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Abstract: One-loop Feynman diagrams, when regularized using the continuous dimension 
method, exhibit single poles at n = 4, and these poles can be eliminated by a counterterm 
A ~? in the Lagrangian. In this paper a simple algorithm is derived to express A o in terms 
of the components of the Lagrangian .e without performing integrations. It can be used 
in dimensional regularization, but also to derive Callan-Symanzik type equations for small 
distance behaviour in any renormalizable theory. The result of a calculation of the diver- 
gencies in quantum gravity is reported. 

1. Introduction 

The continuous dimension method of  regularization has turned out to be ex. 
tremely useful in theories with local symmetries, since all these symmetries are 
left intact [I ,  2]. After application of  this regularization method an infinity re- 
mains: poles in the n plane at n = 4. Only after removal of  these poles by means 
of  a renormalization counterterm A£? in the Lagrangian, the limit n -* 4 can be 
taken. 

It is of  importance that the new Lagrangian ~ + A ~  has the same symmetry 
structure as the old one, J2, so that we can repeat the procedure order by order in 
perturbation theory. In fact, investigation of  the symmetry properties o f  .6? + A£? 
has been performed in order to check the self-consistency of  the method (see 
sect. 7 of  ref. [3]). 

In this paper we derive an algorithm for a fast calculation of  the counterterms 
A ~  for all one-loop diagrams. Its applications are probably diverse. It will not  
only simplify infinity calculations in complicated gauge theories and the theory 
of  quantum gravity. Knowledge of  A£? also enables one to compute small distance 
limits o f  Green functions, as we have shown in a previous publication [4]. For in- 
stance, using our algorithmit will be quite easy to deduce that certain gauge theo- 
ries have a smooth and calculable small distance behaviour, contrary to other re- 

* On leave from the University of Utrecht, Utrecht. 
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normalizable theories, like ¢4 or Q.E.D. This phenomenon has also been observed 
in ref. [5]. Furthermore,  calculable conformally invariant theories (A ~? = 0) can 
be found (see sect. 8). 

It  will be shown that A/~ can be expressed in terms of the "second derivative" 
of  the Lagrangian .Q with respect to the fields in ~ .  It  is convenient to use a for- 
mulation in terms of  background fields [6, 7], which we explain in sect. 2. In this 
paper we show how the residues for all one-loop diagrams can be calculated in an 
elegant way by exploiting the invariance of  the problem under certain local gauge 
transformations of  the background fields. The obtained expression has been 
checked by explicit calculation of all different types of  diagrams. Our result, which 
can be used as a starting point for calculations in any renormalizable theory, is 
given by formula (4.15), or, if fermions are present, formula (6.12). 

Furthermore,  one may insert the classical equation of motion into our expres- 
sions for A ~ .  This is motivated in sect. 7. In certain examples we show how to use 
our algorithm (sect. 8). Here we see that it reduces the rather lengthy calculation 
of the infinities in some gauge theories to a few lines (provided a convenient gauge 
is chosen). 

Finally, one can now study quantum gravity from this point of  view. We postpone 
the details of  our gravity calculations to a future publication [8], but we anticipate 
on our result in sect. 9. 

2. The background field method  * 

Let us consider first a field theory with real ** Bose fields Az{x ), where i is any 
kind of index, including possibly a Lorentz index. Let it be described by a Lagran- 
gian 

~[A, x] = ~ [At(x), a At(x)]. 

We shall now define what we call the first derivative 2/2 ', and the second derivative 
(W, N, M), of  this Lagrangian with respect to the fields Ai: 

e t A  + q~,x] = 22[A,x] + (~i(x) Z?' i [A,x] +½0(Pi(x ) W~ v [A,xl a~¢/(x) 

+ c~iN~l. [A, x] a n $/+ } c~iMi/[A, x] ~p/+ O(~ 3) + total space-time derivative. 

(2.1) 

[As an example, in ~4 theory, we would have: 212' = (a2 - m 2) A - ~- XA3; 
W~ = -SUV;NU = 0 ;M = - m  2 - } )~A2.] 

