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Abstract: The behaviour of a renormalized field theory under scale transformations x --* kx; 
p -'* p / h  can be found in a simple way when the theory is regularized by the continuous 
dimension method. The techniques proposed here have several applications in dimension- 
ally regularized theories: short distance behaviour is expressed in terms 9f the single 
poles at n = 4, and all coefficients in front of the higher poles 1/(n  - 4) g are expressed 
in terms of those of the single poles l [ (n  - 4), without calculating any diagram. In some 
cases the Taylor series in 1/(n - 4) can be summed, leading to some exact results for the 
infinities of the full theory. 

1. Introduction 

The continuous dimension method has recently been advocated by many authors 
as a useful device for obtaining a finite perturbation expansion of a renormalized 
field theory [ 1, 2]. As its main advantages one usually mentions the facts that no 
additional regulator diagrams are needed that would make the algebra more com- 
plicated, and that complicated symmetries like local gauge invariance are left intact [ 1 ] 

In this article we would like to point out still another useful aspect: it becomes 
rather transparent how the theory behaves under spacetime scale transformations. 
This behaviour is described by a simple differential equation, closely related to the 
Callan-Symanzik equation. 

Our technique cuts both ways: we also find an important set of  equations be- 
tween the residues of different poles at n ~ 4. 

2. The role of  the unit of  mass in the subtraction procedure 

Let ~ (~0i, X) be a Lagrangian for a renormalizable field theory with fields ~o i, in 
which k is an expansion parameter, for instance a coupling constant. 

The continuous dimension method consists in considering the theory in a "space- 

* On leave from the University of Utrecht, Utrecht. 
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t ime"  with dimension n :/= 4. For all integrals that can occur in the perturbation 
expansion, one can define in a unique way its finite part  as an analytic function of 
n. 

I f  we now consider the limit n -~ 4 we encounter poles of  the type (n - 4 ) - g ,  
which can only be removed if we let the coefficients in ~2 also vary as a function 
o fn .  Thus the Lagrangian 52 (~o i, X) is replaced by 

52= 52(~.0i,~) + A~2 (~oi, X , n ) ,  

A( i) + x2[B( i) ] 
A52= X n _ 4  L n - 4  + ( n _ 4 )  2 - 1 + ' ' "  (2.1) 

The Lagrangian (2.1) is constructed such that all Green functions remain finite as 
n -* 4, order by order in the perturbation expansion in k. 

Now, if the Lagrangian 52+ A52 can be obtained from ~, itself just by rcnor- 
malizing the parameters and rescaling the fields (and, if necessary, performing 
gauge transformations), then the theory is called renormalizable. We shall only con- 
sider that  case. 

The S-matrix will depend only on those parameters which are invariant under 
field transformations or gauge transformations. Let us first consider these param- 
eters and let us furthermore assume, for the time being, that there are only two of  
them: a mass parameter m, and a coupling constant X, occuring in the form of  
terms like 

- lm2~02 and 14 X~04 (2.2) 

in the Lagrangian. The more general case o f  an arbitrary number of  parameters will 
be discussed in sect. 5. In this section we shall not use the particular form of  the 
terms (2.2) except that  they define the dimension of  these parameters: if  we assign 
to a derivative 0 r dimension 1, the Lagrangian has dimension n. A boson field ~o has 
therefore dimension (n - 2)/2. A mass m has dimension 1 and X in (2.2) has dimen- 
sion 

n -- 4 - ~ =  4 - -  n . 

