1, 2, 3) contains two essentially unrelated 
parts 

Z ,  - 1 = 8 Z i  ~ + 8 Z i ' .  (2.12) 

The first term on the r.h.s, takes care of the renormalization effects of the purely 
static sector, whereas the second term relates to the contributions of the nonstatic 
sector to both static and nonstatic Green functions. In order to have dimensional 
reduction the 6 Z ,  n should be chosen in such a way that they remove the nonnegligi- 
ble, nonstatic loop contributions to static Green functions (cf. sect. 4), while the 8Z{ 
are not determined by this demand. As we shall see, to have a chance for DR the 
counterterms and hence the Z i have to be explicitly T-dependent. This motivates a 
general study of two-parameter renormalization prescriptions defined by subtrac- 
tions of Feynman integrals at momentum scale /~ and reference temperature T o 
(which eventually may coincide with the actual temperature T). 

It is well-known that renormalization at zero temperature removes all ultraviolet 
divergences even at finite T [7]. Therefore, Green functions and parameters defined 
by renormalization conditions at temperature T o > 0 differ from their vacuum values 

by a f i n i t e  renormalization [17] (as we shall see, these finite renormalizations are 
essential for DR). Since the renormalization constants Z~ have been chosen to be 
independent  of n (cf. eqs. (2.3) and (2.4)), they can be defined by stating normaliza- 
tion conditions on the renormalized, static, one-particle irreducible vertex functions 
/~ = - -  ~lPIt~'amP" AS we explained before, we may use a hybrid renormalization prescrip- 
tion, which treats completely static diagrams and diagrams with static external lines 
but nonstatic loops on a different footing. For the purpose of this paper the 
following scheme turns out to be useful: we renormalize diagrams with at least one 
nonstatic loop by subtractions at momentum scale /~ and temperature T 0, while 
purely static diagrams are renormalized by minimal subtraction (MS) with arbitrary 
scale parameter  v (cf. ref. [4]). This scheme is equivalent to the normalization 
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conditions 

FO(2)( p 2 =  , 2 .  To ) = F ( 1 2 ) ( p 2 =  , 2 .  T0)static. MS ' 

O O 
OP 2 ro~2) ( p2 = ,2, To) = ~ Fo~2) ( p2 = ,2,  To )static" 

/ ,000(4)[e=t= U =  4 2 To ) p ( 4 ) ( s  = 4 2 ~o ~# , = *ooo~ t = U = 3/.t , T0)stat ic ,  (2.13) 

with s = (P l  + P 2 )  2, t = (P l  - - - 0 3 )  2, U = ( P l  --P4) 2" Here we used the super-renor- 
malizability of (~04)3; hence (cf. eq. (2.12) 8Z~ = 8Z~ = 0. while in dimensional 

regularization ($Z~ receives contributions in two-loop order only. 

2.3. FINITE TEMPERATURE RENORMALIZATION GROUP 

The renormalization prescription independence of the bare Green functions in 
conjunction with eq. (2.11) and the definition of the IPI  functions F implies the 

renormalization group equations (RGE) 

'2Nat + ,sr~-~ + Yr m2 + To {u) , = 0, (2.14) 

O 2 O O tF{N ) (2.15) ~N%+,s j ,~+' t~m ~ 5 m 2 + / * ~ ]  ,,, ..... ,,, = 0 .  

The coefficient functions are 

O O), O 
= , m 2 T o - -  m 2  , (2.16) a T - ToT-g-log Z 3 , ,sT = T 0 yT = 

0 T  o 0To a l o  

and similar definitions for a~,, etc. As in the real-time case [15] the normalization 
conditions (2.13) imply certain identities between these functions, but we will not 
need them here. The explicit T 0, t* dependence of the /~(N) comes from their explicit 
dependence on the renormalization scheme, In addition, of course, the F ~x) depend 
on the actual temperature T via % and )~T, cf. eq. (2.11). Equations similar to 
(2.14) and (2.15) have been given in the real-time formalism [15,19]. Note that in the 
zero-temperature limit eq. (2.15) reduces to the Georgi-Poli tzer RGE [20], 

The R G  functions a, B, Y may be evaluated by computing the static two- and 
four-point diagrams, and then determining the Z~ such that the conditions (2.13) are 
satisfied. This directly yields a r  and a,, by (2.16), whereas ,8 and ~, follow from the 
invariance of the bare parameters m B and XB in eq. (2.4), cf. sect. 3. 

Solving eq. (2.16) gives the renormalized parameters m, X, Z as functions m = 
re(To, t*) etc. We will find in the next sections that the choice T 0 = T, /~ = 0 leads to 
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D R in a suitable sense. It then follows from eqs. (2.14) and (2.15) (or, equivalently, 
from eq. (2.11)) that Green functions depending on arbitrary values of T 0,/, are 
related to Green functions in this "maximal decoupling" scheme by 

F(N) 11 . . . . . . . .  ( P l  . . . . .  PN--I' m( To, tz ), { ¢o,, }, T~.( To, ~ ), To, I*) 

Z3(m2(To, tt), )t (T0,/~), To,/*) 

Z,(m2(T,O), X(T, 0), T, 0) 

N/2 

×F¢N) , N _ . , ( p l , . t z  1 . . .  . . ,  pN_l,m(T,O) , {~o,,),TX(T,O),T,O). (2.17) 

The decoupling theorem, to the extent that it holds, guarantees that /~(N) on  the 
r.h.s, is given by the purely static theory. A relation similar to eq. (2.17) holds for 
any choice of renormalization point (7~0,/2) instead of (T, 0). However, the statement 
of DR is only valid for a restricted class of choices for (~ , /2) ,  of which (T,0) is the 
optimal one. The transition from the four-dimensional theory to the effective 
three-dimensional one is therefore renormalization-point dependent. Hence the full 
RG  invariance (2.14) and (2.15) of the original theory is not inherited by the 
effective theory. One is left with the freedom of RG transformations induced by 
finite changes of 8Z¢ in eq. (2.12). This freedom is nontrivial, although it is not 
related to the removal of ultraviolet divergences. 

3. Calculations in scalar field theory 

3.1. ONE-LOOP DIAGRAMS 

To see explicitly how dimensional reduction is supposed to work, we will now 
perform a one-loop analysis of the scalar @ theory discussed above. The aim of this 
is to check whether a renormalization prescription exists in which DR holds, at least 
to this order. To do so, we will calculate the one-loop correction to static 1PI 
functions F0~X) 0, and try to determine the counterterms (2.8) in such a way that in 
the infinite-temperature limit the nonstatic loop is negligible compared to the static 
loop. 

To achieve this goal in a clean fashion it is obviously desirable to explicitly 
separate the static modes from the nonstatic ones. The standard summation meth- 
ods [7] based on analytic continuation do not realize this aim. Instead, we will 
perform the summation over the nonzero Matsubara frequencies by the following 
device: we first compute the momentum integrals using dimensional regularization, 
setting D = 3 - 2e (e > 0) and using a mass parameter v to give the Green functions 
their proper dimension. The mode sum is then automatically regularized in a way 
akin to zeta-function regularization [21]. (After completion of this work we found 
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that a similar strategy has been employed in calculations of the Casimir effect 
[22,23].) A Mellin transform subsequently allows systematic expansions for both 
low and high temperatures. Detailed formulae may be found in the appendix. 

We start with the self-energy, given by a tadpole diagram. The nonstatic modes 
give (cf. eqs. (A.1), (A.7) and (A.8)) 

F{12)(T) . . . .  tatic : I"~kp2eT E f - -  
- n:g0 

dDk 1 

(2rr) D k2 + ~02~ + m 2 

T m 2 1 ) 
/X 24 32rr 2 ~,, + (9(T 2) 

(3.1) 

The static mode gives 

dDk 1 XmT ,2) / 
~} (V)static=½~'~'2eT (2w) D k 2 + m  2 8qr (3.2) 

Here and in the following, F o refers to a 1PI function in the three-dimensional 
theory having an infinite tower of masses. Static Green functions in the four-dimen- 
sional theory follow by eq. (2.11). 

The four-point function with nonstatic loop gives 

dDk 1 I "  
F(4) /e  t ,  u, T)nonstatic = -- 1~ 2e'r'2 / ~AV 1 E . I  k 2 + + * (××), °, ~ (2~.) D 2 m 2 

t l  ~ 0 (a]n 

2+m 2 +(s--+t)+(s--+u) X ( k + p l + P 2 ) 2 _ F w ,  ' 

37t2T [ 1 

32~r2 + - -  

~(3) ] 
16w2T2 (m 2 + ~ ( s  + t + u))  + (9(T 4) . 

