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Canonical quantization of gravitating point particles in 2+1 
dimensions 

G 't Hooft 
Institute for Theoretical Physics, University of Utrecht, POBox 80 M16, 3508 TA Utrecht, The 
Netherlands 

Received 6 May 1993 

Abstract. A finite number of gravitating paint particles in 2+1 dimensions may close the universe 
they are in. A formalism previously introduced by the author using tessellated Cauchy surfaces 
is applied to define a quantized version of U* model. Special emphasis is put on unitarity and 
uniqueness of the evolution operator and on the physical interpretarion of h e  model. AS far as 
we know lhis is the first model whose quantum version automatically discretires time. But also 
spacelike distances are discretized in a very special way. 

PACS number: 0420 

1. Introduction 

Consider the Lagrangian 

I 
G c = -GR + &(-4g,,a,@a,@ - +m2@') (1.1) 

in 2+1 dimensions. The perturbation expansion in Newton's constant G is non- 
renormalizable. Yet one may suspect that a quantum version of this model exists, because 
in a very special classical limit the system is integrable. We have in mind the limit where 
the @ particles with mass m become classical gravitating point particles [I]. There are no 
gravitons in 2+1 dimensions [2,3]. The particles move in rectilinear orbits in a locally flat 
space, and this motion is non-trivial only because the continuation of these orbits depends 
on an element of a braid group. 

But the shortdistance behaviour of a quantum field theory described by (1.1) must 
be very peculiar. Newton's constant G defines a Planck length, and at this length scale 
any perturbative approach will break down. Typical quantum gravitational effects must be 
essential there. 

Now the pure gravity system, without particles, can be quantized [4]. But adding 
spinless point particles is essentially equivalent to adding a scalar field, and this may provide 
us with an infinite dimensional Fock space. If second quantization should be inevitable we 
should prepare for creation and annihilation of particles, and this was not considered in 141. 

In previous papers [5] we expressed doubt that a rigorous quantum version exists at 
all, because of the requirement of a fundamental quantized gravity theory. But further 
examination of the classical system provided us with so much information concerning its 
fundamental degrees of freedom and its causal structure that a renewed attack is made 
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possible. We report here on a beautiful short-distance structure, showing features of 
finiteness that were previously speculated upon for the four-dimensional theory. 

Our approach to the classical system will be that of 131. Let us briefly summarize the 
method. We start with a set of Cauchy surfaces C . A Cauchy surface is a spacelike cross 
section of spacetime. Here it is two-dimensional. No pair of points in a Cauchy surface 
is allowed to be timelike separated, and all other points in spacetime must be either in the 
future or in the past of at least one point in each Cauchy surface. To each of our Cauchy 
surfaces C we attach a time parameter f ~ .  

Next, we design a tessellation of each Cauchy surface, so that its evolution to the future 
(and to the past) can be calculated. Each of these ‘tiles’ is a polygon. Particles may only 
sit at the comers of polygons, so inside each polygon spacetime is flat. The constant time 
surface t = rc defines a preferred Lorentz frame (but not yet its origin) for spacetime there. 
The polygons are bounded by edges. At an edge, the two Lorentz frames of the adjacent 
polygons are related by a Lorentz transformation. Since at an edge the two time coordinates 
coincide, the Lorentz boost from one polygon into the next must be directed orthogonally 
to this edge. The boost parameter for in edge Li will be denoted by 2qt. For reasons that 
will become clear later we will now choose the signs such that qi > 0 if both polygons 
contract; qi < 0 if they expand The velocity of the edge itself in both frames is described 
by half this boost, qi . A particle at a comer of a polygon will connect two edges that are 
glued together in such a way that the particle produces a conical singularity. In general the 
particle moves, so that the Lorentz frames at both sides of such an edge are also related by 
a Lorentz transformation. If 28 is the deficit angle at a particle, m is its mass, and 6 the 
boost parameter for its velocity in the local frame, then we have 131 

t anp=cosh t  tanim (a)  

tanhq=sinp tanhe ( 6 )  
cos i m  = cos@ cosh q (C)  

sinh q = sin $m sinh E (4 

(for future calculations it turned out to be convenient to absorb here a factor 2rr in the 
definition of the masses m of the particles, as compared to our earlier expressions in 12-51). 

