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1 Introduction

Many of the advances in twentieth century theoretical physics can be attributed to the
discovery and subsequent exploitation of symmetries. Not only Special and General Rel-
ativity embody the importance of realizing how a precise analysis of Nature’s symmetries
can enhance our understanding, but also Quantum mechanics itself owes much of its suc-
cess to the exploitation, to the extreme, of symmetries such as rotation and translation
symmetries, but also conformal symmetries and many kinds of internal and acciden-
tal symmetries. It was Frank Yang’s deep insights that allowed him to observe how to
generalize the few local symmetry concepts that existed at his time: local coordinate
transformations in general relativity and the Weyl gauge invariance of electromagnetism.

Together with Robert Mills, he showed that one can write down completely self-
consistent field equations for a set of fields which are very similar to electric and magnetic
fields, but which induce transitions of particles that pass through such fields into other,
related species of particles.[1] The group of local gauge transformations, which was an
Abelian group in the electro-magnetic case, is now replaced by a non-Abelian group,
which may directly be linked to groups such as that of the isospin transformations, which
up to that time had been treated only as global symmetry groups.

The theory naturally requires many particle species to form representations of such
global groups, and the fact that global, non-Abelian symmetry groups already seemed
to be applicable to describe the known particle species — first SU(2) and then, later,
SU(3), could be seen as a strong indication that these ideas could become quite meaningful
and important. In spite of this, however, the Yang-Mills scheme received an amount of
skepticism as if it were some fringe science, during the first 15 years.[2]

Even the work of R. Brout and F. Englert,[3] and independently of P. Higgs,[4] did
little to alter that status. I think that one can present several explanations for this disin-
terest. One is, that investigators were still searching for Nature’s fundamental principles.
Could gauge invariance be a fundamental principle? Then why introduce scalar fields
that turn gauge symmetry into something that seems to be much uglier? Why should one
rely on Quantum Field Theory, if non-perturbatively this theory appeared to exhibit unac-
ceptable small-distance behaviour, whereas the perturbative formulation appears to suffer
from unacceptable infinite renormalization parameters? Presently, we do know what the
solid and reliable principles are on which to construct theories: Quantum Field Theories
with Yang-Mills fields in them, do possess acceptable small distance features, and gauge-
invariance is an acceptable but not exhaustive starting point for a theory; by adding these
gauge fields, theories can be obtained with approximate or even exact asymptotic free-
dom, but this does not exclude the inclusion of elementary non-gauge fields, which may
be scalar or fermionic, or, in the most satisfactory schemes, we may add both.
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Figure 1: The Standard Model of the Elementary Particles

2 The Standard Model and beyond.

These insights lead to the Standard Model, see Fig. 1. It is fully renormalizable at the
perturbative level, its infinities are fully under control, in particular because the anomalies
cancel out, and it is very nearly asymptotically free, at least to such an extent that no
corrections to the model are needed until extremely high energies would be reached, far
beyond what is presently attainable in particle accelerators. The rest of this section will
be used to admire the beauties of the Standard Model, without yet attempting to say
anything new to the experts.

The Standard Model agrees surprisingly well with the experimental observations. In-
deed, for more than 20 years, physicists have tried to detect deviations from the Standard
Model predictions. What was found, instead, is slight improvements in the details that
were known. Most of the objects that originally were still missing have been found — with
as yet the only exception being the Higgs boson — , most of the values of the freely
adjustable physical constants were determined much more accurately, and some more del-
icate improvements were made: neutrinos received mass values and mixing angles much
like their colored counterparts, the quarks.

The extraordinary successes of the Standard Model allowed us, for the first time, to
speculate about Nature’a Laws at a domain of energies and distance scales far beyond what
can be reached directly in most experiments. First, one may observe the great similarity
between the quark quantum numbers and the lepton quantum numbers. The newly
established fact that neutrinos have masses and mixing angles only further enhances this
similarity. It is therefore natural to expect that SU(3)color and U(1) emerge as unbroken
subgroups from a spontaneously broken SU(4). The scale at which this spontaneous
breaking should occur will probably be extremely high, so as to allow for the strong
coupling coefficient to run towards the U(1) coupling strength. In any case, present
precision measurements do not betray the presence of heavy vectors with lepto-quark
quantum numbers.

Another extension of the Standard Model may be suggested by adding a right-handed
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SU(2) gauge field, turning SU(2)left × U(1) into SU(2)left × SU(2)right . The algebra of
this group coincides with that of SO(4).