(3.3) 

The zero mode integral equals 

~2T2 
P(4 ' / ' t '  t,u,T),tati c -  arcsin[(1 +4m2/s)1/2] 10{.,,o, 8 , ~  + ( '  --' t) + (s --, . ) .  

(3.4) 

For the nonstatic contribution to the six-point function we obtain by the same 
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; { 
F ' (6 )  [ "  T )  . . . . .  ratio - 1 5 ~ ' ( 3 )  * 00000 ~,/" 1 . . . . .  P 5 ,  128~.4 

~'(5) [90m2+F(p)+(O(T_4)] } 
1 6 ~ 2 T  2 

(3.5) 

with F(p)= 10326=~p2 + 8£6>jpi.&, and P 6 =  --£~=lPi. For the zero mode we 
have an expansion in p/m 

X3T3 [ 1 -4 ) ] .  
V(6) ( P l  . . . . .  p 5 ' T ) s t a t i c -  32~ 'm 3 4 m  ~ ooooo 15 - 2F(P) + (9(m (3.6) 

We will stop here, because the general form of convergent n-point functions is clear 
by now: the static contribution is proportional to (XT)"/2/m '' 3 in the zero- 
momentum limit, whereas the nonstatic modes in the loop give a Laurent series in T 
whose leading term is - T 3 ,,/2. 

3.2. COUNTERTERMS FOR DIMENSIONAL REDUCTION 

At this point we may write down the renormalized one-loop effective action F for 
the three-dimensional theory. By "effective" we here mean that the nonstatic modes 
have been integrated out; for simplicity we will not include the one-loop effects of 
the static modes in F. These are generated by the purely static three-dimensional 
theory, so that they do not affect the choice of counterterms leading to DR; 
moreover, they are finite to this order. Combining eqs. (2.6) (2.8), (3.1), (3.3) and 
(3.6) we thus have 

r[%] = fd3x 1)v,%. v% 

1 2 2 +~m % 
)tT 2 }t ) 

24m2 32~r2~m + Z~ -- 1 + .. .  

+~4XTep 4 32~r2~ h + Z  2 1 + . . .  + - -  
15f(3)x3 ] 

128rr4 q06+ . . . .  (3.7) 

where the singular t e r m  1 / ~  b is given in eq. (A.8). The dots represent terms down by 
powers of m/T  compared to the ones exhibited. Note that dim % = 1 by eq. (2.3), 
so that eq. (3.7) is dimensionless. 

The whole idea of dimensional reduction now consists in choosing the counter- 
terms in eq. (3.7) in such a manner that the contributions from the nonstatic modes 
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which are nonnegligible for T ~ m are cancelled. This implies 
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X T  2 X 3X 

Z = 1 24m2 + 32~.2~ b Z 2 1 + 32~r2~ b Z 3 = 1, (3.8) 

after which F, up to negligible terms, reduces to 

r[Cpo ] = d3x ~(0~%})2+ ~m q%+_ ~,,o 4h3cp 6 . (3.9) 

It is remarkable that the theory defined by the action (3.9) is renormalizable. This is 
a general feature of dimensional reduction: nonrenormalizable interactions are 
suppressed by powers of the compactification radius. It is equally remarkable that 
the term with q0 6 is not already present in the original static action (2.5)-(2.7). It 
naively appears  that this term is completely overpowered by the static one-loop term 

(3.6), but we will know better before long. 

3.3. T H E R M A L  RENORMALIZATION GROUP FLOW 

As we already announced, the counterterms (3.8) which (naively) satisfy dimen- 
sional reduction imply the normalization conditions (2.13) with T 0 = T and /z = 0. 
Accordingly, the renormalization prescription, and thereby the renormalized param- 

eters %,  m, and X are temperature-dependent. Their T-dependence can be derived 
from eqs. (2.16) and (3.8), as described in sect. 2. 

To this order we find 

fir  = 3h2/16~r2; 3'r = XT2/12m2 + h /16  ~'2- (3.10) 

Defining g = 3)t/327r 2, and the RG invariant A 2 = To2exp(1/g(To)) it follows that 

g(T) = 1/log(a2/T2), 

m2(T)  g,/BA2[C+F(~)_~ 2 ,1 l / g ) ]  = ~Tr y ~ ,  . 

(3.11) 

(3.12) 

Here g=g(T), and C is an RG invariant integration constant, which may be 
expressed in terms of the initial value m2(T0). Use of the asymptotic expansion for 
the incomplete G a m m a  function 3' in eq. (3.12) gives 

m2(V) = Cgl/3A2 q_ (4,ff2g _[_ ( 0 ( g 2 ) ) T  2 ' (3.13) 

It is clear from eq. (3.11) that the present calculation can be possibly meaningful 
only for T << A; the blow-up of the coupling constant at T = A is a remnant of the 
Landau ghost in the vacuum theory, which hints at the inconsistency of self-inter- 
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acting scalar field theories [24]. We also observe, a for t ior i ,  that the preceding 
high-temperature expansions are meaningful only if T 2 >> C g l / 3 ( T ) A  2. If triviality 
applies, the preceding is still sensible if A is regarded as a (huge) UV-cutoff, while 
g ( T )  is small for T < < A .  Accordingly, the constant C should be tiny, so that the 
"window of validity" Cgl/3A 2 << T 2 << A 2 of the preceding manipulations is large 
enough. Conditions of this kind would be absent in asymptotically free theories in 
which, on the other hand, the computational complexities would obscure our basic 
ideas (cf. sect. 5!). 

In sect. 4 we will give a precise criterion for dimensional reduction to occur, and 
thence see to what extent this is realized for the scalar theory. Eqs. (3.12) and (3.13) 
will be particularly crucial in this study. 

Finally, we wish to stress that eq. (3.11) exhibits the T-dependence implied by our 
normalization conditions (2.13). Replacing the right-hand sides in eqs. (2.13) by 0, 0, 
and )~, respectively, one would obtain a significantly different expression for )~(T), 
cf. ref. [19]. It so happens that eq. (3.11) coincides with the formula for the running 
coupling in the MS renormalization scheme [4] with v replaced by T. This, however, 
is an accidental one-loop feature. 

4. General analysis of  dimensional  reduction at high temperature 

4.1. APPELQUIST CARAZZONE THEOREM AND HIERARCHY PROBLEM 

To understand the essential difference between decoupling of heavy particles at 
zero temperature and dimensional reduction at high T we will start with a brief 
discussion of the AC decoupling theorem in vacuum field theory. 

Consider a theory describing a heavy particle with mass M interacting with one 
or more light particles with mass m; these masses are here defined to be discrete 
eigenvalues of the operator p2. Decoupling of the heavy particle takes place if 
observable quantities at low energy (p  << M) can be reliably computed from the 
lagrangian of the light fields only. In vacuo the low-energy observables are cross 
sections for the scattering of the light particles. Since these can be computed from 

R the renormalized Green functions Glight with light" external lines only, decoupling 
occurs if loop corrections to these functions involving the heavy particle can be 
neglected compared to those containing light particles only. The criterion for 
decoupling is therefore 

R 
l i m  Glight( p '  m, M; heavy) = 0, (4.1) 

R , M; light) 4 4 ~  Glight(p,m 

when p = ( P l  . . . . .  PN} and m are fixed (i.e. do not grow with M). We use the 
notation G( . . . .  heavy) to indicate that at least one heavy-particle line is contained 
in the diagrams contributing to G; conversely, G( . . . .  light) means that only mutual 
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interactions between the light particles are taken into account. The M-dependence 
of the latter may be there because some coupling constants might be M-dependent, 
as in the Higgs sector of the standard model (compare also the thermal situation 
(2.7)!). 

The usual proof of the decoupling theorem [3, 5, 6] assumes that R G light ( . . . .  light) is 
independent of M and nonvanishing. In that case, and only in that case, the theorem 
can be proved by showing that R Glight(M ~ oO; heavy) vanishes. The essence of the 
AC theorem in this simplified situation is easily grasped. Suppose we regularize the 
theory with a Pauli-Villars mass A. A primitively divergent 1PI diagram F with 
degree of divergence 8 then depends on A like A ~ (8 > 0) or logA (6 = 0) for large 
A. In renormalizable theories the divergent terms - A ~ (or log A) can be removed 
by local counterterms, which thus depend on A, so that the renormalized diagram is 
finite. Convergent diagrams (6 < 0) are independent of A for A ~ ~ .  

