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Quantum Field Theory for Elementary Particles. 
Is quantum field theory a theory? 

Gerard 't HOOFI" 

1. Introduction 

In many essays on quantum field theory much emphasis is given to the concept of renormalizability, 
and how this notion was being developed and understood in a series of historically important 
discoveries. Naturally, renormalizability is now a central theme in our attempts to construct models of 
elementary particles. And even in trying to reconcile the general theory of relativity with quantum 
mechanics (quantum gravity) we see that many authors aim at eventually obtaining a renormalizable 
theory. 

What I would like to point out is that renormalizability is just one step in an evolutionary process of 
quantum field theory. In order to illuminate this point of view I will present a survey of the evolution of 
quantum field theory into its present form. However we will not follow the historical development, but 
rather, for my convenience, the lines of logic. As is well known, that is quite something different. 

2. "Classical" field theories 

In the beginning there were "classical" field theories. "Classical" here is meant as opposed to 
"quantum mechanical". Examples are: Maxwell's theory of electro-magnetism; Newton's theory of 
gravitation and Einstein's extension of it, in order to bring gravity in terms with his relativity theory: 
general relativity. Of course we also have many classical fields in solids, fluids etc.: heat waves, sound 
waves, etc. These systems are characterized by functions of x and t, 

~b~,(x, t),  /z = 1 , . . . ,  n,  

that satisfy partial differential equations: 

) 0-~ ~b~,(x, t) F~, .. 

One could ask whether these systems are theories. This is the case if these differential equations 
(correctly) predict the behavior of the quantities involved under a wide set of circumstances. Now 
partial differential equations have been studied extensively in the mathematical literature. In many 
cases it can be shown that the solutions (under certain boundary conditions) are unique and can be 
computed to arbitrary accuracy. Such good properties are usually due to the existence of some notion of 
a positive definite "energy". Experimentally it could be verified that many of these systems are indeed 
successful theories. 
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3. The Schr6dinger equation 

At first sight, the Schr6dinger equation, 

0 
-~ ~b(x, t) = -iH~,(x, t) 

is also just such a partial differential equation. But there are differences with the previously mentioned 
classical systems: 

(a) The physical interpretation: it describes the motion of one single particle. As we all well know, 
the value of ~0(x, t) cannot be measured directly. 

(b) The Schr6dinger equation can easily be generalized to describe two or more interacting particles, 
but then we get "bilocal" or more complicated fields, because the dependent variable is 

~(x~, x2, • . . ,  t). 

There is a proliferation of complexity when more and more particles are introduced. Calculation of the 
electronic energy-levels of larger atoms and molecules is notoriously difficult. Still, from a mathematical 
point of view, the Schr6dinger equation for a fixed number of particles constitutes a sound theory. 
Again, boundedness of the energy (Hamiltonian) from below is a crucial thing. 

4. Creation and annihilation 

It may seem now that there are various different ways in which one might consider more extensive 
systems as a next step in complexity: 

(a) How should we describe systems with "infinitely many" particles, such as solids or liquids in the 
thermodynamic limit? 

(b) How should we describe systems where particles can be created and annihilated, such as in 
chemical reactions, radio-activity, collisions between elementary particles? 

(c) How should we describe the "quantization" of systems that "classically" already had an infinite 
number of degrees of freedom, such as the "classical" field theories mentioned earlier? 
Curiously, these three seemingly unrelated extensions of the Schr6dinger system all lead to the same 
mathematical construction: "quantum field theory". 

Let us illustrate this in the case of a solid, where a large number of atoms is arranged in the regular 
pattern of a crystal. The Schr6dinger equation for this immensely large system can successfully be 
handled if the forces are approximately harmonic. After diagonalization one finds that the lowest 
eigenstates of the Hamiltonian can easily be pictured in terms of only a few pseudoparticles: the 
phonons. Non-harmonic components of the forces may cause annihilation and creation of phonons. The 
same mathematical system is obtained if we "quantize" the displacement field in the solid: phonons are 
the quanta of sound waves. 

Another example of a quantum field theory in a solid is the superconductor. Here, electrons interact 
with the phonons. 