The algebra of the SU(4) group of the strong interactions coincides with that of
SO(6). The last step is then to join SO(4) and SO(6) into SO(10). The possibility of
this last step is so delicate that it is seen as a strong argument in favor of the previous steps
towards this construction. The fermions form three generations of a single spinorial 16
representation of this group. As they are also spinors with respect to ordinary space-time
rotations, one may even suspect a Kaluza-Klein compactification process here.

Also at this last step in unification, the strong and the weak coupling strengths must
converge. This is why this unification mechanism must happen at a unification scale which
is near the Planck scale. However, the left-right symmetry restoration of the previous step
requires the SU(2) and the U(1) forces to coincide, which also requires these to run until
a similar unification scale is reached. The fact that these various steps of unification all
appear to take place at nearly the same energy, close to the Planck scale, is an important
piece of information to be drawn from our present understanding of the Standard Model.

The above arguments are of course not new. It is important however to stress that,
so far, no supersymmetry or superstring theories were needed for these observations.
Supersymmetry does allow us to construct a theory where the left-right symmetry braking
and the SO(10) breakdown happen precisely simultaneously. This is often seen as a clue
pointing towards a supersymmetric extension of the Standard Model. This signal is
perhaps not very strong, but it is also unsatisfactory to attribute it to coincidence.

3 Questions.

While staring at these conspicuous and at the same time mysterious structures, we are
prompted to ask many questions. Some of these questions have been discussed at numer-
ous occasions by many authors. For instance:

• Why do there appear to be exactly three generations of quarks and leptons?

• Where do these wildly varying mass values come from? There appears to be a
hierarchy of scales in Nature, generated by this hierarchy of mass values. Why do
we have so many numbers whose orders of magnitude span such a wide range?

• Why in particular these groups and these representations? Is it a coincidence that
the spinors also form a spinorial 16 representation of SO(10)? Why are the Higgs
scalars arranged in the representations that we see?

• Is there supersymmetry?

• How do we include the gravitational force? Is it a coincidence that the Planck scale
and the unification scale appear to be fairly close together?
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These are the questions that we have been unable to answer, in spite of many vigorous
attempts.

In this lecture, I would like to put more emphasis on questions that are not heard as
often, while they may be equally important to ask:

¦ Can gravity (and, in particular, curved, closed universes) be reconciled with the
rules of Quantum Mechanics at all? Can the Universe as a whole form states in a
Hilbert space, while the concept of an ‘observer’, who should be sitting outside this
universe, would be a notion that is hardly acceptable?

¦ How important is the notion of locality in physics? Those who investigate the
foundations of Quantum Mechanics, and those who try to interpret Super String
Theory, are often tempted to drop locality as a necessary feature of the Laws of
Physics. But can we make sense at all of a framework describing our world if we
allow action-at-a-distance everywhere?

¦ How can local gauge invariance arise in a deeper fundamental theory?

¦ How can a naturally small (or vanishing) cosmological constant arise — while
fermions and bosons only match approximately, if at all?

4 Holography

My motivation for asking these questions requires further clarification. We know that
the gravitational force is fundamentally unstable. Unlike the electromagnetic case, like
‘charges’ attract one another, so that gravity could become an accumulative force. In
general relativity, the instability against implosion leads to one stationary solution in
which all matter imploded completely: the black hole. There exist some misconceptions
concerning black holes. Some authors appear to believe that the description of a black
hole requires the assumption that matter forms a singularity first, and that, by assuming
possible exotic laws of physics, one might be able to avoid the formation of a black hole
altogether. However, the most characteristic feature of a black hole is the emergence
of a horizon. The singularity could be affected by exotic laws of Nature, but this is
largely immaterial for our understanding of a black hole. The emergence of the horizon is
purely a consequence of General Relativity, requiring nothing more than the equivalence
between inertial and gravitational mass, in combination with special relativity. Of course,
one may question these principles of Nature, but one should realize that they have been
corroborated by numerous experiments. The existence of black holes follows from laws of
physics that all have been tested to great accuracy.

Applying directly the Laws of Quantum Field Theory to the environment of the hori-
zon, S. Hawking[5] was lead to conclude that particles of all species are emitted, and
that they are distributed according to a black body spectrum with an easily computable
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temperature1 This beautiful result strongly suggests that black holes are much more mun-
dane forms of matter than the esoteric pure ‘balls of gravity’ that they appear to be in
the classical theory of General Relativity. From their thermal behaviour, one can derive
an estimate for the density of states, and from that, one can easily imagine that black
holes will blend naturally into the spectrum of ordinary particles at the Planck scale. So,
in a sense, black holes and particles are the same things, and, intuitively, we can hardly
imagine otherwise.