The topological structure of a tessellation will be denoted by a diagram indicating the 
edges of the polygons without bothering about actual lengths or angles. Depending on the 
global topology of 2-space, the diagram should be seen as living on a topologically non- 
trivial sheet, which we unfold by removing a few points. The diagram (after adding the 
point(s) at infinity) indicates how the polygons fit together. 

The evolution is now indicated diagrammatically. During short intervals of time we 
may simply allow time to evolve equally fast on all polygons, so that the edges move with 
their well defined velocities. But it will be unavoidable that something will happen as time 
goes on. It could be that the length of an edge shrinks to zero. It could also happen, since 
many polygons are not convex, that one of the vertices of a polygon hits one of the other 
edges, at which point it also becomes illegal to continue the description in terms of these 
particular polygons. A transition in terms of another set of polygons takes place. It is 
the succession of many such transitions that we studied. The complete set of all possible 
transitions in a diagram is listed in figure 1. 

In most cases a new edge is created, which implies that two polygons that were truly 
separated before now acquire an edge in common, whereas other edges may disappear. 
Since the relative Lorentz transformation between one polygon and an adjacent one was 
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Figure 1. Schematic diagrams of the nine different possible transitions 

determined by the succession of Lorentz transformations at other edges, and since this will 
not change, one will always be able to compute both the orientation of the new edge Li 
relative to the others and the new Lorentz boost parameter q l .  

In practice we compute these new numbers using 'hiangle relations'. Consider a vertex 
between three polygons, I, I1 and 111, and let be the angles between two edges in each 
polygon, and ql.2.3 the three Lorentz boosts, labelled as shown in figure 2. We define 

sin cui = si cos ai = L': sinh 2qi = ui cosh 2qi = yi (1.3) 

which gives the relations 

SI : s2 : s3 = UI : U* : U3 ( 1.4) 
y233 + SIC2 f ClsZM = 0 
C I  = cZc3 - YIsZs3 

J'I = YZy3 + W'3cl 

cotcuz = - co tq  cosh2q3 -coth2~2 sinh2qjfsincu1 

(1.5) 
(1.6) 
(1.7) 
(1.8) 

and all cyclic permutations. 

Figure 2. The angles ai and the boosts vi aI a v e m  between three polygons. 

The use of these relations is described in detail in [3]. Any possible ambiguity in the 
parameters of a newly opened edge is removed by requiring that the edge grows with a 
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positive time derivative and that the complete set of polygons must form a hue Cauchy 
surface at all times. An edge L grows or shrinks at its two end points A and B: 

At a vertex A the growth g A  of the edge L1 is given by 

gA.1 = (U! cosa3 + u~)/s ina3 = ( V I  cosaz + u3)/sina2 (1.10) 

where 

vi = -kanhq = -aj/(l +E) 1 (1.11) 

At a particle P the contribution to the time dependence L is 

gp = tanhq co ts  = tanhe COSB. (1.12) 

The equations (1.11) and (1.12) show how the edges evolve. 
The degrees of fTeedom of the system are essentially the collection of lengths Li of the 

edges i and the Lorentz boost parameters qj at these edges. The orientations of these edges, 
and with them the orientation of the Lorentz boosts there, are then fixed because one can 
compute the angles ai using first (1.7). after which any ambiguity for the sign of SI can be 
lifted using (1.4) together with the information that at each vertex at most one of the si is 
allowed to be negative. 

There will however be constraints. Each polygon must close exactly, which implies 
that the angles at its N corners must obey the condition 

(1.13) 

(counting the contribution of a particle P as a p  = 2n - 28). Furthermore, the vectorial 
sum of all edges must coincide with’the origin, 

(1.14) 

where wj is the orientation of the edge Li in the frame of the polygon, to be computed from 
the angles ai. So each polygon produces three constraints altogether. 