Now in the theory at non-rational n, all divergent integrals in the pertubation 
expansion can be redefined in terms of  convergent integrals in a unique way [1 ]. 
This procedure conserves all possible symmetry aspects of  the original Lagrangian, 
including its scale transformation properties. So, at non-rational n the parameters 
m and X in (2.2) have a well defined and unique meaning, and their dimension is 
not influenced by the interactions*. We therefore call these parameters the bare 

* Note that our subtraction procedure at n ~ 4 differs in a crucial way from that of Wilson, 
te l  [3], who uses a cut-off A, whereas we first redef'me divergent integrals. This is why 
Wilson gets anomalous dimensions also at n ~ 4 where we do not. 
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parameters which we shall denote with a suffLx B: XB and m B. However, as stated 
above, we have to let these bare parameters go to infinity while n --, 4. This we do 
by expressing them in terms o f  two Finite (but rather arbitrary) parameters ~'R and 
mR, and n (R standing for "renormalized").  We shall choose ~'R and m R to be di- 
mensionless and independent o f  n, although we may substitute, if  we wish, a func- 
tion that  depends in a given way, but always smoothly,  on n. 

To express X B and m B in terms of  ?~R, m R and n we need a unit of  mass, #, 
that is kept  fixed. So, in practice, we shall have an expansion in terms of  hR of the 
following type: 

al  2(mR)~,2R al3(mR)X3R a23(mR)X 3 f 
~B =/ ' t4-n LXR + + + . . . -t 

n -  4 n -  4 ( n _ 4 ) 2  

-t a24(mR)h4  ÷ . . .  +a34(mR)X4 + . . .  + . . . J  

(n -- 4) 2 (n -- 4) 3 ' 

b l l ( m R ) A  R bl2(rnR)?~ 2 b22(mR)X2 
m B = # [mR + + n - - 4  n - 4  + ' ' "  + ( n - - 4 )  2 I _  + ' ' ' + ' ' ' 1  " 

(2.3a) 
lit 

The coefficients avi, bvi  can be calculated [1, 2, 4] from the Feynman diagrams 
of  order i in ~. I f  we want not only the S-matrix, but also Green functions to re- 
main finite at n ~ 4, we also must renormalize fields and gauge parameters. Our 
methods will apply to these renormalizations also (see sect. 5). 

It will be more convenient not to expand in terms o f  ?~R, and to write eqs. (2.3a) 
as, 

~,B =/a 4 - n  [~R + ~ a v ( m R ' h R ) q  , 
v=l ( n - 4 )  v -J 

m B =/.t [ m R +  ~ b v ( m R ' h R ) ] .  (2.3b) 
v=l ( n - - 4 )  u 

Now, o f  course, eq. (2.3) is not the only expression for ?'B and m B which will 
lead to a f'mite S-matrix as n --> 4, because one can always substitute 

k R -~ X R + e l ( n  - 4) + e2(n  - 4) 2 . . . .  

m R - ,  m R + f l ( n  - 4) + f 2 ( n  - 4 ) 2 . . .  , (2.4) 

so that  we get a different series of  the kind 

* Actually, the coefficients a are independent of m R and b are proportional to m R (see sect. 4), 
but for sake of clarity we do not want to use that information here. 
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I k ~ l  v ~  1 a '  ' ' ) ]  
;kB =/ ' t4 -n  ' ' ' 4)k + ~'R + v---(mR')~R cg(mR, XR) (n -- (n -- 4) v -J ' 

= = 

m B =  Ik~_l d'k(mR,X'R)(n--4)k+m'R+ ~ b'v(mR'XR) 1 
- v = l  ~ n ~ 4 )  v -I 

(2.5) 

This corresponds to the usual ambiguity in any renormalization formalism, but it is 
easy to convince oneself that the subsidiary condition that all coefficients c i and d i 
in (2.5) be zero makes the expansion (2.3) unique, (once we have chosen a value 
for #), because two different ones cannot possibly both  yield an S-matrix that is 
finite, order by order in the perturbation expansion. We shall from now on assume 
that all necessary transformations of  the type (2.4) have been performed such that 
this subsidiary condition holds, so that we have series like (2.3) and not (2.5)*. On 
the one hand this requirement also leads to a definition of  kR and m R in a given 
theory (in general they do not correspond to the more usual definition like on-mass- 
shell coupling constant or physical mass), but on the other hand it will be clear that 
this definition will depend on our "unit  of  mass"/.t. 

