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ABSTRACT

A personal account is presented of the sequence of observations and discoveries that led
to the discovery that non-Abelian gauge theories without anomalies are renormalizable.
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1. INTRODUCTION.

Before 1970, the prevailing view of particle physicists on the elementary building blocks of
matter was very different from today’s. Although several successes of quantum field theory were
well-established, and recognized as such, the general feeling was nevertheless that this was not the
way to really understand what was going on. Quantum field theory was plagued by infinities, and
it was therefore considered ugly. It seemed to be abundantly clear that the real world should be
described by a more efficient scheme, without the need of perturbative approximations and without
infinities that had to be “swept under the rug”. 1,2

Only very few physicists seriously studied local quantized fields that required renormalization,
but among them was my then thesis advisor, M. Veltman. A ‘must’ for his students was to read
a paper by C.N. Yang and R.L. Mills 3 of 1954. The paper made a daring assumption: a field
was introduced with the property that particles with certain quantum numbers such as isospin,
traversing this field, would undergo transitions in such a way that these quantum numbers change.
This would promote isospin from a global symmetry to a local symmetry.

Now, 30 years later, this paper is famous, but at that time its relevance for elementary particle
physics was far from clear. The theory appeared to require an internal degeneracy of the particle
spectrum of a kind not seen in the experiments, and a massless particle with spin one that had to
carry a charge sensitive to its own field, unlike the one and only known massless spin one particle,
the photon.

If the Yang-Mills paper was nevertheless taken seriously at all, it was because it clearly showed
an extraordinary elegance. It showed features closely resembling two well-established forces of
Nature: electro-magnetism and gravity. Some investigators 4,5 took it as a toy model for gravity,
others, such as Veltman 6 , were intrigued by the universal strength of the Yang-Mills force. This
feature does resemble the observed universality in the weak force.

The algebraic structure of the weak force was well-established in the ’60s. It was known that
this force can be described as if mediated by a very heavy bosonic particle 7 . The space-time
point where this particle is created must be very close to the point where it is annihilated, and
at each of these two space-time points, a fermion such as an electron transmutes into its partner,
an electron-neutrino, or vice versa. Alternatively, at such a point a proton could transmute into a
neutron, a lambda or vice versa, or, in a language already becoming familiar, up quarks would be
interchanged by down or strange quarks. The exchanged particle has the space-time structure of a
spin-one particle. Veltman concluded that its interactions had to be very similar to the Yang-Mills
interaction; however, the exchanged particle must have a considerable amount of mass, whereas
the Yang-Mills photon is massless.

At first sight, this departure from the pure Yang-Mills theory did not appear to be disastrous.
It is possible to add a mass term into the Yang-Mills equations 4,6,8 , and this way a theory was
obtained that seemed to reproduce many of the features observed in the weak interactions. It was
this theory that was to be investigated by the quantum field adherents.
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2. FEYNMAN RULES AND CUTTING RELATIONS.

Under many circumstances, perturbation theory is a very powerful tool. A condition is that
the coupling strengths of the theory are rather small. In that case, the successive corrections
calculated for a scattering amplitude rapidly converge towards an accurately calculable result.
The increasingly complicated expressions that need to be calculated can be conveniently described
in terms of diagrams, the so-called Feynman diagrams. All scattering amplitudes together form a
matrix in the mathematical sense, the scattering matrix. An amplitude is an element of this matrix,
and it can be represented by the set of Feynman diagrams that need to be calculated to obtain its
value.

In order for the theory to make sense, the scattering matrix is required to possess certain
properties. One of these properties refers to the amplitudes associated to the probability that a
particular event takes place, and in addition the amplitude for particles not to interact at all: the
total sum of all probabilities must add up to one, and of course each of these probabilities must
be non-negative. It turns out that this requirement implies that the scattering matrix must be
unitary.