Although these systems are much more complicated than the single Schr6dinger equation, they are 
essentially finite-dimensional as soon as the system is given a finite size. They are finite in the sense that 
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Avogadro's number is finite. Certainly the question of the existence of an infinite-volume limit is 
mathematically tricky, but few physicists today would doubt on the correctness of the above descrip- 
tions. 

5. Weakly coupled elementary particles 

One way of saying that the quantum field theory of solids is finite is to observe that the momenta p 
of the phonons are limited to the first Brillouin zone. This is in great contrast with the system of 
elementary particles moving about in the vacuum. Their momenta are unlimited because they can 
always be boosted to higher values by Lorentz transformations: 

Ip , . . . .  > ILp , Lp , . . .> . 

We would wish to describe these particles using the same concepts as we have for the phonons in a 
solid. But when now invariance is required with respect to Lorentz transformations then new quite 
stringent limitations are found. Indeed, these limitations are so severe that still, up to date, no 
completely satisfactory model of whatever nature obeying these limitations has been found (in 4 
dimensions)! 

In spite of that failure much progress toward understanding quantum field theory for elementary 
particles has been made. What this really means is that we have been able to construct "theories" or 
rather: "algorithms" to describe interacting elementary particles with an increasing degree of accuracy. 
The relevant parameter(s) here is (are) the coupling strength(s) g of the particles. The smaller g, the 
more accurate our descriptions become, gZ describes not only the forces among particles, for instance 

F = g l g 2 / r  2 , 

but also the probability per unit of time for creation and/or annihilation of particles in a radio-active 
decay process, or the scattering cross sections. The degrees of sophistication we have in mind are: 

(a) Theories that make sense to 6(g2). 
(b) Theories that make sense to 6(g 2n) for any finite n. 
(c) Theories whose inaccuracies go like e -n/g2. 
(d) Strong interaction theories (Igl ~> 1). 

Our claim is that in spite of the existence of candidates for theories of the kind (d), there are still many 
questions to be answered, some of which not unlike the problems that had to be overcome in making 
the previous steps. 

6. First order theories (~?(g2)) 

Any classical field theory can be formally "quantized", and one finds that the coupling strength g of 
the quanta is proportional to the anharmonic (non-linear) components of the classical field equations. 
As long as one looks at the lowest order effects these are always finite and computable. So the only 
thing one must do in that case is to inspect Lorentz-invariance and positivity of the energy. Both are 
conveniently obtained in the well-known Lagrange formalism. The Lagrangian density must be local 
and Lorentz-invariant. 
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A typical example of just such a theory is Fermi's original 4-fermion interaction model [1] for the 
weak interactions, in the case of muon-decay: 

~'Fermi = E (~v~Oil~l -~ )(~JeOil]lVe ) " 
i 

Comparison with experiment enables one to fill in the details [2] of the as yet arbitrary operators Oi: 

~' = @22 GFtff3/" (1 + ~5)0" f%, (1 + Ys)0. 

Here the coupling constant GF is small: 

GF ~ 10-SM; 2 • 

This is why this theory has long served as a satisfactory theory for the weak interactions. However, we 
also see that GF is not dimensionless. In an environment where typical masses and energies approach 
the TeV region the coupling would become strong. And in describing higher order effects in GF the 
theory is fundamentally inadequate. 

It is important to see exactly what goes wrong. The usual phrase: "it is unrenormalizable" applies but 
in my opinion there is a better way of explaining the difficulties. 

Our standard picture of the forces and their effects on elementary particles is that these forces are 
transmitted by one or more virtual particles with certain values of their energies and momenta. A 
theory makes sense if the range of these energies and momenta is of the same order of magnitude as the 
energies and momenta of the initial and final particles that we see. As far as physically observable 
effects are concerned, our integrations over the energy-momentum values should converge. "Renor- 
malizability" implies that the extremely high-momentum values eventually play a negligible role. I now 
want to stress that the implication of this is that in a "good" theory the interactions at extremely high 
momentum values should be suppressed. This is certainly not the case for the Fermi Lagrangian: since 
the Fermi coupling constant has the dimensions of an inverse mass-squared, the interactions described 
by it will be much stronger at high energies. Exactly the same disease can be seen when we try to 
quantize Einstein's gravitation theory. The gravitation constant has the same dimension as Fermi's 
constant. Interactions at shorter distances accumulate. 