The expression we obtain for the density of states corresponds to what one would get
if all dynamical degrees of freedom of a black hole would be distributed evenly over the
horizon. There is one boolean degree of freedom on every 7.24 · 10−66 cm2 of the horizon.
This number is 4 ln 2 times the Planck length squared. It is important to realize that, in
a linearized quantum field theory, the number of degrees of freedom would diverge on the
horizon. The entropy of a black hole appears to match the degrees of freedom of a quantum
field theory only if one performs a hard cut-off at distances comparable to the Planck
length from the horizon.[7] At first sight, such a cut-off seems to be forbidden by General
Relativity, but one must realize that, at that scale, gravitational forces become strong, so
that linearized quantum field theory does not apply; exactly what to do is not properly
understood. Applying to the theory with cut-off a general coordinate transformation
back to locally regular space-time, one ends up with what is known as the ‘holographic
principle’: there cannot exist more physical degrees of freedom in any closed system than
one per 7.24 · 10−66 cm2 of its surface area.[8]

It is here that the question of locality comes up: How can one construct a theory which
is reasonably consistent with locality features that we perceive in the real world and yet
has its physical degrees of freedom distributed evenly over a surface? Can such a theory
be consistent with unitarity and causality?

A natural answer to this question may seem to be, that what is needed is a ‘topological’
theory, a theory where all physical degrees of freedom can be mapped onto the boundary.
This is how holography is usually interpreted in string theory. But this does not appear
to resolve the problem of locality. How can it be that, nevertheless, we perceive our world
as 3+1 dimensional? From a physical point of view, this seems to be a genuine paradox,
not unlike the one that in 1900 lead Max Planck to postulate energy quantization. This
time, however, one might be forced to arrive the opposite conclusion: the paradox came
from our presumption that states form a quantum mechanical Hilbert space. There must
be something wrong with that.[9]

At this point, I think it is totally legitimate to ask: “Why should these issues not be
related to the question of the foundation of quantum mechanics?”

And so, one is lead back to the issue of (local?) hidden variables. It is an issue not to
be forgotten.

1Although the value of this temperature is agreed upon by most authors, one may suspect that it hinges
on an assumption that is not yet proven to be correct. The author still maintains that an alternative
scenario cannot be excluded[6]
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5 Determinism

Rather than trying to devise tricky ‘Gedanken experiments’ in which one could search for
deterministic features, we start from the other end. Consider some simple deterministic
system, consisting of a set of N states,

{(0), (1), · · · , (N − 1)} (5.1)

on a circle. Time is discrete, the unit time steps having length τ (the continuum limit is
left for later). The evolution law is:

t → t + τ : (ν) → (ν + 1 mod N) . (5.2)

Note, that this model is representative for anything that shows periodic behaviour in
time.

Introducing a basis for a Hilbert space spanned by the states (ν), the evolution oper-
ator can be written as

U(∆t = τ) = e−iHτ =




0 1
1 0

1 0
. . . . . .

1 0




. (5.3)

The eigenstates of U are denoted as

|n〉 =
1√
N

N∑

ν=1

e
2πinν

N (ν) , n = 0 , · · · , N − 1 . (5.4)

This evolution law can be represented by a Hamiltonian using the notation of quantum
physics:2

H|n〉 =
2π

Nτ
n|n〉 . (5.5)

This Hamiltonian can be used to describe a quantum harmonic oscillator. It is our
proposal to identify the states (5.4) with the eigenstates of an harmonic oscillator. They
evolve exactly as required. There is a slight problem, however: the number n is limited
to be less than N , the number of discrete positions on the circle.

The remedy to this problem, at first sight, appears to be easy: we take the N → ∞
limit. Indeed, then we get exactly all states of the harmonic oscillator.[10] However, upon
further inspection, there still remains an important obstacle. If one wants to introduce
interactions, that is, non-harmonic terms in the oscillator, expressions are needed that
relate the ‘ontological states’ (ν) to the harmonic oscillator states. One then discovers
that an operator that links the ground state |ν = 0〉 to the highest energy state |ν = N−1〉
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Figure 2: The spectrum of the Hamiltonian for a deterministic, periodic system. a) N points on a
circle, rotating with one fixed angular velocity. b) In the continuum limit, it is hard to ignore the negative
energy solutions. c) After a sign flip of the negative energy states, we get a double spectrum, suggesting
a fermionic degree of freedom.

(see Fig. 2a) continues to contribute to these relations in an essential way. Therefore, the
continuum limit is not as smooth as what would be desired.

