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Introduction

From the title of this thesis, we can already identify three main themes:

• Intuitionism: an approach to constructive mathematics initiated by Brouwer;

• Quantum mechanics: the theory of nature at the smallest level;

• Logic: concerns mathematical reasoning itself.

We start by explaining what we mean exactly by logic, in particular classical propositional
logic. It all begins with propositions, such as

My name is Quinten

and
Writing this thesis was a bore

nothing being implied about the truth of these statements. For easy of notation, we will write
propositions as p, q, r etc. . We can combine propositions into new ones, for example

• p ∨ q, which is true when p or q is true (non-exclusive);

• p ∧ q, which is true when p and q are both true;

• ¬p, which is true when p is not true.

Starting with axioms and deduction rules, we can show that some propositions can be
proven from other ones. We say that two propositions are equivalent if each can be proven from
the other one. In classical logic, this equivalence relation is required to satisfy certain identities,
such as

p ∨ (r ∧ s) ∼ (p ∨ r) ∧ (p ∨ s)

and
¬(¬p) ∼ p.

The first is called distributivity and the second is the law of the excluded middle. This means
that in classical logic, the equivalence classes of propositions form a so-called Boolean lattice.

However, quantum logic is not classical. This can be understood by the following heuristic
argument. We start with one of the most basic concepts of quantum mechanics, the Heisenberg
uncertainty principle. Consider a particle of which we measure the position x and momentum
p (at the same time), with uncertainty ∆x and ∆p, respectively. The uncertainty principle states
that

∆x∆p ≥ ~
2
.

That is, there is an upper bound to the certainty with which we can measure the position and
momentum of a particle simultaneously. ~ is a physical constant, and for simplicity’s sake, let’s
set it equal to 2 for now. Now, let’s assume we find ourselves in the following situation:

• The position of the particle is bounded between 0 and 1;

• The momentum of the particle is bounded between 0 and 1.
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This means that the uncertainty in both position and momentum is 1, which is in agreement with
the uncertainty principle, because

∆x∆p = 1.

We are on thin ice, however, because if we decrease the uncertainty in either position or momentum
any more, the particle will no longer satisty the uncertainty principle. Next, consider the following
’quantum propositions’:

p := if we measure position, the value will be between 0 and 1 ;

q := if we measure momentum, the value will be between 0 and 1 .

We can ’split’ proposition q into two ’smaller’ propositions r and s, where

r := if we measure momentum, the value will be between 0 and
1

2
;

s := if we measure momentum, the value will be between
1

2
and 1.

Formally,
q = r ∨ s.

For the specific situtation that we are in, both p and q are true, so we conclude that

p ∧ q is true .

However, we cannot have
p ∧ q = p ∧ (r ∨ s) = (p ∧ r) ∨ (p ∧ s). (1)

If this were the case, either p∧ r or p∧ s would have to be true. But the uncertainty in momentum
is only 1

2 if r or s is true. Therefore we would break the uncertainty principle! It seems that

quantum logic is not distributive.

But there is another possible interpretation. We have implicitly assumed that we could split
the proposition q into r and s. Because in our situation the proposition q is always true, we will
write q as 1, where 1 is the proposition that is always true. Because r and s obviously cannot be
true at the same time, we have

r ∧ s = 0,

where 0 is the proposition that is always false. Here’s the crunch: we have assumed that

r ∨ s = 1, (2)

as well. In other words, r and s are complements of each other. 2 is also called the law of the
excluded middle. The alternative to non-distributivity is therefore:

In quantum logic, not every proposition has a complement, or:

In quantum logic, the law of the excluded middle does not hold.

Both options are possible, and both have been studied. Dropping distributivity is, historically,
the most ‘popular’ solution, and gave rise to the field of orthomodular lattices, first introduced
by Birkhoff and von Neumann (see [1]). Orthomodularity is strictly weaker than distributivity,
but the law of the excluded middle still holds. The alternative is to look for a logical system
that is distributive, but in which the law of the excluded middle does not hold. That is where
intuitionistic logic comes in. Intuitionistic propositional logic is in a way a ’generalization’ of
classical propositional logic, in the sense that the law of the excluded middle is dropped. This was
done in an effort to reflect constructive human reasoning better, instead of abstract truth: if no
proof of the negation of a statement is possible, this does not mean that the statement itself is not
true. Intuitionistic propositional logic is modeled algebraically by Heyting lattices. These are
therefore the intuitionistic counterparts of Boolean lattices.

In this thesis, the goal is to understand certain Heyting lattices that are associated to quan-
tummechanical systems. These are represented mathematically by so-called C∗-algebras, which are
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complex normed algebras with additional structure. Commutativity is a very important prop-
erty that distinguishes different C∗-algebras. The reason why the argument using the uncertainty
principle worked, is that position and momentum are an example of non-commuting observ-
ables. This is typical of quantum mechanics, because classical physics behaves in a commutative
way. Somewhat more formally, we can say that

to a commutative C∗-algebra (with enough projections) we can associate a Boolean lattice.

Therefore, commutative C∗-algebras represent classical physics. We will find that

to any C∗-algebra we can associate a Heyting lattice.

Actually, to any C∗-algebra A we can associate a topological space ΣA, and the open sets of this
space form the Heyting lattice in question.

The original aim of this project was to extend the theory of Stone duality to the C∗-algebra
setting. Stone duality has to do with Boolean lattices, and it roughly says that

any Boolean lattice B can be seen as the lattice of clopen sets of a topological space.

This topological space is called the Stone spectrum of B. There is an analogous theory for
Heyting lattices, called Esakia duality. In that case, we call the associated topological space the
Esakia spectrum of the Heyting lattice H. We can now state the goal we had in mind:

What is the Esakia spectrum of the Heyting lattice associated to a C∗-algebra?

This turned out to be a very difficult question, and so far, compared to what was conjectured,
mostly negative results have been found. Therefore, alternative questions were posed, these being:

Can we understand the Heyting lattice better for a certain class of C∗-algebras?

What are the categorical properties of the assignment of a C∗-algebra to a Heyting lattice?

Category theory focuses on maps between objects, in this case C∗-algebras, rather than on the
objects themselves. This viewpoint generalizes many distant areas of mathematics, however, its
origin is quite recent ([2]).

More succes was achieved in answering these last two questions. We were able to extend a
certain result on ΣA to the class of AW∗-algebras. Furthermore, functoriality and limits were
explored, yielding the following results:

• The association of a C∗-algebra to a Heyting lattice is functorial, when the right domain is
chosen.

• The Heyting lattice of a finite-dimensional C∗-algebra is the limit of the Heyting lattices
corresponding to the commutative subalgebras.

Some sections are shared work between myself and Evert-Jan. This will be elaborated on at
the beginning of each chapter.
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Chapter 1

Operator algebras and C∗-algebras

The mathematical theory of quantum mechanics is based on Hilbert spaces and C∗-algebras. In
this chapter we will cover bounded operators on a Hilbert space, Gelfand duality for commutative
C∗-algebras, and a way to extend this duality to noncommutative algebras. The material of sections
1 and 2 is based mainly on [3]. Section 3 is a heuristic summary of [4].

1.1 Hilbert spaces

Quantum mechanics was originally formulated in the framework of Hilbert spaces by John von
Neumann [5]. This formalism is based upon physical postulates, for example:

1. The state of the system is given by a wave function ψ, which assigns to (almost) each point
in space a complex number. That is, ψ ∈ L2(R3);

2. The value |ψ(x)|2 is the probability density of the measured position x of the particle. This
means that the probability to measure a particle in a measurable subset ∆ ⊆ R3 is equal to
the integral ∫

∆

|ψ(x)|2d3x;

3. If ψ1 and ψ2 are states of the system, then ψ1 + ψ2 is also a state, if we normalize ψ1 + ψ2

so that the integral over R3 is equal to 1 (This is called the principle of superposition),

among others. It turns out that these postulates can be beautifully captured in the formalism of
Hilbert spaces and operators on them. The Hilbert space represents the possible pure states the
system can be in and the operators are the measurements that can be performed on it.

Before we define Hilbert spaces, we first recall the definition of a normed space.

Definition 1.1. A normed space is a vector space X (over k ∈ {R,C}) with a positive definite
function || · || : V → [0,∞) such that:

1. ||λv|| = |λ|||v|| for all λ ∈ k, v ∈ X;

2. ||v + w|| ≤ ||v||+ ||w|| for all v, w ∈ X.

Definition 1.2. A Hilbert space H is an inner product space over C, that is, a C-vector space
with a positive definite sesquilinear form 〈·, ·〉, such that H is complete in the norm induced by
〈·, ·〉. This norm is given by

||x|| =
√
〈x, x〉

for x ∈ H.

Definition 1.3. A linear map a : H → H is called bounded if there exists a constant C ∈ R
such that ||av|| ≤ C||v|| for all v ∈ H. The infimum of all C for which this holds is denoted by
||a|| and is called the (operator) norm of a.

11



12 CHAPTER 1. OPERATOR ALGEBRAS AND C∗-ALGEBRAS

Remark. Note that the following holds:

||a|| = sup
{
||av||
||v||

| v ∈ H, v 6= 0} = sup{||av|| | v ∈ H, ||v|| = 1

}
.

Notation. The (C-)vector space of all bounded operators on H is denoted by B(H). It turns out
that in addition to being a vector space, B(H) is a Banach algebra (and even a C∗-algebra).

Lemma 1.1. The operator norm is indeed a norm on B(H).

Proof. Positive definiteness: a is zero on all unit vectors iff a is zero on all of H, because we can
write any nonzero vector v ∈ H as

v = ||v|| v
||v||

,

where v
||v|| is a unit vector. Suppose v ∈ H, ||v|| = 1 and a, b ∈ B(H). Then

||(a+ b)v|| = ||av + bv|| ≤ ||av||+ ||bv|| ≤ ||a||+ ||b||,

from which it follows that ||a+ b|| ≤ ||a||+ ||b||. Part 1 of definition 1.1 is just as easy to verify.

Lemma 1.2. B(H) is complete in the operator norm.

Proof. Suppose (an)n∈N is a Cauchy sequence in B(H). Let v ∈ H and n,m ∈ N. Then
||anv−amv|| = ||(an−am)v|| ≤ ||an−am||||v|| → 0 as n,m→∞. Therefore the sequence (anv) is
a Cauchy sequence in H which is complete, so it converges to a vector av ∈ H. We have to prove
that the assignment v 7→ av defines a bounded operator on H and that an → a in the operator
norm. Let v, w ∈ H and λ ∈ C. Then

||an(v + w)− av − aw|| = ||anv − av + anw − aw|| ≤ ||anv − av||+ ||anw − aw|| → 0,

whence an(v + w)→ av + aw. That is, a(v + w) = av + aw. Also,

||an(λv)− λav|| = ||λanv − λav|| ≤ |λ| ||anv − av|| → 0

so that a(λv) = λ(av). Lastly, let ε > 0. Then there is N such that

sup||v||=1||anv − amv|| < ε

for n,m ≥ N . Take the limit m→∞ to obtain

sup||v||=1||anv − av|| < ε. (1.1)

We then have, for v ∈ H with ||v|| = 1 and n ≥ N , that

||av|| = ||av − anv + anv||
≤ ||av − anv||+ ||anv||
< ε+ ||an||,

which shows that a is bounded with ||a|| ≤ sup||an||. 1.1 then gives that an → a in the operator
norm.

We can turn B(H) into an associative C-algebra by defining muliplication as composition of
linear operators: (ab)v = a(bv). We then have

Lemma 1.3. For every a, b ∈ B(H) we have ||ab|| ≤ ||a|| ||b||.

Proof. This is an easy calculation. Let v ∈ H, ||v|| = 1 and a, b ∈ B(H). Then

||(ab)v|| = ||a(bv)|| ≤ ||a|| ||bv|| ≤ ||a|| ||b||.

By taking suprema we see that ||ab|| ≤ ||a|| ||b||.

These properties of B(H) are nicely summarized in the following definition:
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Definition 1.4. A (unital) Banach algebra is a (unital) C-algebra A that is also a normed space
such that A is complete in its norm and multiplication satisfies ||ab|| ≤ ||a|| ||b|| for all a, b ∈ A.

Note that B(H) is always a unital Banach algebra with the identity operator 1H : H → H as
the unit element. We will now consider the additional structure on B(H).

Definition 1.5. A linear functional φ : H → C is called bounded if there is a constant C ∈ R
such that ||φ(v)|| ≤ C||v|| for all v ∈ H. The infimum of all such C is denoted by ||φ||.

Remark. As for linear operators, we have ||φ|| = sup{|φ(v)| | v ∈ H, ||v|| = 1}.

Lemma 1.4. For any w ∈ H the assignment v 7→ 〈w, v〉 defines a bounded linear functional φw
on H.

Proof. This follows from the Cauchy-Schwarz inequality: let v ∈ H, ||v|| = 1, then

||〈w, v〉|| ≤ ||w||,

from which we see that φw is bounded with norm at most ||w||. We have equality, since 〈w,w〉 =
||w||2.

The converse also holds, and the result is called the Riesz representation theorem:

Theorem 1.1. Every bounded linear functional φ : H → C is of the form φw for some unique
w ∈ H, and ||φ|| = ||w||.

Proof. For the proof we refer to [3], Theorem 1.29.

Lemma 1.5. For a ∈ B(H), w ∈ H the assignment v 7→ 〈w, av〉 defines a bounded linear functional
φa,w on H.

Proof. Linearity follows from linearity of the inner product and linearity of a. Boundedness follows
again from the Cauchy-Schwarz inequality, because we have

||〈w, av〉|| ≤ ||w|| ||av|| ≤ ||w|| ||a|| ||v||.

Therefore, φa,w is bounded with norm at most ||w|| ||a||.

Because of the Riesz representation theorem the functional in the lemma above must be given
by the inner product with some fixed vector. We denote this vector by a∗w.

Lemma 1.6. The assignment w 7→ a∗w defines a bounded operator a∗ on H.

Proof. Let v, w, h ∈ H. Then

φa,v+wh = 〈v + w, ah〉 = 〈v, ah〉+ 〈w, ah〉
= 〈a∗v, h〉+ 〈a∗w, h〉
= 〈a∗v + a∗w, h〉.

We see that the linear functional φa,v+w is given by the inner product with a∗v+a∗w as well as with
a∗(v+w). But this vector is unique by the Riesz representation theorem so a∗(v+w) = a∗v+a∗w.
Part 1 of definition 1.1 follows from the observation that

〈λv, ah〉 = λ〈v, ah〉
= λ〈a∗v, h〉
= 〈λa∗v, h〉.

It follows that a∗(λv) = λ(a∗v). Lastly, by Theorem 1.1 and Lemma 1.5, we have

||a∗w|| = ||φa,w|| ≤ ||a||||w||,

so that a∗ is bounded with norm at most ||a||.

