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Abstract— Service availability is one of the most closely scruti-
nized metrics in offering network services. It is important to cost-
effectively provision a managed and differentiated network with
various service availability guarantees under a unified platform.
In particular, demands for availability may be elastic and such
elasticity can be leveraged to improve cost-effectiveness. In this
paper, we establish the framework of provisioning elastic service
availability through network utility maximization, and propose
an optimal and distributed solution using differentiated failure
recovery schemes.

First, we develop a utility function with configurable param-
eters to represent the satisfaction perceived by a user upon
service availability as well as its allowed source rate. Second,
adopting Quality of Protection [1] and shared path protection, we
transform optimal provisioning of elastic service availability into
a convex optimization problem. The desirable service availability
and source rate for each user can be achieved using a price-based
distributed algorithm. Finally, we numerically show the tradeoff
between the throughput and the service availability obtained by
users in various network topologies. This investigation quantifies
several engineering implications. For example, indiscriminately
provisioning service availabilities for different kinds of users
within one network leads to noteworthy sub-optimality in total
network utility. The profile of bandwidth usage also illustrates
that provisioning high service availability exclusively for critical
applications leads to significant waste in bandwidth resource.

Index Terms— Service availability, shared protection, network
utility maximization, resource allocation.

I. INTRODUCTION

A. Motivation

IN the selection of a network service, availability of the
service is one of the most closely scrutinized metrics,

sometimes even more important than other Quality of Service
(QoS) parameters such as latency, jitter, packet loss, etc. A
typical market analysis [2] shows that 50% of subscribers
to network transmission services expect at least the 99.99%
service availability, while very few expect less than 99.7%
service availability. A network vendor provides several types
of services with different levels of service availability guaran-
tee. For example, AT&T guarantees the availability of 99.9%
for Toll-free Service, 99.99% for US Packet Network, and
99.999% for Managed Internet Service ( [3], 2006).

Usually, a stronger availability guarantee means higher
service price. Since different users (e.g., home user, small
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company/education institution, financial business, etc.) have
different sensitivity to the service availability, a customer with
a limited budget need decide to buy what level of service
availability from which provider. On the other hand, for a
network provider, the higher service availability can generate
more revenue from the customers, but at the cost of higher cap-
ital expenditure. Provisioning high service availability usually
requires redundant network resources, such as spare routers,
switches, links, etc., and fast failure recovery/repair schemes.
Accordingly, it is important to cost-effectively provision a
managed and differentiated network with various service avail-
ability guarantees under a unified framework.

Similar to Quality of Service, various concepts of Reliability
of Service (RoS) (or differentiated failure recovery schemes)
[1], [4]–[6] have been proposed to distinguish service avail-
ability. For example, in [1], with a continuous grade on Quality
of Protection (QoP) to represent the probability of initiating
recovery in case of failure, the connections are categorized
as the connection with guaranteed protection, the connection
with best effort protection, unprotected connection, and pre-
emptable connection. In Differentiated Reliability (DiR) [5],
a service availability (independent of the recovery scheme)
is chosen for each application, and the appropriate failure
recovery will be triggered in case of failure to meet the
specified service availability. However, none of these schemes
address the scenario where the users have elastic demands for
service availability.

For many users, demands for availability is indeed elastic:
the user would prefer a higher availability but can also tolerate
a lower one. When demands are elastic, the satisfaction of
a user can be represented by a utility function of service
availability achieved, as well as the source rate obtained when
the service is available. Therefore, the optimal provisioning
of elastic service availability can be realized by solving
an appropriately formulated Network Utility Maximization
(NUM) problem [7], [8]. The notion of network utility was
first advocated in the seminal paper [9] in 1995 for bandwidth
allocation among elastic demands on source rate. This paper
demonstrates that utility maximization can also provide a
quantitative approach to satisfy elastic demands on service
availability and to quantify the tradeoff between rate and
availability.

B. Related Work

The framework of NUM has many applications in network
resource allocation such as Internet congestion control (e.g.,
[10], [11]) and protocol stack design. There is also a useful
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economics interpretation of the dual-based distributed algo-
rithm for NUM, in which the Lagrange dual variables can be
interpreted as shadow prices for resource allocation, and each
end user and the network maximize his/her net utility and
net revenue, respectively. Primal and dual-based distributed
algorithms have been proposed to solve for the global optimum
of NUM problems (e.g., [12]–[14]).

Consider a communication network with L logical links,
each with a fixed capacity of cl bps, and S sources (i.e., end
users), each transmitting at a source rate of xs bps. Each
source s emits one flow, using a fixed set L(s) of links in
its path, and has a utility function Us(xs). Each link l is
shared by a set S(l) of sources. NUM, in its basic version,
is the following problem of maximizing the network utility∑

s Us(xs), over the source rates x, subject to linear flow
constraints

∑
s∈S(l) xs ≤ cl for all links l:

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl, ∀l,

variables x � 0.
(1)

Making the standard assumption on concavity of the utility
functions, problem (1) is a simple concave maximization of
decoupled terms under linear constraints, which has long been
studied in optimization theory as a monotropic program [15].