Furthermore, one insists that the scattering matrix can be represented in such a way that
the interactions are seen to be well-ordered in time, so as to establish a certain sense of causality.
Causality implies that the scattering matrix must obey certain relations, called dispersion relations.
The simplest of these relations gives us restrictions in how wavelengths depend on frequency when
particle waves go through matter: no information here is allowed to go faster than the speed of
light.

For the renormalizable field theories known at the time, which were quantum electrodynamics
and theories describing interactions among spinless fundamental particles, it could be derived that
the requirements mentioned above are indeed obeyed if one uses the Feynman rules correctly. Of
course, it would have been surprising if this were not so, since the Feynman rules follow from a
perfectly consistent elaboration of these quantum field theories. One has to remember, however,
that these theories also generate infinities, which had to be circumvented by renormalization. At
this point, the unitarity relations and the dispersion relations became a tool; the only acceptable
subtraction procedures are the ones that respect these relations. It turns out that this requirement is
more than sufficient to determine the renormalization counter terms, but since they overdetermine
these coefficients, there is the danger that they clash. Indeed, examples of such clashes are known;
they are called ‘anomalies’ 9 . Theories with only scalar particles and particles with spin 1/2 were
known to be renormalizable without any such difficulties. There was only one renormalizable vector
theory known: Quantum Electrodynamics (QED), the theory of the quantized electromagnetic field.
Here, the primary quantum particles are the photons, particles with spin one and mass zero.

Now, the Yang-Mills theory that appeared to be most appropriate for describing the weak
interaction had an explicitly added mass term in it. 8 With that, the Feynman rules yielded a
propagator for this vector field that had the following form:

Pµν(k) =
δµν + kµkν/M2

k2 + M2 − iε
, (2.1)

where M is the mass of the vector particle. The kµkν term appeared to be disastrous, since it
gives rise to bad divergences as kµ tends to infinity, divergences closely related to the fact that
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the limit M → 0 appears to be singular. Now, in electrodynamics, the kµkν terms are harmless,
because the propagator is coupled to a conserved current Jµ , which, in k -space, has kµJµ(k) = 0.
Conservation of the current is guaranteed by gauge-invariance. However, in the weak interactions,
an intermediate vector boson couples to a non conserved current, since under its action, a particles
transmutes into a different one, with different mass, and furthermore, the field couples to itself.
Anyway, gauge invariance is broken by the mass term. How should one proceed here?

Why was the kµkν term needed anyway? To understand this, we have to analyze the math-
ematical structure of quantum field theories. A consistent theory must yield a scattering matrix
that is unitary and obeys certain dispersion relations, as was explained above. These properties
can indeed be derived from the Feynman rules. This should not be surprising, since the Feynman
rules had been derived from consistent theories, but how can we see this directly? Veltman had
studied the papers by Bogolyubov et al 10 on this, and eventually came with his own formulation,
which is very transparent. It goes as follows.

3. CUTTING RULES. 11

In scalar theories, a propagator in momentum space may be written as

∆(k) = −
∫ ∞

0

%(m)dm

i(k2 + m2 − iε)
, (3.1)

where %(m), which is only non vanishing for non negative m , represents a distribution of possible
mass values. It may consist of one or more Dirac delta functions, when a particle is stable, but it
may also describe a resonance curve.

In coordinate space, the propagator depends on two space-time points, x(1) and x(2) , and it
is written as

∆(x(2) − x(1)) =
1√

(2π)4

∫
d4k∆(k)eik · (x(2) − x(1)) . (3.2)

In addition, we introduce the on-shell propagator, ∆+(k) as follows:

∆+(k) = 2π

∫ ∞

0

%(m)dmθ(k0)δ(k2 + m2) , (3.3)

and similarly,

∆−(k) = 2π

∫ ∞

0

%(m)dmθ(−k0)δ(k2 + m2) . (3.4)

We see that ∆+ describes a particle with positive energy, and ∆− one with negative energy. The
transition towards coordinate space is now as in Eq. (3.2).