2. Brackets 

We have the complete set of degrees of f d o m ,  their equations of motion (1.9)-(1.12), and 
theconstraints(l.13)and(l.l4)onthem (whichareautomaticallypreservedbytheequations 
of motion). Naturally, if we wish to find a quantum version of this model we have to find 
a Hamiltonian and Poisson brackets that generate these equations of motion. The following 
construction was discovered by first studying the weak gravity limit, at which spacetime 
becomes completely flat, and the particles form a Fock space with known expressions for 
energies, momenta and Poisson brackets. In this limit the polygons form diagrams such 
that particles and clusters of particles are each connected with lines that are oriented in 
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such a way that they are all parallel to the total momentum they cany. We read off from 
(1.2a) that the deficit angle 2s for a particle coincides precisely with its energy in this limit 
(since m is infinitesimal), and from (1.B we see that then 2q precisely corresponds to its 
momentum. 

A complication, of course, is that we are dealing with a cosmology, and this implies that 
the total Hamiltonian will have a fixed value. It is natural now to take as an Hamiltonian 
the combined deficit angles. More precisely, the total energy enclosed inside any closed 
contour C is the deficit angle obtained when we parallel-transport the local coordinate frame 
along this curve. 

If this is taken to be the Hamiltonian then we can deduce the canonical variable 
conjugated to the length Li of an edge i by requiring 

Li = ( H ,  L i ] .  (2.1 ) 

We know that this variable must be a function of the hi,  the boost parameters of all edges. 
In the weak gravity limit the variable canonically conjugated to Li simply turned out to 
be Z q i .  In principle, one could have expected a more complicated function of  the q j  in 
the strong-gravity case. Suppose now that the variable conjugated to Li is some function 
pii((qj)]. Let us then compute the Poisson bracket (2.1). 

A particle P contributes to the Hamiltonian Hp = 28. Therefore it contributes to the 
time derivatives ii as follows: 

s i i  = { H ~ ,  L ~ I  = aHp/ap i  = z (ap/av) (aq/api )  . (2.2) 

Equation (1 .2~)  gives the relation between 6, q and m, from which it follows that 

a@ sinhq cosm -=--- -tanhq cot@ 
aq cosh'q sin@ 

We see that this is exactly the velocity gp derived earlier (see equation (1.12)). Hence the 
contribution of a particle to the time derivative of its cusp agrees with the Poisson bracket 
only if the variable pi canonically associated with Li is exactly 211;. 

Our scheme will only be self-consistent if also the contribution of the vertices as given 
in equation (1.10) agrees with the Poisson bracket (2.1). We expect that the contribution to 
the Hamiltonian from a vertex is 

H. - - HV = H I  + Hz + H3 +h I - ai 

i , j , k = 1 , 2 , 3 .  Yi -YjyI, 
COS(Hi) = 

ujck 

where we used the triangle relation (1.7). 
This will give 

(2.5) 
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Indeed, substituting equation (1.7) for a2 or a3 in equation (1.10) for the velocity of the 
edge Lt at the vertex V we find 

We conclude from equations (2.3). (2.5) and (2.6) that the variables 2qi are indeed the 
canonical conjugates of the Li: 

(2qi. Lj] = 8,. (2.7) 

The Hamiltonian is the sum of the deficit angles, as given by (2.4) for the vertices 

3. Constraints 

At every polygon we need to impose the condition that all angles add up to ’2i~ as given by 
the constraint (1.13). The angles of the polygon contribute to the Hamiltonian. Apparently 
we have 

9 H i  =Zn( l -N)=f ixed  
i=l  

where i labels the N comers of the polygon. 
The physical interpretation of this constraint is not difficult to see. Inside each polygon 

we had been free to choose the Lorentz frame, and in particular the time coordinate for this 
local frame. If we allow this polygon to evolve all by itself it is governed by this part of 
the Hamiltonian. The constmint (3.1) tells us that this is an invariance of the state of the 
system. 

