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Abstract

Our goal is to learn a compact, discriminative vector
representation of a face track, suitable for the face recogni-
tion tasks of verification and classification. To this end, we
propose a novel face track descriptor, based on the Fisher
Vector representation, and demonstrate that it has a num-
ber of favourable properties. First, the descriptor is suit-
able for tracks of both frontal and profile faces, and is in-
sensitive to their pose. Second, the descriptor is compact
due to discriminative dimensionality reduction, and it can
be further compressed using binarization. Third, the de-
scriptor can be computed quickly (using hard quantization)
and its compact size and fast computation render it very
suitable for large scale visual repositories. Finally, the de-
scriptor demonstrates good generalization when trained on
one dataset and tested on another, reflecting its tolerance
to the dataset bias. In the experiments we show that the
descriptor exceeds the state of the art on both face verifi-
cation task (YouTube Faces without outside training data,
and INRIA-Buffy benchmarks), and face classification task
(using the Oxford-Buffy dataset).

1. Introduction

Video repositories of the latest generation such as Net-
flix, the BBC iPlayer and YouTube have made available
data of unprecedented size and scope, driving the demand
for technology that can process vast amounts of videos in-
telligently. The aim is to automatically and efficiently dis-
cover, search, and organize semantic information in them.
Since these videos are largely about people, a significant
amount of effort has been dedicated to understanding peo-
ple in videos by estimating their pose, actions, activities,
interactions, relation to the environment, etc. This paper, in
particular, addresses the challenging problem of recogniz-
ing people in videos, defined as either classifying or verify-
ing their identity.

The evident advantage of recognizing people in videos,
compared to recognition from a single still image, is that

a video potentially contains multiple images of the same
face. Despite this advantage, face recognition in large un-
constrained video collections poses some serious technical
challenges. The first is to achieve invariant recognition
as the appearance of faces in videos varies hugely due to
changes in viewpoint, illumination, resolution, noise and
many other nuisance factors. In particular, one of our goals
is to be robust to substantial face rotations, from frontal to
profile. The second challenge is to achieve efficient recogni-
tion by constructing indexes of vast video libraries that can
fit in central memory and be searched in seconds. The third
is to achieve a discriminant representation that can be used
to distinguish one person from another.

We consider face tracks [31] as the fundamental unit of
face recognition in videos and develop a Video Fisher Vec-
tor Faces (VF2) descriptor, a video track representation that
is, as required, discriminative, invariant, and yet very com-
pact, capable of efficiently operating at the scale of a vast
video collections such as YouTube. This face track descrip-
tor is based on the Fisher Vector (FV) encoding [25], and
in particular our Fisher Vector Faces representation [28], a
powerful descriptor developed for a single-image face ver-
ification. VF2 inherits and extends its advantages as dis-
cussed below.

First, VF2 is easy and fast to compute. It does not rely
on landmark detection for image sampling, but uses concep-
tually simple dense SIFT features encoded with Fisher vec-
tors. Unlike descriptor stacking, FV encoding scales well to
pooling over the whole face track, and dataset augmentation
can also be incorporated in the pooling stage. Furthermore,
VF2 utilizes a hard-assignment FV variant that is particu-
larly well-suited for videos due to its efficiency.

Second, using discriminative dimensionality reduction,
we propose both low-dimensional real-valued and binary-
valued variants. The resulting face representation is ex-
tremely compact, resulting in fast face classification and
verification and compact indexing. The binary variant has
a very low memory footprint and is extremely fast to match
by using hardware-accelerated Hamming distance compu-
tation, making it well suited for big data problems or low-
power devices such as mobile phones. While binary rep-
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resentations have attracted significant attention in the local
descriptor field [5, 19, 26, 30] and large-scale image re-
trieval [14, 15, 35], to the best of our knowledge we are
the first to propose binary descriptors for face recognition.