from elementary algebra it now follows that

∆(x(2) − x(1)) = ∆+(x(2) − x(1)) if t2 ≥ t1 ,

and ∆(x(2) − x(1)) = ∆−(x(2) − x(1)) if t2 ≤ t1 ,
(3.5)

and the two expressions coincide if x(1) and x(2) are spacelike separated. The complex conjugated
of the propagator, ∆∗(x(2) − x(1)), obeys the opposite equations.
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Now, by time ordering the space time points x(i) , it can be derived, using only the Eqs. (3.5),
that if amplitudes are calculated using the Feynman rules of a real Lagrange density L for a scalar
field, and all contributing Feynman diagrams are added together, identities such as the one depicted
in Fig. 1 hold. The notation here means the following: all vertices and propagators behind the
shaded line are replaced by their complex conjugates (also indicated by the star in Fig. 1), and
all propagators that are cut through by the shaded line are replaced by the on-shell propagator
∆+(k), see Eq. (3.3). At the right hand side, we just have delta functions that ensure that the in
state coincides with the out state. The ingoing and outgoing particles are assumed to have positive
energies only. This is exactly the unitarity relation S S† = I , provided that the scattering matrix
amplitudes are normalized by factors

√
%(m). Along similar lines, dispersion relations may be

derived 11 .

=  ∑∗∑

Figure 1. The unitarity relation S S† = I

The functions %(m) for each particle species must be non negative; otherwise their square
roots cannot be taken. Reversing the signs inside the square roots would lead to negative values for
the ensuing probabilities, which is physically unacceptable. At this point, we can derive elegantly
the conditions for a vector particle propagator to yield a unitary scattering matrix. As long as
we multiply the propagators in momentum space by polynomials in kµ , the cutting relations (3.5)
continue to hold. The functions %(m) now include the eigenvalues of the matrix δµν + kµkν/M2

with of course the mass shell restriction that k2 + m2 = 0. However, we must remember that
we are dealing with Minkowski space, where minus signs are associated to the time components
δ44 of the Kronecker delta. Thus, without the kµkν term, the matrix would have one negative
eigenvalue, and unitarity would be lost. With the kµkν term, we easily establish that there are
only three positive eigenvalues, besides a vanishing one (the longitudinal particle decouples), so
that unitarity is restored. Thus, according to these rules, we must keep the kµkν term in order to
ensure unitarity.

4. GHOSTS

From the previous sector one concludes that, if in the Feynman diagrams the vector fields are
given propagators of the form of Eq. (2.1) then unitarity of the scattering matrix is guaranteed.

How about the propagators for massless vector particles, such as the photon? There are two
ways to address this question. One is, to observe that the kµkν terms in the propagators give
no effect. The photon is always coupled to a conserved current Jµ(x) with ∂µJµ(x) = 0. In the
diagrams, one can deduce fairly easily that, as a consequence, all diagrams at the right side of
the propagator cancel out when multiplied with kµ , and all diagrams at the left cancel out when
multiplied with kν , so, indeed, the kµkν term multiplies two zeros. Thus, we may leave out the
kµkν term altogether.
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It is slightly better, however, to observe that the photon has two polarizations, not three. 12

This should be reflected in a different numerator in the propagator. Because of gauge-invariance,
this numerator is not unique. One possibility is

Pµν(k) =
δµν − (kµk̃ν + k̃µkν)/2k2

k2
, (4.1)

where k̃µ is the vector kµ with the sign switched in the time component, and k is the spacelike
component of kµ only. The numerator here only has two positive eigenvalues; the other two vanish.
Unitarity here is therefore evident. Since the extra terms are proportional to kµ or kν , they cancel
out either because the terms at the right cancel out, or the ones at the left; this is because at both
ends the propagator is coupled to a conserved current Jµ or Jν respectively.

