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We congratulate the authors for their innovative and thought-provoking paper. Here we
propose a minor variant of the subsampling algorithm that is the basis of stability selection.
Instead of drawing individual subsamples at random, we advocate drawing disjoint pairs of
subsamples at random. This variant appears to have favourable properties.

Below, we use the same notation as the paper. Our method of subsampling involves split-
ting {1, . . . , n} into two halves at random and picking a subset of size ⌊n/2⌋ in each half.
Repeating this M times, we obtain a sequence of subsets I1, . . . , I2M with I2i ∩ I2i−1 =
∅, i = 1, . . . , M . For k ∈ {1, . . . , p}., define

Π̃λ
k,M =

1

2M

2M
∑

i=1

1{k ∈ Ŝλ(Ii)}.

Similarly to the stability selection algorithm, we select variable k when maxλ∈Λ Π̃λ
k,M ≥ πthr.

Then:

(a) Letting VM be the number of falsely selected variables, E(VM ) satisfies the same upper
bound as in Theorem 1 of the paper. Briefly, defining

Π̂simult,λ

k,M =
1

M

M
∑

i=1

1{k ∈ Ŝλ(I2i−1) ∩ Ŝλ(I2i)},

the result corresponding to Lemma 1 of the paper is

0 ≤
1

M

M
∑

i=1

(1 − 1{k ∈ Ŝλ(I2i−1)})(1 − 1{k ∈ Ŝλ(I2i)}) = 1 − 2Π̃λ
k,M + Π̂simult,λ

k,M .

The arguments of Lemma 2 and Theorem 1 then follow through since E(Π̂simult,λ

k,M ) =

E(Π̂simult,λ

k ). Thus we have the same error control as in the paper for finite M , as well
as the infinite subsampling case.

(b) Simulations suggest that we obtain a slight decrease in the Monte Carlo variance.
A heuristic explanation is that, when n is even, each observation is contained in the
same number of subsamples. This minimises the sum of the pairwise intersection sizes
of our subsamples.
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Fig. 1. We plot the factor multiplying q2

Λ/p against πthr for each of the bounds: the bound of Theo-
rem 1 (dashed) and the new bound with M =∞ (solid).

(c) With essentially no extra computational cost, we obtain estimates of simultaneous se-
lection probabilities, which can also be useful for variable selection; see Fan, Samworth
and Wu (2009).

(d) If, in addition to the assumptions of Theorem 1, we also assume that the distribution

of maxλ∈Λ Π̂simult,λ

k,M is unimodal, we obtain improved bounds:
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For a visual comparison between this bound and that of Theorem 1, see Figure 1. The
improvement suggests that using sample splitting with this bound can lead to more
accurate error control than using standard stability selection.

(e) This new bound gives guidance about the choice of M . For instance, when πthr = 0.6,
choosing M > 52 ensures that the bound on E(VM ) is within 5% of its limit as
M → ∞. When πthr = 0.9, choosing M > 78 has the same effect.
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