The complex constraint (1.14) must COrreSpOnd to invariance with respect to Lorentz 
transformations of the 6ame inside the polygon. The effect a Lorentz transformation inside 
one polygon has on the surrounding Li is rather complicated, so we have not checked 
explicitly whether the change generated by this constraint indeed matches this. 

Besides these, there are more subtle consaaints, in the form of inequalities: 

(obviously the lengths of the edges must be greater than, or equal to, zero). From (1.7) one 
can also deduce that the qi must satisfy a triangle inequality: 

lqil < lqj l+ I ~ x l  i , i , k  = 1,2,3 . (3.3) 

We anticipate here that another set of canonical variables will be useful: 

Xi = Li ~ ~ ( q i )  pi = 1211iI 

which, at least classically, also obey the Poisson brackets 

{ P i ,  x j }  = 8ij . 

(3.4) 

(3.5) 
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U 
Figure 3. Acceptable self-overlapping polygoa 

Note that the question whether the commutator analogues of (2.7) and (3.5) are also 
equivalent will not be so obvious. 

The advantage of these variables will be that there is now no further constraint on (the 
sign of) x i ,  whereas pi are now limited to be positive. In addition, the pi satisfy the 
ordinary triangle inequality, (3.3), without the absolute value signs. 

There still is another inequality which is more difficult to write down explicitly. This is 
the requirement that all polygons must be true polygons. The point here is that the angles 
of a polygon need not be convex. In particular, a particle with mass less than H will give 
a cusp corresponding to an angle larger than H for the polygon. Consequently we must be 
careful that the polygon does not intersect with itself, otherwise our surface ceases to be 
a genuine Cauchy surface. In the classical case, if a polygon tends to dissect itself it will 
undergo a transition of the type depicted in figure l(c) or I(&. 

Occasionally, however, we will have a polygon that does overlap with itselc 
nevertheless, it may be an acceptable polygon if it is still a boundary of a two-dimensional 
space, see figure 3. It only overlaps with itself if we insist on choosing a rectangular 
coordinate grid within. 

4. Quantization 

In this section the commutators will be replaced by -hi times the Poisson brackets. We now 
claim that the variables xi and pi are to be preferred as canonical variables, rather than Li 
and 211;. This is because at L; = 0 a transition of the form of figure I@), (b), (e) ,  . . . , (j) 
has to take place, which corresponds to adding a boundary condition at Li = 0. When a new 
edge opens up it is not a priori clear how to resolve the sign ambiguity in the determination 
of the new 7 variable, and in association with that the signs of the trigonometric sine and 
cosine functions of the new angles. If we replace the Li by quantities xi.  we can use the 
signs of xi to give these lines an orientation inwards or outwards of the vertex. In particular, 
at the transitions of figure I@) and (f) the newly resulting wavefunction will be continuous 
in x (note that in these two figures the signs of q on the horizontal line segments flip). The 
advantage of keeping pi positive will become apparent in section 5. 

The transitions as pictured in figure 1 should be seen as boundary conditions on the 
wavefunction. But we can also view them as providing identities for the wavefunction on 
different diagrams. If the wavefunction is known on any particular diagram we can derive 
it on any other diagram by using these identities. For instance, if in figure I(a) the edge 
shown at the left has a length L > 0 then the diagram at the right may be seen as an 
analytic continuation of it, such that the new length parameter L < 0. Figures I@), ( d )  and 
l(gHh) show how polygons can be added to or removed from a diagram. 



1660 G ' f  Hooji 

Figure 1 was originally intended to list the transitions for a classical theory, not directly 
to formulate the quantum system. For that, it would probably be more convenient to 
reformulate the rules slightly. Technically, the transitions (c) and (d) can be obtained most 
easily by first splitting a polygon in two, using a new edge with 7 = 0. Since then also 
p = 0, this simply means that the wavefunction does not depend on the new x variable at 
all, and so this is a dummy variable at this stage. But then transitions of the type (a) and (b) 
are performed, and after that we obtain non-vanishing 7 and hence non-trivial dependence 
on the new x variables. 