It was duly noted, however, that none of these arguments work for the Yang-Mills case, whether
or not the Yang-Mills particles carry mass. Since these vector fields couple to themselves, one cannot
say that the diagrams multiply something that is divergence free, so the kµkν terms do not simply
cancel out. Feynman 4 did discover something else: the kµkν terms do not totally vanish, but
their contributions can be replaced by an other class of diagrams, where a new kind of fictitious
particle occurs. This particle is only allowed to run around in loops, but it is not allowed in the
external lines. Feynman called these particles ‘ghost particles’. They do not add to the spectrum
of observable particles in the theory. Feynman 4 was able to prove this only for the case that his
diagrams contain at most one single closed loop. Beyond that, his methods became too complicated.
Veltman 6 reproduced this proof in his own way. He thought the ghost could be understood by
adding to the Lagrangian a “free, non-interacting field φa ”, with the quantum numbers of the ghost,
and unspecified mass. It was used to generate a space-time dependent (gauge-)transformation in
the gauge fields Aa

µ . This did lead to identities among the Feynman diagrams, which he called
‘generalized Ward identities’. But his scalar field did not behave as a ghost field as he hoped, and
further manipulations were needed however to reobtain Feynman’s one-loop result. These one-loop
identities were beautiful, see Fig. 2, but, when he attempted to continue towards the two-loop
case, he had to conclude, like Feynman, that the two-loop diagrams cannot be renormalized, since
among the effective vertices extra five-point vertices and higher derivatives occur., see Fig. 3. The
situation seemed hopeless.

I decided to pay full attention to Veltman’s beautiful ideas, but only in as far as they were
correct, such as the cutting rules and the one-loop cancellations of infinities. His introduction of
“non-interacting scalar fields” to describe space-time dependent gauge transformations never made
much sense to me — I suspect he thought that this is the way to give birth to ghosts in the theory
— and also the mere addition of a mass term that breaks local gauge invariance could not be right.
What was needed was a new analysis of the short distance structure of the theory. The Yang-
Mills mass term implies that the gauge transformations will be physically observable. At short
distances, the mass term would have little effect on the wild oscillations caused by these gauge
transformations. This is begging for difficulties: the theory is not renormalizable.

The short distance version of the theory has effectively zero mass vector fields; therefore, I
decided that a theory should be designed such that its short distance version would be of the
Yang-Mills form. We must have an exactly gauge-invariant theory. At the same time, its long
distance behavior should be such that it contains only massive vector particles. The theory that
was formed in my mind is now called “Higgs theory”, although, independently of P.W. Higgs 13 , it
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−12 = −12 − −12

Fig. 2, At the one-loop level, the kµkν terms in the propagator can be substituted by a
renormalizable ghost contribution. Here, the shaded ovals stand for tree diagram inser-
tions, and the various types of lines stand for the following propagators:

:
δµν + kµkν/M2

k2 + M2 − iε

:
δµν

k2 + M2 − iε

:
1

k2 + M2 − iε

was constructed and understood by F. Englert and R. Brout 14 . In a Higgs theory, gauge invariance
allows us to fix the gauge, and this turns the divergent propagator (2.1) into one that is more regular
at high energies.

Veltman initially was strongly opposed against theories where scalar fields develop vacuum
expectation values. The reasons for his rejection of the possibility of fundamental scalar fields have
always been unclear to me, until later he came with the argument of the cosmological constant.
Indeed, the energy density associated with spontaneous symmetry breakdown is gigantic, and any
ensuing gravitational field would cause the universe to be as curved as the surface of an orange, as
he phrased it. It is my opinion, however, that questions concerning the cosmological constant must
be postponed until we understand quantum gravity better.

As a compromise, it was decided that I study massless Yang-Mills theory first. This sub-
ject had been studied before by Feynman 4 , B.S. DeWitt 5 , L.D. Faddeev, V.N. Popov 15,16 and
S. Mandelstam 17 . The Feynman rules these investigators had derived appeared to be rather ab-
stract, and the physical significance of the theory was unclear. It did appear to be renormalizable,
however. Being exactly invariant under local gauge transformations, this theory requires gauge fix-
ing. This is achieved by the use of a Lagrange multiplier field λ(x). However, as DeWitt, Faddeev
and Popov, observed, if one uses functional integrals, a Jacobian determinant factor emerges that
should not be ignored. They wrote the functional integral for the generating functions as