3. The scaling properties o f k  R and m R 

Suppose we calculate a diagram with loops that is ultra-violet divergent but  does 
not become infra-red divergent as m -* 0. After application of  our regulation tech- 
nique and insertion of  the series (2.3) the result will contain powers of  

l o g ~ ,  (3.1) 

where k is a typical external momentum and/2 is our "unit  of  mass".  
It will be clear that the perturbation expansion will only be applicable if (3.1) is 

resonably small, that is, we must choose/2 to be of  the order of  k. I f  we want to 
study limits like k 2 -* oo or k 2 -* 0, it is o f  importance to vary/a also. So it is of  
importance to compare the same theory at different choices of/a. Our result will be 
the discovery of  a well known fact [5] in a new way: the anomalous scaling behav- 
iour of  renormalizable theories. 

Consider a new unit o f  mass, #', somewhat larger than/z: 

/a' =/a(1 + e), l el < 1 ,  (3.2) 

and express XB and m B in terms o f  the new unit: 

* For practical calculations this condition for the counter terms is probably not the most 
convement one, due to the appearance of numbers lake the Euler constant "y in the higher 
coefficients. 
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?~B=(la')4-n[l+e(n--4)] [XR + ~ '  av ] 
v=l (n - 4) v 

=(# ' )4 -n  Ie (n_4)XR +?~R + e a l +  ~ av+eau+l] 
v= 1 "(n -- 4) v _l' (3.3) 

and similarly 

mB =/~,[1 _ e] [mR + u=~l bu .] (3.4) 
(n -- ;~)~-, " 

Note that the series (3.3) is not of the desired type because of the occurence of a 
term proportional to n - 4. We have a series of the type (2.5) instead of (2.3). This 
can be cured by substituting for kR a slightly n-dependent quantity, that is, by per- 
forming a transformation of the type (2.4): 

~'R = ~ R  -- e ( n  -- 4)~" R . ( 3 . 5 )  

The series (3.3) and (3.4) then become (note that also a and b depend on ~,): 

~'B = (/a') 4-n ['~R +ca1 -- eX~RaI,L 

+ ~ av(mR"~R)+eau+l--e~"Rav+l'h ]. , (3.6) 
v=l (n - 4) v 

and 

mB=la,[m _ ~ bv(mR, '~R)-ebv-ebv+l ,  x l ,  (3.7) R--emR e)k'Rbl, x + __ 
v=l (n --4) v 

where a~, x stands for aav(m, ~'R)/B ~'R, and similarly by, x, av, m, by, m- Now, 
eqs. (3.6) and 3.7) have the desired form of eq. (2.3). 

Indeed, the values of  X R and m R have changed in a non.trivial way. We have to 
define 

X~ =~'R +e(al -- ~'"Ral, h) , 
P 

mR = mR -- e(mR + "~Rbl, x)- (3.8) 

In sect. 2 we admitted that ~'R, mR may depend explicitly on n, but all physi- 
cally relevant quantities are smooth functions of 3, R, m R and n, and, therefore, 
only the values ofX R and m R at n = 4 are relevant. At n = 4 we have ?~R = 3'R, so 
we obtained the desired transformation properties of X and m: 
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If  we change our unit o f  mass # into g '  = #(1 + e), then we have to change our 
renormalized parameters XR and m R respectively into 

I1 XR=X R + e  _ X  R a a l (mR,XR) ,  

m ' R = m R - - e [ m R + X R ~ - ~ R b l ( m R , X R ) ] ,  (3.9) 

in order to obtain the same renormalized S-matrix following the same prescription 
of  sect. 2. 

Note that only the residues of  the single poles of  XB and m B contribute to these 
scaling properties of  XR and m R. 

Eqs. (3.9) are in fact differential equations for X R and m R as a function of/a. 
Examples of  such equations will be discussed in sect. 6. 

4. Identities for the coefficients a v and b v 

We have not yet  written down the complete series that replaces (2.3) after a 
scale transformation/a ~/a' .  The substitution that has to be made in (3.3) is the 
product of  (3.5) and (3.8): 

F t 

XR = ~R -- e(n -- 4)~, R + e ( - - a  1 + ~,Ral, x) ; 

t I t 
m R = m  R + e ( m  g + X R b l , x ) .  