In general, the classical equations of  mot ion are given by 

A?~ [.4, x] = 0 .  (2.2) 

* Refs. [6, 7]. 
** Time components of real vector fields are of course purely imaginary. 
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The propagators of the theory are usually obtained by considering W and M with 
the fieldA replaced by zero: they are the inverse of the matrix 

-w, 7 [o] k k -,%[o]. 
The definition (2.1) will enable us to abbreviate the expressions for one-loop 

diagrams. Consider namely an irreducible one-loop diagram. All external and internal 
lines correspond to some of the fieldsA i. The vertices are described by the trilinear 
and quadrilinear terms in ~ [A ]. If, however, we call the internal lines ¢ lines, then 
the same vertices are delivered by W [.4 ] - W [0], N [,4 ], and M [.4 ] - M [0], as one 
can easily convince oneself. Hence, all one-loop diagrams are also generated by the 
Lagrangian 

+-~ ~iMi/[A,x] ¢b/. (2.3) 
The fieldsAi are now external fields, and W, N andM in eq. (2.3) must be con- 
sidered as external space-time dependent source functions *. Only the fields ¢i in 
eq, (2.3) are quantized. 

By adding total space-time derivatives to ~ [~, x], one can always arrange things 
such that 

N ~ / = - N ~ ,  Mi/=Mii.  (2.4) 

In the following sections we assume (2.4) to be valid. The case of fermions will be 
considered in sect. 6. 

3. Some pole terms, and the algorithm for scalar fields 

Things simplify considerably if we make the restriction 

u p = _  up (3.1) W~ 6 aii. 
This holds for all ordinary renormalizable field theories, including gauge theories 
provided one chooses a Feynman-like gauge. The propagator is then 

ai /(k2 - M [0] - i e) - 1  (3 .2)  

This we expand in a finite series: 

-~ [1+ M[0] +(M[O] ~2+ M3[0 ] ] . (3.3) 

k 2 - ie k2- ie  ~k2- ie  ] (k2-ie)2(k2-M[O] - i e) 

* In all theories that are renormalizable by power counting, W is space-time independent. Only 
in the theory of gravity the more general case is to be considered [8]. 
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Integrals that contain the last term of  this expression will never diverge, so that this 
term will never contribute to a pole in the dimension plane at n = 4. To obtain these 
poles, therefore, we merely need to consider the first few terms of  the expansion, 
which correspond exactly to inserting theM[0]  term as a two-point vertex in a 
diagram with zero mass particles. 

So, from now on, we treat the complete M[A ] term as an external vertex, re- 
placing the propagator (3.2) by 

8iJ(k2 - i e).  (3.4) 

As we shall see, this simplifies our pole calculations. 

k 

M~j ~ M~I 

k . p  

Fig. 1. 

Consider now the diagram of fig. 1. The external double lines are just an abbre- 
viation for the combination of  A lines that make upM. The vertices are given by 
the last term in (2.3). The amplitude is 

' ÷ 8.,~.,) ~ f d n k  I (3.5) 
4 (8ik8/l u lx (2n.)4 i (k2- ie)((k+p)  2 -  ie) 

Here n denotes the number of  space-time dimensions. For non-integer n this inte- 
gral is equal to [ 1 ] 

t 

' 8 8 " lr~-n-4p(2--~n) 
1 

"4 (Sik~5.il + il .ik ) - ~  f dr, [x (1 -x )p2]~  . (3.6) 
0 

At n --~ 4 this behaves like 

1 1 + finite as n ~ 4 .  (3.7) 
"4 (~ik~jl + 8il8ik) 8 rr2(4--n) 

A counter-term in the Lagrangian Z? [A,x] is needed: 

A Z ? -  1 1 
8~r2(n_4 ) ~Mij[A,x]  Mji[A,x] , (3.8) 

so that Z? + A.~ yields a finite amplitude as n ~ 4. It will be clear that diagrams 
containing more M vertices give rise to integrals that are finite at n ~ 4, and no 
counter-terms with more than two factors M are needed. On the other hand, tadpole 
diagrams with only one M (or A r) vertex are zero because the integrals 
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f dnk -dnkk u 
Jk~-ie ' Jk-~-i-e' (3.9) 

are exactly zero in the n dimensional regularization procedure [9]. Note that eq. 
(3.8) describes already the complete counter-term in all scalar field theories 
(N~ = 0). For instance, in ~4 

AZ?[A,x] = 1 a XA2(x))2 (3.10) 
rr2(n_4) (m2 + ~- 32 

~ J 

(where A is the scalar field). Note that in scalar field theories A ~  has always the 
same sign. 