Also, adding or removing a polygon by transitions of the form of figure l(g) or (h) is 
straightforward. Because of the Hamiltonian and Lorentz constraints on the extra polygon 
the wavefunction depends neither on the Lorentz orientation nor on the internal time variable 
of that polygon. 

Let us stress once again that it is the transitions that cause our system to be highly non- 
trivial. The classical system has already shown that infinite successions of such transitions 
often occur (usually resulting in ever increasing values for pi. in which case the L, equally 
rapidly decrease. So the consequences of the constraints induced by the boundary conditions 
of figure 1 are severe. 

Ultimately, since we are performing cosmology rather than local quantum mechanics, 
it is not so much the Schrodinger equation but rather a Wheeler-DeWitt type equation that 
the entire wavefunction will obey. 

5. Dweteness 

For some reason, the most striking consequences of the quantum sbucture of this model 
have never been observed or stressed by other authors. It is the discreteness of the relevant 
variables. First let us concentrate on the time variable. 

The Hamiltonian is the total deficit angle. For a closed S, universe this is 4 H .  Locally, 
the contributions to the Hamiltonian govern how parts of the universe evolve with respect 
to a time variable fixed at 'distant polygons', or 'distant observers'. It seems that the 
very physical nature of our approach allows us to see this more clearly than otherwise. 
What we see is that the local Hamiltonians are also angular. Of course these angles 
are defined only modulo 7.x. and so our Hamiltonians are also only defined modulo 2 ~ .  
Indeed, all expressions we have for the Hamiltonians in term of the pi give us only cos Hi 
(equation (1.7)). and to some extent also sin Hi (equation (1.4)). ,This means that what we 
really have is only direct expressions for e*'" in terms of single-valued functions of pi. 

But this we consider as highly interesting. Apparently the evolution of the system 
is only well determined for integral time steps. Fractional time steps are ill-defined and 
skipped Clearly time is quantized in our model. In fact, this quantization of time was seen 
earlier when the relation was established between angular momentum on the one hand and 
a time shift along a contour around a set of particles on the other. Since angular momentum 
is quantized, time shifts are quantized also [5].  

Time quantization is also essential for a discussion of uniqueness and unitarity of the 
system. We want the evolution to be described unambiguously. One can only hope to 
obtain such an unambiguous law for time steps that are integral. Yet even there things 
are not quite this simple. Equation (1.7) does give us the cosine of the contribution to the 
Hamiltonian, but not the sine. This means that, from that equation alone, we obtain the 
operator 

(5.1) 
e-iH + eiH 
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a combination of a step to the future and a step to the past. What is needed is an unambiguous 
expression for e-iH done. 

Fortunately we also have (1.4). In the classical system this expression is sufficient to 
determine all angles uniquely at every transition. Given q i .  there is in principle one overall 
sign ambiguity for the sines of the angles at each vertex. Of course, what this means 
physically is that our quantum system evolves under laws that are symmetric under time 
reversal. All that is needed is that for one diagram all angles must be given. We can then 
use equation (1.4) to lift the sine ambiguity for all transitions to all other diagrams. 

It is still difficult, however, to establish that our system i s  completely unitary. If we 
take a complete cosmology, we know that large series of transitions can relate one diagram 
to the same diagram at many different values of the parameters. So we cannot allow for all 
possible states @ ( x )  because most of them will violate the boundary conditions of figure 1, 
or, they will violate the Wheeler-DeWitt equation. It is at a local level that OUT equations 
seem to be sufficiently stringent to completely determine e-iH. 

Since time is discrete one may now ask to what extent space is discrete also. It would 
be natural, perhaps, to suspect that spacetime forms a complete lattice. But the situation 
is considerably more complicated. In principle the xi can take any (integral or fractional) 
value. The thing to observe, however, is that the only p dependence comes from the 
hyperbolic sines and cosines of pi; otherwise, we just see the operators e*pt occurring in 
our expressions both for the cosines and for the sines of Hi.  But these are the operators 
for shifts over exactly a distance i ,  which is a unit step in the imaginary direction. The 
question now is how to exploit this fact. 