The basic NUM (1) has been extended to include other
layers to understand network architecture [16], as well to
achieve fair resource allocation in the network provisioning
QoS and Differentiated Service (DiffServ) [17]. Thus the
utility function is not solely decided by the transmission rate.
Instead, it depends on the QoS (such as end-to-end delay,
jitter, packet loss, etc.) guaranteed for the transmission as
well as the transmission rate [18]–[21]. However, among the
extensive literature on NUM and its generalizations, most
works treat utility as a function of throughput or throughput
per unit of energy, with a few publications examining utility as
a function of communication reliability or delay. In contrast,
the question of how to optimally provision the network for
elastic service availability has not been tackled through the
utility formulation. Throughout this paper, we will encounter
several new challenges in tackling this new question, from the
introduction of both primary and backup paths for each source
to the nonconvexity in the problem formulation.

C. Communication Reliability vs. Service Availability

In [22], [23], the QoS of end-to-end communication reliabil-
ity is incorporated into the framework of NUM. Due to chan-
nel noise or fading, not all the signals can be successfully de-
coded at the receiver. On some communication links, the phys-
ical layer’s adaptive error correction mechanisms can change
the link capacity and decoding error probability, e.g., through
adaptive channel coding in Digital Subscriber Loop (DSL)
broadband access networks or adaptive diversity-multiplexing
control in Multiple-Input-Multiple-Output (MIMO) wireless
systems. Lee et al. investigate the intrinsic tradeoff between
rate and communication reliability (end-to-end signal quality)
[22]. Marbukh proposed a method of integrating diverse rout-
ing and retransmission as an alterative to single path routing
for each flow [23].

Communication reliability and service availability are two
different concepts. Some of their differences can be demon-
strated by a simple example. Assuming a customer requests
1Mbps connection service from a carrier, but the carrier grants
1.01Mbps because either the communication reliability or
service availability is only 99%. For the former scenario, on
average, one bit of every 100 bits is lost during the trans-
mission. Such loss can be compensated by retransmissions
or appropriate coding in a fast timescale [22]. In contrast, in
the latter scenario, the connection is available except for an
unpredictable 7 hours of downtime every month. In general,
the customer does not have the same satisfaction/utility in the
two scenarios.

In addition to timescale difference, communication reliabil-
ity and service availability also rely on different mitigation
methods: channel coding and lost packet retransmission are
used to ensure communication reliability, and backup band-
width provisioning for path restoration and protection are used
to enhance service availability.

D. Summary of Contributions

In this paper, we address the resource allocation when
elastic service availability is considered. Service will be tem-
porarily unavailable because of the failures due to human
mistakes (e.g., mis-configuration), software bugs, hardware
defects, natural disasters (e.g., flooding or earthquakes), or
even perpetrators (e.g., terrorists or hackers). Such failures in
general cannot be repaired immediately or compensated by
retransmission as in the cases of [22], [23]. To ensure the
high availability required by some critical applications, failure
recovery has to be implemented where the affected traffic
is rerouted in case of failure. An effective failure recovery
scheme usually consists of three components: establishing
backup paths disjoint from the primary paths, provisioning
network resource (e.g. bandwidth) prior to failure, and real-
time failure detection and signaling to reroute traffic [24].
The first component has been extensively studied with graph
theoretic methods. The third has been investigated by the
system research community. In this work, we focus on the
second component: bandwidth provisioning to achieve the
optimal service availability through NUM.

This work is the first to investigate elastic service availabil-
ity provisioning using differentiated failure recovery:

• Framework: We develop the NUM framework for elastic
service availability, and present a utility function with
configurable parameters to represent the satisfaction per-
ceived by different users upon service availability and
source rate.

• Centralized solution: With Quality of Protection (QoP)
and shared path protection, we transform the problem into
a convex optimization, thus efficiently solvable for global
optimality through standard centralized algorithms.

• Distributed solution: With regular updates of backup path
provisioning, we also propose a price-based distributed
algorithm to optimally provision elastic service availabil-
ity and source rate.

• Simulation: We carry out numerical experiments over
realistic network topologies, and present the optimal
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TABLE I

SUMMARY OF KEY NOTATION

Notation Meaning
qs Service availability provided for source s

ρs Number of 9’s in service availability qs

ηs Probability of initiating failure recovery for source s

Us(·) Utility function of source rate and service availability
Vs(·) Normalized utility function of service availability,

which may take in arguments of qs, ρs or ηs

xs Data rate of source s

ys Expected backup rate of source s

ws Adjusted rate of source s

as Criticality parameter (in service availability) of Us

bs Elasticity parameter (in service availability) of Us

L(s) Primary/working path of source s

M(s) Backup path of source s

cl Capacity of link l

zl Backup bandwidth reserved on link l

S(l) Set of connections using link l on primary path
T (l) Set of connections using link l on backup path

tradeoff between the throughput and the service avail-
ability.