7. Renormalizable theories 

The conclusion from the previous section was that we should try to have a better control over the 
behavior of the system at short distances and this can be achieved if the interaction strength is chosen to 
be small enough at short distances. The dimension of the interaction constant, in terms of powers of a 
mass, or inverse powers of a distance, must be large enough. Now in perturbation theory in 4 
dimensions the best we can achieve is dimensionless couplings. 

A well known example is quantum electrodynamics: the quantum field theory of electrons and 
positrons interacting with electromagnetism (photons). Disregarding for a moment certain logarithmic 
effects the interactions do not increase at smaller distance scales. An important consequence of this is 
"renormalizability". If we compute the contribution of virtual photon exchange to the physically 
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observed electric charge e~er and mass mofr of the electron, we get, in a perturbation expansion: 

e~n = eB + a3e 3 + ase 5 + . . .  

mefr= mB(1 + b2e 2 + b4e 4 + . . . ) ,  

where e~ and mB are the "bare" charge and mass. Now the crucial observation is made that e and m 
are the only local interaction parameters of the theory with zero or positive dimension, and one can 
deduce from that that only een and me~ can contain infinities in their coefficients a and b due to 
divergent integrals. This is why it is possible to absorb all infinities in a redefinition of eB and mB. The 
theory is renormalizable. 

As soon as any local interaction with negative dimension would be added to the theory an infinite 
series of new "infinite" interactions would have to be introduced. The viewpoint I wish to express here 
is that this in itself would just be unpleasant and ugly but not totally unacceptable. The reason why a 
field theory should be renormalizable is rather that we wish to understand the short distance structure. 
In any case, we now have obtained the important physical restriction that all Lagrangians must be 
polynomia l s  of a specified, low degree. 

At first sight the simple rule of thumb that all couplings must have zero or positive dimensions seems 
not to apply to the first attempts to make the weak interactions renormalizable. The first suggestions 
namely were to replace simply the 4-fermion interaction by an effective interaction due to the exchange 
of one, electrically charged, vector particle, the intermediate vector boson W ±. One gets: 

GF "=- g2/MZw 

where indeed g is dimensionless. 
But my philosophy easily uncovers the disease of such a model. We ask: is the small-distance behavior 
now under control? The answer is no. At distance scales where the W mass can be neglected we get 
an unpleasant approximate local symmetry: 

. 

Since the symmetry is only approximate, q~ is an observable field, but the kinetic part of its 
self-interaction decreases too fast, so that, after rescaling, its interaction strength increases too strongly 
with energy [3]. The (by now well known) cure is to replace this sytem by one with an exact  local 
symmetry and then again add a physical ~ field, but now one with ordinary renormalizable couplings 
[4]. In conclusion: we should not only require dimensionless (or positive dimension) couplings, but also 
non-singular behavior in the infinite energy (or vanishing mass) limit. 

Applying this lesson to the case of quantum gravity at present seems to be beyond our capabilities. 
Curvature oscillations tend to become uncontrollable at short distance scales. Is there a way to 
"smoothen out" short scale curvatures? In some sense Nature must become regular there. It is 
suggestive to speculate that space-time might cease to be continuous but becomes "quantized" into 
some sort of space-time lattice. 

8. Asymptotic freedom 

Renormalizability is not the end of the road and this for two reasons. One is that there is still a 
fundamental shortcoming from a mathematical point of view: we can only prescribe the renormalization 
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procedure consistently in terms of a perturbation expansion. We do not know how to formulate this 
non-perturbatively in such a way that finiteness of the physical values can be proved. Critics therefore 
often attack the renormalization procedure as a whole as being ad hoc and unsatisfactory. Now such a 
negative attitude I do not share. One reason is that the mathematics is completely rigorous if we replace 
"physically observable numbers" by "infinite asymptotic expansion series" in one or several expansion 
parameters called (renormalized) coupling constants. The coupling constants are finite, and all expan- 
sion coefficients are finite. The only difficulty is that these expansions will at best be asymptotic 
expansions only; there is no reason to expect a finite radius of convergence. The other reason to take 
renormalization seriously is that this procedure must be considered as an important step towards our 
goal of obtaining sensible field theories. It simply isn't the final step, but we will not be able to proceed 
without it. 