We get from (3.3): 

and 

(4.1) 

~,B = (/a ')4-n [XR + ~ 1 ' ' , v=l (n -- 4) ~ ( av (mR 'xR)  + eav+l -- eXRav+l '  x 

, , ] 
+ ear,  x ( - a l  + hRa l ,  x) + ear,  m(m'R + XRbl, x)) , 

(4.2) 

[ m B = #  m R + (bv(m'R,X 'R)  -- eb v - e X a b v + l ,  h 
v= 1 (n -- 4) v 

t t t "11 

+ ebu, x ( - a l  + XRal, x) + e b u , m ( m  R + XRbl, x) q o 

(4.3) 

Note that a v, b v, m R and ~k R are all dimensionless. Obviously, the functions a v and 
b v are independent of/a. 
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But, as has been argued in sect. 2, the series (2.3) is the only series that  leads to 
a finite S-matrix at n -~ 4. Hence the series (4.2) and (4.3) must be the same as 
(2.3), so the "correction terms" proportional to e must all cancel. Those terms pro- 
portional to e that are of  zeroth order in 1/(n - 4), have been made to vanish by 
construction, but  for the higher order ones this observation leads to important  
identities between the coefficients av, by: 

av, h(--a l  + XRal, h) + av, m (mR + ?'Rbl,  ~,) = XRav+ I,  h -- av+ 1 ; (4.4a) 

by, h ( - a l  + XRal, x ) + bv, m (mR + ? 'Rbl,  h ) -- bv = XRbv+ I,  h " (4.4b) 

This is the set o f  equations we alluded to in the beginning. For instance, it follows 
that  in (2.3a) 

aa l2  
= 0 ; (4.5a) 

~rn R 

a a l 3 .  
2a23 = 2a22 + m R , (4.5b) 

8m R 

a b l l  
mR ~--~R = b l l  ; (4.5c) 

b121 a b l 2  
2b22=~12bl l  + mR + mR - ~ R  -- b12" (4.5d) 

and so on. We see that a12 is independent o f m  R and b l l  is proportional to m R. 
Now, one can show [1 ] that all counter terms in the dimensional regularization 
procedure are not only polynomials in terms of  external momenta  but also in terms 
of  masses m R. In particular, there is no singularity at m R ~ 0. Given this fact, it is 
not difficult to derive from eqs. (4.4) that all coefficients aii are independent o f m  R 
and all coefficients bii are linear in m R, so the last term in (4.5b) and the last two 
terms in (4.5d) may be dropped; likewise one can then substitute av, m = 0; 
by, m =bv/m R in (4.4). A qualitative interpretation of (4 .4)  can then perhaps 
be made: the subdivergences of  a diagram are expressed in terms of  over-all diver- 
gences and subdivergences of  subgraphs. We have not checked the possibility of  
this interpretation in detail. The validity of  (4.4) has been checked in some exam- 
pies. 

Eqs. (4.4) may be reformulated in terms of  a differential equation for the func- 
tions 

av(XR , mR) 
a(XR, m R, n) = 2.a , etc. 

~=l ( n - - 4 )  ~ 

This equation, for the X~o 4 theory, will be discussed in sect. 7. 
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5. Generalization towards an arbitrary number of  parameters 

The preceding section was meant to illustrate our arguments in detail for the 
case of only two different kinds of parameters. Let us now take a renormalizable 
theory with an arbitrary but fLxed number of parameters ;~k, which in a bare 
Lagrangian have dimension D k,  

D k = p(k)(4 -- n)  + O(k ) . (5.1) 

Again we write 

.--,  (5.=) 

In gauge field theories also renormalization of gauge parameters a k may be needed: 

o k + . ( 5 . 3 )  

v=l " (n - -4 )  v .z 

Renormalization of the fields can also be considered: 

k Dk + (5.4) 

Both a R and ~R do not enter into (5.2) so the physical parameters •R will satisfy 
equations among themselves. In order to fred the scaling behaviour, or the pole 
equations, for a R and ~1~ one simply absorbs (5.3) and (5.4) into (5.2). From now 
on we assume that that may have been done. 