Remark. The operator a∗ is called the adjoint of a. It has the property that for any v, w ∈ H:

〈w, av〉 = 〈a∗w, v〉.
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Proposition 1.1. The map a 7→ a∗ from B(H) to itself has the following properties:

1. (a∗)∗ = a for all a ∈ B(H)

2. (a+ b)∗ = a∗ + b∗ for all a, b ∈ B(H)

3. (λa)∗ = λa∗ for all λ ∈ C, a ∈ B(H)

4. (ab)∗ = b∗a∗ for all a, b ∈ B(H)

5. ||a∗a|| = ||a||2 for all a ∈ B(H)

Proof. We refer to [3], Proposition 2.13 and 2.14.

These properties lead us to the definition of a C∗-algebra.

Definition 1.6. A C∗-algebra is a Banach algebra A together with a map ∗ : A→ A that satisfies
the properties 1-5 in the proposition above.

1.2 Commutative C∗-algebras
In this section we will explore Gelfand duality, which gives a characterization of commutative
C*-algebras in terms of topological spaces. We start with the following.

Lemma 1.7. For X a compact Hausdorff space the space of continuous functions X → C, denoted
by C(X), is a C∗-algebra if we define addition and scalar multiplication pointwise, and furthermore

1. ||f || = supx∈X |f(x)|;

2. f∗(x) = f(x).

Note that the supremum is well-defined, because X is compact.

If we want to characterize C∗-algebras we first have to define when two C∗-algebras are isomorphic.

Definition 1.7. A linear map f : A → B between C∗-algebras is called a ∗-homomorphism if
for all a, a′ ∈ A

1. f(aa′) = f(a)f(a′)

2. f(a∗) = f(a)∗.

A bijective ∗-homorphism is called a ∗-isomorphism.

It turns out that all unital commutative C∗-algebras are ∗-isomorphic to C(X) for some compact
Hausdorff space X. There are many possible realizations of this space, but the easiest definition
is in terms of characters, also called (nonzero) multiplicative functionals.

Definition 1.8. A character of a C∗-algebra A is a nonzero ∗-homomorphism φ : A→ C from A
to the C∗-algebra of complex numbers. We denote the set of characters of A by Σ(A). It is called
the Gelfand spectrum of A.

Lemma 1.8. Let φ : A→ C be a character. Then φ is bounded with ||φ|| = 1.

Proof. This is [3], Theorem 5.20.

We can turn Σ(A) into a topological space by putting the weak-∗ topology on it. This is the
initial topology on Σ(A) with respect to the maps

â : Σ(A)→ C, â(φ) = φ(a),

where a ∈ A. This topology can be characterized by its convergent nets, namely φλ → φ in Σ(A)
iff φλ(a)→ φ(a) in C for all a ∈ A. This is why the weak-∗ topology is also sometimes called the
topology of pointwise convergence. Another common name is Gelfand topology.

Lemma 1.9. Let A be a unital commutative C∗-algebra. Then Σ(A) is a compact Hausdorff space
in the weak-∗ topology.
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Proof. [3], Theorem 5.42.

Example. If A is finite-dimensional with dimension n, then its Gelfand spectrum Σ(A) is the
discrete space with n points.

We now have a mapˆ: A→ C(Σ(A)), defined by

a 7→ â, â(φ) = φ(a). (1.2)

This is called the Gelfand representation of A.

Theorem 1.2. For A a unital commutative C∗-algebra the Gelfand representation 1.2 is an iso-
metric ∗-isomorphism between A and C(Σ(A)).

Proof. [3], Theorem 5.44.

In order to make Gelfand duality a true duality of categories (see appendix A) we need to
consider morphisms.

Definition 1.9. The category of unital commutative C∗-algebra CCStar has

1. Unital commutative C∗-algebras as objects;

2. ∗-homomorphisms as morphisms.

Definition 1.10. The category of compact Hausdorff spaces CptHaus has

1. Compact Hausdorff spaces as objects;

2. Continuous maps as morphisms.

Lemma 1.10. Gelfand spectrum Σ is a contravariant functor CCStar → CptHaus.

Proof. We have already established that for a unital commutative C∗-algebra A, Σ(A) is a compact
Hausdorff space. Now consider a ∗-homomorphism f : A→ B. We obtain a map

Σ(f) : Σ(B)→ Σ(A),

Σ(f)(φ) = φ ◦ f.

We claim that this map is continuous. Let φλ → φ be a convergent net in Σ(B). This is equivalent
to φλ(b)→ φ(b) in C, for all b ∈ B. If a ∈ A, then φλ(f(a))→ φ(f(a)), that is

Σ(f)(φλ)(a)→ Σ(f)(φ)(a).

Since this is true for all a ∈ A, we have Σ(f)(φλ) → Σ(f)(φ), which establishes the continuity of
Σ(f). The functoriality is easy. Σ(idA)(φ) = φ ◦ idA = φ so Σ(idA) = idΣ(A). If f : A → B and
g : B → C, then

Σ(f)(Σ(g)(φ)) = (φ ◦ g) ◦ f = φ ◦ (g ◦ f) = Σ(g ◦ f)(φ).

Lemma 1.11. C(•) is a contravariant functor CptHaus → CCStar.

Proof. We know that C(X) is a unital commutative C∗-algebra. Let φ : X → Y be a continuous
map. We obtain C(φ) : C(Y ) → C(X) by C(φ)(f) = f ◦ φ. This is a ∗-homomorphism, because
all operations are defined pointwise. The proof of functoriality is exactly the same as in 1.10.

Lemma 1.12. Let X be a compact Hausdorff space. Then the map X → Σ(C(X)) given by
x 7→ evx is a homeomorphism.

Theorem 1.3. The categories CCStar and CptHausare dual.

Proof. We need to prove that C ◦ Σ ∼= idCCStar and Σ ◦ C ∼= idCptHaus. For the first, take a
∗-homomorphism f : A→ B and consider the diagram

A B

C(Σ(A)) C(Σ(B)).

f

∼ ∼

C(Σ(f))
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Let a ∈ A. We then have

C(Σ(f))(â)(φ) = (â ◦ Σ(f))(φ) = â(φ ◦ f) = (φ ◦ f)(a) = φ(f(a)) = f̂(a)(φ),

so that C(Σ(f))(â) = f̂(a). Now take a continuous map φ : X → Y and consider the diagram

X Y

Σ(C(X)) Σ(C(Y )).

φ

∼ ∼

Σ(C(φ))

Let x ∈ X. We then have

Σ(C(φ))(evx)(f) = (evx ◦ C(φ))(f) = evx(C(φ)(f)) = evx(f ◦ φ) = f(φ(x)) = evφ(x)(f),

so that
Σ(C(φ))(evx) = evφ(x).

1.3 Noncommutative C∗-algebras and quantum toposophy

If one interprets a C∗-algebra as representing the observables of a certain quantum system, then
a noncommutative C∗-algebra signifies true quantum behaviour. An example is the noncom-
mutativity of measurement of position and momentum in the Heisenberg relation. However, the
position of Bohr was that one could only reason about a quantum system in classical terms, and
measurements could only be described with classical quantities. To bridge the gap between quan-
tum and classical we can look at so called ‘classical contexts’ of a C∗-algebra A. These are
commutative subalgebras C ⊆ A, i.e. subsets of A that are commutative C∗-algebras with the
structure inherited from A. This gives us

Definition 1.11. For a unital C∗-algebra A we define

C(A) = {C ⊆ A | C is a unital commutative subalgebra}

Remark. C(A) is naturally partially ordered by set-theoretic inclusion, and it is a so-called meet-
semilattice in this order. However, it usually does not have any more interesting structure unless
we know more about A.

Gelfand duality can in principle only be used for commutative C∗-algebras, but by using C(A)
we can bridge the gap to noncommutative C∗-algebras. For this, we need to use the framework of
topos theory. A topos is a category that has certain nice properties so that it can be used as
an alternative, in a sense, to set theory (i.e. the category Sets). In particular, in some topoi the
term C∗-algebra has a specific meaning, as does Gelfand duality. These are then called internal
C∗-algebras (as well as internal Gelfand duality). To get the whole thing going we consider the
following functor category:

SetsC(A)

where C(A) is seen as a posetal category. This is the category of co-presheaves of sets on C(A).
It turns out that this category is in fact a topos. In this functor category we have a very special
functor denoted by A:

A(C) = C,

which assigns to each commutative subalgebra C ⊆ A its underlying set and to each inclusion
C ⊆ D the inclusion map in Sets. It can be shown that in the topos SetsC(A) the object A is
a commutative internal C∗-algebra. Because of this, we can take its internal Gelfand spectrum
ΣA. However, this is an internal object in the topos SetsC(A), and these can be hard to deal with.
We therefore want a so-called external description of this internal object. That is, we want a
topological structure in the category Sets that corresponds to ΣA. It turns out that an internal
‘topological’ space (actually a so-called pointfree space) Y in SetsC(A) may be identified with a
continuous map

π : Y → C(A),
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where C(A) is given the Alexandrov topology. This is the topology in which all upsets are open.
The space that will correspond to ΣA can be described as follows: The underlying set is given by
the disjoint union of all the regular Gelfand spectra Σ(C) for C ∈ C(A):

ΣA =
∐

C∈C(A)

Σ(C).

We then have the following result:

Theorem 1.4. The external description of the pointfree Gelfand spectrum ΣA may be identified
with the canonical projection

π : ΣA → C(A).

Proof. This is [4], Theorem 2.

The topology on ΣA can be described as follows. A subset U ⊆ ΣA is open if and only if

1. For each C ∈ C(A) the set UC := U ∩ Σ(C) is open in Σ(C).

2. Suppose C ⊆ D in C(A). If λ ∈ Σ(D) with λ|C ∈ UC then λ ∈ UD.

It turns out that this is the weakest topology on ΣA making the canonical projection π : ΣA →
C(A) continuous.

Remark. We can reformulate the second condition in terms of the Gelfand functor Σ(•). Suppose
C ⊆ D in C(A). Then we have an inclusion map j : C ↪→ D. The Gelfand functor then gives
us a restriction map Σ(j) : Σ(D) → Σ(C). The condition then translates to: if λ ∈ Σ(D) and
Σ(j)(λ) ∈ UC , then λ ∈ UD, i.e.

Σ(j)−1[UC ] ⊆ UD. (1.3)
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Chapter 2

Lattices and frames

This chapter covers order theory and lattice theory. Lattices form the algebraic structures of
mathematical logic, and therefore are the basis also of quantum logic. The material in this chapter
is based on [6] and [7].

2.1 Partial orders and lattices

Definition 2.1. A partially ordered set (poset) is a set X equipped with a partial order ≤.
Equivalently, it is a category C in which |C(A,B)| ≤ 1 for all objects A,B ∈ C.

Definition 2.2. A lattice is a partially ordered set L so that for all x, y ∈ L there exist:

1. a smallest upper bound x ∨ y for x and y, called the join or supremum of x and y;

2. a greatest lower bound x ∧ y for x and y, called the meet or infimum of x and y.

Equivalently, L is a posetal category with all finite products and coproducts. A lattice is called
complete if every subset S ⊆ L has a supremum

∨
S and an infimum

∧
S.

Example. An example of a lattice is the power set P(X) of a set X, which is ordered by inclusion
and where the join and meet are given by union and intersection, respectively.

The following properties of lattices are of great importance.

Definition 2.3. 1. A bounded lattice is a lattice with a greatest element 1 and a smallest
element 0.

2. A distributive lattice is a lattice L where for all x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

and
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

These two equalities are equivalent ([6], Lemma 4.3).

Remark. In a bounded lattice the elements 0 and 1 are unique. A finite lattice is automatically
bounded, with greatest element given by

∨
x∈L x and lowest element by

∧
x∈L x.

Definition 2.4. A bounded distributive lattice B is calledBoolean if it has a complementation:
for every x ∈ B there is ¬x ∈ B such that x ∧ ¬x = 0 and x ∨ ¬x = 1.

Remark. Boolean lattices are important for classical logic, because they are models for classical
propositional logic. This also means that the law of the excluded middle holds in these lattices:

¬(¬x) = x for all x ∈ B.

19



20 CHAPTER 2. LATTICES AND FRAMES

Example. The open sets O(X) of a topological space X always form a bounded distributive lattice
under set-theoretic operations. But O(X) has more structure, because for any collection {Ui}i∈I
of open sets the union

⋃
i∈I Ui is also open. Furthermore, the law of complete distributivity holds:

for any open set V we have
V ∩

(⋃
i∈I

Ui

)
=
⋃
i∈I

(V ∩ Ui).

This example is the motivation for the following definition.

Definition 2.5. A frame is a bounded distributive lattice F such that any collection {fi}i∈I of
elements of F has a smallest upper bound

∨
i∈I fi and such that the law of infinite distributivity

holds: for any g ∈ F we have
g ∧

(∨
i∈I

fi

)
=
∨
i∈I

(g ∧ fi). (2.1)

Remark. This implies that any collection {fi}i∈I also has a lower bound
∧
i∈I fi. So see this, let

L be the set of lower bounds of the collection {fi}i∈I . Then L has a supremum
∨
L, and∧

i∈I
fi =

∨
L.

Therefore, any frame F is a complete lattice. However, the analagous infinite distributivity law
may not hold for the infimum, generally.

2.2 Lattice homomorphisms and filters

Now that we have defined our objects, namely lattices, we can discuss the morphisms between
them.

Definition 2.6. A map f : X → Y between posets X,Y is called order preserving if f(x) ≤
f(x′) in Y whenever x ≤ x′ in X.

We need the following definition in sections 2.3 and 2.4.

Definition 2.7. Two order preserving maps f : X → Y , g : Y → X form a Galois connection
if, for all x ∈ X, y ∈ Y ,

f(x) ≤ y if and only if x ≤ g(y).

f is called the lower adjoint (or left adjoint) of g, and g is called the upper adjoint (or right
adjoint) of f .

Definition 2.8. An order preserving map g : L → K between lattices L,K is called a lattice
homomorphism if for all l, l′ ∈ L:

1. g(l ∨ l′) = g(l) ∨ g(l′);

2. g(l ∧ l′) = g(l) ∧ g(l′).

If L,K are bounded we also require that g(0) = 0 and g(1) = 1.

Definition 2.9. If g : L→ K is a lattice homomorphism where K is bounded, the kernel of g is
defined as

Ker(g) = {l ∈ L | g(l) = 1}

The kernel has the following properties:

Lemma 2.1. Let g : L→ K be a lattice homomorphism where K is bounded. Then:

1. If L is also bounded then Ker(g) is a proper nonempty subset of L;

2. If l ∈ Ker(g) and l′ ≥ l then l′ ∈ Ker(g);

3. If l, l′ ∈ Ker(g) then l ∧ l′ ∈ Ker(g).
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Proof. For the first claim, we have defined g(1) = 1, so that the kernel is nonempty, and g(0) = 0,
so that it is proper. The second item is clear, since g is order preserving and 1 is the greatest
element of K. For the third property, suppose l, l′ ∈ Ker(g). Then g(l∧ l′) = g(l)∧g(l′) = 1∧1 = 1
so l ∧ l′ ∈ Ker(g).