Distinct from the difficulty of nonconvergence of perturbation expansion there is a difficulty directly 
linked to the main theme of this paper: the short distance behavior is good but not good enough. 
Curiously, an interesting historical development took place that gave us yet another indication how 
substantial improvement can be obtained. This came from a successful attempt to construct a model for 
the strong interactions: "quantum chromodynamics". 

This is just another gauge theory: an unbroken SU(3) Yang-Mills theory with a couple of fermions 
("quarks") in the fundamental 3-representation of SU(3). At first sight it was just a renormalizable 
theory like the others. But it has a property not shared by the others: "asymptotic freedom". In nearly 
all renormalizable theories the higher order quantum effects cause the effective coupling strength to 
vary slightly when one performs a scale transformation towards smaller distances. The variation is given 
by a differential equation called "renormalization group equation": 

+ . . .  

where # is the energy scale. At high energies (small distances) g may increase or decrease logarithmic- 
ally depending on the sign of/33. Only for OCD and related theories this sign is negative! [5] We get a 
welcome decrease of the coupling strength at small distances in these theories: 

1 
g2(#)~(-fl3)log/z2 + C '  as / r - ' -~ .  

Here lies a possible clue for improvement. Since (at large distance scales) g2 becomes large we should 
not be content with the asymptotic perturbation expansions in g2, we must try to do better. Now we have 
at infinite/x 2 an infinitely accurate theory and it is natural to assume that the small distance structure of 
the theory determines precisely what happens at larger distances. Thus, we imagine that asymptotically 
free theories are more than just perturbation series: the sums of these series should be well defined, and 
unique. 

The conclusion of this section is: we should consider asymptotic freedom as a fundamental new step 
in the advancement of quantum field theory. It now seems to make sense to consider theories where g is 
not small. 

In practice, this is done as follows: we imagine an absolute cutoff at small distance scales by replacing 
the continuum of space-time by a lattice. At the (small) distance scale of the lattice the system can be 
represented accurately by a Lagrangian. The coupling constant in that Lagrangian is small. The 
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physically interesting phenomena (the movements of physical particles) happen at much larger scales. 
Although we do not know how to compute these phenomena accurately in perturbation expansion, our 
system is now exactly defined, with errors not likely to be larger than those we made at the Lagrange 
level. So we solve the equations numerically (for instance by Monte Carlo methods) in systems that 
contain as many lattice sites as our present numerical techniques allow. 

9. Convergence 

The above suggests strongly that the problem of constructing a completely self-consistent quantum 
field theory has been mastered. Numerical results now available of many lattice calculations tend to 
confirm this. However it would clearly be much more satisfactory if we could obtain more certainty that 
indeed these methods are correct and complete. For this reason this author has begun a program of 
attempting to prove mathematical consistency of quantum field theories of this nature. The difficulty of 
proving these things is considerable and in some cases it seems to be nearly hopeless. This is why, to my 
conviction, the end of the road may not have been reached with asymptotic freedom. Our problem is 
that not only do we wish to control the short distance behavior of the theory; we wish to control it 
sufficiently well. Any error or uncertainty in the interactions at short distances might propagate, in our 
calculational procedures, to larger distance scales, and be magnified in the process. Let us illustrate this 
in an example. 

Take a theory with two relevant coupling constants A~ and A2. Let us rotate ~t space until the 
renormalization group equations become 

dA1 
d log # 

_ a2_ AA 2, 

dA2 
d log/z 

- BA1A2- CA 2. 

An asymptotically free solution is 

al -+ 1/log # ,  

/~ 2 ---)' 0 . 

But let us look at small deviations from this solution: a~--+ a~ + 8A~(/,). We have, to lowest order in 8&: 

d ~/~1 = -28A, _d -BSA2 
d log------~ log/x ' d log # 8A2 = log/* 

Therefore 

C1 
8A l ~ (log #)2 ; uA2 (log/.t) R " 
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Now if B is large then 8A2 approaches zero very rapidly. In order to determine the free integration 
constant C2 from the asymptotic behavior at the cutoff-scale, A2 must be known with precision better 
than G(A ~). 