Third, we show that our representation is versatile in that
it achieves state-of-the-art performance in both face verifi-
cation (Sect. 4) and face classification (Sect. 5) on several
challenging benchmark datasets. Furthermore, we demon-
strate that our model generalizes well by learning the rep-
resentation on one dataset and then applying it with very
competitive performance on other tasks and data.

After developing our face track representation in detail
(Sect. 3), the paper includes a thorough experimental val-
idation of the quality, compactness, and generality of the
face descriptors on several benchmark datasets (Sect. 4, 5)
as well as an analysis indicating why it is so effective as a
face representation (Sect. 6).

2. Related work
This paper focuses on the problem of video face recog-

nition “in the wild”. For the most part face tracks have been
limited to frontal faces only, but a small number of papers
have also included profile faces [13, 32, 34, 36]. Irrespec-
tive of pose, there are two approaches that have been fol-
lowed in the previous search for representations. The first
approach is based on representing faces in a track individu-
ally and comparing two face tracks as sets of images. The
second, is to represent the track as a whole, for example by
a single vector or as a 3D model or other manifold, with no
explicit reference to the individual face detections. A good
survey of these methods can be found in [4].

The first approach has been the most popular, and allows
representations developed for still images (their overview
can be found in [28]) to be applied directly to face tracks.
A standard method is that of [12] where features are com-
puted around facial landmarks and concatenated to form a
descriptor vector for each frame of the track. Tracks are
subsequently classified using the min-min distance on the
set of descriptors (either as a nearest neighbor classifier or
as a kernel). Others have varied the landmark features, e.g.
multi-scale SIFT or HOG [1, 10, 31, 32], as well as the
type of the classifier, e.g. random forests, MKL, or SVM-
minus scoring [1, 32, 37], and also the weight given to each
frame [33].

The second approach has used both generative and sta-
tistical representations. One method is to build 3D models
from the data [18, 39] and use these to explain new data,
for example by view synthesis [23]. Often, the face track
is represented as a linear or non-linear manifold [2, 16].
Others have learnt local features across the track and rep-
resented them using a BoW model [31], or a GMM [20], or
by sparse coding [11]. For speed and low storage require-
ments it is also common to use the descriptor vector of a

single representative (mean) face [24, 34]. An alternative
representation is to simply use the affine hull of the face
sets [6, 38]. Our approach is similar in nature to the second
family of representations.

3. Face representation
This section describes in detail VF2, our face track rep-

resentation. This is obtained in three steps: (a) fast Fisher
vector faces computation (Sect. 3.1), (b) discriminative di-
mensionality reduction (Sect. 3.2), and (c) descriptor bina-
rization (Sect. 3.3).

3.1. The VF2 face track descriptor

Our starting point is the Fisher Vector Face (FVF) repre-
sentation, proposed in [28] for the case of still images. FVF
is based on the Fisher Vector (FV) method of [25] which
has recently enjoyed widespread success, compared to pre-
vious feature encoding methods [7]. While this is our basis
for descriptor computation, we make a number of impor-
tant changes. First, information is pooled not from a single
image but from the entire face track using spatio-temporal
pooling. Second, the computation of the Fisher Vector as
described in [25] is simplified and accelerated with nearly
no loss of performance. Finally, we show that dataset aug-
mentation can be incorporated in the Fisher vector encoding
to further improve its performance.

The Fisher vector encoding. The FV representation φ(`)
of an image ` is formed by computing a set of local fea-
tures x1, . . . ,xp, . . . ,xN ∈ RD (e.g. densely extracted
SIFT features) and accumulating the 1st and 2nd order
statistics of their distribution in an image [25] φ(`) =[
Φ
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Here the feature soft-assignment αk(xp) ∝
πk exp

[
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2 (xp − µk)Σ−1k (xp − µk)
]

is the posterior
probability p(k|xp) of the k-th component of a Gaussian
Mixture Model (GMM) with component prior, mean,
and covariance parameters (πk, µk,Σk : k = 1, . . . ,K)
modeling the descriptor distribution. The covariance
matrices Σk = diag(σ2

1k, . . . , σ
2
Dk) are assumed to be

diagonal, so the local features xk are decorrelated and
optionally dimensionality-reduced using PCA before FV
computation.