Engineering implications of this work quantify several intu-
itions on elastic service availability. For example, we show that
indiscriminately provisioning service availabilities for differ-
ent kinds of users within one network leads to noteworthy sub-
optimality in terms of maximizing network utility. By profiling
bandwidth usage, we illustrate that provisioning high service
availability exclusively for critical users/applications leads to
significant waste in bandwidth resource.

The rest of the paper is organized as follows. In Sec. II, we
incorporate the elastic service availability into the framework
of NUM with differentiated failure recovery. In Sec. III, a
price-based distributed algorithm is proposed to determine de-
sirable service availability and source rate for each user. Then
we present results from extensive numerical experiments in
Sec. IV. We conclude and discuss future work on provisioning
of elastic service availability in Sec. V. The key notation used
throughout this paper is summarized in Table I.

II. SYSTEM MODEL

Consider a similar setup as that for problem (1), but now
source s has a utility function Us(xs, qs), where xs is a source
rate and qs is the service availability provided for source s.
We assume that the utility function is a continuous, strictly
increasing function of xs and qs.

To provision high network availability, spare bandwidth
has to be reserved in advance. Such bandwidth is usually
not used under normal situation except by some preemptable
connections. Denote zl as the backup bandwidth reserved on
link l. Let Γ be the recovery scheme to be used in case
of failure, and denote also by Γ(x, z) the function mapping
the source rates x and backup bandwidth reservation z to

the service availabilities achieved under the failure recovery
scheme Γ. Then the resulting formulation is as follows:

maximize
∑

s Us(xs, qs)
subject to

∑
s∈S(l) xs + zl ≤ cl, ∀l,

q = Γ(x, z)
variables x, z,q � 0.

(2)

This problem formulation is the starting point of the devel-
opment in this section. Next, we need to specify function Us

and function Γ.

A. Utility Function of Service Availability

We need an appropriate utility function Us(xs, qs) to mea-
sure the satisfaction perceived by a user from both rate xs ≥ 0
and service availability qs ∈ [0, 1]. In this work, we choose

Us(xs, qs) = Us(xs · Vs(qs)),

where Vs(qs) ∈ [0, 1] denotes the normalized utility function
of service availability. Let ws � xs · Vs(qs) be the adjusted
rate, and Us(ws) be a strictly concave function. Obviously, if
qs = 1, then Vs(qs) = 1 and Us(xs, qs) = Us(xs).

Note that service availability, qs, is generally measured in
the number of 9’s. E.g. 99.99% has four 9’s. We use ρs to
represent the number of nines for service availability qs as
follows:

ρs � − log10(1 − qs). (3)

With a slight abuse of notation Vs to denote the function of ρs

as well: Vs(ρs) = Vs(1−10−ρs), and Vs(ρs) is the normalized
utility function of ρs, the number of 9’s in service availability
qs.

Note that Vs(ρs) should be a strictly increasing function
of ρs and bounded within [0, 1]. Moreover, each user has
a threshold of acceptable service availability, ρs,min. Failing
to provision such service availability will result in near-zero
utility no matter what source rate can be achieved. Base on the
above observations, we propose the following utility function:

Vs(ρs) = 1 − 10as−bsρs , as ≥ 0, bs ≥ 0 (4)

The proposed utility function (4), depicted in Fig. 1, is
a concave function of ρs with two parameters: criticality
parameter as and elasticity parameter bs. In Fig. 1, three
typical kinds of users (normal, important and critical users)
with different sensitivities to service availability are illustrated.
For example, home users can be categorized as normal users,
school users are important users, and financial business are
critical users. The larger value of criticality parameter as

means higher service availability requirement and the larger
value of elasticity parameter bs means steeper curve and
suggests less elasticity in service availability requirement.
Note that, to ensure Vs(ρ) ∈ [0, 1], we have ρs,min = as

bs

and qs,min = 1 − 10−
as
bs .

We now demonstrate how parameters as and bs can be set
from customer’s requirements stated in two other parameters
of direct engineering implications. Given a customer s who
has a minimum requirement on service availability, qs,min,
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Fig. 1. Utility Vs(ρs) as a function of ρs (number of 9’s in service
availability qs) for three typical kinds of users.

and achieves φ percent of satisfaction at service availability
qs,φ. Then we have

qs,min = 1 − 10−
as
bs

φ/100 = 1 − 10as−bs(− log10(1−qs,φ)).

Solving the equations above for as and bs, we can choose
the following parameters, thus specifying the utility function
accordingly:

bs = log10(1−φ/100)

log10
1−qs,φ

1−qs,min

as = bs (− log10(1 − qs,min)) .

A family of utility functions widely used in NUM for
resource allocation formulations are the α-fair utilities [25],
which can be normalized such that Vs(ρs,min) = 0 and
Vs(ρs,max) = 1:

Vs(ρs) =

⎧⎨
⎩

ρ1−α
s −ρ1−α

s,min

ρ1−α
s,max−ρ1−α

s,min

, if α �= 1
log ρs−log ρs,min

log ρs,max−log ρs,min
, if α = 1

. (5)

It turns out that such utility functions will result in a non-
convex optimization problem for service availability provision-
ing, thus losing the desirable properties of efficient solutions
(centralized or distributed) for global optimality. Fortunately,
the curves of the utility function we proposed are very close
to those of normalized utility function (5) with appropriate α
parameters, which are shown as the dashed lines in Fig. 1.
Therefore, a different parametrization of utility curves whose
shapes are very close to the standard α-fair curves lead to
a much more tractable convexity structure in the problem
formulation to be shown later this section.