This leads us to the following definition.

Definition 2.10. A subset F ⊆ L of a bounded lattice L is called a filter when

1. F is proper nonempty subset of L;

2. If f ∈ F and f ′ ≥ f then f ′ ∈ F ;

3. If f, f ′ ∈ F then f ∧ f ′ ∈ F .

A filter F is called proper if F 6= L.

A very important class of lattice homomorphisms are those into the two-element (bounded
distributive) lattice 2 := {0, 1}. The kernels of these homomorphisms have an additional property.

Lemma 2.2. Let f : L→ 2 be a lattice homomorphism. If l ∨ l′ ∈ Ker(f), then either l ∈ Ker(f)
or l′ ∈ Ker(f).

Proof. Suppose not, then f(l) = f(l′) = 0, since there are only two possible elements for the image.
But then f(l ∨ l′) = f(l) ∨ f(l′) = 0 ∨ 0 = 0, which is a contradiction.

Definition 2.11. A filter F ⊆ L is called prime if whenever f, f ′ ∈ L with f ∨f ′ ∈ F , then either
f ∈ F or f ′ ∈ F .

Notation. The set of all prime filters of a lattice L is an important object. It is denoted by PF(L)
and will be used in the theory of Stone and Priestley duality. Note that it naturally has the
structure of a poset, with order given by set-theoretic inclusion.

2.3 Heyting lattices and frames
Definition 2.12. A Heyting lattice is a bounded distributive lattice H with for every a, b ∈ H
an element a→ b ∈ H such that: for all x ∈ H,

x ≤ a→ b if and only if x ∧ a ≤ b.

Alternatively, the map → satisfies the following algebraic properties:

1. a→ a = 1

2. a ∧ (a→ b) = a ∧ b

3. b ∧ (a→ b) = b

4. a→ (b ∧ c) = (a→ b) ∧ (a→ c)

The map → is called the (Heyting) implication.

Remark. Note that in a Heyting lattice H, for any a ∈ H, the maps

x 7→ x ∧ a

and
x 7→ a→ x

form a Galois connection.
In a Heyting lattice H we can define the following operation: for x ∈ H we can consider

¬x := x → 0 where 0 is the smallest element of H. As opposed to a Boolean lattice, it is then
generally not true that ¬(¬x) = x. Heyting lattices are the algebraic models of intuitionistic
propositional logic, which is therefore different from classical logic because the law of the excluded
middle does not hold, generally.

There is a strong connection between frames and complete Heyting lattices. In fact, they turn
out to be the same thing.
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Proposition 2.1. Any frame F can be given the structure of a complete Heyting lattice by defining

a→ b =
∨
{y ∈ F | y ∧ a ≤ b}.

Proof. This supremum always exists because F is a frame. We have to prove that this operation
satisfies

x ≤ a→ b if and only if x ∧ a ≤ b.

If x ∧ a ≤ b then trivially
x ≤

∨
{y ∈ F | y ∧ a ≤ b} = a→ b,

because this supremum is an upper bound for x. Conversely, suppose that x ≤ a → b. Then, by
using the infinite distribituvity law 2.1,

a ∧ x ≤ a ∧ (a→ b) = a ∧
∨
{y ∈ F | y ∧ a ≤ b} =

∨
{a ∧ y | y ∧ a ≤ b} ≤ b.

Therefore, x ∧ a ≤ b. Lastly, the Heyting lattice constructed from F is complete because F is
complete.

Conversely, if H is a complete Heyting lattice, in the sense that all suprema and infima exist,
then it is automatically a frame, because the infinite distributive law holds in this case. To prove
this, we first need a lemma.

Lemma 2.3. Let X,Y be posets with a Galois connection that has f : X → Y as upper adjoint
and g : Y → X as lower adjoint. If a subset S ⊆ Y has a supremum

∨
S, then the image g(S)

also has a supremum, and ∨
g(S) = g

(∨
S
)
.

Proof. If x ∈ g(S), then there is y ∈ S with g(y) = x. But y ≤
∨
S, and therefore

x = g(y) ≤ g
(∨

S
)
,

because g is order preserving. So g(
∨
S) is an upper bound for g(S). We need to prove that it is

the least upper bound. Let b be any upper bound for g(S). For all y ∈ S, we have

g(y) ≤ b ⇐⇒ y ≤ f(b).

Therefore, ∨
S ≤ f(b) ⇐⇒ g(

∨
S) ≤ b.

We conclude that g(
∨
S) is the supremum of g(S).

Proposition 2.2. The infinite distributivity law 2.1 holds in a complete Heyting lattice H.

Proof. Because the map
x 7→ a ∧ x

is the lower adjoint of a Galois connection, we can use the previous lemma. If S ⊆ H, then it has
a supremum

∨
S, since H is complete. Furthermore, by the lemma,∨

{a ∧ s | s ∈ S} = a ∧
(∨

S
)
,

which is exactly the infinite distributivity law.

We now consider morphisms.

Definition 2.13. A lattice homomorphism f : H → K between Heyting lattices H,K is called a
Heyting lattice homomorphism if for all a, b ∈ H, f(a→ b) = f(a)→ f(b).

Definition 2.14. A lattice homomorphism h : F → G between frames F,G is called a frame
homomorphism if h preserves infinite suprema, that is, for every collection {fi}i∈I in F we have

h

(∨
i

fi

)
=
∨
i

h(fi).



2.4. LOCALES AND NUCLEI 23

Definition 2.15. 1. The category Frm has frames as objects and frame homomorphisms as
morphisms.

2. The category CHeyt has complete Heyting lattices as objects, and as morphisms it has
frame homomorphisms that are also Heyting lattice homomorphisms.

Remark. By Propositions 2.1 and 2.2 the categories Frm and CHeyt have the same objects.
However, the morphisms in CHeyt are required to preserve the operation of Heyting implication.

Example. To show that CHeyt and Frm really are different categories, we will give an example
of a frame homomorphism that is not a Heyting lattice homomorphism. Let F be a frame, and
suppose that a ∈ F is not complemented. That is,

¬(¬a) 6= a or a ∨ ¬a 6= 1.

Consider the map
a ∨ − : F →↑ a.

This is a surjective frame homomorphism. Suppose it preserves the Heyting implication, that is,

a ∨ (x→ y) = (a ∨ x)→ (a ∨ y),

for all x, y ∈ F . If we take x = a and y = 0, then

a ∨ (a→ 0) = (a ∨ a)→ (a ∨ 0) = a→ a = 1.

But a→ 0 = ¬a, giving a contradiction. This example was taken from [8].

2.4 Locales and nuclei
We can make O into a contravariant functor Top → Frm, by associating to a continuous map
f : X → Y the frame homomorphism

O(f) : O(Y )→ O(X),

U 7→ f−1(U).

If we define the category Loc of locales as

Loc := Frmop,

then we have a covariant functor
O : Top→ Loc.

We can therefore think of locales as ’generalized’ topological spaces. The generalization of the
notion of a topological subspace, is the notion of a sublocale. This has a categorical definition,
namely a regular quotient in Frm.

Definition 2.16. If F,G are locales, then G is called a sublocale of F if, when we see F and G
as frames, there is a surjective frame homomorphism

p : F → G.

However, they can be described more easily by using nuclei.

Definition 2.17. Let F be a frame. A nucleus on F is a function j : F → F that satisfies

1. j(a ∧ b) = j(a) ∧ j(b)

2. a ≤ j(a)

3. j(j(a)) ≤ j(a)

for all a, b ∈ F .

Example. For any frame the function ja defined by ja(b) = b ∨ a is a nucleus:
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1. ja(b ∧ c) = (b ∧ c) ∨ a = (b ∨ a) ∧ (c ∨ a) = ja(b) ∧ ja(c) by distributivity.

2. b ≤ b ∨ a because b ∨ a is an upper bound for a and b.

3. (b ∨ a) ∨ a = b ∨ a because a ≤ b ∨ a.

Definition 2.18. If j : F → F is a nucleus on a frame F , then we define the set F/j of j-closed
elements of F as

F/j := {a ∈ F | j(a) = a}.

Example. The set of closed elements corresponding to ja is the set of those b that satisfy b∨a = b.
This is true if and only if a ≤ b, so this set is the upset of a.

The correspondence between sublocales and nuclei is as follows:

• If j is a nucleus on F , then F/j is a frame, and we can view j as a surjective frame homo-
morphism

j∗ : F → F/j.

Therefore, F/j is a sublocale of F .

• Suppose G is a sublocale of F , that is, there is a surjective frame homomorphism p : F → G.
Then p has a lower adjoint p∗ : G→ F . It can be shown that the map

j := p∗ ◦ p : F → F

is a nucleus on F , and p∗ is an order embedding with image G. This means that

p∗(x) ≤ p∗(y) ⇐⇒ x ≤ y.

For more details, see [9], section II.2.

Definition 2.19. A sublocale G ⊆ F is called dense, if for the corresponding nucleus j, we have

j(0) = 0.



Chapter 3

Quantum logic

Now that Hilbert spaces, C∗-algebras and lattices have been covered separately, we can combine
them into quantum logic. Firstly, quantum logic in its original form is discussed, and its connection
with projections is explained. This is then generalized to C∗-algebras. Lastly, the alternative,
intuitionistic approach to quantum logic is presented.

3.1 Original quantum logic
Quantum logic originated with the paper of Birkhoff and Von Neumann [1]. Their logic was based
on the closed linear subspaces of a Hilbert space H, denoted by P (H), and ordered by inclusion.
If C,D are closed linear subspaces of H, we can define

1. C ∧D := C ∩D

2. C ∨D := span(C +D)

3. C⊥ := {v ∈ H | 〈v, w〉 = 0 ∀w ∈ C}

Lemma 3.1. C ∧D, C ∨D and C⊥ are closed linear subspaces of H.

Proposition 3.1. These operations satisfy:

1. ∧ and ∨ make P (H) into a lattice;

2. P (H) has a greatest and lowest element 0 and 1;

3. C ∧ C⊥ = 0, C ∨ C⊥ = 1;

4. (C⊥)⊥ = C;

5. If C ⊆ D then D⊥ ⊆ C⊥;

6. If C ⊆ D then D = C ∨ (D ∧ C⊥).

Remark. (2)-(5) say that (−)⊥ is an orthocomplementation on P (H). Note that (4) is the law
of the excluded middle in this context. (6) is called the orthomodular law and therefore P (H) is
an orthomodular lattice. It is even complete in the sense that all infinite infima and suprema
exist.

This lattice of closed subspaces of H is closely related to the projections in B(H). The
following theorem clarifies this.

Theorem 3.1. There is an bijection between:

1. P (H): the closed linear subspaces of a Hilbert space H; and

2. Proj(B(H)) = {e ∈ B(H) | e2 = e∗ = e}: the projections in B(H)

This bijection is given by associating to a closed linear subspace C the orthogononal projection eC
onto C. Conversely, to a projection e we associate its image eH, which is a closed linear subspace
of H.

25



26 CHAPTER 3. QUANTUM LOGIC

This shows that the set of projections in B(H) can be given the structure of a lattice inherited
from P (H). The order is given by

e ≤ f if and only if eH ⊆ fH.

If (ei)i∈I is a collection of projections then we can form the closed linear subspaces

•
∨
eiH: the closure of the subspace generated by the eiH

•
∧
eiH =

⋂
eiH.

To these closed linear subspaces then correspond projections
∨
ei and

∧
ei, which are the supremum

and infimum of the collection (ei)i∈I , respectively. This shows that the projections in B(H) always
form a complete orthomodular lattice. The orthocomplementation associates to a projection eC
onto C, the projection e⊥C onto the orthogonal complement, C⊥, of C. It can be shown that
e⊥C = 1− eC .

The quantum logic of Birkhoff and von Neumann can be characterised as follows:

1. The logic is not distributive, but only the (weaker) orthomodular law (3.1.6) holds. This
law is weaker then distributivity, because if we set x = C, y = D, z = C⊥ in Definition 2.3,
point 2, then we obtain

C ∨ (D ∧ C⊥) = (C ∨D) ∧ (C ∨ C⊥) = D ∧ 1 = D.

2. The law of the excluded middle (3.1.4) does hold.

As noted in [10] we view this approach as too radical for dropping distributivity.

3.2 Projections in C∗-algebras
For a C∗-algebra A we can define projections in A, but it turns out that these do not always
form an orthomodular lattice, as in the case of B(H). For this we need extra assumptions on A.

Definition 3.1. Let A be a C∗-algebra. An element e ∈ A is called a projection if e2 = e∗ = e
That is, e is a self-adjoint idempotent element.

Notation. The set of projections of A is denoted by Proj(A).

We can turn Proj(A) into a poset by defining

e ≤ f if and only if ef = e

Lemma 3.2. Proj(A) with ≤ defined above is a bounded poset.

Proof. • e ≤ e since e2 = e.

• If e ≤ f and f ≤ g then eg = efg = ef = e, so that e ≤ g.

• If e ≤ f and f ≤ e, we have ef = e and fe = f . Therefore e = e∗ = (ef)∗ = f∗e∗ = fe = f ,
so that e = f .

• The smallest and greatest elements are given by 1 and 0: for any projection e we have e·1 = e,
so that e ≤ 1, and 0 · e = 0, so that 0 ≤ e.

The problem is that for general A, two arbitrary projections e, f ∈ A might not have a supre-
mum or infimum. However, they do exist if the projections commute.

Lemma 3.3. Suppose e, f ∈ Proj(A) commute. Then they have an infimum and a supremum
given by

• e ∧ f = ef and

• e ∨ f = e+ f − ef ,
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respectively.

Proof. For the infimum, we have that

(ef)e = e2f = ef

and
(ef)f = ef2 = ef,

so that ef ≤ e and ef ≤ f . Now suppose that there is g ∈ Proj(A) with g ≤ e and g ≤ f . This
means that ge = g and gf = g. But then

g(ef) = (ge)f = gf = g

which implies that g ≤ ef . We conclude that ef is the greatest lower bound of e and f .
For the supremum the proof is similar. We have

e(e+ f − ef) = e2 + ef − ef = e

and
f(e+ f − ef) = fe+ f2 − fef = f,

so that e ≤ e+ f − ef and f ≤ e+ f − ef . If e ≤ g and f ≤ g then eg = e, fg = f and

(e+ f − ef)g = eg + fg − efg = e+ f − ef.

We see that e+ f − ef ≤ g and e+ f − ef is the lowest upper bound of e and f .

For e ∈ Proj(A), we define
e⊥ = 1− e.

We compute that

(1− e)2 = 12 − 2e+ e2 = 1− 2e+ e = 1− e and
(1− e)∗ = 1∗ − e∗ = 1− e,

which shows that e⊥ ∈ Proj(A). We then have the following:

Proposition 3.2. Let e, f ∈ Proj(A). Then

1. (e⊥)⊥ = e;

2. If e ≤ f , then f⊥ ≤ e⊥;

3. e and e⊥ commute;

4. e ∧ e⊥ = 0;

5. e ∨ e⊥ = 1.