For the theory under consideration this would not be a very serious problem because A2 after all was 
a free parameter. We might not be interested in exactly what (72 is. What is more, theories of this nature 
with large coefficients like our B, giving such an instability, are not explicitly known and might not exist. 
But the above illustrates our difficulty: we cannot prove that instabilities of the above nature in a more 
general sense cannot occur in theories such as QCD. 

In this section we conclude that asymptotic freedom indeed might not be enough; what we need for a 
convergent formalism is also a certain form of asymptotic stability. 

We note in passing that for asymptotically free theories there is good reason to believe that they give 
accuracies of order e -'/~2 for any finite n (where g may become infinite however), whereas merely 
renormalizable theories cannot be better than e c/g2 for some fixed c. 

10. Further restrictions? 

As before in the history of the evolution of quantum field theory, it might be that further progress 
will yield the discovery of further physical restrictions. Our research gave namely a different model for 
which indeed not only asymptotic freedom holds, but even a convergent calculational scheme was 
obtained. This is an SU(N) matrix theory in the N-~ ~ limit, and with only massive particles. Clearly 
then, the small distance structure of such theories is sufficiently transparent for the system to be 
uniquely defined. If such a good asymptotic structure for physical theories should indeed be required 
then it may not be such a bad idea to assume that the number of "colors" will increase indefinitely with 
energy. One may imagine a scenario where successive hierarchies of Higgs mechanisms freeze out more 
and more of these colors when the energy goes down [6]. However, if we wish to avoid the instabilities 
of the previous section then N must go to infinity sufficiently fast. 

11. Borel summability of a planar field theory in four dimensions 

In some recent papers [7] this author shows how in some special cases a large-N theory can be 
rigorously defined. 

Consider the limit N-~ ~, g ~ 0, A ~ 0 such that ~2 = g2 N and £ = AN are kept fixed. Here g is a 
three-field coupling and A a four-field coupling constant. The resulting Feynman rules are planar (they 
can be drawn on a sheet of paper without crossings). Other details of the Feynman rules are arbitrary as 
long as they are renormalizable. We do not make use explicitly of unitarity or causality. However we do 
require asymptotic freedom. 

Let also, for convenience, all masses be larger than zero. Further, we choose the effective coupling 
constant as defined by the dressed three- and four-point functions to be bounded: 

IAeff I ~ A crit . 

Our theorem then reads: 
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"There is a ,t c,~,> 0 such that if A -< A c'~' a geometrically convergent calculation scheme exists that 
determines all Green's functions uniquely in Euclidean space. All Dyson-Schwinger equations are 
satisfied." 

This would have been the first constructive field theory in four space-time dimensions were it not that 
we are still dealing with an unphysical limit (N-~ oo). 

Here we shall only give a resum6 of the arguments and methods that led to this theorem. 
Consider a (planar) Feynman diagram with five or more external lines. Consider all primitively 

divergent subgraphs (which will have four external lines or less). Replace them, inside our large 
diagram, by blobs. Then it is a simple matter to convince oneself that all contributions to a blob in a 
diagram add up to give the complete irreducible 2,3,4-point functions. The remainder of the diagram 
(the lines joining the various blobs together) is now completely convergent, by construction. Thus, if we 
know all 2,3,4-point functions, then the other Green's functions can be expressed in terms of convergent 
diagrams containing the former. The total set of such diagrams is called the "skeleton expansion". 

The next step is to write down subtracted integral expressions for the 2,3,4-point functions. We take 
the difference between two values at two different sets of external momenta. We obtain equations called 
"difference equations". After a sufficient number of such subtractions we obtain convergent integrals 
and, due to planarity, these integrals can again be expressed in skeleton expansion diagrams. This way 
we obtain a complete set of equations that express the 2,3,4-point functions in terms of themselves plus 
some arbitrary subtraction constants. 

We then proceed to prove our theorem by observing that 

• There is a finite constant C1 such that the total number of planar diagrams with L loops does not 
exceed C~. 