B. Enhance Service Availability with Shared Path Protection

Failure recovery is usually required for provisioning high
service availability. There are two main failure recovery
schemes: protection and restoration. The major difference
between the two is that, in protection, a detour around a
possible failure is determined at the time of connection setup
and the spare capacity is allocated and updated periodically

along the detour prior to the failure, whereas in restoration,
the detour is dynamically determined after the failure occurs.
Accordingly, protection schemes can in general recover from
a failure quicker (as long as the detour is not affected by any
other failures), but are less bandwidth efficient than restoration
schemes. On the other hand, restoration schemes can survive
one or multiple failures (as long as the destination is still
reachable, with sufficient connectivity and bandwidth), but
they cannot guarantee the recovery time, or the amount of
information loss for real-time applications, making them un-
suitable for mission-critical applications. In this paper, we will
focus on improving service availability with various protection
schemes.

In many applications, we mainly consider the scenario of
single failure. Then we can use shared protection [26]–[28] to
reduce bandwidth usage in a mesh network since the backup
bandwidth reserved by multiple connections on a same link
can be shared as long as no single failure can affect them
simultaneously.

C. Quality of Protection under Shared Path Protection

With shared path protection, some schemes with reliability
of service [1], [5], [6] can be implemented to differentiate
service availability. For example, in Quality of Protection
(QoP), each connection is associated with a continuous QoP
grade ηs ∈ [0, 1], which is equivalent to the probability that
connection will be restored immediately in case of failure.
Such probabilistic model can be implemented in a determin-
istic way by reserving ηsxs, the expected backup bandwidth,
along its backup path [1].

In this work, we adopt shared path protection and QoP
to provision elastic service availability. Therefore, for each
connection s, besides its fixed working/primary path L(s),
it has a pre-planned disjoint backup path M(s), i.e., L(s) ∩
M(s) = ∅. In case of failure at link m, the connection s using
m on its primary path will reroute the traffic along its backup
path with a probability of ηs.

Let rl denote the link availability of link l and all link
failures are assumed to be statistically independent. Then
the availability of the primary path and backup path of the
connection s are

q0,s =
∏

l∈L(s) rl,

q1,s =
∏

l∈M(s) rl
(6)

respectively. When at most one link failure is considered, the
availability for connection s,

qs ≈ q0,s + (1 − q0,s)q1,sηs (7)

To search for the optimal solution to problem (2) with the
failure recovery scheme (Γ) mentioned above, we need to opti-
mally determine the source rates (x) and service availabilities
(q) for all the connections simultaneously. We refer to such
optimization procedure as ΓOPT .

For comparison purpose, we also introduce two extreme
cases of recovery scheme as follows.

• ΓNR (No Recovery): No failure recovery scheme is
implemented, i.e. ηs = 0. Thus the service availability
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Fig. 2. Utility Vs(ηs) as a function of ηs (Quality of Protection) for three
typical kinds of users.

achieved by any connection is just the availability of its
primary path, q0,s.

• ΓSA (Sufficient Availability): As a conservative approach,
sufficient backup bandwidth will be reserved along
backup path (i.e. ηs = 1) regardless of users’ elastic
demands for service availability.

The methods of solving problem ΓOPT can be easily
extended to the other two recovery schemes ΓNR and ΓSA

by specifying the value ηs in advance as the additional
constraints.

Obviously, from (7), we have 1−qs = (1−q0,s)(1−q1,sηs).
Then Vs(qs) = Vs(1 − (1 − q0,s)(1 − q1,sηs)), and with a
slight abuse of notation, we also use Vs(ηs) to represent the
normalized utility function of ηs (QoP). From (3) and (4),

Vs(ηs) = 1 − 10as+bs log10(1−q0,s) (1−q1,sηs)

= 1 − 10as ((1 − q0,s) (1 − q1,sηs))
bs .

(8)

Fig. 2 shows the curves of utility Vs(ηs) as the function of
(ηs) for the three representative classes of users with elastic
service availability demands (same parameters as those in
Fig. 1) assuming the availabilities for both primary path and
backup path are 98.5%. Note that, the curve will not be a
straight line if bs is not equal to 1. In addition, to ensure
Vs(ηs) ∈ [0, 1], the lower bound of QoP acceptable for user s
is

ηs,min = max

⎧⎨
⎩

1 − 1

10
as
bs (1−q0,s)

q1,s
, 0

⎫⎬
⎭ .

Confirming our intuition, the more important users may have
a strictly positive ηs,min, as illustrated by the ‘critical user’
curve in Fig. 2.