The Improved Fisher Vector (IFV) [25] further post-
process Φ(`) by applying the signed square root function



Figure 1. Unsupervised GMM implicitly performs robust face part tracking. On the left frame of the track in the top row, we manually
selected 4 points on eyelids, nose and mouth. These points correspond to 4 SIFT patches, which are assigned to particular Gaussians from
the GMM (colour-coded with red, green, blue, and yellow). We visualise the pixels assigned to these Gaussians on 9 frames of the track.
As can be seen, the same face parts get consistently assigned to the same Gaussians, which indicates the robustness of the representation
with respect to the face position variation. In the bottom row, we visualise the face pixels assigned to exactly the same Gaussians as in the
top row, but for a different person. Again, they correspond to the same face parts, which means that the assignment is consistent across
different identities. The comparison of Fisher vectors thus can be seen as the implicit and robust comparison of face parts.

sign(z)
√
|z| and then renormalizing the result in l2 norm.

As shown in [25], this step is essential to achieve good per-
formance with linear SVM classifiers. In the rest of the pa-
per, when FV are discussed it is intended that this improved
variant is used.

Efficient computation of hard-assignment Fisher vec-
tors. In the traditional FV formulation (1) the soft assign-
ment coefficients αk(xp) assign local features xp to all K
components of the GMM. When the number of Gaussians
is large, averaging the statistics over N features and K
Gaussian components becomes a computational bottleneck.
This problem is exacerbated in dealing with multiple frames
forming a face track. To accelerate this computation we
employ an FV encoding variant, called hard-FV [29], that
replaces the soft assignment of features to GMM compo-
nents with the hard assignment to a single Gaussian, which
corresponds to the largest likelihood. Typically, the hard as-
signment delivers a speed up in computation by a factor of
six, at the cost of a small (1%) drop in performance.

FV encoding of face tracks. Similar to [28], FV is applied
to faces by extracting RootSIFT [3, 21] descriptors densely
and at multiple resolutions from each face image. This is a
key difference from other approaches that extract descrip-
tors around predefined landmarks. [28] shows that this so-
lution yields state-of-the-art accuracy; and furthermore, in
the case of videos, not having to run facial feature detectors
on each frame is a significant computational advantage. To
retain spatial information, the dense RootSIFT features are
augmented with their normalized x, y location in the face
window before clustering with the GMM [27].

Another aspect to discuss is how to merge information
across multiple frames. We experimented with two alterna-
tives: (i) image pooling – computing Fisher Vectors for each
of the face track frames individually, followed by averaging
the Fisher Vectors across frames; and (ii) video pooling –
computing a single Fisher Vector over the whole face track
by pooling together SIFT features from all the faces in a

track. As shown in Sect. 4, video pooling outperforms im-
age pooling. It should be noted that the two methods are not
equivalent, since in the image pooling method each frame
FV is individually normalized prior to averaging, while in
video pooling the features from the whole track are com-
bined together and normalized only once. As illustrated
in Fig. 1 and further elaborated in Sect. 6, the Gaussian
components act as dense pseudo-part detectors, allowing
the descriptor to be robust to pose variations.

Jittered pooling. Data jittering, also known as virtual sam-
pling, is a common technique to improve the invariance of
learned descriptors or classifiers. The idea is to enrich the
training set with transformed variants of the data to simulate
distortions that are expected to occur at test time (e.g. small
face rotations). Rather than increasing the size of the train-
ing set, however, here we use the simple idea of extending
video pooling to include jittered version of the data. This
is computationally quite cheap, results in descriptors of the
same dimensionality, and indeed achieves the best results in
our tests (Sect. 4). In the current implementation we consid-
ered as jitters only the horizontal flips of individual images
in a track, but it is trivial to extend this to further variations
such as rotations and crops. Note that this efficient augmen-
tation is applied at test time as well.

