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Abstract

Rotations in 3-dimensional space can be complemented by graded rotations.
The 3 angular momentum operators receive two complex superpartners. The
irreducible representations of this graded SU(2) symmetry group each consist
of one vector with angular momentum ` = `G and one with angular momen-
tum ` = `G− 1/2 , so that the dimension of such a representation is 4`G + 1 .
Unlike conventional supersymmetry, here the fermionic representation has ei-
ther one component more or one component less than the bosonic one. The
case `G = 0 is the trivial representation. It seems that this graded algebra
only allows N = 1 supersymmetry, not the higher N values.
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1. Introduction

Usually, supersymmetry is regarded as a relation between bosons and fermions in a quan-
tum field theoretical setting. The fact that the anticommutator between two supersymme-
try generators is proportional to the momentum operators, the generators of translations,
appears to be a curiosity needed to relate the fermionic and bosonic field equations, rather
than a special feature of the translation group itself. The generator of time translations,
the Hamiltonian, is conveniently written as the anticommutator of an operator with itself,
i.e., the square of that operator.

Alternatively,one may view supersummetry as the super extension of the translation
group, an important property of space-time. The fact that one can do the same thing
with the rotation group seems to be less evident, and in any case it is rarely mentioned.

The nice thing about the rotation group is that it has a denumerable set of finite-
dimensional representations, which are particularly simple in the three-dimensional case.
Its graded extension is also simple, and here we review the exercise that one can do. This
author had been unaware of these nice features, so he decided to write this down. I did not
find this simple discussion in the literature. It seems that only the N = 1 superextension
gives finite-dimensional representations, as will be demonstrated.

2. The algebra

The SU(2) rotation group has the generators La , a = 1, 2, 3 , from which we will use L3

and L± , where Lpm = L1 ± iL2 . The commutation rules are

[L3, L±] = ±L± ; [L+, L−] = 2L3 . (2.1)

The Casimir operator is

∑
a

L2
a = `(` + 1) , (2.2)

where ` is an integer or an integer plus 1
2
. At each of these values of ` , there is exactly

one irreducible representation with dimensionality 2` + 1 . The states are indicated as
|`, m〉 , with −` ≤ m ≤ ` . A convenient representation of the three operators in these
representations is

L±|`, m〉 =
√

(`∓m)(` + 1±m) |`, m± 1〉 (2.3)

L3|`, m〉 = m |`, m〉 . (2.4)

We now search for anticommuting generators, such that their anticommutators gener-
ate the angular momentum operators La . After a little bit of thought, one finds that the
minimal number of such operators is likely to be two, which we call ψ1 and ψ2 , forming
the complex two-representation of the rotation group. Thus they should commute with
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the angular momenta as follows:

[L3, ψ1] = −1
2
ψ1 , [L+, ψ1] = ψ2 , [L−, ψ1] = 0 ; (2.5)

[L3, ψ2] = 1
2
ψ2 , [L+, ψ2] = 0 , [L−, ψ2] = ψ1 . (2.6)

The fact that this algebra is consistent up to this point is fairly obvious and can be
easily checked. The more subtle part of the algebra will be the relation between the
anticommutators and the L|a operators. The following is consistent, and up to trivial
rescalings, it is unique:

{ψ1, ψ1} = L− , {ψ2, ψ2} = −L+ , {ψ1, ψ2} = L3 . (2.7)

Careful checks show that this algebra closes correctly. However, even if the algebra closes,
it still might not have finite-dimensional representations. This algebra turns out to be
completely acceptable, as the following section shows.

3. Representations

We proceed to identify the complete set of representations. The operator (2.2) commutes
with all La , but not with the ψi , and so it is not a Casimir operator for the graded
group. One finds

[~L2, ψ1] = ψ2L− − ψ1L3 + 3/4ψ1 = L−ψ2 − L3ψ1 − 3/4ψ1 . (3.1)

To complete the Casimir operator, we need a combination of ψ ’s that is also a scalar
under ordinary rotations. A candidate is

Q = ψ1ψ2 − ψ2ψ1 . (3.2)

It indeed commutes with all L ’s. Its commutator with ψ1 is

[Q, ψ1] = 2L3ψ1 − 2L−ψ2 + 3/2ψ1 = 2ψ1L3 − 2ψ2L− − 3/2ψ1 . (3.3)

So, indeed, the operator

R = ~L2 + 1
2
Q (3.4)

is the Casimir operator of the above algebra.