D. Optimal Provisioning of Elastic Service Availability

Denote ys = ηs xs as the expected backup bandwidth
reserved for connection s along its backup path. Then the

objective of (2) is

max
∑

s

Us(xs · Vs(ηs)) = max
∑

s

Us(xs · Vs(
ys

xs
)),

which is equal to max
∑

s Us(ws), where

ws = xs · Vs(
ys

xs
). (9)

Since Us(ws) is a strictly increasing function, the equality
constraint (9) can be replaced by ws ≤ xs · Vs( ys

xs
) as the

constraint is always tight at optimality.
As we only consider single link failure, we have (10)

zl = max
∀m �=l

∑
s∈T (l)∩S(m)

ys,∀l, (10)

where T (l) denotes the set of connections using l on their
backup paths and S(m) denotes the set of connections using m
on their primary paths. Eq. (10) means the backup bandwidth
reserved on link l just need to be sufficient to recover the
worst failure scenario. Therefore, the formulation for problem
ΓOPT is summarized as follows:

max
∑

s Us(ws)
s.t.

∑
s∈S(l)

xs +
∑

s∈T (l)∩S(m)

ys ≤ cl,∀l,∀m �= l,

ws ≤ xs · Vs( ys

xs
),∀s ∈ S,

x � y,
vars. w,x,y � 0.

(11)

Note that ηs can be recovered from (xs, ys), and constants
(as, bs) are implicitly represented in the function Vs.

The rest of this paper examines the solution methods and
engineering implications of the above problem.

E. Analysis for a Simple Scenario

Before discussing solution methods in general, we first
illustrate some of the interesting aspects of the problem
formulation through a simple example. Suppose we have only
one source-destination pair, and two single-link paths, l0 and
l1, for primary and backup paths respectively. Assume their
path availabilities are q0 and q1 and their link capacities are
c0 and c1, respectively. For the single user, its criticality
parameter is a and elasticity parameter is b.

For this simple scenario, the optimization problem is (12),

maximize U(w)
subject to x ≤ c0

y ≤ c1

x ≥ y
w ≤ x · V ( y

x )
variables x, y,

(12)

where V ( y
x ) = 1 − 10a(1 − q0)b

(
1 − q1

y
x

)b
.

If c0 ≤ c1, the optimal solution is x∗ = y∗ = c0,
which is trivial. If c0 ≥ c1, it is easy to see that the
optimal solution satisfies c1 ≤ x∗ ≤ c0 and y∗ = c1.
With y∗ = c1, the problem is equivalent to maximizing
w(x) = x

[
1 − 10a(1 − q0)b

(
1 − q1

c1
x

)b
]

over x ∈ [c1, c0].
We take the derivative of w(x) with respect to x,

dw
dx = 1 − 10a(1 − q0)b

(
1 − q1

y
x

)b
[
1 + b(1+q1

y
x )

1−q1
y
x

]
. (13)
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criticality (a) and elasticity (b) parameters.

It is easy to verify that x∗ = c0 if dw
dx |x=c0 ≥ 0, otherwise

x∗ < c0, which means that link l0 cannot be fully utilized.
Since dw

dx |x=c0 is a function of the parameters a, b, c0 and
c1, the values of the parameters may affect whether link l0 is
fully utilized or not.

In Fig. 3 below, we show how the parameters may affect
whether link l0 is fully utilized or not. We set q0 = q1 =
98.5%, c0 = 2 units and c1 = 1 unit. We can see that for
small a, which corresponds to non-critical requirement on
availability, link l0 can be fully utilized. When a becomes large
or user has higher availability requirement, link l0 become not
fully utilized, especially for a smaller elasticity parameter, b.

The important thing illustrated here is that given a and b
based on users’ sensitivity to availability, there may be some
capacity not fully utilized if the capacities for primary use
and backup do not match well. We can save capacity by
matching the primary use and backup use. For instance, for
this simple scenario above with the given a, b and c0, by
solving dw

dx |x=c0 = 0 for c1, we can get the smallest capacity
for backup such that c0 can be fully utilized. When there are
multiple users sharing links, the saved capacity by matching
the rates on primary path and backup path for one user, can be
used to support other users. Our interest is to do the matching
for all the users with elastic demand on service availability in
a systematic way in a general topology.

F. Algorithms: Centralized or Distributed

It can be easily verified that when as > 0, bs ≥ 1,
xs · Vs( ys

xs
) is a strictly concave function of (xs, ys) and

the final problem (11) is a convex optimization problem.
Highly efficient primal-dual interior point algorithms [29]
can thus be used to solve for the unique global optimum
of the problem. Such centralized computation is suitable for
off-line provisioning of elastic service availability through a
centralized network management, which is the most probable
application scenario in practice.

In a different scenario, when the users change their prefer-
ence or utility function over time, in order to enable regular
updates through distributed message passing within the net-
work, we need to develop distributed algorithms to solve (11)
for the jointly optimal source rates and service availabilities.
Most likely, such distributed updates of service availability
provisioning is only needed once over a long time. This is the
subject of Sec. III.