Implementation details. We employ dense multi-scale
RootSIFT [3] features, computed over 24 × 24 patches ev-
ery 2 pixels at 5 levels of the scale-space pyramid with√

2 scaling factor. The RootSIFT features are then PCA-
projected to 64 dimensions, and augmented with their nor-
malized spatial coordinates, which leads to 66-D local fea-
tures, containing both visual and spatial information. The
local features are then encoded using the Fisher vector, with
the GMM codebook size set to 512. In order to reduce mem-
ory consumption while computing FVs, we incrementally
encode SIFTs from each frame of the track into a FV but
do not perform the normalization. Normalization is only
performed at the end when all frames are encoded. This is



possible due to the additive construction of FVs (Eq. 1) and
saves us from having to store SIFTs for all frames in a track
into memory for pooling.

3.2. Discriminative dimensionality reduction

The FV features computed in Sect. 3.1 are very high-
dimensional. To reduce the dimensionality of the represen-
tation and increase its discriminative power we use the same
metric learning technique we introduced in [28].

Full metric learning. Metric learning is formulated as
learning a linear projection W ∈ Rp×d, p � d, which
maps the high-dimensional Fisher vectors φ ∈ Rd to low-
dimensional vectors Wφ ∈ Rp, such that the squared Eu-
clidean distance d2W (φi, φj) = ‖Wφi −Wφj‖22 is a good
discriminant. This is formulated as a non-convex objective
functional and optimized as described in [28] for the case of
still face images.

Diagonal pseudo-metric learning. While the complexity
of W can be controlled by reducing the number of its rows,
which corresponds to learning a lower-dimensional projec-
tion of the data, small datasets may be insufficient to prop-
erly learn all the parameters. In this case we resort to learn-
ing a diagonal matrix W>W = diagw, where the vector
w is learned with a conventional linear SVM formulation
from constraints [28].

Joint metric-similarity learning. [8, 9] suggest simulta-
neously learning a low-rank Mahalanobis distance (φi −
φj)

TWTW (φi − φj) and a low-rank kernel (inner prod-
uct) φTi V

TV φj and use the difference between the distance
and the inner product between features φi for verification.
We incorporate this formulation in the objective function as
in [28] and report results with this variant as well.

3.3. Binary compression

While the low-rank metric learning method of Sect. 3.2
is already capable of achieving a very good compression
factor, for large scale applications the goal is to further de-
crease the number of bits required to encode each face track.
This section describes a method to map a low-dimensional
real valued descriptor ψ ∈ Rm to a binary code β ∈ {0, 1}q
with the bit length q (where q ≥ m). While there are several
alternative hashing methods that could be used for this pur-
pose, [17] suggests a very competitive and efficient method
based on computing a Parseval tight frame, followed by
thresholding. Recently, this binarization method has been
successfully applied by [30] in the local feature descriptor
domain.

In more detail, a frame is a matrix U ∈ Rq×m whose
row-span is the space of vectors ψ ∈ Rm = spanU> to
be encoded. A tight frame has the additional property that
U>U = I . Multiplying the vector ψ by the tight frame pro-
duces an over-complete representation Uψ ∈ Rq; while the

latter has an increased dimensionality, it “spreads the infor-
mation” among many redundant dimensions. The result is
that thresholding this vector by the sign function (defined
as sign(a) = 1 iff a > 0 and 0 otherwise) yields a binary
vector

β = sign(Uψ) (3)

that is an accurate representation (in terms of the Euclidean
distances) of the vector ψ. In practice, as suggested by [17],
U is computed by keeping the first m columns of an or-
thogonal matrix obtained from a QR-decomposition of a
random q × q matrix. For thresholding the sign function
to produce a meaningful binary string, the vector ψ needs
to be zero centered. This is achieved by subtracting a mean
vector computed over a large number of feature vectors.