Z =
∫ ∫

DAei
∫

d4x
(− 1

4Ga
µνGa

µν + λa(x) ∂µAa
µ(x)

)
det

(
∂Aa

µ(x)
∂Λb(x′)

)
. (4.2)

A beautiful short paper by Faddeev and Popov 15,16 explained this result, but it did not mention
how to calculate the determinant. This is in their more extended article, which unfortunately
arrived in the Western World only much later. But it was not hard to reconstruct 12 . One carries
out the functional integral

det−1
(Ma

b (x, x′)
)

= C

∫ ∫
DηDη ei

∫
d4x d4x′

(
ηa(x)Ma

b (x, x′)ηb(x′)
)

. (4.3)
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Fig. 3. Extra vertices obtained by Veltman at the two-loop level. From Ref 6 . These would
be the diagrams of the two-loop contributions to the propagator insertions. Although the
ghost contributions make the associated expressions less divergent than in the manifestly
unitary representation, the theory is still non-renormalizable because of extra momentum
vertices in the extra vertices, some of which also connect too many lines.

Since the logarithm of this expression generates the one-loop diagrams, it is easy to see that the
inverse sign (−1) can be cancelled by attributing an extra minus sign to each closed loop of ‘η
particles’. This turns the η particles into fermions, in spite of the fact that they are scalars. One
can also note that treating the η fields as anticommuting Grassmann fields directly produces the
determinant as in Eq. (4.2) and not its inverse.

The Lagrangian (4.2) does not yet exactly produce the simple propagator δµν/(k2− iε) for the
Yang-Mills bosons; it yields a term of the form kµkµ/k4 . A modest trick in the functional integral
removes this unwanted term.

The η field corresponds to a ghost particle, but there was an important difference with the
Feynman–Veltman ghost: a factor 2. This is because the η field is complex, and the propagator
is henceforth an oriented one. Thus, relating this result to the problem of massive vector particles
would be a non-trivial one. How can one see that, using these rules, the diagrams would be unitary?

5. WARD IDENTITIES

The technique to use a space-time dependent transformation, or ‘a transformation generated
by the field of a free particle’ was leading me nowhere. It only generated propagator identities
of the form of Fig. 4. This was far from sufficient to derive unitarity. The functional integrals
provided formal arguments for the theory to be unitary, but how could one check this at the
level of diagrams? The question was important in particular because we needed to know how to
replace divergent integrals by finite ones; this we would only be able to do explicitly for Feynman
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diagrams. How does one replace Veltman’s expression of Fig. 2? Something like this had to be
valid for diagrams with arbitrarily many loops in them.

=  0++++

Fig. 4. identity relating vertices and propagators for the massless Yang-Mills theory.

In fact, what was needed was a deductive procedure to reiterate identities such as Fig. 4 inside
a diagram. But then, sooner or later, the ghost lines would meet themselves, and what then? A
new identity was needed, see Fig. 5. It is not related to a symmetry, but to the Jacobi identity of
the gauge group:

faibfbjk + fajbfbki + fakbfbij = 0 . (5.1)

=  0−+−

Fig. 5. identity for ghosts meeting ghosts. The minus signs here could not be deduced
from a symmetry argument (or so it seemed, but see Sect. 7.)

Now, to prove unitarity, I did exactly as was asked by Veltman: prove Ward identities for
the theory on the mass shell. If all external lines of a diagram are on the mass shell, but some
of them longitudinally polarized, one gets the identities of Fig. 6. This enabled us to show the
exact cancellation, at all orders of the longitudinally polarized particles against the ghosts in the
intermediate states, so that unitarity follows: 12

∑
n

S|n〉〈n|S† = I , (5.2)

where the intermediate states |n〉 only include transverse vector particles.