III. DISTRIBUTED ALGORITHM

In this section, we use a dual decomposition approach to
distributively solve problem (11). Using both l and m to
index links, and denoting the stacked vector of dual variables
(or pricing variables) as λ, we first write the Lagrangian
associated with problem (11) as

L(w, x, y, λ)
=

∑
s Us(ws) +

∑
l

∑
m:m�=l λl,m(cl −

∑
s∈S(l) xs

−∑
s∈T (l)∩S(m) ys)

=
∑

s{Us(ws) − ∑
l∈L(s)

∑
m:m�=l λl,mxs

−∑
l∈M(s)

∑
m∈L(s) λl,mys} +

∑
l

∑
m:m�=l λl,mcl.

(14)

The Lagrange dual function is

Q(λ) = max L(w, x, y, λ),
ws ≤ xs · Vs(

ys
xs

), ∀s,
x � y,

w, x, y � 0,

(15)

where 0 is the vector whose elements are all zeros.
The dual problem is formulated as

min Q(λ)
s.t. λ � 0.

(16)

To solve the dual problem, we first consider problem (15).
Since the Lagrangian is separable, this maximization of the
Lagrangian over w,x,y can be conducted in parallel at each
source s:

max Us(ws) −
∑

l∈L(s)

∑
m:m �=l λl,mxs

−∑
l∈M(s)

∑
m∈L(s) λl,mys

s.t. ws ≤ xs · Vs( ys

xs
),

xs ≥ ys,
vars. ws, xs, ys ≥ 0.

(17)

Then, dual problem (16) can be solved by using the gradient
projection algorithm as

λl,m(t + 1)

=
[
λl,m(t) − α(t)

(
cl −

∑
s∈S(l) xs(t) −

∑
s∈T (l)∩S(m) ys(t)

)]+
,

∀l, ∀m �= l,
(18)

where α(t) is the step size and xs(t) and ys(t) are solutions
of problem (17) for a given λ(t).

We now propose the following distributed algorithm for
ΓOPT where each source solves its own problem with only
local information. There is an important difference of the
following algorithm compared with the standard NUM for rate
allocation only: each link l maintains a set of congestion prices
λl,m for all m �= l.
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Distributed Algorithm for ΓOPT

In each iteration t, by solving the following problem (19)
over (ws, xs, ys), each source s determines its adjusted rate
(ws(t)), rate on primary path xs(t) and rate on backup
path (ys(t)) that maximize its net utility based on the prices
(λs

x(t), λs
y(t)) in the current iteration.

Source problem at source s:

max Us(ws) − λs
x(t)xs − λs

y(t)ys

s.t. ws ≤ xs · Vs( ys

xs
),

xs ≥ ys,
vars. ws, xs, ys ≥ 0.

(19)

where λs
x(t) =

∑
l∈L(s)

∑
m:m �=l λl,m(t) is the end-to-end

(primary path) congestion price at iteration t, and λs
y(t) =∑

l∈M(s)

∑
m∈L(s) λl,m(t) is the end-to-end (backup path)

congestion price at iteration t.
In addition, by price update equation (20), the link adjusts

its congestion prices for the next iteration.
Update of the set of congestion prices at link l:

λl,m(t + 1) =
[
λl,m(t) − α(t)

(
cl − xl(t) − yl,m(t)

)]+
,∀m �= l,

(20)

where xl(t) =
∑

s∈S(l) xs(t) is the aggregate rate of those
connections using l on their primary paths at iteration t, and
yl,m(t) =

∑
s∈T (l)∩S(m) ys(t) is the aggregate rate of those

connections using l and m on their backup paths and primary
paths, respectively.

Message passing in the above algorithm only needs to be
carried out between each source and the links on its (primary
and backup) paths. To decide the congestion price according
to (20), link l needs to know xl(t) and yl,m(t) for all m �= l.
Therefore, if source s changes its rate xs, it can send an update
message (containing the new value of xs) to the links (l ∈
L(s)) along its primary path. In contrast, if source s changes
its rate ys, it has to send an update message (containing the
new value of ys and the route of its primary path, i.e. m ∈
L(s)) to notify the links (l ∈ M(s)) along its backup path.

On the other hand, to solve source problem (19), source s
needs to know the end-to-end primary and backup congestion
prices, λs

x(t) and λs
y(t). First, λs

x(t) can be obtained by
a notification message originated from the destination that
summarizes the congestion price

∑
m:m �=l λl,m(t) of each

link (l ∈ L(s)) along its primary path. Second, λs
y(t) can

be obtained by the notification message originated from the
destination to sum up the congestion price

∑
m∈L(s) λl,m(t)

of each link (l ∈ M(s)) along its backup path.
In addition, to calculate its utility on service availability

according to (6) and (8), the source also needs to know the
availabilities of the links (rl) of its primary and backup paths,
which are usually static in wired networks.

After the above dual decomposition, the following result
can be proved using standard techniques in distributed gradient
algorithm’s convergence analysis:

Theorem 1: Assume as > 0, bs ≥ 1, by Distributed Algo-
rithm for ΓOPT , dual variables λ(t) converge to the optimal
dual solutions λ∗ and the corresponding primal variables w∗,
x∗ and y∗ are the globally optimal primal solutions of (11).