It is now of importance to use the constraint from (3.4) that pi  are non-negative. This 
means that the wavefunctions will be analytic in the entire upper half plane, Im(xj) 2 0. 

We have (having omitted the indices j )  

Let us now define the amplitudes 

Then the operators e*+' act on these in a very simple way: 

= &+I . (5.4) 

We are now in a position to interpret the equations (1.4H1.8) as difference equations on 
the wavefunctions + ( n , , ( { f F ) ) .  There is a time variable tr at each polygon F .  which we are 
allowed to vary separately. In a given diagram, each edge j has a (non-negative) variable 
n,. We label the polygons and the edges in a cyclically symmetric way as in figure 2. There 
is now an algebra of operators. At each comer i there is an operator T,  = e-*Hi, defined in 
such manner that 

T~ = n 7; = e-'Hp (5.5) 
isF 

is the time displacement operator at polygon F :  

TF@ln,l(~l> ... 3 tF*. ..) =@[n,](fl,. .. ,tF + 1, .. .). (5.6) 



1662 C 'I Hooji 

And at each edge j there is an operator Uj = epi defined in such way that 

U j h  ,..... n ,,... (11, ...I = h I , . . . .  n,-l. . .(tl,  ... ) . (5.7) 

The entities si ,  ci. uj, yj in equations (1.4H1.8) are now 

Because of the observed analyticity in the upper half-plane we have the boundary 
condition 

@ ..., ,.... + O  as n , + + m .  (5.9) 

Now most of our equations will be of second degree (that is, involving at least two steps) 
in the nj direction, so that another boundary condition may be needed. This is the value of 
the wavefunction @ at the origin. Here an edge vanishes, and hence the wavefunction must 
coincide with other wavefunctions for different diagrams, to be obtained via transitions as 
given in figure 1. This is the reason why we considered in equation (5.3) only the set of 
wavefunctions that are connected to the origin by integral vertical steps. These are probably 
more essential than the ones we would have obtained had we started at another, arbitmy 
point in the complex plane. 

Finally we note that the equations at an edge to which a particle is connected, 
equations (1.2) must be treated exactly as equations (1.4-(1.8) were. The mass m is an 
arbitrary free but fixed parameter here. Only one problem has not been addressed yet. This 
is the fact that, since the distances are now discrete, the distance between two particles can 
become exactly equal to zero. This was never a concem in the classical case, because such 
an event would occur with probability zero. Now it is a finite possibility. Presumably there 
will be room here to enter non-trivial non-gravitational interactions among the particles 
themselves. We have not worked this out yet. 

6. Discussion and conclusions 

Our procedure with tessellated Cauchy surfaces tumed out to be strikingly suitable for a 
description of not only classical but also quantized particles gravitating in 2+1 dimensions. 
The lengths L, of the edges of the polygons and the Lorentz boosts 2171 across these edges 
tumed out to be each other's canonically associated degrees of freedom, and the Poisson 
brackets (see equation (27)) are quite suitable for setting up a quantization procedure. 

But replacing Poisson brackets with commutators must be done with care. Often, if a 
Hamiltonian is not quadratic in the momenta, a theory may tum out to become non-local, 
non-unitary or lacking a stable vacuum state. In this model we faced all these dangers. 
Now there seems to be a general rule that if a model is classically integrable it will have 
an integrable quantum version as well. It seems that this rule works to our advantage here. 

The effect of the quantization procedure is remarkable. Because the Hamiltonian is an 
angular variable, the time coordinate comes out automatically as discrete. Only over integer 
time intervals the wavefunction evolves unambiguously. Because of the Lorentz invariance 
one could have expected that the spacelike dimensions should also be discrete. Instead, it is 
the imaginary parts of spacelike distances that will be quantized in integers. We found that 
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the independent variables I F  and nj in the wavefunction q+n,j((t~)) can all be restricted to 
integer values, because the wave equations in terms of these variables turned into difference 
equations. 

We have here an unusual analogue of the so-called Wick rotation in quantum field 
theory: instead of replacing time by an .imaginary quantity we have kept time real but 
replaced the spacelike coordinates by imaginary numbers. Of come,  spacetime obtains a 
(locally) Euclidean signature in both cases. 