= ∑∑

Fig. 6. Ward identity for on shell diagrams.
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Shortly after this, A.A. Slavnov 18 and J.C. Taylor 19 independently pointed out that the Ward
identities can be generalized to off the mass shell. It filled me with pride that they both referred
to my paper and they used my result, although for them the much simpler functional integral
argument sufficed. I did warn later investigators that the off-shell identities would involve new
kinds of divergences that would require independent renormalizations — a fact that one can more
fully appreciate when the combinatorial arguments in the Feynman diagrams are applied. Perhaps
I should also have objected when Stora’s group began to use what they called the ‘Slavnov-Taylor
identities’ 20 ; my name could have been added, but at that time I was not in the least concerned
or even interested in priority issues.

+ ∑= ∑∑

New  divergence

On  or  off  mass  shell,  longitudinal

or  longitudinal
Off  mass  shell,  transverse

Fig. 7. Slavnov-Taylor identity for off shell diagrams.

6. THE MASSIVE CASE

In the mean time I had the fortune to attend an excellent summer school. At Cargèse, Corsica,
at a beach resort, M. Lévy had established an Institute of Science, and in the summer of 1970, the
renormalizability of the so-called sigma model 21 for the strong interactions would be discussed.
Now this was a quite interesting model for strongly interacting mesons and baryons. It exhibited
a global chiral symmetry, which was spontaneously broken. One topic of investigation consisted of
various attempts to tame the highly divergent nature of the perturbation series of such models,
in which the perturbation expansion parameter, the strong coupling constant g , would not be
small. Resummation techniques such as the Padé expansion were thought to be applicable here,
but, as it is known now, they would fail. The careful analysis of the renormalization procedure
itself, by B.W. Lee 22 , K. Symanzik 23 , J.-L. Gervais 22 and others, was much more interesting.
They established that the renormalization counter terms would not be affected by spontaneous
symmetry breaking; they were in fact the same as the counter terms of the symmetric theory, and
the underlying symmetry properties of the theory would not be affected.

Now, only global gauge symmetries were discussed at Cargèse. To me, the step from global to
local symmetries did not seem to be such a drastic one, but when I asked Lee and Symanzik about
this, they referred to Veltman. Since Veltman was still rejecting theories with vacuum expectation
values, I realized that I was on my own here, but what I had heard at Cargèse strongly encouraged
me to continue investigating the ideas that I had about the role of scalar fields in a Yang-Mills
theory. If you write a scalar field φ as φ = F + φ̃ , then φ̃ may be considered as a perturbative
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correction. If the perturbation expansion is carried out from this viewpoint, the propagators of the
theory will correspond to the following expressions,

gauge photon, :
δµν

k2 + M2 − iε
;

FP ghost, :
1

k2 + M2 − iε
;

Higgs,
{

:

1
k2 + M2

H − iε
1

k2 + M2 − iε

.

(6.1)

The mass term here arises from the term (DµF )2 , and, in combination with the other interactions
it is now completely gauge-invariant.

Notice that the Higgs field generates a ghost propagator without an orientation in it (since
the field is a real one, not complex). This ghost field simply consists of those components of the
Higgs field that can be gauge-transformed away. Consequently, a closed loop of the Higgs ghost
cancels exactly one half of the Faddeev-Popov closed loop (which carried its fermionic minus sign,
but a weight 2 because of its being oriented). This would explain why there had been a factor 2
discrepancy between the ghost prescription of Feynman and Veltman for the massive case on the
one hand, and Faddeev, Popov, DeWitt and Mandelstam’s prescription on the other. The latter
had restricted themselves to the strictly massless Yang-Mills theory.∗

I had to complete my work on the massless case first. Unitarity, finiteness and uniqueness were
discussed at length with Veltman, discussions which were instrumental for the production of my
first paper 12 , but he still thought that the massive case would be an entirely different piece of cake.
Eventually I could convince him by presenting the Lagrangian in the shifted notation, in terms of
the fields φ̃ , where the vacuum expectation values are suppressed. My paper 24 on the massive
Yang-Mills theory †was presented to Nuclear Physics B in June 1971, just at the time when an
International Conference at Amsterdam gave me the opportunity for a (very brief) presentation.