4. Symmetry requirements. The pole-algebra for scalar and vector fields 

In this section we consider the case 

l~iiv = -6uvSij, ~ 4= O, Mij ~ O . (4.1) 

The Lagrangian (2.3) then reads 

Z?[cb] = --~(bu~b)2 + (aNUac~ + ½ (aMga, (4.2) 

in which we suppressed the indices L f and the argument x. 
In calculating the poles at dimension n = 4 one can make use of the fact that all 

integrals of the one-loop graphs can be split up into integrals of the type 

k fdnk fdnk k 
f dnk d k2 ,I (k2)2 (4.3a) 

f d--nk (4.3b) 
(k 2 +/12) 2 ' 

and integrals that converge at n = 4. [The quantity St 2 is left in (4.3b) in order to 
avoid the infra-red divergency]. 

Now, all integrals (4.3a) are exactly equal to zero in the dimensional procedure, 
whereas the integral (4.3b) is 

[" dnk 1 (4.4) J(k24,2)2 ~ 2  rr2i 4 - n  

for n ~ 4, as long as/a 2 4= 0. 
The convergent integrals have no poles at n ~ 4. So, only the integrals (4.3b) 

contribute to the residues of the poles, and the coefficient is simply 2 rr2i 
according to (4.4), which together with the necessary factor - (2  7r)-4i leads to the 
overall factor 1/8 rr 2 in the amplitude. An important feature of the dimensional regu 
larization technique is that the result of the above procedure is independent of the 
initial choice of integration variable. 
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We observe that the substitution (4.4) preserves the scale dimension at n ~ 4, 
and a simple power counting argument leads to the most general form that the 
necessary counter-Lagrangian A Z? can have: 

AZ? = 1Tr {a0M2 + al(OuNv) 2 +a2(3uN ) +a3MN2 
E 

+ a 4 N u N 3 N  v + a5(N2)2 + a6(NtzNv )2 },  (4.5) 

where 

1 1 
- ( 4 . 6 )  

e 8 7r2(n-4) 

and Tr means "trace with respect to the indices i,/"' (Note that we required NU to 
be an antisymmetric and M a symmetric matrix). 

From the preceding section we know already that a 0 = ¼, and by considering the 
other relevant diagrams one can compute the other coefficients. There is, however, 
a faster and more elegant way to obtain these coefficients, and that is by performing 
local gauge transformations. The argument goes as follows (we have assured our- 
selves of its correctness by also explicitly computing all the diagrams). 

Let us rewite the Lagrangian (4.2), noting that N~ is antisymmetric, 

~[~b] = ~ (~u¢ + Nu(a)2 -I.~ (o X ¢ ,  (4.7) 

with 

X = M - N u N  u . (4.8) 

In this notation it will be clear that ~?(~) is invariant under 

¢'(x) = ~(x) + A(x) ~(x), (4.9) 

X' = X + A X -  X A  , ] (4.10) 

where A(x) is an arbitrary, infinitesimal, antisymmetric matrix. Therefore A Z? also 
will be invariant under (4. I 0). 

The only expression invariant under (4.10) and of dimension four, is 

A,/2 =1  Tr { a X  2 + b Y u v Y v }  (4.11) 
e 

with 

Y ~  = i l t ,N - 8vN u + NuN v - NvN u . (4.12) 

It follows that (4.5) can be rewritten in this short way; now there are only two in- 
dependent coefficients, and it will be clear that 

a = a  0 =¼.  (4.13) 
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An easy way to calculate the coefficient b is to compute the merely logarithmically 
divergent diagram with fourN legs, thus finding a 5 and a 6: 

45= ~- = a - 2 b ,  
(4.14) 

a6=-t12 = 2 b .  