Consider 

U' = U(1 + e) ; (5.5) 

the equivalent of eq. (3.3) is 

X k = (/a') Dk [ eP(k)(n -- 4)k k + k k + eP(k)a~l -- eO(k)Xk (5.6) 

(k) (k) .l + 
] v= 1 (n - 4)  ~ 

Let us write 

~ k  = ~.,k _eP(k ) (n_a )x , k  + s x k ,  (5.7) 

and substitute that into eq. (5.6). 
The term 8 X k is required to be such that the first term of the series in 11(n - 4) 

F 
then obtained, will be just XR; hence 
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, l  . 
, k  _eP(k)a~l  + ~ e a k ,  lP(l)X R 8XkR = ea(k)X R 

1 

where a k, l stands for (8/~ X/R )ak(X R ). Now 

(5.8) 

hk = (P")D k [ ~''k+ z,~l ~,nl_'4)v{ ak(~'')-e°(k)ak+e'° (kak+l) 

-~e,,ak'~(o ~,(1> u+l,,?~ I R +e ak,, (l)XIR--P(1)a{ 

l tm 

m 

Putting n = 4 in eq. (5.7) we find the scaling properties of the parameters ?~R: 

~' = ~(I + e), 

(5.9) 

I 

and the generalization of eqs. (4.4) becomes 

(5.10) 

~ak l(o(1)~ I -- p(1)a~ + D a~,mP(m)X~)-- O(k)ak 
I m 

a k k v+ l,l P(1) hlR (5.11) = _ p(k)au+l  • 
1 

In most theories the parameters with o(k )  = 0 will only get counter terms that 
are independent of the other parameters. This observation leads to a simplification 
similar to the one in the end of sect. 4. 

6. Scaling behaviour of some theories 

Let us define a scaling parameters s by 

= ~o e' , ~ = X~(s) .  

Then we can rewrite eqs. (5.10) in terms of a differential equation: 

(6.1) 
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ds O(k);kk + P(k)akCAR ) -  ~ k l - a 1, l (XR) P(/) XR • 
l 

(6.2) 

This equation is nearly, but not quite, identical to the Callan-Symanzik equation 
[5]. Here the coefficients are expressed in terms of the dimensions and the poles 
of the parameters. 

Let us again consider the case that there is only one parameter X with o = 0, as 
in X~0 4 theory. Then a 1 only depends on this parameter (see sect. 4) and we have 
a (nonqinear) first order differential equation with one variable. Using the notation 
of (2.3a) and dropping the suffix R, we get 

d~ dal 
~ -  = al(X ) - 3,--~- = -a12X2 + O(X3). (6.3) 

It will be clear that the behaviour of the theory under scale transformations de- 
pends crucially on the relative sign of  ?, and a12. 

Two examples of one-parameter theories are well known: (i) the scalar theory 
with coupling -X~04. The sign of X is usually taken to be positive, in order for the 
Hamiltonian to be positive definite*; (ii) quantum electrodynamics. Here X is to be 
replaced by e 2, which is always positive. 

Both of these theories have a12 < 0 which implies that XR(S ) diverges as s~ +~. 
This implies that the small distance behaviour of these theories is not described by 
the usual perturbation expansion. The long distance behaviour on the other hand, 
can be found quite accurately because for s -~ -*% X -* 0 and the first terms of the 
perturbation expansion converge rapidly there. In this region we can give the solu- 
tion of eq. (6.3): 

1 (6 .4)  
~R(S) - C + al2s 

eq. (6.4) may be used to fred infra-red behaviour for massless theories, but in gen- 
eral has no meaning ff massive particles occur, as a consequence of "ultra-violet" 
divergencies at m2 [l~ 2 -* oo. 