The situation involving the large mass M is quite similar. Divergent diagrams will 
be proportional to a positive power of M (or to log M), but this dependence can be 
removed by choosing the local counterterms appropriately. Convergent diagrams are 
proportional to negative powers of M, and vanish for M ~ oo without the need for 
a further renormalization (which would not be implementable by counterterms in 
any case!). This reasoning demonstrates that the validity of the decoupling theorem 
strongly depends on the renormalization scheme R. Mass-independent schemes, like 
minimal subtraction, do not remove the large M-dependence of divergent diagrams, 
and violate the AC theorem. In contrast, a scheme which is optimal with regard to 
the decoupling theorem is the BPHZ subtraction scheme [5], in which momentum- 
space subtractions are made at the origin. The on-shell scheme (subtraction at 
p 2 =  m 2) also satisfies the decoupling theorem, because it is related to the BPHZ 
scheme by a "small" renormalization group transformation (in the sense that the 
subtraction point F is shifted by an amount m which is small with respect to M). 

Here we touch a deep aspect of the decoupling theorem, which we wish to stress 
because it is essential in order to understand the situation at high temperature. Any 
quantity P can be written as p R = L R +  H R, where L and H stand for the 
contribution to P coming from the light and the heavy sector, respectively; we have 
explicitly indicated the renormalization scheme (R) dependence of the objects 
involved. If now P is a physical observable, then it is obviously R-independent. 
Nevertheless, L R and H R still depend on R; only their sum does not. The whole 
point of the AC-theorem is that there exists a class of R-schemes in which H R is 
negligible for low-energy observables P. Thus P = L R, where L R depends only 
negligibly on R if this is varied by small RG-transformations. For large RG-trans- 
formations one looses the previous equality, which explains why it can be semanti- 
cally meaningful at all (compare this with the situation in which a gauge-invariant 
quantity in a particular class of gauges equals a gauge-dependent one). There also 
exists a purely light theory, which is not coupled to a heavy sector, and which carries 
P among its set of observables too. This light theory produces a contribution /~ to 
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P, so that in this particular theory P =/~ exactly and without any R-dependence. 
Hence /~= L R for R in the class in which the AC theorem holds, but not in 
arbitrary schemes! We see, therefore, that the light sector obtained by truncating a 
theory with heavy particles according to the decoupling theorem is distinct from a 
purely light theory: the former still remembers its origin by its behaviour under 
large RG-transformations. At low energy, on the other hand, they are 
indistinguishable. 

In the BPHZ scheme (as well as in the on-shell scheme etc.) one can rigorously 
prove the following bound on a given amputated (not necessarily 1PI) diagram F 
contributing to a Green function with any type of external legs (cf. ref. [5] for a 
proof using k-space Feynman integrals, and ref. [16] for a proof employing their 
parametric representation): 

FBPHZ( p, m, ~M, heavy) ~ F .  ~-q(log ~)t (4.2) 

for ~¢ --* oo. Here F =  F(p, m, M) is independent of ~; I is the number of loops in 
F, and 

q =  min [ m a x { 1 , - ~ } ] .  (4.3) 

The minimum is taken among the subdiagrams y ~ I" which contain all internal 
heavy lines; 8v is the degree of divergence of y. If F contains no superficial 
divergences, then no subtractions are made, and formula (4.3) reduces to q = 
- m a x v ~  r~ 8~, which is a well-known result [6] (the maximum is reached by a ~, 
consisting of a disjoint set of light-particle irreducible graphs containing all heavy 
lines, so that there is indeed complete equivalence with Caswell & Kennedy's 
bound). In theories where the dimension of all graphs is even (as in scalar and 
vector theories without derivative couplings) (4.3) can be sharpened by replacing 1 
by 2 in the r.h.s, of the equation. 

Since q >1 1, eq. (4.2) indeed proves the decoupling theorem (4.1) in case that 
R Glight(... ;light) is M-dependent and nonvanishing. No decoupling takes place if the 

contribution from the purely light sector to a given process happens to vanish; in 
that case virtual heavy-particle exchange contributes dominantly rather than negligi- 
bly to the process, giving corrections to zero rather than to an (9(1) amplitude, as in 
certain weak decay processes at low energy [4]. 

In the former case we clearly have 

( m2)) 
g'TBPHZ/ ~BPHZI light) 1 + (9 light \ P m ,  M) = rn , IJ l ighl  ~ P ,  , M 2  ' M 2  - (4.4) 

It follows from the structure of the BPHZ-scheme that the corrections to two- and 
four-point functions are (9(p2/M 2) only, while "heavy" contributions to higher- 
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point Green functions are O ( m 2 / M  2) as well. The reason these corrections are 
indeed small is that m 2 is an input parameter of the theory, which is thereby 
M-independent and simply fixed to be small. To achieve this consistently the bare 
mass rn B must be M-dependent, and has to be fine-tuned to cancel M-dependent 

1"~ 2 a .2  self-energy corrections to m. For example, in a theory with ,~t9 b = ~Aq01ighttl~heavy one 
has 

XM 2 
m2pHZ = m~a s 32~r 2 log M 2 / v  2 , (4.5) 

where v is the scale parameter in the MS formalism. At low energy v must be 
chosen to be of order mgg, and thereby m~ must be fine-tuned so as to eliminate 
the large second term in the r.h.s, of eq. (4.5). This is the hierarchy problem [4]. The 
essential difference with the thermal case will be presented in subsect. 4.2. 

4.2. W H A T  IS D I M E N S I O N A L  R E D U C T I O N  A T  H I G H  T?  

Supported by the one-loop computations in sect. 3 one would like to use the AC 
theorem to show that the nonstatic modes decouple at high temperature, cf. (3.9). In 
the present application decoupling, or, equivalently, dimensional reduction, means 
that static thermal observables at low momenta can be reliably computed from the 
purely three-dimensional theory with the nonstatic modes deleted, and with possibly 
renormalized input parameters. Henceforth this will be called the 3D-theory. 

The principal observables in thermal equilibrium, viz. the expectation values of 
composite operators like the energy-momentum tensor T,~, are given by superfi- 
cially divergent diagrams receiving contributions from all momentum scales. There- 
fore, even though these quantities are formally one-point Green functions at zero 

external momentum the nonstatic modes are essential for their evaluation. This 
point may partly be remedied by formally adding the nonstatic contributions to the 

1 T equilibrium pressure P = 5 ( i i )  [7] to the 3D-action in the form of a cosmological 
constant. The energy density E = (Too) is out of reach of the effective 3D theory in 
any case, though. Another important class of thermal observables consists of the 
hydrodynamic transport coefficients, which are given by integrals over time-correla- 
tion functions of the energy-momentum tensor and of the conserved currents. 
These objects are obviously totally beyond the range of the 3D-theory as well. 

Next, we consider the equal-time two-point function of the canonical spatial 
(energy-)momentum tensor T~j. Its Feynman diagrams have a four-dimensional 
degree of divergence four, so that the nonstatic modes do not even decouple naively 
(cf. eq. (4.7) below). On the other hand, their nonnegligible contributions can be 
absorbed into finite renormalization constants in passing from the 4D- to the 
3D-theory. One therefore needs to connect T~j in four dimensions to the 
energy-momentum tensor of the 3D-theory, and to the operators with which 
the latter mixes. This connection, then, involves a set of renormalization constants 
which have to be calculated from the mode sums in the full theory. 
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We thus see that a large number of thermal observables either cannot be defined 
or else cannot be calculated in the alleged effective 3D-theory. 

Nevertheless, decoupling of the nonstatic modes (hence DR) may still be mean- 
ingfully defined in terms of the static Green functions G0... 0 (cf. sect. 2). Repeating 
the reasoning in subsect. 4.1, it follows that the correct criterion for DR is 

G~. .o(p ,  m, T, XT; nonstatic) 
lira = 0. (4.6) 

T~o~ G~. .o(p ,  m, AT; static) 

Here "stat ic" means that G ~ is calculated from the 3D-theory of the zero modes. 
(As before, p stands for an arbitrary number of momenta.) The parameters m and 
h are obviously the ones defined in the renormalization scheme R in which eq. (4.6) 
holds; we have seen that the decoupling theorem is very sensitive to the choice of R. 