Note that, while the dimensionality q of the binary code
is not smaller than the dimensionality of the data m, the
representation is significantly more compact provided that
q/m� 32; since encoding each binary dimension requires
a single bit, whereas encoding a floating point number usu-
ally requires 32 or 64 bits. In this manner, changing q al-
lows us to generate the binary descriptors with any desired
bitrate. Additionally, the Euclidean distance between bi-
nary vector reduces to the Hamming distance which can be
computed very quickly using the XOR and POPCNT (pop-
ulation count) instructions in recent CPUs.

4. Experiments on face verification
This section begins a thorough evaluation of the face

track descriptor developed in Sect. 3 on a number of chal-
lenging face recognition benchmarks. It is shown that: the
representation achieves state-of-the-art performance on cer-
tain face verification and face recognition tasks; binariza-
tion preserves the discriminative power of the representa-
tion while achieving a very high compression ratio; and that
the learnt representation can be transferred across datasets
with negligible loss of performance, demonstrating good
generalization. This section is dedicated to the face veri-
fication problem and Sect. 5 investigates face classification.

The face verification task is the following: given a pair
of face tracks, determine if they portray the same person
or not. Here we address this task by computing VF2 de-
scriptors, reducing their dimension, and comparing their
Euclidean distance (or Hamming distance for binary de-
scriptors).

Test time flip. In the implementation we use horizontal
flipping at test time for augmentation: each face detection
is reflected horizontally and face track descriptors computed
for the original and flipped track. The distance between the
test tracks is then computed by averaging the four distances
between them. However, this method is redundant in the
case of the jitter pooled variant of the descriptor and hence
is not used in that case.



4.1. Face verification datasets

YouTube Faces (YTF) [36]. The YouTube Faces dataset is
a popular benchmark for face verification in video data cap-
tured in uncontrolled conditions. It contains 3,425 videos
of 1,595 celebrities collected from YouTube, with an aver-
age of 2 videos per identity, and the average clip length of
181 frames. The dataset includes pre-extracted face tracks,
the alignment of faces to a canonical frame (normalization),
as well as a specification of 6,000 track pairs, divided in
10 splits of 600 pairs. Each of the 10 splits contains 300
positive pairs (same identity) and 300 negative pairs. Two
evaluation settings are defined. In the restricted setting, 9
splits (5,400 pairs) are used for training and the remaining
split – for testing. The final performance measure is ob-
tained by averaging the results over the 10 folds. In the
unrestricted setting, one is allowed to combine the train-
ing tracks in an arbitrary number of training pairs. Face
verification results are reported using three metrics: Area
under the Receiver Operating Characteristic curve (AUC),
Receiver Operating Characteristic Equal Error Rate (ROC-
EER, or simply EER) and verification accuracy [36].

INRIA-Buffy dataset [10]. This dataset consists of 639
face tracks, automatically extracted from episodes 9, 21,
and 45 of the television series “Buffy the Vampire Slayer”.
Tracks are assigned one of nine labels: eight for the main
characters in the series and the ninth denoting “others”. The
training set consists of 312 tracks, and the test set of 327
tracks. Note that there are no track-level face identity la-
bels available in the training set. Therefore we will use
this dataset mainly to evaluate transferring representations
learned on YTF.

4.2. Face verification evaluation

YouTube Faces verification. Our face track representation
is computed on the aligned face images, provided by the
YTF organizers. From these images, we extract a 150×150
patch around the center of the face, and use it for fea-
ture computation. The resulting VF2 is compressed to a
low-dimensional vector using discriminative dimensional-
ity reduction (Sect. 3.2), followed by optional binarization
(Sect. 3.3).