• There is a finite constant (72 such that every convergent (planar) skeleton graph in Euclidean space is 
bounded by C~ times a tree graph or set of tree graphs. 

• Thus, the skeleton expansion converges if ]Aea] <- A ° = (C1C2) -I. 

• We can set up a recursive procedure to determine the 2,3,4-point functions from the difference 
equations and skeleton expansions (in terms of a small number of subtraction parameters: the free 
parameters of the theory). 

• The recursion converges geometrically if IAe,I _< eA ° = A ¢'~' where 0 < e < 1. 

Our final step was a "renormalization group" type integro-differential equation for a (set of) floating 
coupling constants g(/z): 

k 

o~-g(#) = ~'~ fl,[g(/z)]' + Ig(~)l ~ p(~, g(/~')}. 
l=3  

Here p is a functional of g(/z'), and if [g(~')l <- eg o then there is a finite Q,o such that 

Ip{~, g(~')}l ~ Oo,. 
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Provided that g(/x) remains small enough everywhere a recursion procedure to solve the integro- 
differential equation will converge. For the running coupling constant we get 

= [I/3 1 log/x + 6(log log # ) +  C] - '+  6(g4(/x)). 

If we put 

C = A-~(m)-  1/331 log m 

then we get convergence if either 

/x _> m ; Re(A -1) -> 0 ; IA 11 ~ iA~ritl-~ 

o r  

[Im(A 1)1 ~lAcrlt I ~. 

Now this is sufficient to find a contour C in the A I plane such that the Borel expression 

= I f (z)e  -z/A dz G(A) 
. d  

0 

F ( z ) : ~  G(A)e +z/~ d0/A),  

c 

implying 

[ f (z ) /~  n exp(]zl/A cry') if Re(z) -> 0. 

Indeed we can also prove that F(z) is analytic if R e ( z ) > -  1/l/33[. This means that F(z) has a good 
perturbation expansion at z--, 0 and that the Borel integral converges if 

0 ~ A < A crit . 

The theory is therefore not only uniquely constructed but as a bonus we get Borel summability. 
Notice that we needed a positive mass in order to avoid infrared difficulties. Of course this makes the 

theories to which our methods apply directly less interesting. For the massless QCD theory at N-* zc (or 
if only the fermions but not the gluons carry mass) we only get analyticity of F(z) if 

-1/I/331 < Re(z) < 1/I/331 

which is clearly not sufficient. 

has an inverse 
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Some further remarks about quantum gravity 

As stated, the problem of understanding the short-distance structure of quantum gravity is enor- 
mously difficult. One possible suggestion of facing the problem is by studying our known-particle 
spectrum. At the low-energy scale we have the states we understand very well. Among many others: % 
~,, e,/z, 7r, N, W, Z . . . . .  Regardless of how the list continues (whether there is a desert or not) we are 
likely to be able to describe their interaction well, until we reach the Planck scale. Much beyond the 
Planck scale however we have the "black holes" and their properties are again fairly well understood. 
From Hawking's radiation formula [8] one can deduce the total entropy of a black hole, and from that 
the density of quantum mechanical states. Even though this is essentially only statistical information, it 
becomes more and more accurate if the energy (mass) goes up. So really our main problem is to link the 
understood low-energy theories with the understood high-mass theories. I suggest that the nature of the 
very heavy black holes should give us some formal information about the ultra-short distance structure 
of our world. 

It is natural however to try to improve our information on light black holes beyond the statistical 
level by using carefully quantum mechanical considerations. Some curious problems seem to arise. One 
is the causality problem. A black hole that emits Hawking radiation can be kept alive eternally by 
throwing things in every now and then. But (in a Schwarzschild coordinate system) these things never 
quite reach the black hole's horizon. The Hawking particles already left the black hole's horizon at 
t ~ - o c .  An infinite amount of information seems to accrue at the horizon. On the other hand it seems 
that the number of allowed quantum mechanical states is quite limited. Where did the information go 
(and how does it come back)? 

Just in order to fill the need for some more speculations at this conference we would like to suggest 
that quantum gravity might imply a "Chinese box theory" of elementary particles. 