From this we derive that the complete counter Lagrangian is 

A.~ =1  Tr {¼ X 2 + ~  Y,a,Y v} (4.15) 
e 

with X and Y as defined in (4.8) and (4.12). Note that the sign is now no longer 
fixed: Y~ is antisymmetric in its indices i,/, hence Yu~,Yu.u is always negative• 

Formula (4.15) will be used as a building block for further extensions of our 
algorithm, to include complex fields (sect. 5) and fermion fields (sect. 6). 

5. Complex fields 

Until now we took all scalar fields to be real. Of course, charged fields can also 
be split into real components. But it is useful to have the formula for complex 
fields also (e.g., Faddeev-Popov ghosts in gauge field theories) f .  

So, suppose we have the Lagrangian 

.l~ = -au~*au¢ + 2 ¢*c~u~u¢ + ¢* c ~ .  (5.1) 

In general we cannot pose further conditions on c~f u and c~,  so 

eg v q= ~ u  ' c?g:/: c~ (5.2.) 

Writing 

V~ ¢=  $1 + i ¢ 2 ,  

one can find the objectsNU andM of sect. 2 [note that we require the symmetry 
properties (2.4)]: 

°/% ÷2), 

_I Oy (c~ _ c~ )+I Oy aU(c'l~i, -- c~u), (5.4) 

t Note that in dia~ams with charged physical particles, external lines can carry charge also, in 
which case formula (5.1) is not applicable. 
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with 
0 - i  

ol 
It is then convenient to define 

9 f - - q ~ - ~ u c ~  - ~  c~ u ,  

because then 

X _ l  (~+ ~)_~ --~ -~ Oy(gC - ~c ) .  

r i3_l  1 - -~ ( ~ .~  - aJ . , ,  ) - ~ o y ( gJ . , ,  + qJ  .~ )  , 

and A .t2, formula (4.15) then becomes 

A ~ = l T r  {l_ 9C2+~cf fu  cffu~) 2 

(5.5) 

(5.6) 

(5.7) 

The factor two difference with eq. (4.15) arises from the doubling of all field com- 
ponents. This equation (5.7) can also very easily be derived from diagrams and 
symmetry requirements. And then, starting from (5.7) one can re-obtain eq. (4.15). 
This can be seen by replacing (5.1) by 

/2= - a ~ *  ~j~b + ~*(auN + N 0 u )  q~ + qS* M 4), (5.8) 

so that 

--M + a . ~ .  ; % --~. (5.9) 

If 

Nu= , M=M, 

then the vertices have the symmetric form like in the case of real fields, and formula 
(4.15) for real fields follows immediately, after we divided by 2, in order to account 
for the doubling of the components. 

6. Extension to fermions 

Our algorithm can also be applied to fermions. Let ~ be the background fermion 
field. We write 



452 G. 't Hooft, Dimensional regularization 

"l?[Ai + ¢i' ~] +~/ '  r~k + ~k' x] = ~[A, ~, r~, x] + terms linear in ¢, ~ and ~k 

+ higher orders in q~, ~ and ~. (6.1) 

Here, again, N, M, F, a and ~ are quantities that contain the background fields A, 
Y7 and r/and are therefore space-time dependent, ot and ~ are linear combinations 
of the Fermi fields 77 and ~ resp. The object F will in general contain 3' matrices. 

Let us write the fermion propagator as 

i3"p (6.2) 
p2 _ ie 

Now, if we arrange the factors - i  7 P into the vertices we can apply the formulae 
for the bosons. The procedure is made transparent if we substitute into (6.1) 

~k -+ ~O, ~ "+ -3'u ~u ~'  (6:3) 

and, as in sect. 5, we replace the ~ line by a complex line, bearing in mind that this 
doubles complete ~ loops: in other words, we first calculate A ~ for 

~= -O. +~)  ~*0. +N) ~ + ~*X~ 

- 3 u ~ b u ~ - ~ F 3'u au ~ + ~ ~ ~ - ~-~* 3'u au ~ '  (6 .4)  

where X = M - NuNu, as usual. 
Taking these fields together in .vectors (~*, 5) and t (~, ~)T, we can define the 

objects c~ ,  c~u, ~X and cff~, of sect. 5: 

0 

, 

-~ F3'J 

ix ½ (a ~ +U~ -~ ~3' F)3'.] 

y * 

(6.5) 