We know from the explicit computations in sect. 3 that the optimal renormaliza- 
tion scheme in which eq. (4.6) possibly holds is the one defined by the renormaliza- 
tion conditions (2.13). Other possible schemes differ by small renormalization group 
transformations in the sense that the choice o f / t  = 0, T O = T is shifted by A/~, AT o 
such that lim T~ ~ At i lT ,  A To/T = 0. Also, the renormalization prescription for the 
3D-theory is arbitrary as far as DR is concerned (cf. eq. (2.12) and the text below). 
It is technically simplest to use a scheme in which the r.h.s, of the conditions (2.13) 
are replaced by 0, 0, X respectively; this scheme differs from the previous one in that 
the 3D-theory is now renormalized by zero-momentum subtractions as well. We call 
this the MD-scheme (for Maximal Decoupling, cf. ref. [8]). In more general theories 
the MD-scheme is defined by the normalization condition that the first few terms in 
the Taylor expansion around zero momentum of a superficially divergent 1PI 
diagram at T o = T vanish up to order ~- = 8 - I s, where 8 is the superficial degree of 
divergence determined by four-dimensional power counting, and I ~ is the number 
of static loops. 

It can be shown [16] that this scheme removes all UV-divergences. This would not 
happen if • were determined by three-dimensional power counting, because the 
mode summation increases the degree of divergence by one [18]. However, to 
determine the leading power of T for a given diagram h la (4.2) involves three- 

dimensional power counting, because for dimensional reasons the mode summation 
does not affect the leading power of T (assuming that trivial factors coming from 
XT have been factored out already). In this respect the situation differs from that in 
subsect. 4.1: in the zero-T decoupling theorem large-mass power counting coincides 
with UV-power counting. Another difference is that here we are dealing with an 
infinite set of heavy masses 27rnT going to infinity. This causes great technical 
complications, despite which the following bound can be rigorously proved [16] in 
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analogy to eq. (4.2): 

FMD( p,  m, KT, XT; nonstatic) ~< F~ r(1og ~ ) '  (4.7) 

for ~ ~ ~c. Here F MD is an arbitrary amputated diagram with I loops calculated in 
the MD renormalization scheme, and 

r =  rain [Iv n + m a x { 1 , I ; - 3 v } ] .  
y~Fr 

(4.8) 

The minimum is determined among the subdiagrams 7 • FT c F which contain all 
internal nonstatic lines, cf. (4.3), and I nv and Iy~ are the number of nonstatic and 
static loops in 7, respectively. As we explained, 3~ is the superficial degree of 
divergence of 7, determined by four-dimensional power counting. The hybrid 
structure of (4.8) disappears for diagrams without any divergences; we then simply 
obtain r = - maxv ~ c~ 3v(3), where now 3~ 3) is evaluated by three-dimensional power 
counting. To avoid any confusion, we remark that the entire K-dependence of F in 
eq. (4.7) comes from the masses 2~rnKT in nonstatic loops. 

4.3. CRITERION FOR DIMENSIONAL REDUCTION 

Does the bound (4.7) prove the criterion (4.6) for DR? In analogy to eq. (4.4), our 
bound implies that 

MD Go o( p,m,?lT;static)(l + p /T ,m/T) )  Go. o(P,m,T, XT)= MD (9( (4.9) 

for T-~  oo. As before, the correction terms are O(p/T) for superficially divergent 
diagrams, whereas the nonstatic corrections to convergent diagrams are O(m/T) as 

well. The crucial indicator is therefore the value of A =l imr~o~ mMD/T. The 
parameter rnMD is T-dependent, because the MD-renormalization prescription is; 
this is the essential difference with the AC decoupling theorem where, due to 
fine-tuning of the bare parameters, eq. (4.4) already implied decoupling of the heavy 
particle. 

For  a moment let us go back to the ~4 theory in sect. 3. As explained below eq. 
(3.13), the strict infinite-temperature limit cannot be taken in eqs. (3.12) and (3.13), 
but if we choose T very large yet within the domain of validity of the calculations, 
the indicator A approaches 4¢t2g + ~?(g2), which is practically constant in the given 
window. The correction terms in eq. (4.9) are therefore (9(g) and will be felt in the 
next order of the loop expansion. We conclude that DR holds in lowest order (in 
agreement with ref. [10]), but breaks down in higher orders of perturbation theory. 
This can be clearly seen for the six-point function G (6). According to eqs. (3.5) and 
(3.6) the correction term in eq. (4.9) at zero momentum is ~(3)mMD(T)3/4w3T 3. 
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This correction term multiplies Go ~6)...0(... ; static) which is - ~3, so that to one-loop 
we may replace mMD by a constant, cf. eq. (3.12), which makes the correction vanish 
for T--+ oo, and DR takes place. If we compute the 0()~ 6) contribution to G (6), 
however, we have to cope with the (9(2~3) - (_O((mMD/T) 3) = (.0(~ 6) correction from 
the nonstatic modes to the naive one-loop diagram. This contribution is not given 
by the 3D-theory, so that by definition DR then breaks down. The behaviour of 
higher-order Green functions is similar. 

We clearly see that the generation of a T-dependent mass in the static theory is 
responsible for the breakdown of DR in higher orders of perturbation theory. The 
mass generation as such has, of course, well been recognized in the literature. It is 
usually argued that DR "obviously" takes place, after which the 3D-theory exhibits 
mass generation which then may lead to a further decoupling of certain fields. What 
has not been appreciated is that this mass generation, if it occurs, is actually a 
consequence of the renormalization prescription in which the reduction process 
should occur. The induced mass thereby affects the correction terms to DR, and, 
indeed, causes DR to fail in many cases. This feedback mechanism is automatically 
taken care of in our approach based on the finite-temperature renormalization 
group. 

The essential difference between the present situation, in which T--+ oo plays the 
role of a large mass, and the zero-temperature decoupling theorem, can be summa- 
rized as follows 

dm n dm B dmMD dmMD 
- - = ~ 0 ,  - 0 ,  - 0 ,  
d M  dT  d M  dT 

m 4 = 0 .  

In other words, at finite T the large T2-dependent term in eq. (3.12) is simply there, 
and cannot be cancelled by a fine-tuning of the bare parameters, since by definition 
these know nothing about a temperature. 

4.4. QUALIFICATIONS 

By the same token we deduce which theories actually do exhibit DR at high T, 
namely the ones not suffering from the hierarchy problem (cf. subsect. 4.1). Several 
such examples of fields escaping thermal (and vacuum!) mass generation are known. 

(i) As shown by Appelquist and Pisarski [1] the magnetic part of the photon field 
A i in (QED)4 remains massless to all orders of perturbation theory (also cf. subsect. 
5 below). 

(ii) Theories with a dimensionful coupling constant g, like (9)3)4, (QED)2 and 
(QED)3 generate masses proportional to g rather than T, so that A = 0 in those 
cases. Indeed, the occurrence of DR in the QED-examples has been demonstrated 
by Alvarez-Estrada with totally different methods [25, 26]. 
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(iii) In supersymmetric theories there is no mass generation because of cancella- 

tions between bosonic and fermionic loops in self-energy diagrams. 
For  those theories the bound (4.7) provides a rigorous proof of DR at finite 

temperature.  
In vacuum field theory only scalar models exhibit the hierarchy problem. One 

might naively think that other theories, e.g. gauge theories, which in general 
generate no masses in four dimensions, would show complete DR at high T. This is 
not correct, because at finite temperature a field of any spin is rearranged into a set 

of fields carrying a generalized helicity parameter [27] as a consequence of the 
breakdown of Lorentz invariance. Different spin components of the original field 
are grouped into different irreducible multiplets of the unbroken symmetry group, 

and in a sense all behave like scalar fields. A familiar example of this phenomenon 

is the time-like component  A 0 of the spin-1 vector field A,. However, even the 
spatial part  A, splits up (cf. the appendix of ref. [27]) and can in principle generate a 
mass, as is well-known in QCD. This argument shows that, in great contrast to 
vacuum field theory, at finite T mass generation is a rule rather than an exception. 

In all the aforementioned, the notions of "mass"  and "mass  generation" are used 
from the perspective of the 3D-theory, which is formally a euclidean vacuum theory 
with T-dependent parameters. This qualification needs to be made, because an 
interacting thermal field theory does not admit the notion of mass in the usual sense 
of a real-axis pole in the full propagator, or, equivalently, a discrete eigenvalue of 
the operator  p2 [27]. From the point of view of the full 4D-theory, the 
temperature-dependent  "mass"  is defined by the finite T renormalization group. 