In a pure Yang-Mills theory, also, ?~ is to be replaced by g2, where g is the usual 
coupling constant. So X > 0. However, in that theory a12 > 0 [4, 7] and the solu- 
tion (6.4) is valid in the ultra-violet region s ~ +oo. The same behaviour is found in 
X~0 4 theory if X is taken the unusual sign [6]. 

A Yang.Mills theory with fermions can be written down [4, 7] with the proper- 
ty a12 = 0. In this theory the two-loop diagrams are decisive for its scale behaviour. 

Suppose a13 ~: 0. A small change in the theory can make a12 very small but not 
zero. In that case the function a 1 - X(~al/~;~ ) in (6.3) must have a zero for a small 

* The correctness of this axgument is dubious. See ref. [6] and the last paragraph of this sec- 
tion. 
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value ?t o o f  h. We then have a conformally invariant theory with a small coupling 
constant, so that  both  the perturbation expansion and the conformal invariance can 
be studied. 

The situation becomes quite complicated if we have two or more parameters h i 
with off) = 0 In general, eq. (6.3) will be replaced by 

d, - a, kh hi+ O(X3) (6.5) 

where a! ,  are determined by the poles of  the one-loop graphs In many cases the IK 
solutions diverge at bo th  ends o f  the s-scale [7]. Neither the ultra-violet, nor the 
infra-red behaviour can then be calculated. In a certain example we also found that 
a parameter  X R can easily change sign, which is one more reason to doubt  the argu- 
ment that the corresponding classical Hamiltonian must be positive definite. 

7. Renormalization and the perturbation expansion 

In this section we show an application of  eq. (5.11). Let us again consider 
eqs. (2.3) and now write 

l _ _ k _ _  - 
hR + = av(kR) (n -- 4) v - kBCAR' n ) ,  (7.1) 

where we confine to those theories for which a u are independent o f  m R (like in 
~k tO 4 t h e o r y ,  s ee  s ec t .  4). 

Putting also 

a 0 = h R , 

eq. (4.4a) becomes 

aa  v 
aX R ( - - a l  + hRax, h) = h R 0%+1 

ah R av+l  , 

for v = 0, 1 ,2  . . . . .  or 

~X B [ ah B 
ahRA(hR ) + (n -- 4) thR ¢3--~R-RR -- hB)  = 0 .  

where A (hR) stands for a t - hRal ,  h. 
The general solution o f  eq. (7.4) is 

XB(hR, n) = exp dh 
Co X + (n - 4 ) -1A  CA) 

(7.2) 

(7.3) 

(7.4) 

+ Cx(n) }. (7.5) 
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The integration path in ~,-space may be arbitrary. We must take in mind that A(k) 
is for small k of order ~2, so we write: 

A(~) = X2AQ,), (7.6) 

and 

{ /S  1 } 
XB =XR exp -- dX +C2(n ) . (7.7) 

0 (n - 4 ) 5 - X ( x )  + x 

According to (7.2) we require that XB -~ XR + O(X2) i f k g  ~ 0. It foUows that in 
eq. (7.7) 

C2(n) = 0. (7.8) 

Strictly speaking eq. (7.7) with (7.8) should be interpreted as follows: expanding 
it with respect to XR one obtains a series of  which each term has a certain singulari- 
ty at n = 4. Substituting that series in the expansion of the S-matrix in terms of )'B 
(which also has singularities at n = 4) one obtains as a result a series for the S-matrix, 
in which each term is finite at n = 4. 

But it is appealing to assume that if a perturbation expansion contains only finite 
and well-defined terms, then the full theory will also be finite. In that case one mere- 
ly needs to substitute eq. (7.7) itself into the "full theory" at n :/= 4, to obtain a 
finite theory at n = 4. Of course, we have no means to check such an assumption, 
but it is natural and let us see its consequences. 