With the Cargèse school in mind, where feverish attempts had been made at understanding
the hadron spectrum, and where incorporating the % vector meson had been regarded as a distant
target, I thought that massive Yang-Mills theories should be applied there, but Veltman, and
others, quickly convinced me of their importance for understanding the weak force. I had already
reproduced Weinberg’s lepton model 25 before I became aware of his paper.

∗ The Feynman rules for the Faddeev-Popov ghost and those for the unphysical Higgs component are
not the same, yet they do have the same effects at the one-loop level. This is why one can view the − 1

2 in

Fig. 2 as −1 + 1
2 .

† In this paper, a property of the massless theory was alluded to that would later be called ‘asymptotic
freedom’.
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7. EPILOGUE.

After these developments, much work remained to be done. The years that followed were
Golden Years for Elementary Particle Theory, certainly from my perspective. First, our regulator
technique, which until then only guaranteed anomaly free regularization at the one-loop level, had to
be improved. Could my five-dimensional approach be generalized? Unfortunately not. Eventually,
a method was found: we should use 4−ε dimensions, not an integral number of them. This was an
audacious step. I still have a first draft of a manuscript proposing this idea, and of which I am the
sole author, but together with Veltman, the method was further refined, and this led to our joint
publication of this proposal to use fractional dimensions to regularize gauge theories to all orders
in the coupling constant. 26

Dimensional regularization failed when chiral fermions come into play, since the chiral projec-
tion can only be carried out in four space-time dimensions. Exactly here, however, the occurrence
of the Adler-Bell-Jackiw anomaly 9 causes incurable diseases: no regulator method of whatever
form can possibly work here; one has to cancel the anomalies out. 27 If the anomalies do cancel at
the one-loop level, it can be shown that no further clashes will occur, even non-perturbatively. It
is my opinion that this can be seen rather easily, 28 and the result is not disputed, but others do
claim that a complete proof of this statement is quite difficult and delicate. 29

A drastic improvement of the renormalizability proof was discovered by Becchi, Rouet and
Stora: the Slavnov-Taylor identities can be derived from a symmetry after all, but the symmetry is
an anticommuting one, a supersymmetry: the fermionic Faddeev-Popov ghost fields, η and η , can
be transformed into the bosonic, but unphysical, gauge dependent field components of the theory.
The generator of this global supersymmetry is an anticommuting constant ε . Let, in the simplest
case, the Lagrangian be written in the shorthand notation:

L(A, η, η) = Linv(A) + λa(x)Ca(A, x) + ηa(x)
∂Ca(x)
∂Λb(x′)

ηb(x′) , (7.1)

Here, the function Ca(x) is the field combination used to fix the gauge, for instance ∂µAµ(x), and
λa(x) is a Lagrange multiplier field. Then the BRST symmetry operation is written as

δAa(x) = ε
∂Aa(x)
∂Λb(x′)

ηb(x′) ;

δηa(x) = 1
2εfabcηb(x)ηc(x) ;

δηa(x) = −ελa(x) ;

δλa(x) = 0 .

(7.2)

It is not difficult to generalize this to the case where we choose the gauge to be fixed by a quadratic
function of Ca(x), such as (Ca)2 . The action S is invariant under this symmetry. An essential
requirement for the invariance proof is again the Jacobi identity (5.1).

This result dispenses of the need for lengthy combinatorial proofs of the Slavnov-Taylor identi-
ties. Regularization is henceforth required to respect BRST symmetry. Unitarity and other desired
features can now be shown by first demonstrating that the physical (that is, gauge-invariant) com-
ponents of the scattering amplitudes do not depend on the choice of the function Ca(x) due to this
symmetry.
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With the tools of BRST quantization an dimensional renormalization, the perturbative treat-
ment of renormalization has now become a matter of routine. Since then, many successful attempts
were made towards better understanding of gauge theories beyond the perturbation expansion, such
as the large N approximation, the renormalization group, instantons, Monte Carlo simulations on
a lattice, analytic approaches to supersymmetric versions of the theory, and more.
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