This information should be enough to generate the representations. But one further
algebraic relation is essential. By elaborating the square of Q , one finds

Q(Q− 1) = `(` + 1) . (3.5)

This equation can be solved for Q :

Q = ` + 1 or − ` , (3.6)
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which we rewrite as

Q = 1
2

+ σ(` + 1
2
) , σ = ±1 . (3.7)

In terms of this operator, the Casimir operator (3.4) becomes

R = (` + 1
2
)(` + 1

2
+ 1

2
σ) . (3.8)

Since σ can only take two values, and R must be the same for all states in one
irreducible representation, we find that the two states with σ = ±1 differ exactly half
a unit of ` . If the state with σ = −1 has total angular momentum `G , the Casimir
operator is R = (`G + 1

2
)`G . The state with σ = +1 must have the same value of R ,

and therefore, it has angular momentum ` = `G − 1
2
. Thus, we established the nature of

the representations. We call them [[`G]] , where the number `G can be an integer or an
integer plus 1

2
. Under SU(2) , the representation [[`G]] splits up as

[[`G]] = {[`G]⊕ [`G − 1
2
]} , (3.9)

where the ordinary SU(2) representations with angular momentum ` are indicated as
[`] . The dimensionality of these representations is 2`G + 1 + 2`G = 4`G + 1 . Note that
`G = 0 here is also a representation because, in this case, the ` = `G − 1

2
component

disappears. It is the trivial representation for which La = 0, ψi = 0 .

4. The matrix elements

We have the explicit matrix elements for L± and L3 , as given in Eqs (2.3) and (2.4).
What are the matrix elements of the ψi ? We know that ψ1 subtracts, and ψ2 adds one-
half to L3 , so they must flip the operator σ . Writing an ansatz for these operators, and
plugging them into the commutator relations (2.7), one readily finds (writing ` instead
of `G for short):

ψ1 |`,m〉 =
√

1
2
(` + m) |`− 1

2
, m− 1

2
〉 , (4.1)

ψ1 |`− 1
2
, m + 1

2
〉 =

√
1
2
(`−m) |`,m〉 , (4.2)

ψ2 |`,m〉 = −
√

1
2
(`−m) |`− 1

2
, m + 1

2
〉 , (4.3)

ψ2 |`− 1
2
, m− 1

2
〉 =

√
1
2
(` + m) |`,m〉 . (4.4)

Note that, in these expressions, ` keeps the same value throughout the representa-
tion R` . The quantum number m actually suffices to identify the basis element of the
representation; it takes the 4` + 1 values −`, −` + 1

2
, · · · , `− 1

2
, ` .
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5. The question of higher N algebras

One may think of generalizing the algebra by taking 2N anticommuting generators, ψp
i ,

with i = 1, 2 and p = 1, · · · , N . Let the commutators (2.5) and (2.6) hold for each p
separately. One might suspect that the equations (2.7) could be replaced by

{ψp
1, ψq

1} = L−δpq , {ψp
2, ψq

2} = −L+δpq , {ψp
1, ψq

2} = L3δ
pq , (5.1)

in analogy with conventional supersymmetry. One could define

Qp = ψp
1Ψ

p
2 − ψp

2ψ
p
1 , (5.2)

which, besides the same commutator (3.3) with ψp
1 , would commute with the ψq

i , if
q 6= p . The Casimir operator would be

R = ~L2 + 1
2

∑
p

Qp , (5.3)

and since Eq. (3.5) would hold for every p separately, we would have

Qp = 1
2

+ σp(` + 1
2
) , σp = ±1 . (5.4)

This Casimir operator, Eq. (5.3), would be worked out to be

R = (` + 1
2
)(` + 1

2
+ 1

2

∑
p

σp) + 1
4
(N − 1) , (5.5)

but, since
∑

σp can now take more than two values, the argument of Section 3 fails; the
various ` values differ by numbers that are not half of an integer. Hence, we do not have
finite-dimensional non-trivial representations of this algebra.

This was clearly not an exhaustive search for higher N supersymmetric generalizations
of the angular momenta. Presumably, besides the SU(2) doublets, one will have to use
higher spin fermionic generators.

6. Discussion

The symmetry discussed here differs from conventional supersymmetry. It puts exactly
one object with angular momentum ` = `G and one with angular momentum `− `G − 1

2

in one supermultiplet. Thus, the number of “fermionic” components differs from the
number of “bosonic” ones by plus or minus one unit. One might allpy this to conventional
rotations, but we could also consider an internal symmetry group such as isospin. In that
case, the Lorentz spin stays unaffected, so that we would not be dealing with a symmetry
that transforms bosons into fermions and vice versa.
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