Proof. We calculate
(e⊥)⊥ = 1− (1− e) = 1− 1 + e = e,

which is (1). Now, if e ≤ f then ef = e, and

(1− f)(1− e) = 12 − e− f + ef = 1− e− f + e = 1− f.

That is, f⊥ ≤ e⊥ which proves (2). Next,

e(1− e) = (1− e)e = e− e2 = e− e = 0,

which shows that e and e⊥ commute and that their product, which is also their infimum, is 0.
Lastly, we have

e+ (1− e)− e(1− e) = 1− 0 = 1.

Clauses 1-2 and 4-5 show that the map e 7→ e⊥ gives Proj(A) the structure of an orthoposet.
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Definition 3.2. We say that two projections e, f ∈ Proj(A) are orthogonal, which we denote by
e ⊥ f , if e ≤ f⊥.

Remark. From Proposition 3.2 it follows that f ≤ e⊥ as well. Furthermore, we can calculate that
the condition e ≤ f⊥ is equivalent to

e ≤ f⊥ ⇐⇒ ef⊥ = e ⇐⇒ e(1− f) = e ⇐⇒ e− ef = e ⇐⇒ ef = 0.

Since we also have f ≤ e⊥, e and f commute, ef = fe = 0, e ∧ f = 0 and e ∨ f = e+ f .

Proposition 3.3. Let e, f ∈ Proj(A) such that e ≤ f . Then e⊥ ∧ f exists, e∨ (e⊥ ∧ f) exists and

e ∨ (e⊥ ∧ f) = f. (3.1)

Proof. First, we make the observation that, if e ≤ f = (f⊥)⊥, then e ⊥ f⊥. This means that
e ∨ f⊥ exists, and is given by

e ∨ f⊥ = e+ f⊥ = 1 + e− f.

But by de Morgan’s laws ([11], Lemma B.4.2), e⊥ ∧ f also exists and is given by

e⊥ ∧ f = (e ∨ f⊥)⊥ = 1− (1 + e− f) = f − e.

Furthermore, e⊥ ∧ f ≤ e⊥, so that e ⊥ e⊥ ∧ f and e ∨ (e⊥ ∧ f) exists. Finally, we calculate that

e ∨ (e⊥ ∧ f) = e+ (e⊥ ∧ f) = e+ (f − e) = f.

Again, 3.1 is called the orthomodular law. We conclude that for an arbitrary C∗-algebra A

Proj(A) is an orthomodular poset.

Even more is true if we assume that A is commutative.

Proposition 3.4. Let A be a commutative C∗-algebra. Then Proj(A) is a Boolean lattice.

Proof. Since A is commutative, all infima and suprema in Proj(A) exist by Lemma 3.3, so that
Proj(A) is a lattice. Since we already know that (−)⊥ is an orthocomplemntation, we only have
to check distributivity. To this end, let e, f, g ∈ Proj(A). We calculate

e ∧ (f ∨ g) = e(f + g − fg) = ef + eg − efg
= ef + eg − e2fg = ef + eg − (ef)(eg)

= ef ∨ eg = (e ∧ f) ∨ (e ∧ g).

Theorem 3.2. Let A be a finite-dimensional C∗-algebra. Then Proj(A) is a complete orthomodular
lattice. If A is also commutative, then Proj(A) is a finite (hence complete) Boolean lattice.

3.3 Intuitionistic approach
In order to overcome the problems presented in the first section we will present an intuitionistic
approach to quantum logic based on the topological space ΣA. The open sets O(ΣA) of this space
form a Heyting lattice, as explained in chapter 2. Using Heyting lattices instead of orthomodular
lattices for quantum logic seems to be what we need. These lattices are distributive but the law
of the excluded middle does not hold in general.

To understand the latticeO(ΣA) better we will describe it in simpler terms for finite dimensional
C∗-algebras. We will use the following theorem.

Theorem 3.3. If A is a finite dimensional commutative C∗-algebra, there is an isomorphism of
complete Boolean lattices

βA : Proj(A)→ O(Σ(A)), (3.2)

given by
p 7→ (γAe)

−1[{1}],

where γA is the Gelfand transform γA : A→ C(Σ(A)).
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Proof. See [12], 2.4 .

We note that O(Σ(A)) = P(Σ(A)), the power set of Σ(A), since Σ(A) has the discrete topology.
This means that O(Σ(A)) is indeed a complete Boolean lattice, because all power sets are.

Lemma 3.4. β is a natural transformation Proj→ O ◦ Σ.

Proof. We use naturality of the Gelfand transform γ : Id→ C ◦Σ on C*-algebras. For a morphism
f : A→ B we have the commutative diagram

A B

C(Σ(A)) C(Σ(B)),

f

γA γB

C(Σ(f))

which means that
γB ◦ f = C(Σ(f)) ◦ γA.

The morphism f restricts to a morphism

f : Proj(A)→ Proj(B).

We then obtain the diagram

Proj(A) Proj(B)

O(Σ(A)) O(Σ(B)).

f

βA βB

O(Σ(f))

We claim that this diagram commutes. To this end, take p ∈ Proj(A). It is mapped one way to

βB(f(p)) = (γBf(p))−1[{1}]

and the other way to

O(Σ(f))(βA(p)) = Σ(f)−1((γAp)
−1[{1}]) = (γAp ◦ Σ(f))−1[{1}].

But
γBf(p) = C(Σ(f))(γAp) = γA(p) ◦ Σ(f).

This isomorphism can be used to construct an isomorphism between O(ΣA) and a Heyting
lattice, which is easier to conceptualize. An open set U ⊆ O(ΣA) is given by

U =
∐

C∈C(A)

UC .

For each C ∈ C(A) we can take the projection e ∈ Proj(C) given by e = β−1
C (UC).

Lemma 3.5. For an open U ∈ O(ΣA), the map S : C(A) → Proj(A), C 7→ β−1
C (UC) is order

preserving and S(C) ∈ Proj(C) for all C ∈ C(A).

Proof. Because UC is open in Σ(C), S(C) = β−1
C (UC) ∈ Proj(C). Furthermore, if C ⊆ D in C(A),

then, by 1.3,
Σ(j)−1[UC ] ⊆ UD,

where j : C ↪→ D is the inclusion map. Therefore, by naturality of β,

S(C) = β−1
C (UC) = β−1

D (Σ(j)−1[UC ]) ≤ β−1
D (UD) = S(D),

because βD is order preserving.

This leads us to the following definition.
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Definition 3.3. For a finite-dimensional C∗-algebra A we define

Q(A) = {S : C(A)→ Proj(A) | S(C) ∈ Proj(C), S order preserving}.

We order Q(A) by
S ≤ T if and only if S(C) ≤ T (C) for all C ∈ C(A).

The lattice structure is given by

(S ∧ T )(C) = S(C) ∧ T (C);

(S ∨ T )(C) = S(C) ∨ T (C),

and the Heyting implication is given by

(S → T )(C) =
∨
{e ∈ Proj(C) | e ≤ S(D) ∨ T (D)⊥∀ D ⊇ C}.

Actually Q(A) is a frame because the projections of any C ∈ C(A) form a complete lattice. This
means that in addition to taking binary (and finitary) suprema we can take arbitrary suprema.

Proposition 3.5. For a finite-dimensional C∗-algebra there is an isomorphism of complete Heyting
algebras O(ΣA) ∼= Q(A).

Remark. We will prove a version of this proposition later in a more general setting than finite-
dimensional algebras.

3.4 Examples: C2 and M2(C)

Every unital C∗-algebra has a unique one-dimensional unital commutative subalgebra, namely C·1.
Since C2 is two-dimensional and commutative, the whole algebra is the only two-dimensional unital
commutative subalgebra. Therefore, C(C2) has the following structure:

C2

C · 1.

Furthermore, Proj(C2) is the four-element Boolean lattice and Proj(C · 1) is the two-element
Boolean lattice consisting of the top and bottom elements of Proj(C2). Let S ∈ Q(C2) and
suppose S(C · 1) = 1. Then also S(C2) = 1 since S is order preserving. If S(C · 1) = 0, there are
no restrictions on S(C2). We conclude that Q(C2) looks like

1

·

··

0

Every maximal unital commutative subalgebra of M2(C) is of the form uD2u
∗, where D2 is the

subalgebra of M2(C) consisting of the diagonal matrices, and u ∈ U(2). Therefore, C(M2(C)) is

C · 1

D2 uD2u
∗vD2v

∗ . . .. . .

However, sometimes u, v ∈ U(2) generate the same subalgebra. To remove this problem, we
can also describe C(M2(C)) in terms of projections. If we let M2(C) act on C2, then we say that
a projection e ∈ M2(C) is one-dimensional if its image eC2 is one-dimensional. The set of
one-dimensional projections in M2(C) is denoted by

Proj1(C2).
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Any maximal commutative subalgebra of M2(C) is then generated by one such one-dimensional
projection and the identity matrix. Two projections generate the same subalgebra if and only if
they are complements. It turns out that, by a parametrization theorem, that

Proj1(C2) ∼= S2,

where complements in Proj1(C2) correspond to antipodal points. Therefore, by identifying com-
plements, we obtain

max C(M2(C)) ∼= Proj1(C2)/ ∼∼= S2/ ∼∼= RP2.

We will now calculate Q(M2(C)). We first note that the projections of any maximal commu-
tative subalgebra are isomorphic to Proj(C2), which is the four-element Boolean lattice, call it B.
Again, if S(C · 1) = 1, then S(C) = 1 for all commutative subalgebras C. If S(C · 1) = 0, then
we can associate any projection to a maximal commutative subalgebra. This corresponds to a
function RP2 → B. The lattice structure in Q(M2(C)) then corresponds to pointwise operations
on these functions. We conclude that Q(M2(C)) has the following structure:

1

Functions RP2 → B.
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Chapter 4

Lattice duality

This chapter covers the theory of lattice duality. These are categorial dualities between classes of
lattices and classes of topological spaces. Specifically, we will cover the duality between Boolean
lattices and Stone spaces, distributive lattices and Priestley spaces, and Heyting lattices and Esakia
spaces. Furthermore, we will give some (negative) results on the Esakia space related to Q(A).
The first three section are an adaptation of [13], and were written by Evert-Jan. Some proofs are
omitted, and can be found in [14].

4.1 Stone Duality
Stone duality concerns Boolean lattices and Stone spaces, which are defined as follows:

Definition 4.1. A Stone space X is a topological space that is compact and Hausdorff, and in
which all the clopen subsets in X form a basis of the topology. (This means any open set U can
be written as a union of clopen subsets of X.)

The category of Boolean lattices is denoted by BL, in which the morphisms are lattice ho-
momorphisms that preserve complementation, i.e. f(¬x) = ¬f(x) which we will call Boolean
homomorphisms. The category of Stone spaces is denoted by Stone, and its morphisms are con-
tinuous maps.

To prove the duality between these categories, some steps are needed. Firstly, a construction
is needed of the partially ordered space PF(L) for a bounded distributive lattice. This is defined
as the set of prime filters in L ordered by inclusion, with a topology generated by the sets φ(a) =
{F ∈ PF(L) | a ∈ F} and their complements.

If we denote the opens in this topology on PF(L) by O(PF(L)), then this φ can be seen as a
lattice homomorphism.

Lemma 4.1. The map

φ : L→ O(PF(L));

a 7→ {F ∈ PF(L) | x ∈ F} ,

is an injective lattice homomorphism.

With this lemma we can now also conclude that the collection of sets φ(a)∩φ(b)c forms a basis
of the topology on PF(L).

Lemma 4.2. If L is a bounded distributive lattice, then PF(L) is a Stone space.

It will come in handy to simplify the basis of the topology on PF(L) in the case that L is a
Boolean lattice.

Lemma 4.3. If B is a Boolean lattice, then φ : B → O(PF(B)) is an injective Boolean homo-
morphism.

Proof. Due to lemma 4.1 we already know that φ is an injective lattice homomorphism. Since B is
a Boolean lattice, any prime filter F is also a maximal filter: given some element a which is not in

33
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F , we know that a∨¬a = 1, and 1 is in F . Since F is prime, it follows that ¬a is in F . Note that
a and ¬a can never both be in a prime filter together, since then it would follow that a ∧ ¬a = 0
is in the filter, and thus the prime filter would be B itself, which cannot be. Hence, for any prime
filter F , a is in F if and only if ¬a is not in F . Thus φ(a)c = φ(¬a).

With this lemma, the basis for the topology on PF(B) can simply be written as the collection
φ(a), for a in B.

It is now also possible to define the functors from BL to Stone and vice-versa. For the functor
from BL to Stone, we send a Boolean lattice B to PF(B). This mapping is well defined thanks
to the lemma above. For the morphisms, given a Boolean homomorphism f : B → C, we define
PF(f) : PF(C) → PF(B) by sending a filter Q to f−1(Q). This is again a prime filter. Defined
this way, the functor PF : BL→ Stone is contravariant. To show that PF(f) is continuous, note
that

PF(f)−1(Ub) =
{
Q ∈ PF(C) | b ∈ f−1(Q)

}
= {Q ∈ PF(C) | f(b) ∈ Q}
= φ(f(b)),

which means that PF(f) is indeed a continuous map. It is easily checked that PF defines a
functor.

For the other way around, let X be a Stone space. Then CP(X), defined as the set of all
clopens in X, is a Boolean lattice ordered by inclusion. This gives the functor the other way
around, CP : Stone → BL. For the morphisms, if f : X → Y is a continuous map, define
CP(f) : CP(Y ) → CP(X) by sending an open U to f−1(U). Since f is continuous, f−1(U) is
again clopen. It is again easily verified that this is a Boolean homomorphism, and that CP is a
contravariant functor.

To show that the functors PF and CP provide a duality between BL and Stone, we first show
that B ∼= CP(PF(B)), and then that X ∼= PF(CP(X)).

Lemma 4.4. Let B be a Boolean lattice. Then the map FB : B → CP(PF(B)), defined by
FB(b) = φ(b), is an isomorphism of Boolean lattices.

Proof. CP(PF(B)) is a Boolean lattice, and necessarily a Boolean subalgebra of the power set of
PF(B) by construction. FB is a well-defined map and an injective Boolean homomorphism due to
lemma 4.3. It still needs to be shown to be surjective. Let C be a clopen subset of PF(B). Then
C is open, so C =

⋃
φ(xi) for some collection xi in B. Since C is also a closed subset of a compact

space, it is compact itself. Therefore, since φ is a Boolean homomorphism, C =
⋃n
i=1 φ(xi) = φ(a),

where a =
∨n
i=1 xi.

Lemma 4.5. Let X be a Stone space. Then the map

GX : X → PF(CP(X));

x 7→ {U ∈ CP(X) | x ∈ U} ,

is a homeomorphism.

Proof. First it needs to be checked if GX(x) is indeed a prime filter in CP(X). It is already clear
that GX(x) is an upset in CP(X). Now if U, V are in GX(x), then x is in both U and V , and so
U ∩V is in GX(x). If x is in U ∪V , then clearly x is in U or in V . Therefore, U or V is in GX(x),
and thus GX(x) is a prime filter.

