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1. INTRODUCTION

Goal  Candidate Pooling Regions (PRs) are generated by * Learning from image datasets with extremely weak « Local patches dataset of Brown et al. [PAMI, 2011]
Learn discriminative keypoint descriptors for keypoint  dense sampling of their location and size annotation: "some (unknown) pairs of images contain  « Measure: false positive rate at 95% recall (FPR95, %)
matching and object instance retrieval » Symmetric configuration: PRs grouped into rings a common part” (e.g. Oxford5K) » State-of-the-art performance:
What is being learnt? i-th pooling * Automatic homography estimation USing RANSAC Irain set Test set |Learnt proj., <64-D|Learnt proj., low-dim.|Brown et al. |2]
& ) [ region ring } e For each keypoint 3 set of putative matches is Yosemite |Notre Dame| 7.11 (59-D) 9.67 (29-D) 11.98 (29-D)
. Spatial pooling regions _ o _ SR Yosemite | Liberty 16.27 (59-D) 17.44 (29-D) 18.27 (29-D)
. D onals ducti p € 0; po] computed using the affine region overlap criterion Notre Dame| Yosemite | 10.36 (61-D) 12.54 (36-D) 13.55 (36-D)
Dimensiona Ity reduction _ | ) Notre Dame| Liberty 13.63 (61-D) 14.51 (36-D) 16.85 (36-D)
. . Q& -O’ 7T/4] j1> qu € R™ Error rate for the learnt descriptors and the method of Brown et al.
Contribution o € [0.5: pol
* Convex large-margin formulations for Pl T [ Proposed methos PR [ Frovosed methos |
. . . qabi ® Brownetal. (400-D, 14.43%)| | 121 o - ® Brown et al.{29—D,11.98%}5_
= pooling region selection 5 - : | | | | -
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. dimensionality reduction Gaussian pooling regions, grouped into a ring, are applied to feature % e o o T o
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* Extension to learning under very weak supervision channels to produce a part of the descriptor vector ¢
* PR learning — selection of a few (< 10) PR rings from
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State-of-the-art in keypoint descriptor learning a large pool (4200 rings) L O S v o Y S s - U B S
* Large sca:e pEFCh matc.hlnflg = each ring is assigned a non-negative scalar weight w;  Pputative matches (green arrows) are computed from geometry cues. Only the T e
° . . . . . I i i i imensionali imensionali

Large scale object retrieva i Squared 12 distance between descrlptors is linear in w putative match, closest in the current descriptor space, will be used for D ity D ity

learning at the next iteration. If confusing non-matches are present, e.g. due Dimensionality vs error rate.

2. DESCR")TOR COMPUTAT|ON PIPELINE = Sparse weight vector w is learnt to repetitive structure (red arrow), then the keypoint is not used in learning. Left: learning pooling regions; right: learning dimensionality reduction.
Learning constraints: squared L? distance between « Some keypoints can not be matched based on 8. RESULTS: IMAGE RETRIEVAL