Whether the variables xj can be completely replaced by nj remains to be seen. This 
replacement appears to become inefficient at large distances. A study of the possible 
classes of analytic wavefunctions reveals that indeed there exist functions which are zero 
on z = fin, n 0 and finite when z is real. These are necessarily divergent on the lower 
half of the complex plane. Therefore the funcdons 4 are not completely representative of 
all states. One cannot build a complete basis out of them. 

A complete formulation of ‘quantum cosmology’ in 2+1 dimensions has not yet been 
given. What we  would like to see is an S-matrix construction: given some asymptotic 
states I$r)i. at time t -+ -CO (if the universe started being infinitely large) or t = to (if the 
universe started with a big bang at I = to). and [$r)o,r at time t -+ fw (for an expanding 
universe) or I = t ,  (for a universe with a ‘big crunch’ at I = t,), we would l i e  to be able 
to compute the ‘scattering matrix’ 

out($l$r)in . (6.1) 

A problem here is to give a semiclassical description of the asymptotic states. This seems to 
be all right if the universe becomes infinitely large there, but in the crunching case this is very 
problematic. In an earlier paper we expressed the suspicion that the crunching states become 
semiclassical also. This, however, was based upon the hope that the momenta associated 
with the lengths L, were something like the hyperbolic sines OT cosines of the q variables, 
which was not so crazy because the classical expressions for the momenta do contain the 
Lorentz y parameters. Now we know that this is different in the strong gravitational case. 
and the asymptotic states will keep their fundamental quantum mechanical nature. 

We actually found from the triangle equations (1.4H1.10) that 

3 

C g i q i  
i= l  

is strictly bounded, even as rj --t W. One can conclude from this that during a classical 
crunch the quantity 

vi Li 
i 

(6.3) 

approaches afinite limit. Since this quantity counts the number of wave nodes one can 
deduce that the asymptotic crunching state cannot be described semiclassically. Therefore 
it will be very difficult to even define the matrix (6.1). We do not know how to characterize 
complete sets I+)h.aut without overcounting. 

From the fact that (6.2) approaches a finite limit it also follows that the critical coefficient 
K mentioned in [7] is equal to one. 

An alternative approach to a physical interpretation of the quantum theory could be to 
concentrate on the definition of an S-matrix for scattering in an open universe, as was done 
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in [5 ] .  In that case the asymptotic states are always expanding, but the total energy must 
be constrained to be less than 2ir. However, such a constraint would make it harder to 
formulate the usual conditions of unitarity and causality for the S-matrix. 

Discreteness of time has the consequence that energy is only defined modulo 2n. We 
could call this unit the Planck energy. In other theories with discretized time this is a 
problem, because then there may not be a well delined stable vacuum state [6]. Here we 
are not so much concerned with that. The total energy of the universe is only 4n, or two 
Planck units. So if we take a small section of this universe then the energy quantum is 
much too large to cause any concern. 

Can one add non-gravitational interactions to the model? What about a A44 term in 
the Lagrangian? We must observe firsfly that, although we seem to have a completely 
quantized model here, we have not yet seen creation or annihilation of particles. We know 
that creation and annihilation do occur in a non-gravitational theory with a A@ interaction. 
One should suspect this still to happen if one then adds gravitation. Secondly, we ignored so 
far the states where two particles coincide. Just because of the discreteness of the distances 
Lj ,  this may be a serious omission that has  yet to be addressed. Notice furthermore that the 
relevant equation linking energy and momentum, equation (1.2~). only contains cos m , not 
sin m . So one may easily generate a sign difficulty for the particle mass m, comparable to 
difficulties that led to the necessity of second quantization in non-gravitational field theories. 
Since the transitions of figures l(b), (c) and (e) leave no ambiguity for the deficit angle 
corresponding to the Hamiltonian, we do not expect particle creation or annihilation to occur 
in pure gravity. But as soon as other interactions are included, we probably will have to 
deal with a complete Fock space. 
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