Now we check if GX(x) is continuous. Let U ∈ CP(X), and consider the basic clopen set
V = {P ∈ PF(CP(X)) | U ∈ P}. Then

G−1
X (V ) = {x ∈ X | GX(x) ∈ V }

= {x ∈ X | U ∈ GX(x)}
= {x ∈ X | x ∈ U}
= U,

and therefore GX is continuous.
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Next, we note that {z} =
⋂
GX(z) for any z ∈ X. This follows because X is Hausdorff, and

the basis of the topology on X consists of clopens. Therefore, if GX(x) = GX(y), then x = y, and
hence GX is injective. It is also surjective; if P is a prime filter in CP(X), consider

⋂
P . This

is a collection of closed subsets of the compact set X, which implies it has the finite intersection
property [15]. Furthermore, for any finite collection F1, ..., FN ∈ P , their intersection F1 ∩ ...∩FN
is also in P and therefore non-empty (as ∅ 6∈ P ). Thus

⋂
P is non-empty. If

⋂
P contains distinct

points x and y, then there is a clopen set U with x ∈ U and y ∈ U c. Moreover, either U is in
P , or U c is in P . Without loss of generality, assume that U is in P . Then y cannot be in

⋂
P .

Thus
⋂
P = {x} for some x ∈ X and so P ⊆ GX(x). However, P and GX(x) are both prime

filters and therefore maximal filters in CP(X), and hence P = GX(x). We have now shown that
GX is a bijective continuous map. To show that it is a homeomorphism, note that GX is a map
between Stone spaces, which are compact and Hausdorff by definition. Therefore, if A ⊆ X is
closed, it is then also compact. The set GX(A) then also has to be compact, and as a compact
subset of a Hausdorff space it is closed. Thus GX is a closed map, and we can conclude it is a
homeomorphism.

Theorem 4.1. The functors PF and CP give a duality between the categories BL and Stone.

Proof. To show that PF and CP yield an equivalence of categories, we define a natural isomorphism
F : idBL → CP ◦ PF . For a Boolean lattice B, define FB : B → CP(PF(B)) like before,
FB(b) = φ(b). As we have seen in Lemma 4.4, FB is an isomorphism of Boolean lattices. Now it
can be seen that F is a natural transformation, since if f : A → B is a Boolean homomorphism,
the diagram

A CP(PF(A))

B CP(PF(B))

f

FA

FB

CP(PF(f))

commutes, since if a ∈ A, then

CP(PF(f))(FA(a)) = CP(PF(f))(φ(a))

= PF(f)−1(φ(a))

=
{
Q ∈ PF(B) | f−1(Q) ∈ φ(a)

}
=
{
Q ∈ PF(B) | a ∈ f−1(Q)

}
= {Q ∈ PF(B) | f(a) ∈ Q}
= FB(f(a)).

Next, defineG : idStone → PF◦CP for a Stone spaceX like before, byGX(x) = {U ∈ CP(X) | x ∈ U}.
From lemma 4.5 we already know that GX is a homeomorphism. Moreover, G is a natural trans-
formation, since if g : X → Y is continuous, then the diagram

X PF(CP(X))

Y PF(CP(Y ))

g

GX

GY

PF(CP((g))

is commutative. This can be seen since if x ∈ X, then

GY (g(x)) = {V ∈ CP(Y ) | g(x) ∈ V } ,
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and therefore

PF(CP(g))(GX(x)) = PF(CP(g))({U ∈ CP(X) | x ∈ U})
= CP(g)−1 ({U ∈ CP(X) | x ∈ U})
=
{
V ∈ CP(Y ) | x ∈ g−1(V )

}
= {V ∈ CP(Y ) | g(x) ∈ V }
= GY (g(x)).

4.2 Priestley Duality
Now we extend Stone duality to the case of bounded distributive lattices. This is often called
Priestley duality. If L is a bounded distributive lattice, CP(PF(L)) is a Boolean lattice. Therefore,
we need to determine how to recover L from PF(L). If a is in L and P is in φ(a), then for any
prime filter Q with P ⊆ Q, Q is also in φ(a). Inclusion is of course a partial order on PF(L), and
so we see that φ(a) is a clopen upper set of PF(L) for any a in L.

Definition 4.2. (X,≤) is called a Priestley space if it is a Stone space with a partial order
satisfying the Priestley separation axiom: for all x and y in X with x 6≤ y, there is a clopen upset
U with x ∈ U and y 6∈ U .

The category Pries consists of Priestley spaces where the maps are continuous and order
preserving. We will show that this category is dually equivalent to the category of bounded
distributive lattices, BDL, where the maps are lattice homomorphisms.

Lemma 4.6. If L is a bounded distributive lattice, then (PF(L),⊆) is a Priestley space.

Now we recover L from PF(L):

Lemma 4.7. The clopen upsets of PF(L) are precisely the sets φ(a), for a in L.

If (X,≤) is a Priestley space, we denote the clopen upsets of (X,≤) by CU(X,≤). Then
we can define one contravariant functor by PF : BDL → Pries which turns a lattice homo-
morphism f : L → M into a Priestley homomorphism PF(f) : PF(M) → PF(L), defined by
PF(f)(Q) = f−1(Q). For the other way around, we have CU : Pries → BDL which turns a
Priestley homomorphism g : X → Y into a lattice homomorphism CU(g) : CU(Y ) → CU(X),
defined by CU(g)(V ) = g−1(V ). It is elementary to verify that these are well-defined functors.

Lemma 4.8. If L is a distributive lattice, then the map FL : L → CU(PF(L),⊆), defined by
FL(a) = φ(a), is a lattice isomorphism.

Lemma 4.9. If (X,≤) is a Priestley space, then

GX : (X,≤)→ PF(CU(X,≤))

x 7→ {U ∈ CU(X,≤) | x ∈ U}

is an isomorphism of Priestley spaces.

Proof. The proof that GX(x) is indeed a prime filter is the same as in lemma 4.5. To see that GX
is order preserving, take x ≤ y and U ∈ GX(x). Then x ∈ U , and since U is an upset, y ∈ U .
Thus U ∈ GX(y). GX is also continuous: let V be a clopen upset in (X,≤), and consider the basic
clopen set φ(U) = {P ∈ PF(CU(X,≤)) | U ∈ P}. Then

G−1
X (φ(U)) = {x ∈ X | GX(x) ∈ φ(U)}

= {x ∈ X | U ∈ GX(x)}
= {x ∈ X | x ∈ U}
= U,

so GX is continuous, and GX is indeed a valid Priestley homomorphism.
The Priestley separation axiom shows that if z ∈ X, then any point in X not above z can

be separated from z by a clopen upset. Therefore, ↑ z =
⋂
GX(z). From this, it is clear that if
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GX(x) ⊆ GX(y) then x ≤ y, so GX is strictly order preserving and hence also injective. Moreover,
we note that GX is a closed map, since its domain is compact and its codomain is Hausdorff. To
finish the proof, we only need to prove thatGX is surjective (since a continuous map that is bijective
and closed is also a homeomorphism). Now note that GX(X) is closed in PF(CU(X,≤)). If GX
is not surjective, there is some prime filter P in CU(X,≤) not contained in GX(X). Therefore,
there must be some basic open set V = φ(U1) ∪ φ(U2)c containing P but disjoint from GX(X),
for some U1, U2 in CU(X,≤). Now, ∅ = G−1

X (V ) = G−1
X (φ(U1)) ∩ G−1

X (φ(U2))c. We have already
seen above that G−1

X (φ(U)) = U . Therefore, ∅ = U1 ∩ U c2 , implying that U1 ⊆ U2. But then
V = φ(U1) ∩ φ(U2)c = ∅. This contradiction shows that GX is surjective.

With these lemmas we are in the position to prove Priestley duality in full categorical glory!

Theorem 4.2. The functors CU and PF give a duality of categories between BDL and Pries.

Proof. Define the natural transformation F : idBDL → CU ◦PF where, for a bounded distributive
lattice L, the map FL : L → CU(PF(L)) is defined by FL(a) = φ(a). Then FL is a lattice
isomorphism as we have seen before in lemma 4.8. To see that the diagram

L CU(PF(L))

M CU(PF(M))

f

FL

FM

CU(PF(f))

commutes, let l ∈ L. Then

CU(PF(f))(FL(a)) = CU(PF(f))(φ(a))

= PF(f)−1(φ(a))

=
{
Q ∈ PF(M) | f−1(Q) ∈ φ(a)

}
=
{
Q ∈ PF(M) | a ∈ f−1(Q)

}
= {Q ∈ PF(M) | f(a) ∈ Q}
= FM (f(a)).

Next, for a Priestley space (X,≤), define G : idPries → PF ◦ CU as before by GX(x) =
{U ∈ CU(X,≤) | x ∈ U}. From lemma 4.9 we already know that GX is a Priestley isomorphism.
Moreover, G is a natural transformation, since if g : (X,≤) → (Y,�) is continuous, then the
diagram

(X,≤) PF(CU(X,≤))

(Y,�) PF(CU(Y,�))

g

GX

GY

PF(CU((g))

commutes. Indeed, if x ∈ X, then

GY (g(x)) = {V ∈ CU(Y ) | g(x) ∈ V } ,

hence

PF(CU(g))(GX(x)) = PF(CU(g))({U ∈ CU(X) | x ∈ U})
= CU(g)−1 ({U ∈ CU(X) | x ∈ U})
=
{
V ∈ CU(Y ) | x ∈ g−1(V )

}
= {V ∈ CU(Y ) | g(x) ∈ V }
= GY (g(x)).

Therefore, F and G yield a duality between BDL and Pries.
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4.3 Esakia Duality
In this section we specialize Priestley duality from bounded distributive lattices to the categoryHA
of Heyting algebras. If we wish to restrict Priestley duality to this category, we need to determine
which Priestley spaces are duals of Heyting algebras, and which morphisms of such spaces are dual
to Heyting morphisms.

Definition 4.3. Let g : (X,≤)→ (Y,�) be a morphism of posets. We say that g is a p-morphism
if for every x ∈ X and y ∈ Y with g(x) � z there is an x′ ∈ X with x ≤ x′ and g(x′) = z.

Definition 4.4. An Esakia space is a Priestley space (X,≤) such that if U is clopen, then so is
↓U .

We denote the category of Esakia spaces by Esa, where the morphisms are continuous p-
morphisms. In this section we see that Priestley duality restricts to a duality between HA and
Esa. We start with some preliminary lemmas.

Lemma 4.10. Let (X,≤) be a Priestley space.

• The relation ≤ is closed, i.e. the set R = {(x, y) ∈ X ×X | x ≤ y} is closed in X ×X.

• If C is closed in X, then so are ↑C and ↓C.
Lemma 4.11. Let H be a Heyting algebra. If a, b ∈ H, then

↓(φ(a) ∩ φ(b)c) = φ(a→ b)c.

Lemma 4.12. Let f : (X,≤) → (Y,�) be a poset morphism. Then the following conditions are
equivalent:

1. f is a p-morphism,

2. f−1(↓A) =↓f−1(A) for every subset A ⊆ Y ,

3. f−1(↓y) =↓f−1({y}) for every y ∈ Y .

We now consider the functor PF : HA → Pries defined by the restriction of PF : BDL →
Pries.

Lemma 4.13. If H is a Heyting algebra, then (PF(H),⊆) is an Esakia space.

Proof. We already know that (PF(H),⊆) is a Priestley space. Let U be a clopen set in PF(H).
Then U =

⋃n
i=1 φ(ai) ∩ φ(bi)

c for some ai, bi in H. By lemma 4.11, we have

↓U =

n⋃
i=1

↓(φ(ai) ∩ φ(bi)
c) =

n⋃
i=1

φ(ai → bi)
c,

a clopen set. Therefore, (PF(H),⊆) is an Esakia space.

Lemma 4.14. Let f : H → H ′ be a Heyting morphism. Then PF(f) : PF(H ′) → PF(H) is a
p-morphism.

Proof. Let Q ∈ PF(H ′) and P ∈ PF(H) with f−1(Q) ⊆ P . For notational convenience, we write
PF(f) = g. Let C be a clopen set in PF(H) containing P . Then C is a finite union of sets of the
form φ(a) ∩ φ(b)c with a ∈ P and b 6∈ P . We have

g−1(↓(φ(a) ∩ φ(b)c)) = g−1(φ(a→ b)c)

= g−1(φ(a→ b))c

= φ(f(a→ b))c

= φ(f(a)→ f(b))c

=↓(φ(f(a)) ∩ φ(f(b))c).

By considering finite unions, we then see that g−1(↓C) =↓ g−1(C) for any clopen set. Since
g(Q) ⊆ P , we see thatQ ∈ g−1(↓C) =↓g−1(C) for any clopen C containing P . Thus ↑Q∩g−1(C) 6=
∅. Since the set of clopens containing P is closed under finite intersections, compactness implies
that

⋂
(↑Q ∩ g−1(C)) 6= ∅, where the intersection is over all clopens C containing P . This yields

↑ Q ∩
⋂
g−1(C) 6= ∅, so ↑ Q ∩ g−1({P}) 6= ∅. Therefore, there is some Q′ with Q ⊆ Q′ and

g(Q′) = P . This proves that g = PF(f) is a p-morphism.
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The previous two lemmas show that PF is a functor from HA to Esa. We now consider the
functor CU : Pries→ BDL restricted to Esa.

Lemma 4.15. Let (X,≤) be an Esakia space. Then CU(X,≤) is a Heyting algebra, where impli-
cation is defined by U → V = (↓(U ∩ V c))c.

Proof. We already know that CU(X,≤) is a bounded distributive lattice. Now let U and V be
clopen upsets. Then U ∩ V c is clopen and since (X,≤) is an Esakia space, ↓ (U ∩ V c) is clopen.
Then (↓(U ∩ V c))c is a clopen upset, so we define

U → V = (↓(U ∩ V c))c.

To see that this is a Heyting implication, we need to check that for any clopen upset W , we have
U ∩W ⊆ V if and only if W ⊆ U → V .

Since U → V ⊆ (U ∩ V c)c, we have

U ∩ (U → V ) ⊆ U ∩ (U ∩ V c)c = U ∩ (U c ∪ V ) = V.

Therefore, if W ⊆ U → V , then

U ∩W ⊆ U ∩ (U → V ) ⊆ V.

Suppose that U ∩W ⊆ V . Then U ∩V c ⊆W c. Since W c is a downset, we obtain ↓(U ∩V c) ⊆
W c. Thus W ⊆ (↓(U ∩ V c))c = U → V .

Lemma 4.16. Let g : (X,≤)→ (Y,�) be a morphism of Esakia spaces. Then the map

CU(g) : CU(Y,�)→ CU(X,≤);

U 7→ g−1(U),

is a Heyting morphism.