At the horizon the in- and outgoing material obtains infinite (local) energy and momenta. Not only 
do we get too much "information" there, but the increased local energy content of that matter might 
disturb the background metric beyond recognition. They might form black holes themselves. 

Somehow, it must be forbidden to give point particles so much energy by too large Lorentz boosts. 
But what stops us from considering large Lorentz boosts? Perhaps if the Lorentz boost ILp) of a particle 
state IP) is equivalent to a state [pl, p2 . . . )  with ]Pll < m Planck ,  and 

~'~Pi = Lp. 

Indeed, the old "bootstrap" idea that elementary states are equal to composite states is not so wrong 
after all and will once in the future perhaps be taken out of the refrigerator again. 
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Discussion 

D. GROSS: I agree with the point of view that asymptotic freedom is probably necessary for the 
consistency of a renormalizable four-dimensional field theory. This has received confirmation recently, 
from the destruction of ~b 4 theory as well as the construction of (d~b) z theories in 2 dimensions which are 
asymptotically free and exhibit dimensional transmutation. 

I disagree, however, with the statement that asymptotic freedom is not enough to define a unique 
theory, say of QCD. Perturbation theory in QCD has problems, but I think one should carefully 
distinguish between two quite different issues- one is a matter of convenience and the other is a matter 
of principle. 

Summing the perturbation theory in QCD is a different problem. Borel's resummation is plagued by 
instantons and renormalons, both of which yield non-perturbative corrections of order exp(- 1/g 2) whose 
existence is in fact correlated with the non-Borel-summability of ordinary perturbation theory. Solving this 
problem requires non-perturbative information and I would predict that in the millennium when we will 
have an analytic solution of QCD, it will be apparent how one would reconsider it from an expansion 
in powers of g2 and exp(-1/gZ). It would be extremely nice and perhaps even useful to do this ahead of 
time - however it is a matter of convenience, not of principle. In principle, however, I see no problem that 
occurs when one extrapolates QCD to arbitrarily high energies. In fact, as opposed to Fermi theory of the 
weak interaction or even QED, whose extrapolation indicates energy scales of new physics of G{ ~/2 or 
exp(1/a)me, asymptotic freedom gets better and better and there is no sign of any new energy scale or new 
physics. 

G. 't HOOFT: I am certainly distinguishing matters of convenience from matters of principle. Borel 
summability would be convenient but not necessary. It just happened to be so that my solution was also 
Borel summable. My point about QCD is a matter of principle. No matter how high your energy, the 
perturbation expansion diverges, so there remains an uncertainty. I just do not know how this 
uncertainty propagates back to low energies, it might become so enhanced by instabilities of the kind I 
mentioned that a good theory n e v e r  emerges. Of course this problem would be wiped out if an exact 
analytic solution exists, but I doubt that very much. I am suggesting that perhaps our physics, not our 
mathematics has to be changed. 

Y. NE'EMAN: 
(a) Does your additional requirement from a quantified field theory come because you want to have 

confinement (i.e. does it relate to the infrared limit?). 
(b) Could a quantized string do the job you intend for an N ~ oo Yang-Mills theory in this context? 
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G. 't HOOF-F: 
(a) My requirements are asymptotic freedom and mathematical consistency. A priori these have 

nothing to do with confinement; in principle all theories should satisfy them whatever their infrared 
structure (indeed, QED, which shows no confinement, is farther off because it isn't asymptotically free). 
However, for strong interaction theories, notably QCD with confinement, the problem is more acute 
because the coupling is strong. 

(b) I am not sure but I don't think so. The N ~ ~ theory does show topological resemblance to the 
quantized string, but, in spite of various attempts to put these theories on equal footing, the 
perturbation expansions look very different. 

E.P. WIGNER: May I ask whether it can be shown that the theory you mentioned leads only to 
positive energy states? 

G. 't HOOF-F: If you are referring to the -A& 4 theory at N-~ o~ mentioned in my paper the answer is 
yes: one gets a completely consistent dynamics with a set of positive energy states only, because the 
negative energy states (which were there at finite N) decouple entirely. Remember that there is a finite mass 
term, +rn2,;b 2, and that A ~ 0  as N ~ .  

