

Deep Fisher Networks for Large-Scale Image Classification

Karén Simonyan, Andrea Vedaldi, Andrew Zisserman Visual Geometry Group, University of Oxford

Deep learning achieves excellent performance in image classification.

Do hand-crafted image classification pipelines benefit from the increased depth too?

Image Classification Architectures

soft-max

fully connected layer

...

fully connected layer

•••

convolution layer

...

convolution layer

Deep ConvNet linear SVM

global grouping Fisher encoder

local features (SIFT)

Shallow Fisher Vector

linear SVM

global grouping Fisher encoder

local grouping dim. reduction

Fisher encoder

local features (SIFT)

Deep Fisher Network

Deep Fisher Network

Why Fisher encoding?

- High-dimensional non-linear representation with small codebooks
- Outperforms other encodings (bag-of-words, sparse coding)

linear SVM

global grouping Fisher encoder

local grouping dim. reduction

Fisher encoder

local features (SIFT)

Deep Fisher Network

FisherNet

- Multiple Fisher layers made feasible by discriminative dimensionality reduction
- SIFT & colour features + 2 Fisher layers
- Learning: 2-3 days on 200 CPU cores (MATLAB + MEX implementation)

Large-Scale Image Classification

ImageNet challenge dataset:

- 1.2M images, 1K classes
- top-5 classification accuracy

Method	2010 challenge	2012 challenge
FV encoding	76.4%	72.7%
Deep FishNet	79.2%	76.6%
Deep ConvNet [Krizhevsky et al., 2012]	83.0%	81.8% 83.6% (5 ConvNets)
Deep ConvNet (our implement.)	83.2%	82.3%
Deep FishNet & Deep ConvNet	85.6%	84.7%