4.5. HOW GOOD IS THE EFFECTIVE THEORY? 

Finally, we wish to find out how good the effective 3D-theory still is in case that 
D R  fails. In the first place, the 3D-theory is not particularly useful in the evaluation 
of correlation functions of composite operators, cf. subsect. 4.2. Instead, let us turn 
to the Green functions of the elementary fields of the theory. To estimate the 
( ¢ ( m / T )  correction terms in eq. (4.9), we should obtain a bound on the 1.h.s. of 
(4.6). This bound depends on the renormalization prescription for the 3D-theory, 
and it is easily shown that it is optimal if the 3D-theory is renormalized by the 
BPHZ prescription based on three-dimensional power counting. Namely, the BPHZ 
scheme in general minimizes the large-mass contribution to renormalized Green 
functions (cf. sect. 4.1), which is precisely what we need in view of the fact that the 
T-dependent mass induced in the static 3D-theory caused the breakdown of D R  to 
all orders. 

Suppose, then, that due to the MD-renormalization prescription for the nonstatic 
modes a mass -X~/2T  has been induced in the 3D-theory, X being a generic 
coupling constant, and c~ > 0. The total mass of the static modes is then m 2 = m 2 + 
cX~T 2, where m~ and c are T-independent. We regard both m 2 / T  2 and X~ as small 



516 N.P. l*mdsman / Dimensional reduction 

parameters.  The nonstatic modes have masses M, 2 = m 2 + cX~T 2 + (2vrnT) 2. For 

simplicity we study the correction terms to DR at zero external momentum, so that 
the ratio in eq. (4.6) can depend on m / T  only. 

First we study a given convergent Green function G. In the BPHZ scheme no 

scale is introduced by the renormalization of divergent subdiagrams, so that 
G ( . . .  ;static) as computed in the 3D-theory must be proportional to m 8~, where 
6 (3) is the dimension of G in 3D-power counting. We may extract the same factor 

f rom the nonstatic contributions to G. The remaining factor of G ( . . .  ;nonstatic) 
must then be a function of m/T,  whose leading form for T ~ ac follows from our 
result (4.7) and (4.8). All in all, we find that the ratio F ( . . .  ; nons ta t i c ) /E( . . .  ; static) 
of a given diagram E, contributing to G ( . . .  ; nons t a t i c ) /G( . . .  ;static) in a given 
order of (naive) perturbation theory in the MD-scheme, to leading order in m / T  is 
proport ional  to (T /m)  r(log(T/m))1, with r given by eq. (4.8), and I the number 
of loops in E. 

Now let { E t } /be  the set of lowest-order (one-loop, in general) nonstatic diagrams 
contributing to a given static Green function G0... 0, so that E~-X # naively (i.e. 
without taking into account the )t-dependence of the masses) for some 13 e IN. 
Define r l as in eq. (4.8), with F = 17 / (if 17l is not a one-loop diagram one should 

take the minimum along all diagrams with the given topological structure which 

contain at least one nonstatic loop), and let 0 = rain{ r l}. It then follows from the 
preceding that the correction terms @(m/T) (as defined in eq. (4.9)) to the 
lowest-order Green functions are of order (m2/T2+ X~) °/2 times possible loga- 

rithms. For T >> m2X '~ the effective 3D-theory therefore gives the complete result 
for G~.Do up to and including order 13 + 12~ p - 1  in X. On the other hand, if 
m 0 < <  T 2 < m 2 X  - '~  then the effective theory is useful only up to lowest order, i.e. 
(9(X~). 

We may apply this result to the six-point function in the theory of sect. 3. We 
then have a = 2, ,8 = 3, p = 3, so that the dimensionally reduced theory generates 
the full theory up to fifth order. This can be improved, of course, by adding the 
final, sixth-order, term in the effective action (3.9) by hand. In general, one should 
add an infinite number of (nonrenormalizable) interactions to the original 3D-the- 

ory to reproduce the nonstatic corrections by hand. 
What  about  the superficially divergent Green functions? Here the (9(m/T) 

corrections to DR are removed by the zero-momentum subtractions, and the actual 
corrections to D R  are (9(p/T).  At zero momentum D R  therefore holds exactly for 
Green functions with nonnegative dimension. At small but finite momenta  the 
existence of an induced mass - T  obstructs DR in a similar way as in the 
convergent case: the 3D-theory gives finite-momentum corrections of order p /m ,  
whereas the nonstatic modes produce terms of order p/T .  The ratio of these 
corrections is of order X '~, so that one can consistently use the 3D-theory to compute 
the (9(p2) corrections to a given divergent Green function up to and including the 

order a + fi - 1 in X, with 13 defined as above. 
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In conclusion, dimensional reduction holds to all orders for superficially diver- 
gent Green functions at strictly zero momentum. In this domain of validity the 
theory reduces to a set of constants, whose values must be determined from the full 
4D-theory! 

5. Quantum electrodynamics 

5.1. EFFECTIVE ACTION 

The basic reason why dimensional reduction at high temperature to a certain 
extent holds is that nonnegligible T-dependent terms coming from nonstatic loops 
in superficially divergent lPI functions can be cancelled by local counterterms, 
which are necessarily present because they have to cancel UV-divergences from 
these diagrams as well. A very interesting situation arises if a theory has superfi- 
cially divergent lPI  functions which are actually UV-finite by virtue of cancellations 
between different diagrams. It is by no means guaranteed that the nonnegligible 
high-T terms then cancel out, too, while at the same time there are no counterterms 
to subtract these terms. In those situations the nonstatic modes do not even 
decouple in lowest order. On the other hand, the effective interaction they induce in 
the 3D-theory must be local, and can simply be added to the effective lagrangian at 
high T by hand. 

Gauge theories provide a spicy example of this phenomenon, featured already by 
QED. Apart from the nonstatic photon modes, one would naively expect the entire 
fermion field to decouple, because it has antiperiodic boundary conditions in the 
path integral (2.1) [7], so that all its Fourier modes are nonstatic. The decoupling 
modes will induce an effective photon "mass", for the photon self-energy is 
superficially quadratically divergent. The quadratic UV-divergence vanishes by 
gauge invariance, but the term proportional to T 2 does not. Similarly, the four-pho- 
ton Green function superficially has a logarithmic divergence, which cancels out, 
whereas a T-independent contribution induced by the fermion modes remains. 

The general form of the effective 3D-theory can be inferred without any calcula- 
tion. The complete 4D-effective action F[A ~, ~, ~1 in the Gupta Bleuler formalism 
satisfies the Ward-Takahashi  identity [28] 

8r [ 8 _ a t  
- c 3 " ~  + ieiC ~ - ~ -  ~ - ~  = XM3. A . (5.1) 

In the dimensionally reduced theory at high T time-derivatives are simply to be 
deleted, so that the effective action F3D[A~] of the static photon mode satisfies 

8 F  3D 

O i - XA aiA;, (5.2) 
8A; 
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with A i=A~ .  This shows that F 3D must be a gauge-invariant functional of the 

spatial static gauge field A i up to the usual gauge-fixing terms, whereas its 
dependence on the timelike static gauge field /14 is completely arbitrary. In 
particular, an induced "electric mass" term of the form }m2(A4) 2 in F 3D is to be 

expected. By spatial gauge invariance, an induced "magnet ic  mass" term would 
have to be of the form t~2FiJ(x)A-aF~(x), as in the Schwinger model [29]. It is 

easily seen, however, that (QED)4 is not infrared-singular enough to produce the 
inverse laplacian in the photon polarization tensor, or in any other 1PI function. 
Hence all magnetic terms in /-3D are suppressed by powers of momenta 1/7". 

5.2. ONE-LOOP RESULTS AND THEIR GENERALIZATION 

These expectations are borne out by explicit calculations. We computed the 
one-loop diagrams with two, four, and six external photon lines in the high-tempera- 
ture limit, using the same techniques as in sect. 3 (i.e. based on the formulae in the 
appendix). This leads to an expression for the 3D-effective action similar to eq. 
(3.7). We use euclidean metric and fields A"=A~v = (AIM,-iA°), and decompose 
them as in eq. (2.3), with the proviso that different wave function renormalization 
constants Zs, Z x are used for A i and A 4, respectively (cf. ref. [8] for QCD). We find 

(omitting the subscript 0 on the r.h.s.) 