H. FRITZSCH: You mentioned that you want the number of colors to go up with energy. What do 
you mean specifically? One way to proceed could be the grand unification program, i.e. embedding the 
color group into a larger group like SU(5) or SU(16), and considering the leptons and perhaps other 
spin ½ particles as further color degrees of freedom. 

G. 't HOOFT: I indeed suggest that the number of colors may have to go up with energy, but as yet I 
understand very little of the instabilities in a finite N theory that would require this. It could be that, as 
you say, N only needs to go up starting from the unification scale at 1016GeV or so. But if the 
instabilities are worse then N must go up much faster, perhaps already at 100 GeV or so, increasing 
linearly with energy. 

S. WEINBERG: I have two comments. First, among all the surprising possibilities that may occur, 
there is the possibility that current ideas will turn out to be adequate after all. There is historical 
precedent for this. During the 1930's the accepted wisdom was that quantum electrodynamics could not 
be applied to processes above a 100 MeV or so without fundamental new ideas-  an indefinite metric, or 
a fundamental length, or whatever. And yet Feynman, Schwinger, and Tomonaga were able to show 
that all that was needed in quantum electrodynamics was a sensible re-interpretation of the existing 
quantum field theory. Second, it seems to me that what we would really like is not to find a way of 
formulating a large class of physically satisfactory theories, but rather to find that there is only one such 
theory. This could be the case if one could prove that (as I suspect) a theory is only physically 
satisfactory if it has an ultraviolet fixed point, because otherwise as the energy gets large the coupling 
constants behave wildly and ghosts develop. Generally when there is a fixed point in coupling constant 
space the critical surface formed by the trajectories that actually hit this fixed point is finite-dimensional. 
If it is one-dimensional we would have the highly desirable result that all the constants of nature (except 
one scale) would be fixed by the condition that we are actually on this surface. Now, it seems to me that 
your stability requirement is similar to the requirement of a one-dimensional critical surface. If your 
requirement is not satisfied then there is more than one low-energy theory that has the same behavior at 
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high energy, and that is just saying that the surface of trajectories that are attracted to the ultraviolet 
fixed point is more than one-dimensional. 

G. 't HOOFT: As to your historical remark I think you are partly correct and partly not; you are 
correct in the sense that our old theories turned out to be good, but our new findings in the weak 
theories, as you know, implied that the ideas were correct but needed to be made more precise and in that 
case new physical additions to the old theories had to be made. I agree with your second comment. 

T. REGGE: I wish to ask a question and make two observations: 

(1) Question: Can it be said that Quantum Mechanics is in principle valid for a very heavy object 
with mass higher than the Planck mass? 

(2) Observation: The statement that a particle with very high/3 must be considered as composite is 
familiar if one views liquid helium or a superconductor- there if one follows a one-phonon branch it 
hybridizes with multi-phonon branches and it is impossible to find an elementary excitation with 
momentum much higher than the inverse spacing of atoms. 

(3) Observation: I feel that one should extend the familiar quantum mechanical dictum that all that 
is non forbidden is compulsory, I feel that a closed Friedmann universe is too poor, every physical 
configuration allowed by the field equations should exist somewhere sometimes. This implies that the 
universe is open, infinite and highly inhomogeneous and that the present cosmological principle is an 
approximation valid only locally, in fact it may already be invalidated by present day observations. 

G. 't HOOFT: 
(1) As for your statements on the need for quantizing gravity, I do believe that the question of the 

consistency of quantum mechanics at the Planck length must be addressed. Even if you refuse 
experiments where interference among created or annihilated black holes is considered, there still is the 
question of how we should quantize matter surrounding a black hole (falling in or emerging out). Is 
there a Hamiltonian describing the system?, etc. 

(2) You raise an important point when you compare the finiteness of momentum space with the 
situation in solids: indeed, if for quantum gravity momentum space should somehow be cut off then this 
suggests some sort of lattice structure of space or space-time; there is a shortest distance. 

(3) If someone feels claustrophobic when g2 < 1, I could equally well say that I feel agoraphobic if/2 
happens to be greater than one. 