Proof. We know that CU(g) is a lattice homomorphism, so we only need to show that it preserves
implication. Let U, V be clopen upsets of Y . Since

g−1(U) ∩ g−1(U → V ) = g−1(U ∩ (U → V )) ⊆ g−1(V ),

we see that g−1(U → V ) ⊆ g−1(U) → g−1(V ). For the reverse inclusion, suppose that x 6∈
g−1(U → V ). Since U → V = (↓ (U ∩ V c))c, we have x ∈ g−1(↓ (U ∩ V c)), so g(x) ∈↓ (U ∩ V c).
Therefore, there is a y ∈ U ∩ V c with g(x) � y. Since g is a p-morphism, there is a z ∈ X with
x ≤ z and y = g(z). Then z ∈ g−1(U ∩ V c) = g−1(U) ∩ g−1(V )c. Thus x ∈↓ (g−1(U) ∩ g−1(V )c),
and so x 6∈ g−1(U)→ g−1(V ). This proves the reverse inclusion. Therefore,

g−1(U → V ) = g−1(U)→ g−1(V ),

so CU(g) is a Heyting morphism.

We have shown that CU is a functor from Esa to HA. To prove that these categories are dual
to each other, we have little work left to do.

Lemma 4.17. Let H be a Heyting algebra. Then the map

FH : H → CU(PF(H));

a 7→ φ(a),

is a Heyting isomorphism.

Proof. We have seen in lemma 4.8 that FH is an isomorphism of bounded distributive lattices.
Therefore, we only need to check if FH preserves implication. Let a, b ∈ H. Then by lemmas 4.11
and 4.15,

FH(a→ b) = φ(a→ b) = (↓(φ(a) ∩ φ(b)c))c = φ(a)→ φ(b).

Thus FH is an isomorphism of Heyting algebras.
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Lemma 4.18. Let (X,≤) be an Esakia space. Then

GX : (X,≤)→ PF(CU(X,≤));

x 7→ {U ∈ CU(X,≤) | x ∈ U} ,

is an Esakia isomorphism.

Proof. We have seen in lemma 4.9 that GX is an isomorphism of Priestley spaces. Since GX and
G−1
X are then in particular poset isomorphisms, they are both p-morphisms. Thus GX is an Esakia

isomorphism.

Theorem 4.3. The functors CU and CU give a duality of categories between HA and Esa.

4.4 Dual of Q(A)

For a Boolean lattice B, its associated Stone space S(B) can also be realised as the space of
Boolean lattice homomorphisms from B to the two-element Boolean lattice 2. That is, we have a
homeomorphism

S(B) ∼= Hom(B, 2). (4.1)

We will attempt to generalize this to the Heyting lattice Q(A). Consider a finite-dimensional C∗-
algebra A and a state ω on A. Then we can define a function Vω, the ‘valuation’ associated to
ω:

Vω : Q(A)→ Up(C(A)), Vω(S) = {C ∈ C(A) | ω(S(C)) = 1}

The question arises if these valuations are Heyting morphisms. Suppose that they were, then this
would give a motivation to look at the space

ModC(A)(Q(A)) = {Heyting morphisms Q(A)→ Up(C(A))}

We conjecture, like in classical logic (where Up(C(A)) is replaced by 2), that ModC(A)(Q(A))
is an Esakia space and that the Esakia space E(Q(A)) associated to Q(A) is isomorphic to it.

However, multiple things go wrong:

1. The functions Vω are not, in general, Heyting morphisms (we will shortly prove a counterex-
ample even for A = C2).

2. The set ModC(A)(Q(A)) is not, in general, an Esakia space and for some A it is even empty.

Example. Let A = C2 and consider the state ω : C2 → C given by (x, y)T 7→ x. Define S, T ∈ Q(A)
by S(C · 1) = T (C · 1) = 0 and S(C2) = (1, 0)T , T (C2) = (0, 1)T . Then

Vω(S → T ) = Vω(T ) = ∅.

However,
Vω(S)→ Vω(S) = ∅ → ∅ = C(A).

Therefore, Vω is not a Heyting morphism.

The following proposition explains the second point.

Proposition 4.1. Let A = Mn(C) for some n > 2. Then ModC(A)(Q(A)) = ∅.

Proof. This is explained in [16], page 8.

This means that in our quantum logic there is, unfortunately, no similar result as 4.1 in classical
logic.



Chapter 5

Extension of Q(A)

In chapter 3 we have defined the Heyting lattice Q(A) for finite-dimensional C∗-algebras in order
to obtain an isomorphism O(ΣA) ∼= Q(A). The goal of this chapter will be to extend the definition
of Q(A) to so-called AW∗-algebras. However, it turns out that instead of them being isomorphic,
Q(A) will be a dense sublocale of O(ΣA). The material on AW∗-algebras is based on [11], Section
2.4 and Chapter 8.

5.1 AW∗-algebras and Stonean spaces
In order to extend the definition of Q(A) to more general C∗-algebras than just finite-dimensional
ones, we want Proj(A) to have a ’nice’ structure. A natural choice is the class of AW∗-algebras.
There are many equivalent definitions of AW∗-algebras, but since we only need the structure of
the projections, we will also define them in terms of projections.

Definition 5.1. A (unital) C∗-algebra A is called an AW∗-algebra if

• every maximal commutative subalgebra of A is generated by its projections;

• Proj(A) is a complete orthomodular lattice.

Remark. This implies that if A is a commutative AW∗-algebra, then Proj(A) is a complete
Boolean lattice by Proposition 3.4.

Example. For H a Hilbert space, B(H) is an AW∗-algebra ([11], Proposition 2.4.16). More gen-
erally, any von Neumann algebra is an AW∗-algebra. In fact, it is hard to find examples of
AW∗-algebras that are not von Neumann algebras. Also, every finite-dimensional C∗-algebra is an
AW∗-algebra. We will show this in section 5.3.

We also need to define the notions of AW∗-homomorphism and AW∗-subalgebra.

Definition 5.2. Let φ : A → B be a ∗-homomorphism between AW∗-algebras. Then φ is called
an AW∗-homomorphism if the map

φ|Proj(A) : Proj(A)→ Proj(B)

preserves all suprema.

Definition 5.3. Let A be an AW∗-algebra. Then a C∗-subalgebra B of A is called an AW∗-
subalgebra if

• B is an AW∗-algebra;

• If E ⊆ Proj(B) is a collection of projections in B, its supremum
∨
e∈E e, calculated in A,

is an element of B.

Equivalently, B is an AW∗-algebra and the inclusion i : B ↪→ A is an AW∗-homomorphism.

Since any commutative C∗-algebra A is ∗-isomorphic to C(X) for some compact Hausdorff
space X (Theorem 1.2) , we would like a criterion on X that determines if A is an AW∗-algebra.
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Definition 5.4. A topological space X is called extremally disconnected if, for any open
U ∈ O(X), its closure U is also open. An extremally disconnected space that is also compact
Hausdorff is called a Stonean space.

Theorem 5.1. Let A be an AW∗-algebra. Then A is commutative if and only if its Gelfand
spectrum Σ(A) is a Stonean space. That is, A ∼= C(X) for X a Stonean space.

Proof. [11], Corollary 2.4.6.

We need some results on Stonean spaces in the following sections. They are proven here, but
are recalled later when they are used.

Lemma 5.1. If X is a topological space, U, V open, and U ∩ V = ∅, then

U ∩ V = ∅.

Proof. Let x ∈ U . Then for all open neighborhoods O of x we have O∩U 6= ∅. Therefore U∩V = ∅
implies that V /∈ O(x), and x /∈ V .

Lemma 5.2. If X is a topological space, and {Ui}i∈I is a collection of open sets in X, then⋃
i∈I

Ui =
⋃
i∈I

Ui.

Proof. It is clear that ⋃
i∈I

Ui ⊆
⋃
i∈I

Ui.

Now let x /∈
⋃
i∈I Ui. Then there is an open neighborhood O of x such that

O ∩
⋃
i∈I

Ui = ∅.

But
O ∩

⋃
i∈I

Ui =
⋃
i∈I

O ∩ Ui,

which implies that O ∩ Ui = ∅ for all i ∈ I. By the previous Lemma, we then have

O ∩ Ui = ∅ for all i ∈ I.

Therefore,
O ∩

⋃
i∈I

Ui = ∅,

which means that
x /∈

⋃
i∈I

Ui.

Lemma 5.3. If X is a Stonean space and U, V ∈ O(X), then

U ∩ V = U ∩ V .

Proof. Now let x /∈ U ∩ V . Then there is an open neighborhood O of x such that

U ∩ V ∩O = ∅.

Therefore, by the Lemma 5.1,
U ∩ V ∩O = ∅.

But X is Stonean, so U ∩O is open, so that we have, again by Lemma 5.1,

U ∩ V ∩O = ∅,
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which shows that that x /∈ U ∩ V ⊆ U ∩ V . Hence,

U ∩ V ⊆ U ∩ V .

Since we always have U ∩ V ⊆ U ∩ V , we conclude that

U ∩ V = U ∩ V .

Lemma 5.4. If X is a Stonean space then the collection Clopen(X) of clopen subsets of X is a
complete Boolean lattice.

Proof. Since every Stonean space is a Stone space, the collection of clopen subsets is a Boolean
lattice (Chapter 4). We need only prove that it is complete. If {Ui}i∈I is a collection of clopen
sets in X, then the union

⋃
i∈I Ui is open. Therefore, the set

V =
⋃
i∈I

Ui

is clopen. We will prove that V is the supremum of the collection {Ui}. It is definitely an upper
bound, so let W , a clopen set, be an arbitrary upper bound of the collection {Ui}. This means
that Ui ⊆W for all i ∈ I, implying that ⋃

i∈I
Ui ⊆W.

But W is closed, so ⋃
i∈I

Ui ⊆W.

Therefore,
⋃
i∈I Ui is the smallest upper bound of the Ui.

5.2 Q(A) and O(ΣA) for AW∗-algebras
The main modification to the definition of Q(A) and O(ΣA) will be to replace C(A) by

A(A) = {C ∈ C(A) | C is an AW∗-subalgebra of A}.

This will allow us to use the properties of AW∗-algebras not only for A itself, but also for all the
commutative subalgebras that we consider.

Proposition 5.1. For a commutative AW∗-algebra C there is an isomorphism of complete Boolean
lattices βC : Proj(C)→ Clopen(Σ(C)).

Proof. [11], Proposition C.3.6.

Remark. This results holds in particular for finite-dimensional algebras, which are always AW∗-
algebras. Then this is just 3.2, because in this case Σ(C) has the discrete topology. Also, this
isomorphism is natural and the proof is the same as for 3.2.

Notation. For an AW∗-algebra A we will write Q̂(A) and Ô(ΣA) if we use A(A) instead of C(A).
Our goal will be to prove the following theorem:

Theorem 5.2. Let A be an AW∗-algebra. Then Q̂(A) is a dense sublocale of Ô(ΣA).

We refer to Section 2.4 for the definitions of locales, sublocales and nuclei. To prove the theorem,
we first define the following maps:

Ψ : Q̂(A)→ Ô(ΣA)

S 7→
∐

C∈A(A)

βC(S(C)),
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and

Φ : Ô(ΣA)→ Q̂(A)

U 7→ SU , SU (C) = β−1
C (UC).

Lemma 5.5. The map Ψ is well defined.

Proof. It is clear that βC(S(C)) ∈ O(Σ(C)) for all C ∈ A(A), since clopens are open. For C ⊆ D
we have the inclusion j : C ↪−→ D. Now suppose µ ∈ Σ(D), µ|C ∈ UC but

µ /∈ UD = βD(S(D)) ⊇ βD(S(C)) = Σ(j)−1(βC(S(C)) = Σ(j)−1(UC).

This means that µ ◦ j /∈ UC i.e. µ|C /∈ UC .

Lemma 5.6. The map Φ is well defined.

Proof. Since UC is clopen, SU (C) does indeed define a projection in C by the properties of βC . It
remains to prove that C ⊆ D implies that SU (C) ≤ SU (D), i.e. β−1

C (UC) ≤ β−1
D (UD). We have

β−1
C (UC) = β−1

D (Σ(j)−1(UC)). If we prove that Σ(j)−1(UC) = Σ(j)−1(UC), then

β−1
D (Σ(j)−1(UC)) ≤ β−1

D (UD),

since Σ(j)−1(UC) ⊆ UD and βD is order preserving.

Proposition 5.2. The following properties hold for the maps Ψ and Φ:

1. Ψ is order preserving.

2. Φ is a frame morphism.

3. The map Φ ◦Ψ is the identity on Q̂(A).

4. The map Ψ ◦ Φ is a nucleus on Ô(ΣA).

Proof. 1. Suppose S ≤ T . Then for all C ∈ A(A), S(C) ≤ T (C) and therefore

βC(S(C)) ⊆ βC(T (C)),

because βC is order preserving. But this means that Ψ(S) ⊆ Ψ(T ).

2. Let U ,V be opens in Ô(ΣA). In a Stonean space we have

U ∩ V = U ∩ V

by Lemma 5.3. Therefore, for C ∈ A(A),

SU∩V(C) = β−1
C (UC ∩ VC)

= β−1
C (UC ∩ VC)

= β−1
C (UC) ∩ β−1

C (VC)

= SU (C) ∩ SV(C)

= (SU ∩ SV)(C).

Here we have used that β−1
C is a lattice homomorphism. So we have

Φ(U ∩ V) = Φ(U) ∩ Φ(V).
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Now let {Ui}i∈I be open in Ô(ΣA). Then, by Lemma 5.2,

S∪Ui(C) = β−1
C

(⋃
i∈I
Ui,C

)
= β−1

C

(⋃
i∈I
Ui,C

)
= β−1

C

(∨
i∈I
Ui,C

)
=
∨
i∈I

β−1
C (Ui,C)

=
∨
i∈I

SUi(C)

=
(∨
i∈I

SUi

)
(C),

where we use that β−1
C preserves suprema. We conclude that

Φ
(⋃
i∈I
Ui
)

=
∨
i∈I

Φ(Ui).

3. Let S ∈ Q̂(A). Then
(Φ ◦Ψ(S))(C) = β−1

C (βC(S(C))).

But βC(S(C)) is clopen in Σ(C), so

(Φ ◦Ψ(S))(C) = β−1
C (βC(S(C))) = S(C),

since βC is an isomorphism.

4. Let U ∈ Ô(ΣA). Then

(Ψ ◦ Φ)(U) =
∐

C∈A(A)

βC(β−1
C (UC)) =

∐
C∈A(A)

UC .

Denote j := Ψ ◦ Φ. We have

j(U ∩ V) =
∐

C∈A(A)

UC ∩ VC

=
∐

C∈A(A)

UC ∩ VC

=
∐

C∈A(A)

UC ∩
∐

C∈A(A)

VC

= j(U) ∩ j(V).

Furthermore, it is clear that U ⊆ j(U) always holds and since j is idempotent, so does
j(j(U)) = j(U). Therefore, j is a nucleus on Ô(ΣA).