keypoint patch  detection and rectification smaller than that of non-matching pairs modelling matching feasibility with latent variables . Meacure: meai Average Precisiong(mAP)
SIETLik fiant ' Convex optimisation problem (solved by RDA): Learning constraints: the nearest neighbour of a « Training on Oxford5K from weak supervision, testing
-like gradien . . . . ,
Non_linear orientatic%n i 14 argmin > max {w’ (Y(x.y) —¥(u,v))+1,0} + 1 |lw|i  keypoint, matchable in the descriptor space, should on Oxford5K and Paris6K
. . 5 ' R ) (X’y)e?(u’v)e}v N belong to the set of putative matches * Outperforms descriptor learning of Philbin et al.
transform with soft-assignment [ K | prorer ~ — (ECCV, 10]
tchi = tchi . — 2 _ 1 ° ° ° . :
(FYP_, to p = 8 feature I [ke;ii;t';girs} [L‘;’;‘pg}ﬁfp;?rﬂ WZ(X’Y) = [1977(x) — ¢ (Y)HJ Optimisation problem (solved by alternation & RDA): ’ . _
= Descriptor 11.’1AP | mAP 1n.1proven}ent. (%)
channels _ 20 argmin » b(x)max< min d,(x,y)— min d,(x,u)+ 1,07+ R(n) raw | ti-idf |tf-idf+sp.| raw |ti-idf] tf-idf4-sp.
Ihigh .| Ihigh mb y€eP(x) ueN (x) Oxford5K
) ' e , N\ SIET 0.784 10.636 | 0.667 - - -
Spatial i learning w (panel 3) | 1: s.t. ?(X) c{0.1}. ) b(x)=K s pooling region RootSIFT 0.7980.659| 0.703 | 1.8 | 3.6 5.4
patial pooling , , L=\ " training pairs (optimised || dimensionality SIFT + Learnt proj., 120-D |0.802[0.673| 0.706 | 2.3 | 5.8 5.8
~ Feature pooling using selected : ISICRIAG iasicy on the validation set) J | reduction model Learnt PR, 256-D 0.819]0.664| 0.702 | 4.5 | 4.4 5.2
¢ = [Fe x Qw)]o_, - -5 ' Scatos - / Learnt PR + proj., 115-D  |0.841]0.709| 0.749 |7.3|11.5| 12.3
= . . . carnt proj., 11o- . . . . . .
Gaussian pOOIIng regions Q(w) | ~10 Philbin et al. [10], linear N/A 10.636| 0.665 [N/A| 3.8 2.8
shared across feature channels | W - AW 6. REGULARISED DUAL AVERAGING (RDA) Philbin ef al. [10], non-linear| N/A [0.662| 0.707 [N/A| 8 | 03
-20 0 20 0 10 0 10 20 . . . . Paris6 KK
Normalisation Examples of learnt pooling region configurations (left: 576-D, right: 256-D). * Stochastic prOX|ma| gradlent method well suited for %IFTSIFT gggé 828? ggfﬁ 2‘2 6_9 6_‘3
: . . . non-smooth  objectives with  sparsity-enforcing Lowt PR+ oot 115D l0.73200.711] 0729 |50 84| 8.1
and cropping  Agnostic to pooling regions 4. LEARNING DIMENSIONALITY REDUCTION . . - e o e ‘ e :
. . . . regularisation (e.g. L' or nuclear norms) Philbin et al. [10], non-linear] N/A [0.678] 0.689 |N/A[ 3.5 3
¢ = mm{qb/T,l} conflguratlon (USEfU| for Iearnmg) e Linear projection W € RMXn o < n into |OW€I’- : e MAP for learnt descriptors, SIFT, and RootSIFT.
Y . .
— . . . ° : in — _ R
T'=1(F) dimensional space learnt from the constraints above Objective: min ;ﬂw' 2) + B(w) ACKNOWLEDGEMENTS
. . . o T . 3 : : ' |
* Optimisation over IV Is not convex, so A =W"Wis Update: w:;i = argmin ((gt,w) + R(w) + Tth,(w)) This work was supported by Microsoft Research MﬁOSOﬂ h
learning W (panel 4) optimised instead v | 1 PhD Scholarship Program and ERC grant VisRec esearc
i i i ) : : : sub-gradient strongly convex no. 228180. A. Vedaldi was supported by the
Dlmensm.nallty Linear projection onto 2 * Low-rank projection is enforced by the nuclear norm svervand across [pmximalfuncﬁon} > Y e plllo " y erc
reduction larisati All.— th £ oi | | terations Violette and Samuel Glasstone Fellowship.
low-dimensional subspace regularisation ||A||«— the sum of singular values #
Wo * Nuclear (trace) norm — convex surrogate of rank
Convex optimisation problem (solved by RDA): Descriptors can be learnt using convex large-margin formulations, leading to state-of-the-art performance
Descriptor Can be used directly or argmin N maX{QY(\Xa y) Af(x.y) —/f(u,v)TAG(u, v)+ 1,0} +u.|All. ~ * Pooling region selection using Rank-SVM with L! regularisation
vector yantised to visual words Tyl (difference of descriptor vectors * Discriminative dimensionality reduction using large-margin metric learning with nuclear norm regularisation
g A(x,y) = d(x) — d(y) . . . . . . .
* Learning under very weak supervision by modelling matching uncertainty with latent variables