{ C3D[A~]=fd~x ¼F'JF i/ 1+12~r~--r+48~4T2M2+Zs-1 + OiA')-(Zs-1) 

Ee (lt 1 + 960~r4T2F"AFiJ+½(O, A4) 2 l +  1 ~ 2  25 - 1  +ZT- -1  +½m2(T)(A4) 2 

e4 T (A4)4 _}_ 889~(3)e6 . 4.6 7~(3) e2 [(AA4)220e2T(A4)2(OiA4) 2] 
12~r 2 ~ ( A )  960~r4T2 

7 ~ ' ( 3 )  e 4 4 2 

+ 96~T-(A ) F"F"+ " " f .  (5 3) 

Here M is the electron mass, and the fermionic pole is given in eq. (A.9). 
The induced "electric mass" is given by (cf. ref. [30]) 

T m 2 7~(3) m 4 ) 
mZ(T) = e 2 + + (5.4) 

3 2~r 2 16~r4T 2 . . . .  

We exhibit a few suppressed terms in (5.3) in order to show explicitly that the 
effective action satisfies the reduced WT-identity (5.2). The reduced gauge invari- 
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ance of F 3D implies that the induced interactions between A i and A 4 vanish at zero 

momentum, and are suppressed by powers of T-1 at finite momenta. 
We clearly see that Z T and Z s can be chosen in such a way that dimensional 

reduction to one-loop order takes place. Doing so (cf. eqs. (3.7) and (3.8)) gives, up 
to negligible terms for T--* ~ ,  

FBD[A~l= fdBx ~Fi;F'J+ OiA')-+ (OiA4) 2 

e4T 889~'(3) e6 1 (5.5) +Sin  ( T ) ( A 4 )  2 - - ( A 4 ) 4 +  (A4) 6 
12vr 2 6144vr 4 • 

In accord with the above remark, there are no residual interactions between the 
spatial and the temporal gauge field. 

This result is clearly not particular to the one-loop approximation: at finite T the 
electric sector decouples to all orders from the magnetic one. Another consequence 
of eq. (5.2) is that the magnetic field F ij remains massless to all orders [1]. The 
general limitation to dimensional reduction explained in subsects. 4.3-4.5 thus 
pertains to the electric sector only. The ordinary Appelquist Carazzone theorem 
(subsect. 4.1) implies that electricity itself becomes irrelevant at momenta p << eT, 

so that in QED a complete dimensional reduction indeed takes place. This result has 
been obtained before by heuristic reasoning [1], and by an explicit scan of all 
diagrams [31]. We wish to stress, however, that the general arguments obstructive to 
an all-order DR could be circumvented by the interplay of two features, viz. the 
absence of a magnetic "mass" and of induced electro-magnetic interactions, which 
are highly peculiar to the abelian situation (cf. sect. 6). 

5.3. BOX DIAGRAM AND ANOMALY 

The negative coefficient of the quartic term in eq. (5.5) is quite remarkable. This 
term is not large enough to shift the absolute minimum of F 3D from A" = 0 to some 
nonzero value, but nevertheless the minus sign in front of it has an interesting 
explanation which we would like to point out. 

The four-photon diagram is dimensionless (note that the factor T in the quartic 
term in eq. (5.5) is cancelled by the one in eq. (2.11) in passing to the 4D-Green 
functions) and has a superficial logarithmic UV-divergence which is cancelled. In 
the infinite-temperature limit the diagram must therefore approach a finite constant 
(factors of log T are impossible, because the zero mass-momentum limit is smooth). 
To compute this constant the Feynman integral must be regularized, in spite of the 
final cancellation of infinities. To explain the minus sign, let us regularize the 
diagram by adding a Pauli-Villars field with mass A. The sum of six static one-loop 
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diagram with four timelike external photon lines at zero momentum then gives 

lim d3p f [T4(/~ -- iM)]4 Fooot4) = 6e 4T f ~ - ~  tr t . . . . . .  A + 0+ ( p~ + M ~)4 
- t r  

( p 2 + A 2 ) 4  f 

3e4 5 1 ) ( a ) 4 (  A2 51)} (++' 
gr2 1Lnl ~ ' ~  S 4 r r27 ,2 ;2 ,  2 - ~--T S 4 ~ r 2 T 2 ; 2 ,  2 , 

with S defined by eq. (A.3). 
In the limit T ~ 0 ,  A--+ oo there is only one scale ( M / T  and A / T  both 

explode). Using eq. (A.5) it follows that the two terms in eq. (5.6) cancel, so that the 
vacuum light-light scattering at zero momentum vanishes, as it should. On the other 
hand, in the limit T--+ oc, A --+ oo (in such a way that A/T--+ oc) there are two 
scales which decouple: one has m/T--+ O, and A/T--+ c~. We must then use the 
expansion (A.6) for the first term in (5.6), and (A.5) for the second. The first term 
then vanishes, while the second leaves the finite result -2e4/qr  2. The negative sign 
in (5.5) therefore derives from the fact that the entire amplitude comes from the 
regulator field, which always enters with the wrong sign. 

The calculation may be repeated in the dimensional regulation scheme of sect. 3 
and the appendix. One then finds 

p(4) " -- -- l imeS • e + (5.7) 
"(×~= v T 2+rT ] ~ 4+r2T ' 2 '  - £ T ~ o  \ 4vr2T 2' 2 '  " 

One again, for T--+ 0 the expansion (A.5) should be used, upon which the two terms 
in eq. (5.7) cancel. For T--+ oo, however, the first term vanishes on use of (A.6), 
while the second leaves the finite contribuition -2e4/qr  2. The origin of the minus 

sign is again to be found in the way the regulator enters. 
The appearance of the finite, regulator-independent terms of the form A / A  or 

e /e  is familiar from the theory of anomalies [29]. Their origin lies in a failure of the 
decoupling theorem caused by dimensionless superficially divergent diagrams which 
turn out to be finite, and which therefore may lack a counterterm in the lagrangian. 
Superheavy virtual particles running around in such diagrams, like nonstatic modes 
at high T, or Pauli-Villars fermions, do not decouple, and leave anomalies behind. 
This is particularly clear in the elegant description of Farhi and D'Hoker [32], also 
cf. ref. [33] and subsect. 1.5 of ref. [34]. The quartic term in A 4 is anomalous even 
from a technical point of view [28], because it violates the WT-identity (5.1) in the 
full theory. The reduced identity (5.2) is satisfied, though. 
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6. Quantum ehromodynamies 
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6.1. ONE-LOOP EFFECTIVE ACTION 

High-temperature QCD differs fundamentally from QED in three respects, all 
due to its nonabelian nature 

(i) there are both direct and induced unsuppressed interactions between the 
timelike ("chromo-electric") and the spatial ("chromo-magnetic") sector; 

(ii) there are unsuppressed self-interactions in the chromo-magnetic sector; 
(iii) magnetic mass generation in the 3D-theory is not excluded and is in fact to be 

expected [13, 35]. 
Thus the special features allowing complete dimensional reduction in QED are 
absent in QCD, so that the general arguments in sect. 4 apply, prohibiting DR to all 
orders. The same arguments show that DR definitely does hold in one-loop order, 
where bare internal propagators may be used. 

Let us first infer the general structure of the effective action F 3D induced by the 
nonstatic modes. An argument similar to the one in subsect. 5.1, but now based on 
the full BRS invariance of the QCD effective action [36, 37], shows that the reduced 
effective action of the static modes FBFHZ[A~, C 0, Co] must be a BRS-invariant 
functional in the sense that AI) is an ordinary gauge field, whereas A 4 behaves like a 
scalar field in the adjoint representation of the gauge group. The static ghost fields 

C o and C 0 maintain their usual role. 
To fix the notation, we give the classical static lagrangian 

~LP~D= ¼FiJ FiJ + ~( DiA4)2 + gT1/2[( O,AJ)AiA j -  ( OiA4)A4A ' ] 

+ ¼g2T[A'AJA'AJ+ 2A4A'A4Ai] + (1/2~)(OiAi)  2 -  O,CDiC. (6.1) 

Here we write A ~ = A~ (as in sect. 5) and omit colour indices, so that AA = A"A", 
AAA =f"t"A"AbA ', AAAA =f~b'f"deAhA'AaA e. Also F / j =  0 5 t J -O JA  i, and Di= 
O, + gT1/2A i. 