~" Superscript T implies transpose. 
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where 

H = a u F 7  u _1 F T u F T u ,  

Ituv = art F T v  - 8 v F T u  - ½ F T t  * F T v  + ½ FTu  F T t t ,  (6.6) 

and an entry * indicates that it is irrelevant. According to formula (5.7) we find that 
this Lagrangian (6.4) gives rise to 

A.~ = l T r  (½ X 2 + ~ - ( a  ~ + N  ~ --~ ~ % , F )  3,,a 
E 

+'- M 2 
8 

(6.7) 

but now we have to remember the factor ~ to replace the ~b fields by real fields, and 
a minus sign for the Fermion loop. Further, we rewrite the ~t~ term in a more famil, 
iar way. Our result for the original Lagrangian (6.1) reads 

= 1Tr {¼ X 2 l 1 

_1_ H 2 s - ~s H v  H ~  ) .  (6.8) 

The trace of the last two terms in (6.8) is one over spinor indices. The occurrence 
of numerous gamma matrices in (6.6) and (6.8) makes calculations with these for- 
mulae rather lengthy. A nice feature of our algorithm however, is that one can cal- 
culate the traces of these series of gamma matrices once and forever. 

As long as no exotic gauge is chosen, one can write F in any renormalizable 
theory as 

F = S +P75  + V 7  u + A u 7 u 75 , (6.9) 

where the new quantities may still be matrices, but do not contain spinor indices. 
V u and A u are gauge fields, multiplied with matrices according to the group repre- 
sentations. 

It is natural to define now the covariant derivatives: 

DuS = auS - V S  + S V u + A u P  + P A  u ,  

DuP = ~uP - V P + P V  + A u S  + S A u , 

Ova  = auo~ + ( - V  + Au  75) a + Nua  , (6.10) 

and right- and left-handed gauge fields: 

A Lu=A - V ,  A Ru=A +V, 

G L =a  A L - 0 ~ A L - A L A  L + A L A  L (6.11) 
V.v V~ v V. v V ' 

same for G R . 
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It  is now possible to rewrite formula (6.8), calculating all occurring traces over 
arrays of  gamma matrices: 

8 n2 (n -4 )  

- ~ ( s  - e~ , s )  ~ - ( D S )  2 + (D P) 2 - (S 2 -  p2)2 

- (SP - PS) 2 + ~ G R G R 1 GL L (6.12) 

with the definitions (6.1), (4.8), (4.12), (6.9), (6.10) and (6.11). 
It  is invariant under local chiral gauge transformations f .  

7.  Use  o f  the  e q u a t i o n  o f  m o t i o n  

In the foregoing we derived the prescription to calculate A _P (n), such that 

~ +  A.8 (n) 

leads to finite Green functions in the limit n -} 4, up to the order of one-loop graphs. 
/x ~ is proportional to some coupling constant ), in the theory, and we persistently 
disregarded corrections of order ~2 since these are determined also by the much 
more complicated two-loop diagrams. 

Suppose we make a renormalization of the fieldsA i of the type 

Ai(x  ) ~ A , (x)  + A Ai(x)  , (7.1) 

where A A~(x) is some function of  the fieldsA(x) and is also proportional to X. 
In terms of  the new fields the Lagrangian becomes 

~---} .~ + .e~ [A,x] A Ai(x)  + O(X2) . (7.2) 

I f  A Az(x ) in (7.1) contains poles at n -+ 4 then the Green functions will become 
infinite, in general. 

The S-matrix elements, however, i f  deemed from these Green functions with 
the proper external line renormalization factors, will not be influenced by the re- 
placement (7.1), because the external line renormalization factors will cancel the 
effects from (7.1). 

From this it follows that any change in A .~ which is proportional to ~ '  [A,x] 
does not  influence the S-matrix. In other words: one may make use of  the equations 

t Chiral anomalies do not occur in these calculations since these anomalies are finite as n -* 4. 
We only consider residues of the poles at n --. 4. Our def'mition of 7s is. also at ~ ~ 4 :R R 

= "/1')'2')'3"}'4" At f'IrSt sight one might also expect a term like Tr e~v~(GLGLa,.,,~,, - G ~vG ~), 75 
but this quantity is a total derivative. 
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of motion 

'i [A, x] = 0 ,  (7.3) 

to simplify our expressions for A ./2. The Green functions will then no longer remain 
finite, but the S-matrix, if properly defined, will remain finite. 