Proof of Theorem 5.2:

Proof. Since Φ ◦Ψ is the identity on Q̂(A), Φ is a surjective frame homomorphism. Furthermore,
Φ ◦ Ψ is a nucleus on Ô(ΣA). If we prove that Ψ is a right adjoint to Φ, and that Ψ is an order
embedding, then we will have proven that Q̂(A) is a sublocale of Ô(ΣA). Let U ∈ Ô(ΣA) and
S ∈ Q̂(A). Then

Φ(U) ≤ S ⇐⇒ SU (C) ≤ S(C) ∀C ∈ A(A)

⇐⇒ β−1
C (UC) ≤ S(C) ∀C ∈ A(A)

⇐⇒ UC ⊆ βC(S(C)) ∀C ∈ A(A)

⇐⇒ UC ⊆ βC(S(C)) ∀C ∈ A(A)

⇐⇒ U ⊆ Φ(S),
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where in the third step we have used that βC is an isomorphism, and in the fourth step we have
used that βC(S(C)) is clopen. Therefore, Ψ is a right adjoint to Φ. Furthermore, if S, T ∈ Q̂(A),
then we have

Ψ(S) ⊆ Ψ(T ) ⇐⇒ βC(S(C)) ⊆ βC(T (C)) ∀C ∈ A(A)

⇐⇒ β−1
C (βC(S(C))) ⊆ β−1

C (βC(T (C))) ∀C ∈ A(A)

⇐⇒ S(C) ⊆ T (C) ∀C ∈ A(A)

⇐⇒ S ≤ T.

This means that Ψ is an order embedding. Lastly, Q̂(A) is a dense sublocale of Ô(ΣA), because
for the associated nucleus we have

j(∅) =
∐

C∈A(A)

∅C =
∐

C∈A(A)

∅ = ∅.

5.3 Finite-dimensional case
If A is finite-dimensional, the situation is easier. First of all we need to show that every finite-
dimensional C∗-algebra is an AW∗-algebra. A detailed proof can be found in [11], Proposition
2.4.28. We will give a summary.

First of all, by the Artin-Wedderburn theorem, any finite-dimensional C∗-algebra can be written
as a direct sum of matrix algebras of the form

Mn(C),

where n ∈ N. Because
Mn(C) ∼= B(Cn),

these matrix algebras are all AW∗-algebras. Lastly, a direct sum of AW∗-algebras is itself an AW∗-
algebra. Therefore, any finite-dimensional C∗-algebra is an AW∗-algebra.

In the finite-dimensional case we have A(A) = C(A) by [11], Corollary 2.4.29. From this it
follows that

Q̂(A) = Q(A),

and
Ô(ΣA) = O(ΣA).

Furthermore, Ψ is also a frame morphism, and Ψ ◦Φ is the identity on O(ΣA). This is easily seen
by noting that Σ(C) has the discrete topology for all C ∈ C(A). Therefore, if U ∈ O(ΣA), we have

UC = UC .

It follows that
Q(A) ∼= O(ΣA)

as frames.



Chapter 6

Functoriality

In this chapter we will consider the functoriality of Q̂(A) for AW∗-algebras, with Q(A) for A finite-
dimensional as a special case, as well as of ΣA for general C∗-algebras. We will have to choose the
right domain in order to establish the functoriality of these constructions.

6.1 Functoriality of Q(•)
We consider the category of AWStar-Inj of AW∗-algebras with injective AW∗-homomorphisms
as morphisms. For an AW∗-algebra A we have previously defined Q̂(A). We will now consider the
morphisms. Suppose φ : A → B is an injective AW∗-homomorphism. By [11], Theorem 8.2.1, we
have a map

A(φ)∗ : A(B)→ A(A),

D 7→ φ−1[D],

which is upper adjoint to the map

A(φ) : A(A)→ A(B),

C 7→ φ[C].

That is, if D is a commutative AW∗-subalgebra of B, then φ−1[D] is a commutative AW∗-
subalgebra of A. Now suppose we have S ∈ Q̂(A), S : A(A) → Proj(A). We will use the
map A(φ)∗ to define Q̂(φ)(S) ∈ Q̂(B) by demanding that the following diagram be commutative:

A(A) A(B)

Proj(A) Proj(B).

S

A(φ)∗

Q̂(φ)(S)

φ|Proj(A)

That is, Q̂(φ)(S) = φ|Proj(A) ◦ S ◦ A(φ)∗. First we need the following lemma.

Lemma 6.1. Let φ : A → B be an AW∗-homomorphism between commutative AW∗-algebras.
Then φ|Proj(A) : Proj(A)→ Proj(B) is a homomorphism of complete Boolean algebras.

Proof. This follows from Lemma 3.3, since the supremum and infimum of two projections e, f in
A are given by polynomial expressions in e and f , which are preserved by φ. Furthermore, the
complement of e is 1 − e, which is also preserved by φ. Lastly, φ preserves arbitrary suprema by
definition.

In our case A, B are not commutative, but φ is injective. Then for any D ∈ A(B) the map

φ|φ−1[D] : φ−1[D]→ D

is an AW∗-homomorphism between commutative AW∗-algebras. This means that

φ|Proj(φ−1[D]) : Proj(φ−1[D])→ Proj(D)

is a homomorphism of complete Boolean algebras by 6.1 .
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Lemma 6.2. Q̂(φ) is well defined.

Proof. We first have to check that for S ∈ Q̂(A) the map Sφ := Q̂(φ)(S) lies in Q̂(B). First, let
D ∈ A(B). Then

Sφ(D) = φ(S(A(φ)∗(D))) = φ(S(φ−1[D]).

Since S ∈ Q̂(A), e := S(φ−1[D]) ∈ φ−1[D]. Therefore, φ(e) ∈ D, which implies that

Sφ(D) ∈ Proj(D).

Second, suppose E ⊆ D in A(B). Then A(φ)∗(E) ⊆ A(φ)∗(D) in A(A). Since S ∈ Q̂(A), it follows
that S(A(φ)∗(E)) ≤ S(A(φ)∗(D)). But φ|Proj(φ−1[D]) is order preserving, so

Sφ(E) ≤ Sφ(D).

Lemma 6.3. Q̂(φ) is a frame homomorphism.

Proof. • Q̂(φ) is order preserving:
Suppose S ≤ T in Q̂(A) i.e. S(C) ≤ T (C) ∀C ∈ A(A). Let D ∈ A(B). Since S ≤ T ,
S(A(φ)∗(D)) ≤ T (A(φ)∗(D)) so Sφ(D) ≤ Tφ(D) since φ|Proj(φ−1[D]) is order preserving.

• For D ∈ A(B),
0φ(D) = φ(0(A(φ)∗(D))) = φ(0) = 0,

so Q̂(φ)(0) = 0.

• Let S, T ∈ Q̂(A). Then

Q̂(φ)(S ∧ T )(D) = φ(S ∧ T (φ−1[D]))

= φ(S(φ−1[D]) ∧ T (φ−1[D]))

= φ(S(φ−1[D])) ∧ φ(T (φ−1[D]))

= Q(φ)(S) ∧Q(φ)(T )

since φ|Proj(φ−1[D]) preserves meets.

A similar argument shows that Q̂(φ) preserves arbitrary suprema. Here we use that φ|Proj(φ−1[D])

preserves arbitrary suprema.

Theorem 6.1. Q̂(•) is a covariant functor AWStar-Inj → Frm

Proof. We have already proven that for A an AW∗-algebra, Q̂(A) is a frame. From the previous
lemmas, Q̂(φ) : Q̂(A) → Q̂(B) is a frame homomorphism if φ : A → B is an injective AW∗-
homomorphism. It remains to prove that Q̂(idA) = id

Q̂(A)
and ̂Q(ψ ◦ φ) = Q̂(ψ) ◦ Q̂(φ). The

first is clear, since both A(idA)∗ and idA|Proj(A) are the identity on their respective domains. Now
consider the following diagrams:

A B C

A(A) A(B) A(C)

Proj(A) Proj(B) Proj(C)

φ ψ

S

A(φ)∗

Q(φ)(S)

A(ψ)∗

φ|Proj(A) ψ|Proj(B)

We can define the map on the right in two ways. We will prove that they coincide:

Q̂(ψ)(Q̂(φ)(S)) = Q̂(ψ)(φ|Proj(A) ◦ S ◦ A(φ)∗)

= ψ|Proj(B) ◦ (φ|Proj(A) ◦ S ◦ A(φ)∗) ◦ A(ψ)∗

= (ψ ◦ φ)|Proj(A) ◦ S ◦ (A(ψ ◦ φ)∗)

= ̂Q(ψ ◦ φ)(S).
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Remark. For this result we only need A(•) to be a contravariant functor. We chose the domain
AWStar-Inj to accomplish this, but using the category CAWStar of commutative AW∗-algebras
with all AW∗-homomorphims also yields a similar result.

If A is finite-dimensional, we have seen that

Q̂(A) = Q(A).

Furthermore, any injective ∗-homomorphism between commutative finite-dimensional C∗-algebras
is automatically an AW∗-homomorphism, because the lattices of projections are finite in that case.
Therefore, we can restrict Q̂(•) to the category FDC∗-Inj of finite-dimensional C∗-algebras and
injective ∗-homomorphisms to obtain a functor

Q(•) : FDC∗-Inj→ Frm.

6.2 Functoriality of Σ•

We recall the definition of ΣA for a C*-algebra A. It is a topological space with underlying set

ΣA =
∐

C∈C(A)

Σ(C),

where Σ(C) is the Gelfand spectrum of C. We will denote elements of ΣA by (C, λ), where C ∈ C(A)
and λ ∈ Σ(C). We define U ⊆ ΣA to be open if the following two conditions are satisfied:

1. For each C ∈ C(A) the component UC := U ∩ Σ(C) is open in Σ(C).

2. For all inclusions C ⊆ D in C(A), if λ ∈ Σ(D) and λ|C ∈ UC , then λ ∈ UD.

Lemma 6.4. ΣA is a topological space.

Proof. • ∅ is open since ∅ ∩ Σ(C) = ∅ which is open. The second condition is void.

• ΣA is open since ΣA ∩ Σ(C) = Σ(C) which is open. The second condition is also satisfied
since UD = Σ(D).

• Suppose U , V open. For C ∈ C(A), (U ∩ V)C = UC ∩ VC which is open. Furthermore, if
j : C ↪−→ D, then

Σ(j)−1[UC ∩ VC ] = Σ(j)−1[UC ] ∩ Σ(j)−1[VC ] ⊆ UD ∩ VD.

A similar argument proves that an arbitrary union of opens is open.

Let φ : A ↪→ B be an injective ∗-homomorphism between C*-algebras. We obtain a map

Σφ : ΣB → ΣA, (C, λ) 7→ (φ−1[C], λ ◦ φ)

Lemma 6.5. Σφ is continuous.

Proof. Let U ⊆ ΣA be open. Define V := Σ−1
φ [U ] = {(C, λ) ∈ ΣB | (φ−1[C], λ ◦ φ) ∈ U}.

1. VC ⊆ Σ(C) open for all C ∈ C(A): We have

VC = {λ ∈ Σ(C) | (φ−1[C], λ ◦ φ) ∈ U}
= {λ ∈ Σ(C) | λ ◦ φ ∈ Uφ−1[C]}
= Σ(φ|φ−1[C])

−1[Uφ−1[C]],

which is open since Σ(φ|φ−1[C]) is continuous.
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2. Suppose C ⊆ D in C(B) with inclusion map j : C ↪→ D. Then

Σ(j)−1[VC ] = Σ(j)−1[Σ(φ|φ−1[C])
−1[Uφ−1[C]]]

= (Σ(φ|φ−1[C]) ◦ Σ(j))−1[Uφ−1[C]]

= Σ(j ◦ φ|φ−1[C])
−1[Uφ−1[C]]

= Σ(φ|φ−1[D] ◦ φj)−1[Uφ−1[C]]

= Σ(φ|φ−1[D])
−1[Σ(φj)

−1[Uφ−1[C]]]

⊆ Σ(φ|φ−1[D])
−1[Uφ−1[D]] = VD.

where in the fourth step we have used the commutativity of the diagram

C D

φ−1[C] φ−1[D]

j

φ|φ−1[C]

φj

φ|φ−1[D]

and φj is the inclusion map induced by j.

We have proven that V is open in ΣB , so Σφ is continuous.

Theorem 6.2. Σ• is a contravariant functor CStar-Inj → Top.

Proof. We have proven that ΣA is a topological space for a C*-algebra A, and that an injective ∗-
homomorphism φ : A ↪→ B induces a continuous map Σφ : ΣB → ΣA. It is clear that ΣidA = idΣA .

Furthermore, if we have maps A
φ
↪−→ B

ψ
↪−→ C they induce maps ΣC

Σψ−−→ ΣB
Σφ−−→ ΣA.

Let (E, λ) ∈ ΣC . Then

(Σφ ◦ Σψ)(E, λ) = (φ−1[ψ−1[E]], (λ ◦ ψ) ◦ φ)

= ((ψ ◦ φ)−1[E], λ ◦ (ψ ◦ φ)) = Σψ◦φ(E, λ).

Remark. Similar to the previous section, we could also use the category CCStar of commutative
C∗-algebras as the domain of Σ• to obtain a functor CCStar→ Top. Furthermore, if we compose
the contravariant functor Σ• with the contravariant functor O(•) : Top → Frm, we obtain a
covariant functor O(Σ•).



Chapter 7

Limits

The space ΣA is constructed by gluing together the Gelfand spectra of the commutative subalgebras
of A. It is therefore natural to ask if the frame Q(A) can in some way be ’approximated’ using
the C ∈ C(A). For this we will use the categorical framework of limits (see section A.4). We will
recover Q(A) as a limit of the Q(C) for C ∈ C(A) in two different ways. In this chapter, we will
only consider finite-dimensional C∗-algebras.

7.1 Q(A) as an equalizer
First of all, we will try to recover Q(A) as a certain equalizer. We make the observation that
we can restrict a map S : C(A) → Proj(A), S ∈ Q(A) to any C(C) for C ∈ C(A) to obtain a
map S|C(C) : C(C) → Proj(C) which is in Q(C). Furthermore, if we have a collection of maps
SC ∈ Q(C) for all C ∈ C(A), then we can make two maps for every pair C,D of commutative
subalgebras. We can restrict the map SC to the intersection C ∩ D or we can take SD instead.
This leads to the following diagram in the category Frm:

Q(A)
∏

C∈C(A)

Q(C)
∏

C,D∈C(A)

Q(C ∩D)e
p

q
(7.1)

where the maps are given by

S (S|C(C))C∈C(A)
e

and

(SE)E∈C(A) (SC |C(C∩D))C,D∈C(A)

(SE)E∈C(A) (SD|C(C∩D))C,D∈C(A)

p

q

Lemma 7.1. In the diagram above we have p ◦ e = q ◦ e.

Proof. Let S ∈ Q(A). If we first restrict S to C and then to C ∩D we obtain the same map as if
we restrict to D and then to C ∩D. Both are equal to the restriction of S to C ∩D. Therefore
p(e(S)) = q(e(S)).