The mode decomposition, giving rise to the static fields in eq. (6.1), is analogous 
to eq. (2.3). We now introduce renormalization constants relating bare (B) quantities 
to renormalized ones by 

AiB = Zl/2A's , A 4 = Z~/2A 4, C~ = Zlc/2C, gB = ZiZs  S/2g. (6.2) 

Using the summation technique of sect. 3 and the appendix, as well as the algebraic 
manipulation program SCHOONSCHIP [38], we computed the nonstatic contribu- 
tions to all one-loop diagrams with up to four external static fields (except the 
four-ghost diagram which is irrelevant). A high-temperature expansion was then 
obtained using eq. (A.7). This gives the following expression for the static effective 
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action containing all one-loop nonstatic mode corrections. In terms of G = g2/24w2 
we find 

F3r'[A~,Co,Co] 

= d 3 x  ~CPc~D + ¼F'SF ii G - -  + ¼N(34- 13) + Z s -  1 
Ef 

. . . .  + 10 - 64 + Z r -  1 +~(0 ,A4)  2 G Nf ~f 1 + ¼N (34 13) 1 
Eb 

~m2 T ( A4 2+ gT1/2(c3iAJ)A,AJ[G(__ I N ( 9 4 - 1 7 ) - -  ) 1  + Z 1 _ 1 ]  +~ ( )  ) 
Ef E" b 

-gT1/2(O,A4)A4A i G N~ ~ - 1 + lxN (94 -  1 7 ) ;  + 2 0 -  124 
E b 

1_  1 

g4r V(A 4) + O,AS)2(Zs 1) O~CO~C {GN(4 3) 1 . . . .  + Z  c 1 
+ 1 2 g  ~(  ~u - 

-gT1/20*CAiC( 3GN4 ) } - - + Z c Z 1 Z s  l - 1  + . . . .  (6.3) 
4~b 

Here the induced "electric mass" is to leading order 

2 flj4o2t  :) ~NT + ~,NfT - 
f 

(6.4) 

with Nf the number of flavours, and Mf the mass of the quark of flavour f, while N 
is the number of colours. The induced quartic potential of the temporal gauge/scalar 
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field A 4 is 

V(Aa)= (1- -~)(A~A~)2 + ~(N- Nr)dat, ed,.a~A~AbA'A d, (6.5) 

where A = A 4. We have explicitly written the colour indices; the d-symbol for 

S U ( N )  is defined e.g. in ref. [37]. 

6.2. DIMENSIONAL REDUCTION 

To obtain a form of dimensional reduction the counterterms in eq. (6.3) must be 
chosen in such a way that the nonstatic terms are cancelled as far as possible. The 
following choice is seen to be optimal 

Zs=I-GINf+¼N(3~-13) I ] 
~f E b 

Zr=Zs+ G [ N f +  ¼N(6~-  10)],  

(6.6) 

(6.7) 

1 
Z c= 1 + ~ N ( 3  - ~ ) - - ,  (6.8) 

Eb 

ZI = I - G( Nr + ~gN(9~-17)l ' (6.9) 

This choice corresponds to normalization conditions of type (2.13). The singular 
part of these counterterms (cf. eqs. (A.8) and (A.9)) coincide with those found in the 
MS-scheme in the vacuum theory [37], even though eq. (6.3) is the result of a high-T 
expansion. Eqs. (6.6)-(6.9) extend previous calculations by Nadkarni [8], who used 
an entirely different computation technique. 

We now arrive at an extremely simple form of the renormalized static effective 
action 

r3D=fd'x{ .  D 1 2 4 2 + 5m (T)(A) 

(6.10) 

To exhibit the diagrammatic origin of (6.5), we rewrote this expression in terms of 
A =A~T~j, so that the trace is in the adjoint representation of SU(N)  [37]. The 
power of BRS invariance shows up here, as the only induced terms in eq. (6.10) are 
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the ones absent in the classical action (6.1). A result equivalent to eq. (6.10) has 
earlier been found by Nadkarni*,  who calculated in the static temporal gauge, and 
used altogether different computation methods. The agreement is remarkable, 
because the induced quartic term is not a priori gauge independent (it is, of course, 
invariant under static gauge transformations!). 

We note that the quartic term in eq. (6.10) becomes negative for Nf large enough. 
However, in ordinary QCD (N = 3, Nf = 6, i.e. for temperatures much higher than 
the topquark mass) its coefficient is now positive in contrast to QED. The quartic 
term still comes entirely from the regulator diagram (cf. subsect. 5.3), but now the 
gluons contribute with a negative sign themselves, thus overpowering the fermionic 
efforts to give the term its QED-like form. This mechanism is, of course, familiar 

from the fi-function. 
Indeed, the fl-function defined by the finite-temperature renormalization group 

h la eq. (2.16) is easily found from eqs. (6.2), (6.6) and (6.9). The running coupling 
ix(T) =g2(T) /4~r  in the MD-renormalization scheme then assumes the familiar 
form 

a ( T )  = [clogT2/A2r] 1 (6.11) 

in terms of an RG-invariant  scale A2T = Tc~exp( -1 /~(To)c  ), with c =  
( l l N - 2 N f ) / 1 2 ~ ' .  Note that the closing remark of sect. 3.3 could be repeated 
almost wordly here. The behaviour of the running coupling in the context of sect. 
2.3 has been investigated in detail in the real-time formalism [40,41]. 

The attractive appearance of the reduced effective action (6.10) should not 
obscure the fact that its validity is strictly limited to the one-loop approximation, in 
sharp contrast  to its QED analogue (5.5). In the next order a "magnetic  mass" (cf. 

the end of sect. 5.1), is expected to appear [14], and even if it does not appear in 
naive perturbation theory the magnetic mass gap will be generated nonperturba- 
tively [13, 35]. In any case, a consistent perturbation scheme in the static 3D-theory 
should dress its bare propagators with a magnetic mass as well as with its 
(chromo)-electric analogue already present in eq. (6.10). This means, however, that 
the corrections to DR in eq. (4.9) enter, i.e. on the indicator ,~ of subsect. 4.3 does 
not vanish, and DR holds only up to a given order in perturbation theory. This 
order can easily be determined, for each Green function separately, by the technique 
of subsect. 4.5. Notice that neither the electric nor the magnetic "mass"  has a direct 
physical meaning in QCD; both are parameters in the 3D-effective action whose 
T-dependence is governed by the finite-temperature renormalization group based on 
normalization conditions h la eq. (2.13) which have no gauge-invariant meaning. 
The "masses"  in the dressed gluon propagator are thus gauge-dependent, and have 

* His published result [11,39] is correct only for N = 2, 3, but unpublished calculations agree with eq. 
(6.5). In fact, a private communication with Nadkarni allowed us to correct an error due to a bug in 
the Asymm command of SCHOONSCHIP in its M68000 implementation. 
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no other function but parametrizing a particular perturbation method. In the full 
four-dimensional thermal theory they are not even well-defined [42]. 

To close this section we wish to comment on a recent paper in which DR in QCD 
has been studied in great detail [43]. The author concludes that quarks do not 
decouple at infinite temperature, in agreement with our general results, but that 
nonstatic gluons do. The latter conclusion is a consequence of a different treatment 
of the induced static gluon mass coming from nonstatic gluon loops compared to 
the one deriving from quark loops. The former is correctly resummed into the gluon 
propagator, whereas the latter is treated as a counterterm. This procedure leads to 
infrared divergences in higher orders, which are "cured" by the insertion of a 
T-independent infrared-cutoff which comes out of the blue. The infinite-tempera- 
ture limit is then taken in the cutoff theory, after which the nonstatic gluons turn 
out to decouple. Treating gluon loops in the gluon self-energy on the same footing 
as quark loops, that is, resumming the mass coining from gluon loops into the gluon 
propagator as well, would conform with the role the induced mass plays in the 
context of the finite-T renormalization group (cf. sect. 2), and would obviate the 
need for a totally arbitrary infrared-cutoff. Since the general techniques used in ref. 
[43] are quite correct, following the last-mentioned procedure would have led to the 
conclusion that neither quarks nor nonstatic gluons decouple to all orders. 