In the covariant background field renormalization method for gauge theories, 
full advantage is made of eq. (7.3) for the background fields [6, 7]. We show this in 
an example in sect. 8. 

8. Examples 

8.1. dp 4 theory with N components 

Let us take 

N 
-- ~ [ -~  ( a  +i) 2 - ~ m 2 +~1 - ~ X (Z i +~)~. 

i= I 

From the definition (2.1) and (4.8) we find 

Mq = Xi/ = --(m2 *½ X ~ 0 2 ) 8 i / - h  (Ji (~/ , 
k 

N # = O .  

From formula (4.15)we find 

A.~ = 1  T r ¼ X  2 
e 

= l t x ( 1  + ~- N) } m 2 42 + (4 + ~ N) ~- X 2 ((~2)2 + const] , 

where 

1 1 

e 81r2 (n -4 )  

Evidently, there is a first order mass renormalization 

1 
A m = - ~ - e  X ( I + ½ N ) m ,  

and a coupling constant renormalization 

AX= 1 ?~2 ( 4 + } N )  

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 
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and there is no first order field renormalization. Note that we found here the first 
coefficients of the expansions discussed in ref. [4]: 

m B = r e + A m ,  

~B = ~' + A ~ .  (8 .7)  

8.2. Pure Yang-Mills fields, o f  a semi-simple group 

In this example we demonstrate the elegance of the background field quantiza- 
tion method [6, 7]. We start with the gauge invariant Lagrangian 

2~inv[wl = -¼ Ga~ Ga ~v • (8.8) 

with 

wherefab c is completely antisymmetric. As in refs. [6, 7], we postpone the subsidi- 
ary gauge condition. First we write 

w. w + (8.9) 

and, as always, expand J~ up to the second order in ¢: 

Gauv-~a a +D a a +g. fab c b c (8.10) 

where 

Dauc _ Oac + g fabc wb (8.11) 

o 

is the covariant derivative (note that D u contains the background field only). From 
sect. 7 we know that we may assume that the background field satisfies the equa- 
tion of motion, hence 

,/ginv ~ .~oinviw ] _ ~. (D# q~r )2 + 1 (D# ~r )2 

- g  Ga#fabc ¢~a ~ + higher orders in ¢ .  (8.12) 

Here we made use of 

(Du Dr )ac - (Dr D u)ac = g fabc GO • (8.13) lay 

The Lagrangian (8.12) is invariant under the infinitesimal gauge transformation: 

a ~ a + g.~bc b c Weu) 0 h a ¢u Cu A (¢u + " 

Ca +gfabc A b tbc u _ D A a . (8.14) 
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The quantization procedure for ordinary gauge field theories can be applied [3]. The 
gauge term 

- ~- (3# W/a + a# C#) 2 (8.15) 

would lead to the usual Feynman rules in the Feynman gauge. But it is more con- 
venient to choose [6] 

- ~ (D# Cu) 2 . (8.16) 

The relevant Lagrangian for the vector field is then 

~ = - ½  (D# Cv) 2 - g G ~ f a b  c C a C b , (8.17) 

and comparing this with formula (4.7) we f'md 

N # ab _ _,~aeb a# - g J WC~ 8 ~ ' 

X ab = -  2 g f  abc G c (8.18) a# ctg ' 

y ab= _,,aeb ,,-,c 5043 ~ 043 g l t.r . 