What we have presently under investigation is the question whether there exists a
superior way to obtain a continuum limit. In the continuum limit, one obtains Fig. 2b . If
the evolution can run along the circle in both directions, the eigenvalues of the Hamiltonian
will be plus or minus Eq. (5.5). We may be tempted to turn Fig. 2b into Fig. 2c . Since
there are then two classes of states, it appears that a fermionic degree of freedom arises.
It is too early to conclude from this that supersymmetry has anything to do with a
deterministic interpretation, but it could be that fermions will have a natural role to play
in our deterministic models. Generally speaking, one finds that fermions are associated
to discrete degrees of freedom in a deterministic underlying model. Unfortunately, there
are still several problems with this picture.

Since it is easy to imagine that deterministic, periodic systems may influence one
another, the inclusion of interactions should not give problems in principle. It seems,
however, that the mathematical methods that are familiar to us do not apply. This holds
in particular when one tries to incorporate information loss.

6 Information loss

The reasons why information loss may be an essential ingredient in deterministic hidden
variable models of the sort pioneered above, has been extensively discussed in Ref.[9]. A
prototype microcosmos with information loss is the model of Fig. 3. Following the arrows,

2If so desired, one may replace n by n + 1
2 , by adding a phase factor to the evolution operator U of

Eq. (5.3).
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Figure 3: Mini-universe with information loss. The arrows show the evolution law.

one would conclude that the evolution matrix is

U =




0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0


 . (6.1)

This, of course, is not a unitary matrix. One way to restore unitarity would be to remove
state # 4. The problem with that is that, in universes with tremendously many allowed
states, it would be very difficult to determine which of the states are like state number 4,
that is, they have no state at all in their (distant) past.

A preferred way to proceed is therefore to introduce equivalence classes of states.
Two states are equivalent iff, some time in the near future, they evolve into one and the
same state3. In Fig. 3, states ## 1 and 4 are equivalent, so they form one class. By
construction then, equivalence classes evolve uniquely into equivalence classes. In this
respect, this universe is like the one described by Eq. (5.2) and the matrix U of Eq. (5.3),
with N = 3.

It should be emphasized that, at the Planck scale, information loss is not a small effect
but a very large effect. Large numbers of ‘ontological’ states are in the same equivalence
class, and the equivalence classes form a much smaller set than the class of all states.
This is how it can happen that the total number of distinguishable quantum states (=
the number of equivalence classes) may only grow exponentially with the surface of a
system, whereas the total number of ontological states may rise exponentially with the
volume. This seems to be demanded by black hole physics, when we confront the laws of
quantum mechanics with those of black holes.

Information loss at the level of the underlying deterministic theory, may also explain
the apparent lack of causality in the usual attempts to understand quantum mechanics
in terms of hidden variables. The definition of an equivalence class refers to the future
evolution of a system, and therefore it should not be surprising that in many hidden
variable models, causality seems to be violated. One has to check how a system will
evolve, which requires advance knowledge of the future.

Information loss at the Planck scale may also shed further light on the origin of gauge
theories. it could be that, at the level of the ontological degrees of freedom at the Planck
scale, there is no local gauge symmetry at all, but in order to describe a physical state,
that is, an equivalence class, we need to describe a particular member of this class, a

3It could also happen that two states merge into the same state in the distant future, but in many
models merging may become increasingly unlikely as time goes on.
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single state. Its relation to the other members of the same equivalence classes could be
what is presently called a ‘gauge transformation”.

7 Final remarks.

The fact that we need gauge-noninvariant vector potentials and other fields, to describe
our world, is a peculiar fact of life that we learned from studying particle physics, not in the
least due to the work of C.N. Yang. This, together with other very specific peculiarities of
the Standard Model, is what was meant with the words ‘hidden information’ in the title,
although the title may also be regarded as referring to the apparent need for phenomena
such as information loss in our basic theories.

An important remark about symmetries:[11] most of the symmetry groups of Nature
refer to symmetries in Hilbert Space. In our pre-quantum theories, there will, presumably,
be much less symmetry. We expect that the physical degrees of freedom become discrete at
the Planck scale, and this implies that, at best, translation symmetry becomes discrete,
whereas rotation symmetry may disappear altogether. If an ontological theory can be
constructed (a theory describing a single reality), it is likely to require a new form of
mathematics allowing us to introduce symmetries relating ontological operators (which
we call ‘beables’) to quantum operators (operators that replace an ontological state by
an other state, called changeables). it is these symmetries that then will lead to the
symmetries we know from particle physics.
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