7. Conclusions 

The principal message of this paper is that the problem of dimensional reduction 
at high temperature ought to be studied in the context of the finite-temperature 
renormalization group. This is nothing spectacular, and just extrapolates the correct 
setting of the ordinary (Appelquist-Carazzone) decoupling theorem. The precise 
meaning of T-dependent masses and coupling constants may be determined in this 
context, after which a simple criterion for complete dimensional reduction can be 
formulated. 

Applying this criterion to specific models leads to the conclusion that dimensional 
reduction to all orders only takes place under exceptional circumstances, which are 
realized in QED in D ~< 4, and also in supersymmetric theories. What is obstructive 
to general dimensional reduction is essentially a relic of the hierarchy problem, 
which is enhanced at finite temperature because any field then contains scalar 
modes. In vacuum field theory small masses can be protected against growing heavy 
due to quantum corrections by fine-tuning the bare parameters of the theory; this, 
admittedly unattractive, possibility makes the Appelquist-Carazzone theorem work 
for scalar fields. On the other hand, large T-dependent masses, as generated by the 
finite-temperature renormalization group, are simply there, and cannot be removed 
by fine-tuning parameters which by definition are T-independent. The presence of 
these large masses blocks dimensional reduction in non-exceptional circumstances. 

In the literature dimensional reduction at high T has mainly been used to 
simplify the study of QCD [1,8, 9, 11, 39, 43, 44]. The implicit assumption here is that 
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QCD undergoes dimensional reduction to all orders in naive perturbation theory, 
after which the effective three-dimensional theory should be studied nonperturba- 
tively. Such a study would then, of course, be of great relevance for the full theory 
(QCD)4 at high but finite temperatures. Nonperturbative phenomena in (QCD) 3, 
like mass generation or gauge symmetry breaking [39] would necessarily occur in 
(QCD4) at high temperature as well. 

In our opinion, the results of this paper imply that the above programme is 
mortally flawed. Dimensional reduction in QCD does n o t  take place to all orders in 
perturbation theory, not even at strictly infinite temperature. It holds to a given, low 
order in perturbation theory, so 
the reduced to the full theory 
dimensional reduction process. 
meaningless; they simply have 
study [13] shows that (QCD)3 is 
infinite temperature limit! 

that an extrapolation of nonperturbative features of 
cannot be motivated by calling upon the alleged 
This is not to say that such extrapolations are 

to be justified by other means. Indeed, a careful 
actually more similar to v a c u u m  (QCD)4 than to its 

Most of the common wisdom on the infrared behaviour of high-temperature QCD 
has been based on studies of (QCD) 3 in the above vein; although this wisdom 
should not be dismissed lightly, we believe that a full-fledged four-dimensional 
real-time approach may teach us a great deal more [42]. (For one thing, the decisive 
role of dissipation is completely obscured in the three-dimensional theory.) 

We wish to add here that dimensional reduction, to the extent that it d o e s  occur, 
is of little help in the evaluation of essential thermal observables like the energy 
density, transport coefficients, and correlation functions of certain composite opera- 
tors. 

It would be interesting to find out what the results of this paper mean in the 
rather different context of dimensional reduction in the Kaluza-Klein sense. One- 
loop quantum corrections have been studied [45, 46], but to our knowledge no 
general treatment exists. As we have seen, one-loop results are rather atypical here. 
The important issue is clearly whether the bare parameters of the higher-dimen- 
sional theory are allowed to depend on the final compactification length(s). If not, 
mass generation due to nonstatic loops should be avoided at all cost, and this may 
lead to the conclusion that only supersymmetric theories can compactify in a 
satisfactory manner (this is well-known [47] but usually comes from the requirement 
that the "low-energy" theory avoids the hierarchy problem, rather than from the 
demand that the compactification itself takes place at all). 

In this context it may also be worthwhile to remark that eq. (6.10) obviously 
demonstrates that quantum corrections may induce a nonabelian Higgs sector even 
if only o n e  dimension is compactified. At the classical level a compactification of at 
least t w o  dimensions is needed to achieve this [48]. 

The Master's thesis of E. Koopman was of significant help in the preparation of 
this paper. I wish to thank S. Nadkarni and R. Alvarez-Estrada for correspondence 
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and discussions. I am indebted to Ch.G. van Weert for a critical reading of the 

manuscr ipt .  Finally, I acknowledge critical remarks by B. de Wit which led to the 

present  version of subsect. 4.1. 

Appendix 

In this appendix certain details of our summation technique are uncovered. We 

have to evaluate dimensionless expressions of the type 

c¢ 

=27~ ",°°~of d'k (k2)i 2+y2]'' 1(y2;°~''8'p) (2,n.)D [k2+(n+p (A.1) 

where c~ and '8 are positive integers, 7 :=  2~rT/v, p = 1 for bosons and p = 12 for 

fermions,  and D = 3 -  2e, e > 0. Adapt ing a well-known formula in dimensional 

regularization [37] to the three-dimensional case, it follows that 

i(y2; 1/2(4'u) "-1 F(O + 

with 

s(y';x,o)= 
#l - -  0 

(A.2) 

(A.3t 

This sum is defined as it stands for X > J, i,e. e > c~ - ,8 + 2. If /7 - a > 2 then one 
can immediately  set e = 0. 

To analyze the analytic structure of S as a function of e, as well as to obtain 

large- and small-y expansions, we write the sum as a Mel l in-Barnes  integral 

S(y2; ~k, p) F()k) ~ i~ 2rri --~(z, p) F(z/2 + ~) (A.4) 

where ~'(z, 0) is the Hurwitz zeta-function [49], and 1 < c < 2X. To derive eq. (A.4), 
use consecutively item (B), p. 6 /7 ,  and eq. (2.58) of  ref. [50], and eqs. (8.6.1), 

(6.1.18) and (6.1.17) of ref. [51]. It follows from the representation (A.4) that S(X) 
has poles in 2t = ~ - k, k = 0, 1, 2 . . . .  (due to the pinch singularity encountered by 

moving Re )t to the left, so that the contour  is pinched between the poles of ((z, O) 
in z = 1, and F(X - ~z)). For  large y (A.4) generates an asymptot ic  expansion by 
shifting the contour  to the left and picking up the poles of  the integrand (a 
convergent  series in 1/')' cannot  be obtained from (A.4) because the contour  cannot  
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be closed to the left [52]). One finds 

c ( x -  ~) 
S(y2 ;  2~' P) = ~ f ~  F()~) y 2x+1 + ~'(0, p)y-2X + . . . .  (a .5)  

For general O, the terms represented by the dots are (_9(y 2~ 1). For 0 = 1, however, 
we have ~'(z, 1)=~'(z) ,  and a glance at (A.4) combined with ~ ' ( - 2 k ) = 0 ,  k =  
1, 2 . . . . .  shows that for the omitted terms vanish faster than any positive power of 
1 / y  for y ~ a¢. For P = ~ one has ~'(z, ~) = (2 Z - 1)~'(z), and the same conclusion 
follows; in fact even the second term in eq. (A.5) vanishes for fermions. 

A convergent expansion in y may be obtained by closing the contour to the right. 
This yields (y  < 1) 

S(y2; X, 0) = (1/ t ' (X))  ~ (-1)k k=o k! ~'(2k + 22k, p)/'(2~ + k ) y  2k . (A.6) 

Combining (A.6) with (A.1) and taking the limit e ~ 0 then gives a series expansion 
for I. We first state the result for the singular case/3 - a ~< 2: 

~(y2; ~,/3, p) _ 2 ~ ( / 3 - 1 ) !  

7gl/2y4+ 2a 23 4efT2 ~ 
7 - l o g ~ 5 - - )  

+ k = o  ~ '  - - ( - 1 ) k I ' ( k + / 3 - a - B ) ~ ( 2 k + 2 f l - 2 a - 3 ' p ) y 2 k } k !  . (A.7) 

The prime on the summation sign denotes that the term k = 2 + a - / 3  must be 
omitted. For  bosons + ( 1 ) =  - 7 ,  while for fermions ~(~2)= - 7 -  log4, so that the 
pole terms become 

1 1 4vrT 2 1 1 ~T 2 
- + y - l o g  v2 , + Y log-~v2 (A.8) ,(A.9)  

Eb ,E Ef E 

for bosons and fermions, respectively. For fl - a > 2 we simply obtain 

I (  y2; a, /3, P ) 
c ( ~  + ~) - 1) * 

2 v ~ - f i -  1-)! ~ ( ~=0 k! 

X~'(2k + 2 f i -  2a - 3, p)y2k .  (A.10) 
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