Formula (4.1 5) gives us directly the contribution of the vector fields 

a.e wto  =1c  g2 aa aa (8.19) 
e /av ~n, ' '  

where C is defined by 

= c . (8.20) 

In this gauge however, there is also a contribution from the Faddeev-Popov ghost 
[3]. From the gauge transformation law (8.14) we find the ghost Lagrangian 

22 Fadd.-Popov = - D  C a D C a + irrelevant interactions with ~b~. (8.21) 

The fields Ca in (8.21) are complex scalars with isospin 1. To calculate its contribu- 
tion we use the results of sect. 5 

~(ab = 0 ,  

c ' f f~  = g f f eb  G c~ (8.22) 

Taking its Fermi statistics into account, we find the contribution 

A.2 g h ° s t = + l c ~  g2 G a G a (8.23) 
e /au ~tm" 

Together with (8.19) we find the complete counterterm 

A ~  = l c l l - 2 G a  G a (8.24) e i S g  u,, u~," 
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Writing 

Z?[W,g] +A.~O = ~O[W+ A W , g + A g ]  , (8.25) 

we find the first order necessary field renormalization 

A W a 1 11 W a e C g 2  (8.26) 

and the coupling constant renormalization 

A g = 1 C 11 g3 (8.27) 
e 2-4 " 

Note the difference in sign in comparison with eq. (8.6). The field renormalization 
(8.26) is different in other gauges, but (8.27) is gauge independent. The sign in 
(8.27) is such that the large momentum limit of Green's functions is calculable, 
but there is an infra-red catastrophe [4, 5]. 

The fermion contribution can readily be obtained from eq. (6.12). Note that 
in eq. (6.12) GR~ L still contain the matrices of the group representation and are 
therefore antihermitean. Hence the sign of the fermion contribution will always be 
opposite to the gauge field contribution (8.24). This phenomenon has been noted 
before [5]. It is also the reason why the sign of the coupling constant renormal~a- 
tion in QED is opposite to that of pure Yang-Mills fields [eq. (8.27)], because in 
QED only fermions contribute. 

By giving the fermions in a gauge theory the appropriate multiplicity one can 
even obtain theories with A Z? = 0, or one can choose the one.loop contribution 
to A Z~ very small, such that it cancels all higher order contributions. This way a 
calculable conformally invariant theory can be obtained. 

9. Quantum gravity 

Our algorithm can be applied to study the infinity structure of the quantum 
theory of gravity. For that end, however, it is still incomplete: we should study the 

case 

w --W (9.1) 
in formula (2.1). For the rest, the calculation of the one-loop infinities goes along 
the same lines as in the example of subsect. 8.2, where we studied Yang-Mills fields. 
We postpone the details of our calculations to a separate publication [8], but we 
shall mention the result here. 

Using the invariant quantization procedure, we get an invariant result for the 
pole parts of the one-loop graphs. In a theory with gravity alone, one derives easily 
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from power counting, that the only candidates for A ~ are [9] 

v ~ R u v  Ruv , xlrgR 2 , (9.2) 

where g = det (guy) and Ruv and R are the contracted Riemann tensors. However, 
from sect. 7 we know that the equation of motion may be substituted, which is 

R uv = 0 ,  R = 0 ,  (9.3) 

and we derive immediately that there is no physical infinity in the one-loop quantum 
corrections to graviton-graviton scattering! 

Stated differently, the counter terms (9.2) can be absorbed by a "renormaliza- 

tion" of the matric tensor g~ :  

+ ~ +/3R guy) (9.4) guy ~guv  n - 4  ( a R  v 

where ¢x and/3 are unobservable coefficients. 
The situation becomes different if we add to the theory other fields, which carry 

energy momentum, such that eq. (9.3) is no longer true. We studied the simplest 
example of such a case: one massless Klein-Gordon field $ interacting with gravity. 
We started with the Lagrangian 

= -x/g-R - ½ ~/~-gU~ au ~b a v ~b. (9.5) 

After insertion of the equation of motion only one gauge invariant term survives 
in A ~?. By means of our algorithm we calculated its coefficient and found 

A/2 =1 203 r - ~ 2  
e ~ "  v g ~  • (9.6) 

It is impossible to renormalize this term away by renormalization of fields or phys- 
ical parameters, so it survives as a real infinity. We conclude that the theory of bare 
gravity is one-loop renormalizable, but if matter is added in the form of Klein- 
Gordon fields, physical divergencies remain. If other fields or other interactions 
are added in ~?, the number of possible terms in A ,e increases rapidly arid only 
miraculous cancellations could restore renormalizability. In particular, use of the 
"improved energy momentum tensor" of ref. [ 10] does not improve the situation 
here. 

We wish to thank Professor M. Veltman, who carefully checked all calculations 
in this paper. 
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