ForQ(A) to be the equalizer of the diagram we need that e is the ’universal’ map with p◦e = q◦e.
We will prove this in the next proposition.

F

Q(A)
∏

C∈C(A)

Q(C)
∏

C,D∈C(A)

Q(C ∩D)

∃!g
f

e
p

q
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Proposition 7.1. Q(A) (together with e) is the equalizer of the diagram 7.1.

Proof. Suppose we have a frame F and a frame homomorphism F
f−→
∏
C∈C(A)Q(C) such that

p ◦ f = q ◦ f . We have to prove that there is a unique frame homomorphism F
g−→ Q(A) such

that f = e ◦ g. For all x ∈ F we have p(f(x)) = q(f(x)). Suppose f(x) = (SC)C∈C(A). Then
SC |C(C∩D) = SD|C(C∩D) for all C,D ∈ C(A). We will define g(x)(C) = SC(C). Then

1. g(x) ∈ Q(A): SC ∈ C(C), so SC(C) ∈ Proj(C). If C ⊆ D then

SC(C) = SD|C(C)(C) = SD(C) ≤ SD(D).

2. g is a frame homomorphsim: let x, y ∈ F , f(x) = (SC)C∈C(A) and f(y) = (TC)C∈C(A). Then

f(x ∧ y) = f(x) ∧ f(y) = (SC ∧ TC)C∈C(A).

Now,

g(x ∧ y)(C) = (SC ∧ TC)(C)

= SC(C) ∧ TC(C)

= g(x)(C) ∧ g(y)(C)

= (g(x) ∧ g(y))(C),

so g(x ∧ y) = g(x) ∧ g(y).

A similar argument works for arbitrary joins, since f is a frame homomorphism.

3. f = e ◦ g: Let x ∈ F , f(x) = (SC)C∈C(A) . Then e(g(x)) = (g(x)|C(C))C∈C(A). Let C ∈ C(A).
We need that g(x)|C(C) = SC . So suppose D ⊆ C, then

g(x)|C(C)(D) = g(x)(D) = SD(D)

= SD|C(D) = SC |C(D)

= SC(D).

4. g is unique: Suppose there is g′ with f = e ◦ g′. If x ∈ F and f(x) = (SC)C∈C(A) then
SC is the restriction of g′(x) to C(C) so g′(x)(C) = SC(C) = g(x). This shows that f(x)
completely determines g(x), i.e. g is unique.

Because Q(A) is the equalizer of the diagram, we know that, as sets,

Q(A) ∼=
{

(SC)C∈C(A) ∈
∏

C∈C(A)

Q(C)
∣∣∣ SC |C(C∩D) = SD|C(C∩D) ∀C,D ∈ C(A)

}
.

In fact, it is sufficient to take the product only over the maximal commutative subalgebras of A.
In order to prove this we first realize Q(A) as a different limit.

7.2 Q(A) as a direct limit
We can view Q(•) as a contravariant functor C(A)→ Frm by C 7→ Q(C), and if C ⊆ D we define
Q(C ⊆ D) to be the restriction to C(C). We obtain a diagram J of shape C(A)op in the category
Frm. Restriction to each C ∈ C(A) gives a cone Q(A)→ J.

F

Q(A)

Q(D) Q(C)

∃!g

fD fC

Q(D⊆A)Q(C⊆A)

Q(C⊆D)
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It is clear that for all C ⊆ D we have Q(C ⊆ D) ◦Q(D ⊆ A) = Q(C ⊆ A) since it doesn’t matter
if we first restrict to D or not. This means that we indeed have a cone Q(A)→ J. We will prove
that this cone is universal.

Proposition 7.2. Q(A) is the limit of the diagram Q(•) : C(A)op → Frm.

Proof. Suppose we have another cone F f−→ J, so that for all C ⊆ D we have Q(C ⊆ D)◦ fD = fC .
This means fD(x)|C(C) = fC(x) for all x ∈ F . Define g(x)(C) = fC(x)(C). Then

1. g(x) ∈ Q(A): since fC(x) ∈ Q(C), fC(x)(C) ∈ Proj(C). Now let C ⊆ D, then

g(x)(C) = fC(x)(C)

= fD(x)|C(C)(C)

= fD(x)(C) ≤ fD(x)(D) = g(x)(D),

because fD(x) ∈ Q(D).

2. Q(D ⊆ A) ◦ g = fD for all D ∈ C(A): let D ∈ C(A). Then Q(D ⊆ A)(g(x)) = g(x)|C(D) and
for C ∈ C(D) we have

g(x)|C(D)(C) = fC(x)(C)

= fD|C(C)(C)

= fD(C),

and we conclude that Q(D ⊆ A) ◦ g = fD.

3. g is a frame homomorphism: let x, y ∈ F . Then

g(x ∧ y)(C) = fC(x ∧ y)(C)

= (fC(x) ∧ fC(y))(C)

= fC(x)(C) ∧ fC(y)(C)

= g(x)(C) ∧ g(y)(C)

= (g(x) ∧ g(y))(C).

A similar argument shows that g preserves arbitrary joins, since fC is a frame homomorphism.

4. g is unique: suppose there is a frame homomorphism g′ : F → Q(A) with Q(D ⊆ A)◦g′ = fD
for all D ∈ C(A). Then

g′(x)(D) = g′(x)|C(D)(D)

= Q(D ⊆ A)(g′(x))(D)

= fD(x)(D) = g(x)(D).

This shows that g is unique.

Consider the frame

Qmax(A) =
{

(SM )M∈max C(A) ∈
∏

M∈max C(A)

Q(M)
∣∣∣SM |C(M∩N) = SN |C(M∩N) ∀M,N ∈ max C(A)

}
.

We will prove that this frame is still the limit of the diagram, even though we only use the
maximal subalgebras.

First, we have to define the cone Qmax(A) → J. To this end, let C ∈ C(A). By [11], Theorem
3.1.3, there is a maximal commutative subalgebra M with C ⊆ M . We can now define the map
φC : Qmax(A) → Q(C). If S = (SM )M∈max C(A) is in Qmax(A), then φC(S) = SM |C(C). Now
suppose that C ⊆ N as well, where N ∈ max C(A). Then C ⊆ M ∩ N , but this means that
SM |C(C) and SN |C(C) are equal, since SM and SN agree on C(M ∩N) by definition.

Lemma 7.2. The maps φC : Qmax → Q(C) give a cone φ : Qmax → J.
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Proof. Let C,D ∈ C(A), where C ⊆ D, and S ∈ Qmax(A). Suppose that C ⊆ D ⊆ M for
M ∈ max C(A). Then

Q(C ⊆ D)(φD(S)) = Q(C ⊆ D)(SM |C(D))

= (SM |C(D))|C(D)

= SM |C(D) = φC(S),

so that Q(C ⊆ D) ◦ φD = φC . This means that φ is a cone.

Proposition 7.3. Qmax(A) is the limit of the diagram J.

Proof. Suppose we have another cone F f−→ J given by fC : F → Q(C) for all C ∈ C(A). Define
g : F → Qmax(A) by g(x) = (fM (x))M∈max C(A).

1. g(x) ∈ Qmax(A) for all x ∈ F : suppose M,N ∈ max C(A). Then

fM (x)|C(M∩N) = fM∩N (x) = fN (x)|C(M∩N),

since f is a cone.

2. Let C ∈ C(A) and suppose C ⊆M where M ∈ max C(A). If x ∈ F , then

φC(g(x)) = fM (x)|C(C) = fC(x),

which means that φC ◦ g = fC .

3. Let x, y ∈ F . Then

g(x ∧ y) = (fM (x ∧ y)) = (fM (x) ∧ fM (y))

= (fM (x)) ∧ (fM (y)) = g(x) ∧ g(y).

A similar argument shows that g preserves arbitrary joins.

4. Suppose there is g′ : F → Qmax(A) with φC ◦ g = fC for all C ∈ C(A). Let x ∈ F and
g′(x) = (S′M )M∈max C(A). Then

fM (x) = φM (g′(x)) = S′M |C(M) = S′M

so that g is unique.

Theorem 7.1. There is a frame isomorphism Q(A) ∼= Qmax(A).

Proof. This follows directly from Proposition A.1 and the fact that Q(A) and Qmax(A) are both
limits of the diagram J.
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Appendix A

Category Theory

This appendix on category theory is needed mainly for the categorical aspects that are covered in
chapter 6 and 7. We will cover the concepts of categories, functors, natural transformations and
limits. This material is based on [17].

A.1 Categories

Definition A.1. A category C consists of

1. A collection Obj(C) of objects.

2. For every A,B ∈ Obj(C) a collection HomC(A,B) of morphisms between A and B.

3. For A,B,C ∈ Obj(C) a map

◦ : HomC(B,C)×HomC(A,B)→ HomC(A,C) (A.1)

called composition (notation: f ◦ g := ◦(f, g))

such that:

1. Composition is associative.

2. For every A ∈Obj(C) there is an identitymorphism idA ∈ HomC(A,A) such that f◦idA = f
if f ∈ HomC(A,C) and idA ◦ g = g if g ∈ HomC(C,A).

Remark. We usually write A ∈ C instead of A ∈ Obj(C). A morphism f ∈ HomC(A,B) is denoted
by f : A→ B.

Example. 1. The category Sets which has sets as objects and functions as morphisms. Com-
position is ordinary composition of functions.

2. The category CStar with C∗-algebras as objects and *-homomorphisms as morphisms.

3. Any poset (or more generally any preorder) can be regarded as a category with an arrow
x→ y if and only if x ≤ y. Transitivity of the order relation is then just composition of these
arrows. Such a category is called a posetal category.

4. If C is a category, we can make a new category Cop called the opposite category of C.
Cop has the same objects as C, but a morphism X → Y in Cop is a morphism Y → X in C.
The morphisms are ’reversed’ in Cop.

Remark. Most categories that we will work with are so-called concrete categories. This means
that the objects are sets, possibly with extra structure, and that all morphisms are functions
between these sets. Also we usually work with locally small categories in which each collection
HomC(A,B) is actually a set.
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A.2 Functors
Definition A.2. A (covariant) functor is a map F : C→ D between categories C and D that
associates to each C ∈ Obj(C) an object F (C) ∈ Obj(D) and to each morphism f : A→ B in C
a morphism F (f) : F (A)→ F (B) in D, such that:

1. F (idA) = idF (A) for all A ∈ C.

2. F (f ◦ g) = F (f) ◦ F (g) for all morphisms f, g for which the composite f ◦ g is defined.

Remark. We can also define contravariant functors. A contravariant functor assigs to a morphism
f : A → B a morphism F (f) : F (B) → F (A) so the direction is reversed. In addition, condition
no. 2 is replaced by F (f ◦ g) = F (g) ◦ F (f).

Example. The functor P that assigns to each set X its powerset P(X) can be made into a con-
travariant functor. To a function f : X → Y we associate the function P(f) : P(Y ) → P(X),
A 7→ f−1(A).

Example. For any category C and object X ∈ C we have the functor HomC(−, X) from C to
Sets. To an object Y ∈ C it assigns the set of morphisms HomC(Y,X) from Y to X. For any
morphism f : Y → Z we get a morphism f∗ : HomC(Z,X)→ HomC(Y,X) given by g 7→ g ◦ f .

A.3 Natural transformations
Definition A.3. A natural transformation α : F → G between two covariant functors F,G :
C → D consists of morphisms αC : F (C) → G(C) for each C ∈ C such that for each morphism
f : A→ B in C the diagram

F (A) F (B)

G(A) G(B)

F (f)

αA αB

G(f)

commutes. That is, αB ◦ F (f) = G(f) ◦ αA.

Example. Let Ring be the category of rings. We first consider the functor GLn(−) that assigns
to a ring R the ring GLn(R) of n times n invertible matrices with coefficients in R. By applying a
homomorphism f : R → S to the coefficients this becomes a functor. Next, we can also form the
group of units R∗ and any homomorphism f : R → S restricts to f : R∗ → S∗. The determinant
assigns to an n by n invertible matrix A an element det(A) ∈ R∗. This is an example of a natural
transformation.

Definition A.4. A natural transformation α : F → G is called a natural isomorphism when
there is a natural transformation β : G→ F such that α ◦ β = idG and β ◦ α = idF .

Notation. We write F ∼= G if there is a natural isomorphism F → G.

Remark. α is a natural isomorphism if and only if each component αC is an isomorphism.

Example. In the category Sets there is a natural isomorphism

P(X) ∼= HomSets(X, 2), (A.2)

given by associating a subset A ⊆ X with its characteristic function χA. This is natural because
for any function f : X → Y and subset B ⊆ Y we have χf−1(B) = χB ◦ f .

Definition A.5. Two categories C,D are said to be equivalent if there are (covariant) functors
F : C → D and G : D → C such that G ◦ F ∼= idC and F ◦G ∼= idD. The functors F and G are
then said to give an equivalence of categories.

Remark. If the functors F and G are contravariant the categories are said to be dual to each other
and F and G give a duality of categories.

Natural transformations can be thought of as ‘morphisms between functors’. This can be made
precise using the concept of a functor category.
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Definition A.6. Let C, D be categories. Then the functor category DC of functors from C to
D has

• functors C → D as objects;

• The morphisms F → G are the natural transformations between F and G.

Remark. The identity natural transformation id : F → F , with components given by the identity
idF (C) : F (C) → F (C) for C ∈ C, serves as the identity morphism in this category. Also natural
transformations can be composed componentwise, and this is associative.

A.4 Limits
Definition A.7. Let J be a category. A diagram of shape J in a category C is a functor J→ C.

Remark. A diagram can be thought of as a collection of objects and morphisms that indexed by
the category J.

Definition A.8. A cone to a diagram F : J → C consists of an object X ∈ C and morphisms
fi : X → F (i) such that for every morphism gij : i→ j in J, F (gij) ◦ fi = fj . This means that the
following diagram

X

F (i) F (j)

fi fj

F (gij)

commutes for every morphism gij : i→ j.

Definition A.9. A limit of a diagram F : J → C is a universal cone to F . That is, a cone
fi : X → F (i) to F such that for every cone hi : Y → F (i) there is a unique morphism q : Y → X
with hi = fi ◦ q for all i ∈ J.

Y

X

F (i) F (j)

q
hi hj

fi fj

F (gij)

Notation. A limit of a diagram F : J→ C is denoted by X = limJF .

Example. • A product is a limit of a diagram of shape

• •

That is, if A,B ∈ C then a product of A and B is an object P together with morphisms
πA : P → A, πB : P → B satisfying: if Y ∈ C and fA : Y → A, fB : Y → B then there is a
unique morphism q : Y → P with fA = πA ◦ q and fB = πB ◦ q.

• An equalizer is a limit of a diagram of shape

• •

Proposition A.1. Let F : J→ C be a diagram with a limit X = limJF . Then X is unique up to
unique isomorphism.

Proof. The idea is that if there are two limits X and Y we have unique morphisms q : X → Y ,
r : Y → X and these are mutually inverse. The details can be found in [17].
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