In Table 1, we evaluate different settings of our dis-
criminatively projected VF2 in terms of the EER perfor-
mance measure. The experiments are performed in the un-
restricted setting. First, we compare FV pooling techniques
(Sect. 3.1): image pooling (row 1) and video pooling (row
2). As can be seen, the latter performs better, which indi-
cates that it is beneficial to aggregate the visual statistics
across the whole face track prior to normalization. Soft
quantized Fisher vectors improve the results by 1.2% (row
3) but increases the processing time up to 6 times. Jittered

Setting VF2 variant Proj. Dim. EER
1 image pool. 128 17.3
2 video pool. 128 16.2
3 video pool. + soft quantization 128 15.0
4 video pool. + jittered pool. 128 14.2

5 video pool. 256 16.9
6 video pool. 512 17.0
7 video pool. 1024 17.0

8 video pool. + binar. 1024 bit 128 15.0
9 video pool. + binar. 2048 bit 128 15.0

10 video pool. + binar. 1024 bit + jitt.
pool.

128 13.4

11 video pool. + joint sim. 128× 2 14.4
12 video pool. + joint sim. + flip 128× 2 13.0
13 video pool. + joint sim. + jitt. pool. 128× 2 12.3

Table 1. The performance of different descriptor settings on
YouTube face verification (unrestricted setting). Reported is
the equal error rate measure (smaller values correspond to better
verification).

Method Accuracy AUC EER
1 MGBS & SVM- [37] 78.9± 1.9 86.9 21.2
2 APEM FUSION [20] 79.1± 1.5 86.6 21.4
3 STFRD & PMML [11] 79.5± 2.5 88.6 19.9
4 VSOF & OSS (Adaboost) [22] 79.7± 1.8 89.4 20.0
5 Our VF2 (restricted) 83.5± 2.3 92.0 16.1
6 Our VF2 (restricted & flip) 84.7± 1.4 93.0 14.9

7 Our VF2 (unrestricted & flip) 83.5± 2.1 94.0 13.0
8 Our VF2 (unrestricted & jitt. pool.) 83.8± 1.6 95.0 12.3

Table 2. Comparison with the state of the art on YouTube ver-
ification (restricted and unrestricted). Our Fisher vector face
track descriptors significantly outperform the existing methods,
setting the new state of the art. All rows except the last two rows
show results on the restricted training setting.

pooling (row 4) yields a better improvement at a smaller
cost by pooling more features together. Next, we asses
how the error rate changes depending on the projected FV
dimension (rows 5–7) and conclude that, on this bench-
mark, there is no improvement beyond dimension 128 due
to model overfitting. In rows 8 and 9 we report the veri-
fication performance of the 128-D projected FV descriptor
(row 2), binarized to 1024 and 2048 bits respectively us-
ing the method of Sect. 3.3. As a result of binarization,
not only is the face descriptor memory footprint decreased
from 512 bytes (128×4-byte single-precision values) to 128
bytes (1024 bits), but also the EER decreases from 16.2%
(row 2) to 15.0% (row 8) due to the binary representation
being more robust. A similar improvement is observed for
the jittered pooling variant: 14.2% (row 4) to 13.4% (row
10).

Finally, rows 11–13 show the result of the joint
similarity-distance learning formulation [8, 28] (Sect. 3.2),



Setting Method EER
1 Cinbis et al.[10] 42.50

2 Our VF2 (GMM trained on YTF) 35.27
3 Our VF2 (GMM trained on Buffy) 30.48
4 Our VF2 (GMM trained on Buffy) & flip 30.11

Table 3. Comparison with the state of the art on INRIA-Buffy
verification (using the unsupervised Euclidean distance). Our
method outperforms the state of the art by 12%.