Outline of the Proof:
Since strong duality holds for problem (11) and its Lagrange

dual problem (16), we solve the dual problem through dis-
tributed gradient method and recover the primal optimizers
from the dual optimizers. By Danskin’s Theorem [30],

∂Q(λ(t))
∂λl,m(t)

= cl − xl(t) − yl,m(t),∀l,∀m �= l.

Hence, the algorithm in (20) is a gradient projection algo-
rithm for dual problem (16). Since the dual objective function
Q(λ) is a convex function, there exists a step size α(t) that
guarantees λ(t) to converge to the optimal dual solutions λ∗

[30]. Also, if �Q(λ) satisfies a Lipschitz continuity condition,
i.e., there exists a constant H > 0 such that

‖ �Q(λ1) − �Q(λ2) ‖≤ H ‖ λ1 − λ2 ‖,∀λ1,λ2 � 0,

then λ(t) converges to the optimal dual solution λ∗ with a
sufficiently small constant step size α(t) = α, 0 < α < 2/H
[30]. The Lipschitz continuity condition is satisfied if the
curvatures of the utility functions are bounded away from zero,
see [14] for further details.

Furthermore, since problem (11) is a strictly convex op-
timization problem and problem (19) have unique solutions,
w∗, x∗ and y∗ are the globally optimal primal solutions of
(11) [31]. �

IV. PERFORMANCE EVALUATION AND ENGINEERING

IMPLICATIONS

In this section, we present the numerical results in provi-
sioning elastic service availabilities. Recall that inputs to our
problem are: a set of given primary and backup paths, a set of
specified protection schemes, and the (as, bs) parameters for
each user s.

We consider two network topologies. The first is shown in
Fig. 4, which is the same as that used in [26] and has 15
nodes and 28 bi-directed edges (for a total of 56 links). The
capacity of each dark (bold) link is 4 times as large as that
of the other (thin) links. The second is a large network called
USnet shown in Fig. 5 [32] (with 46 nodes and 76 bi-directed
edges of uniform capacity) is also considered. Without being
stated explicitly, the capacities of the thin links in the 15-node
network and all the links in the 46-node network are assumed
to be 1000 units.

For all test scenarios, there is an elastic demand between
each node pair. The utility function of user s is Us(xs, qs) =
Us(xs · Vs(qs)) as discussed in Sec. II. We use Us(ws) =
log(ws) as the utility function of adjusted rate ws = xs ·
Vs(qs). Each user also has its own criticality parameter as and
elasticity parameter bs for elastic service availability demand.

A link-disjoint pair of primary path and backup path are
chosen for each demand. Since the traffic is carried on the
primary path most of the time and the backup bandwidth can
be shared by several connections, we use the shorter one of the
disjoint path pair as the primary path [33]. In the simulation,
we use Dijkstra (shortest path) algorithm to find a primary
path first followed by finding a backup path after removing
the links along the primary path. For the case of no utility
function for elastic service availability, previous studies have
shown that the above primary-path-first heuristic can achieve
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Fig. 4. A 15-node network with heterogneous link capacities.

 

Fig. 5. 46-node USnet network with uniform link capacities.

near-optimal efficiency in bandwidth usage compared to other
counterparts with complicated routing [33].

For the first and simple scenario to be investigated, all the
users have the same service availability parameters as and
bs, and only optimal recovery scheme ΓOPT is tested. Then
in the second scenario, the users could have various service
availability parameters and the other two recovery schemes,
ΓNR (No Recovery) and ΓSA (Sufficient Availability), are also
tested and compared.

A. Scenario with Uniform Service Availability Parameters

In this set of tests, the availabilities of links are all 99%
and all the demands are assumed to have the same settings
on criticality, as, and elasticity, bs, parameters. The resulting
service availabilities achieved by the demands could still
be different since their primary/backup paths use different
number of hops and thus have different path availabilities.
In addition, the congestion price of using a link could also be
different.

Impacts of elastic service availability on throughput-
availability tradeoff. We trace the globally optimal tradeoff
curve between network throughput and service availability
with optimal recovery scheme ΓOPT on the 15-node network.
At first, the value of bs is fixed at 1, and the value of
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Fig. 6. Optimal tradeoff curves between network throughput (
∑

xs)
and weighted average service availability (

∑
(xsρs)/

∑
xs) with various

criticality, as (producing a much larger dynamic range), and elasticity, bs,
parameters for a 15-node network.

as varies from 0.7 to 2.7 at step size of 0.1. Then we
fix the value of as as 1.7 and vary the value of bs from
1 to 3 at step size of 0.2. The two resulting curves are
shown in Fig. 6, which demonstrate the tradeoff between
the network throughput (

∑
s xs) and the weighted average

service availability (
∑

s xsqs∑
xs

). Quantifying our intuition, a
larger criticality parameter as (i.e. more sensitive to service
availability) leads to higher service availability at the expense
of lower throughput, since more bandwidth have to be used
for backup purpose. From the least sensitivity (as = 0.7)
to the highest sensitivity (as = 2.7), the weighted average
service availability increases from 98.63% to 99.96% while
the network throughput decreases by 55.7%. The results
with various elasticity parameters, bs, also confirm the above
observation on the tradeoff between throughput and service
availability. Note that, when bs is large enough (≥ 2), the
utility functions Vs(ρs) shown in Fig. 1 will be very close to
step functions. Such lack of elasticity in service availability
leads to little variation in rate allocation, thus the points with
bs ∈ [2, 3] are very close to each other in Fig. 6.