At n -~ 4, eq. (7.7) behaves like (ifA (0) 4: 0): 

1 ~' (0)  
~'B = - ~ ) ( n  -- 4) + .~A...(0))3(n__ - 4) 2 log (n - 4) + RI(n,XR)(n - 4 )  2 , (7.9) 

where Rx(n, XR) is a function that behaves smoothly at n --* 4, and Rl(4 ,  XR) de- 
pends on k R: 

1 
R1(4 , kR) "" -- (/T(0)) 2 Xg + 0 (log XR), (7.10) 

for small ~R- 
So here is another remarkable result for renormalization theory: If the bare 

coupling constant kB ih ~4 theory (or g2 in pure Yang-Mills theory) is given an n 
dependence as in eq. (7.9), then the theory is f'mite at n -~ 4. 

Note that we may give 3, R a smooth n dependence, so Rl(n)  is an arbitrary func- 
tion of  n, finite at n = 4. The numbers 

5 ( 0 )  = -- a12 and /T'(0) = -- 2 a13,  (7.11) 

(see eq. (2.3a)), correspond to the one-loop and two-loop poles respectively, and 
can be calculated exactly. For instance 
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~(0)-  3 
16 ~r 2 (7.12) 

in ~4 theo~  (with the usual sign for L) and 

. 4 ( 0 )  - 11 , ( 7 . 1 3 )  
12 rt 2 

for the coupling constant g2 in pure SU(2) Yang-Mills theory. 
Although 2/B ~ 0 we have not a free field theory (the interaction strength is 

roughly equal to ~R in eq. (7.10)). 
Note also that our result, formula (7.9), only holds for the "full" theory, not the 

perturbation series, as can be deduced from the singular behaviour of R 1(4, ~tR) at 
~l R ~ 0 (see eq. (7.10)). 

In the same way the mass-renormalization can be calculated. Taking bv(~t ) pro- 
portional to mR, or 

m B = p (XR,  n ) m  R , 

we find from (4.4b): 

~ R ~-(~,) (7.14) 
p('AR, n) = exp dh hA(k) + n - 4 ' 

0 

where 

;tbl,  x = mR XB (~/) • 

Here also one could consider first taking n ~ 4. We f'md that finiteness of the 
theory then requires the mass renormalization (ifA (0) ~e 0): 

m B = (n - 4) -/~(0)/X(0) R2(n) ,  (7.15) 

with R2(n ) finite at n ~ 4, and proportional to m R. 
Note that B (0) = b l l / m  R (see (2.3a)), corresponds to the one-loop mass renorm- 

alization and can be calculated exactly also. In the ~ktp 4 theory 

B"(0) - 1 (7.16) 
321r 2 ' 

and eq. (7.15)  becomes 

1 
m B = (n - 4) ~ R2(n) .  (7.17) 

It is remarkable that only one-loop inf'mities contribute to this mass renormalization, 
while only the one and two-loop infinities determine the coupling constant renor- 



468 G. 't Hooft, Dimensional regularization 

malization. It is left as an exercise for the reader to see what happens in a theory 
with A (0) -- 0. 

8. Conclusions 

Making use of the observation that at n ~ 4 all integrals in perturbation field 
theory can be made finite, and that these finite expressions have the "naive" scaling 
properties, we found that the scaling behaviour at n = 4 of dimensionally regularized 
field theories can be formulated in terms of simple equations (3.9), (5.10), (6.2). 
These equations are closely related to the Callan-Symanzik equations [5], but they 
have the advantage that the coefficients are completely determined by the residues 
of the poles at n = 4, which one adds to the parameters in the Lagrangian, in order 
to make the theory finite at n ~ 4. In particular the single-loop contribution to these 
poles (which are the most important ones) can be obtained rapidly for complicated 
theories by means of a "pole-algebra", to be derived in a future publication [4]. 

Further we derived equations between residues of  lower and higher poles at 
n = 4, which are so stringent that in certain cases the complete singular behaviour 
at n -* 4 of  the bare parameters in the Lagrangian can be determined exactly (eqs. 
(7.9), (7.15)). The results in sect. 7 should, however, be interpreted with care, since 
they hold only for the summed theory (if such a thing exists), not for the individual 
terms in the perturbation expansion. 
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