Setting VF2 variant Proj. Dim. EER
1 Cinbis et al.[10] (trained on LFW) N.A. 36.20
2 Cinbis et al.[10] (trained on Buffy) N.A. 30.00

3 video pool. 128 30.24
4 video pool. + flip 128 28.16
5 video pool. + joint sim. + flip 128× 2 25.77
6 video pool. + binar. 1024 bit + flip 128 22.21
7 video pool. + binar. 2048 bit + flip 128 21.90

Table 4. Comparison with the state of the art on INRIA-Buffy
verification (using the learnt distance). proj-n – projection di-
mensionality. bin-n – dimensionality after binarization.

reducing the error rate to 14.4% compared to learning only a
distance metric (rows 2 and 11) and to 12.3% for the jittered
pooled descriptor (rows 4 and 13). Although using test time
flips improves results (row 12), dataset augmentation using
jittered pooling achieves the best results of 12.3% (row 13).

The comparison with the current state-of-the-art meth-
ods is given in Table 2. In the restricted setting, we could
not train a full projection matrixW due to the small number
of training pairs available in this case, leading to overfitting.
Instead, we used diagonal metric learning (Sect. 3.2). This
combination outperforms the state of the art by ∼ 4% and
achieves an EER of 16.1% (row 5). This is improved further
to 14.9% with test-time flips (row 6).

In the large-scale unrestricted setting (Table 2, rows 7-
8), we can fully leverage the available amount of annotation
and learn a full projection matrix W . To the best of our
knowledge, we are the first to report the performance in the
unrestricted setting. Compared to the restricted case, the
EER in the unrestricted scenario is smaller by 2.6% (12.3%
vs 14.9%).

INRIA-Buffy verification. Similar to the YouTube face
verification task, this task involves determining whether a
given pair of tracks portrays the same person or not. We
compare VF2 with the state-of-the-art method [10] in two
settings: unsupervised and supervised.

In the unsupervised setting, the Euclidean distance be-
tween the uncompressed VF2 descriptors computed on the
80 × 80 face patches provided with the dataset is used for
comparison (Table 3). We compare training the GMM used
to compute the VF2 representation on YouTube Faces and
INRIA-Buffy. Even when the GMM is trained on a differ-

ent dataset (YTF), we significantly (7.2%) outperform the
descriptor of [10] on INRIA-Buffy (row 2). The results are
further improved by computing the GMM on INRIA-Buffy
directly, leading to a substantial 12% improvement over the
state of the art (rows 3 and 4).

Having shown the superiority of VF2 in the unsupervised
case, we now couple it with the discriminatively trained
metric, which simultaneously leads to dimensionality re-
duction. In order to learn the metric, we require positive and
negative face tracks. Unfortunately, forming positive track
pairs is not possible in INRIA-Buffy due to a limitation of
the dataset (one only knows that frames within a track cor-
respond to the same person)1. Hence we learn the metric on
YTF and evaluate the resulting descriptor on INRIA-Buffy,
verifying in this manner the ability of the method to transfer
from one dataset to another. Note that this requires training
the GMM on YTF as well. As shown in Table 4, despite
learning on a completely different dataset, we achieve an
EER of 30.24% (row 3), 6% better than [10] (row 1). Using
joint metric learning and test time flips improves the EER
to 25.77% (row 5). Binarization improves the EER further
to 21.90%, 8% better than the state of the art (row 2).

5. Experiments on face classification
In the previous section we have demonstrated the excel-

lent properties of the proposed face track representation on
the face verification task. This section shows that the repre-
sentation is equally applicable to the face classification task,
where it also achieves the state-of-the-art accuracy. The task
here is to label each track with the identity of the person.
We treat this problem as one of multi-way classification and
learn a linear classifier for each person.

5.1. Face classification dataset

Oxford-Buffy dataset [32] is a popular benchmark for the
face classification methods. It consists of 7 episodes from
the season 5 of “Buffy The Vampire Slayer”. The face
tracks were formed by tracking frontal and profile face de-
tections of the speakers within a shot. The dataset contains
two types of annotation. First, for each track, the Ground-
Truth (GT) label of the speaker is provided; the second type
of annotation is noisy, as it contains the speaker label pre-
diction, mined from subtitles and transcripts. The task is to
label all faces in a video, training a model using noisy la-
bels and testing using GT labels. We follow the evaluation
protocol of [32] and measure the performance in terms of
precision and “recall” of speaker label prediction. “Recall”
in this context is the percentage of tracks labeled at a partic-
ular classifier confidence level, i.e. the ratio of tracks with
the classification score higher than a threshold.