Impacts of elastic service availability on bandwidth usage.
Fig. 7 shows the percentages of the total bandwidth used by all
primary paths and backup paths when the value of bs is fixed
at 1 and the value of as varies from 0.7 to 2.7. It turns out that
if the demands are not sensitive to service availability, almost
all the bandwidth can be used by primary paths, and thus an
optimal recovery scheme would have the similar performance
as no recovery scheme. With the increasing sensitivity to
service availability for the demands, more bandwidth have to
be used for backup purpose. Another interesting observation
of Fig. 7 is that when the users are very sensitive to service
availability (i.e., a large value of as) a significant fraction
of bandwidth is wasted since a user cannot increase its rate
along its primary path if it cannot simultaneously increase
its backup bandwidth reservation to maintain the appropriate
service availability. For example, the percentage of the unused
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bandwidth is as high as 10.5% when as ≥ 2.2 (as shown
by the 4th and 5th bars in Fig. 7), i.e., provisioning high
service availability exclusively for critical users/applications
leads to significant waste in bandwidth resource. There are two
possible ways to reduce the bandwidth waste: 1) employing
dynamic (and possibly complicated) routing for primary paths
and backup paths, and 2) allowing for demands with various
sensitivities to service availability, which is discussed next.

B. Scenario with Diverse Service Availability Parameters

For this test scenario, all source nodes are categorized as
normal user, important user and critical user, with a population
ratio of 9:3:1. Their criticality, as, and elasticity, bs, param-
eters are same as those illustrated in Fig. 2. All the links
have the same availability, r. Fig. 8 shows the network utility
achieved in a 15-node network when the link availability varies
from 0.975 to 0.999. Obviously all curves are monotonically
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Fig. 9. Comparison of the achieved network utility for the 46-node USnet.
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Fig. 10. Network utility (
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s Us) achieved by optimal recovery scheme for
the 15-node network with various link capacity (c) and link availability (r).

increasing since network-wide availability increases as each
link’s availability increases. It is clear that the proposed
optimal recovery scheme (ΓOPT ) is consistently (and indeed
provably) better than the other two regular schemes: no recov-
ery scheme (ΓNR) and sufficient availability scheme (ΓSA).
When the link is not reliable, by selectively provisioning
failure recovery, ΓOPT achieves 26.9% more utility than ΓNR.
Moreover, sufficient availability scheme could be even worse
than no recovery scheme in terms of total utility when links
are very reliable. Fig. 9 shows the network utility achieved in
the 46-node USnet as link availability varies, where similar
observations can be made.

Fig. 10 shows that the network utility achieved by opti-
mal recovery scheme in the 15-node network will increase
when we uniformly raise link capacity (c) or improve link
availability (r). Given an operating point of link capacities,
link availabilities, and the achieved network utility, to reach
a higher network utility, it will be interesting to investigate
which way of increasing link capacity and improving link
availability is more cost-effective. In this test sample, if the
current link capacity, link availability and network utility
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achieved are 750 units, 0.98 and 898.2 respectively, to increase
network utility by 6.5%, we can either increase link capacity
by 33% or improve link availability to 0.995. Which network
upgrade (link capacity increase or availability enhancement)
is more cost-effective depends on the detailed capacity and
equipment cost models. For example, most likely in well-
deployed optical networks, it is less expensive to increase
link capacity by lighting dark fibers than to enhance link
level availability through more advanced transceiver optical
components. Graphs such as the one in Figure 10 will allow
operators to choose between alternative modes of service
availability enhancement to best satisfy the overall elastic
demands.

V. CONCLUSION

We establish the framework of provisioning elastic service
availability through network utility maximization. This work
complements the existing literature on either bandwidth al-
location for elastic demands but no availability concerns, or
bandwidth allocation for availability provisioning but ignoring
demand elasticity. By developing a utility function of service
availability in addition to source rate, we transform optimal
provisioning into a convex optimization problem using differ-
entiated failure recovery. The desirable service availability and
source rate for each user can be achieved using a price-based
distributed algorithm, where each link maintains multiple
prices. We carry out numerical experiments over realistic
network topologies, and present the optimal tradeoff between
the throughput and the service availability. Engineering im-
plications of this work quantify several intuitions on elastic
service availability.

We initiate a utility-based study of network resilience by
addressing optimal provisioning for elastic service availability
through quality of protection and shared path protection. It
would be interesting to investigate the elastic service availabil-
ity provisioning for other schemes, e.g. employing other differ-
entiated failure recovery schemes, using restoration instead of
protection, recovering from multiple failures, etc. Combined
with detailed cost models, this work will also lead to a
quantification of the minimum-cost tradeoff between adding
capacity and improving link availability for maximization of
utility of service availability.
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