1The method of [10] does learn a metric from INRIA-Buffy, but uses
individual track frames rather than tracks as a whole as we require.



To ensure a fair comparison with [32], we use the same
video data, face tracks, and training/test splits, kindly pro-
vided by the authors.

5.2. Face classification evaluation

The results of the classification experiments (together
with the state-of-the-art results of [32]) are presented in Ta-
ble 5. We use linear one-vs-rest SVMs trained on all the
variants of our VF2 descriptor using the methods described
in Sect. 3.

Namely, in rows 3–4 we use uncompressed VF2 vec-
tors, computed using the GMM trained on Oxford-Buffy
and YTF respectively. As can be seen, the drop in per-
formance incurred by transferring the GMM from another
dataset is small (1%). With the GMM trained on Buffy, we
achieve better performance than Sivic et al. [32], who used
multiple-kernel RBF-SVM over HOG features.

Rows 4–7 show the results of training the SVM clas-
sifiers on low-dimensional VF2 projections (the projection
matrix was trained on YTF). Discriminative compression to
1024 dimensions simultaneously improves the performance
by 2%, whereas compression to 256 dimension has the same
performance as the uncompressed descriptors. Using jit-
tered pooling version of the descriptor (row 7) improves re-
sults further by 3% to get an average mAP of 0.86. This is
6% better than the previous state of the art (row 2).

A similar trend is observed after applying binarization,
which dramatically reduces the memory footprint (to e.g.
256 bytes per VF2 vector in row 9) with a small drop in
performance (∼ 1%).

The fact that we obtained very good classification results
(rows 4–8) by utilizing features trained on a different dataset
(YTF) emphasizes that VF2 generalizes well to new, unseen
datasets for the classification tasks as well. At the same
time, it should be noted that using outside data to learn VF2

is not essential: we achieve the same (or better) level of
performance when training solely on Buffy (row 3).

The results in Table 5 correspond to the evaluation proto-
col where training is performed on noisy speaker labels. For
completeness, we also report the classification performance
when training on the ground-truth labels. In that case, we
achieve 92% accuracy with the same setting as row 3 of Ta-
ble 5 and 93% with same setting as row 7, better than the
91% reported by [32].

6. Discussion
Our VF2 representation is remarkably simple as it does

not account explicitly for invariance properties of faces in a
track, and yet it achieves state-of-the-art results in a num-
ber of datasets. Fig. 1 shows that, in fact, this represen-
tation is achieving invariance implicitly by visualizing the
pixels in a face image, whose descriptors are hard-assigned
to selected GMM components. The key observation is that

GMM components fire in a transformation co-variant man-
ner, such that different components can be seen as capturing
different parts of the face (e.g. eyes, mouth, and nose). Fur-
thermore, the same components fire on analogous parts in
different faces, establishing semantically meaningful corre-
spondences. By stacking x, y coordinates to the SIFT de-
scriptor, moreover, these act as “spring terms” encourag-
ing given components to fire around the mean part location,
with a regularization effect. Note that no explicit selection,
learning or detection of facial landmarks is required.

7. Conclusion

We have proposed VF2, a new face track descriptor
which has many desirable properties: it is applicable to
frontal, three-quarter and profile faces; it does not require
the pose to be specified or facial feature points to be de-
tected; it is compact and can be binarized with almost no
loss in performance; and it is fast to compute. Furthermore,
and importantly, it exceeds the state-of-the-art substantially
in several settings on three standard benchmark datasets in
face verification and classification in videos. We justified
the robustness of the method by visualizations that show
how the GMM in the VF2 computation implicitly identifies
corresponding facial regions up to challenging visual trans-
formations due to variation in pose, lighting, and deforma-
tions from expressions.
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