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Recent Progress in Log-Concave Density
Estimation
Richard J. Samworth

Abstract. In recent years, log-concave density estimation via maximum
likelihood estimation has emerged as a fascinating alternative to traditional
nonparametric smoothing techniques, such as kernel density estimation,
which require the choice of one or more bandwidths. The purpose of this
article is to describe some of the properties of the class of log-concave den-
sities on R

d which make it so attractive from a statistical perspective, and to
outline the latest methodological, theoretical and computational advances in
the area.
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1. INTRODUCTION

Shape-constrained density estimation has a long his-
tory, dating back at least as far as Grenander (1956),
who studied the maximum likelihood estimator of a
decreasing density on the nonnegative half-line. Un-
like traditional nonparametric smoothing approaches,
this estimator does not require the choice of any tuning
parameter, and indeed it has a beautiful characterisa-
tion as the left derivative of the least concave majo-
rant of the empirical distribution function. Over subse-
quent years, a great deal of work went into understand-
ing its theoretical properties (e.g., Prakasa Rao, 1969,
Groeneboom, 1985, Birgé, 1989), revealing in particu-
lar its nonstandard cube-root rate of convergence.

On the other hand, the class of decreasing densi-
ties on [0,∞) is quite restrictive, and does not gen-
eralise particularly naturally to multivariate settings. In
recent years, therefore, alternative families of densities
have been sought, and the class of log-concave densi-
ties has emerged as one with many attractive proper-
ties from a statistical viewpoint. Indeed, the theory of
log-concave density estimation has led to applications
to a wide variety of problems, including the detection
of the presence of mixing (Walther, 2002), filtering
(Henningsson and Åström, 2006), tail index estimation
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(Müller and Rufibach, 2009), clustering (Cule, Sam-
worth and Stewart, 2010), regression (Dümbgen, Sam-
worth and Schuhmacher, 2011), Independent Com-
ponent Analysis (Samworth and Yuan, 2012), clas-
sification (Chen and Samworth, 2013) and censored
data problems (Dümbgen, Rufibach and Schuhmacher,
2014).

The main aim of this article is to give an account of
the key properties of log-concave densities and their
relevance for applications in statistical problems. We
focus especially on ideas of log-concave projection,
which underpin the maximum likelihood approach to
inference within the class. Recent theoretical results
and computational aspects will also be discussed. For
alternative reviews of related topics, see Saumard and
Wellner (2014), which has a greater emphasis on an-
alytic properties, and Walther (2009), with a stronger
focus on modelling and applications.

2. BASIC PROPERTIES

We say that f : Rd → [0,∞) is log-concave if
logf is a concave function (with the convention
log 0 := −∞). Let Fd denote the class of upper semi-
continuous log-concave probability density functions
on R

d with respect to d-dimensional Lebesgue mea-
sure. The upper semi-continuity is not particularly im-
portant in most of what follows, but it fixes a partic-
ular version of the density and means we do not need
to worry about densities that differ on a set of zero
Lebesgue measure.

Many standard families of densities are log-concave.
For instance, Gaussian densities with positive-definite
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covariance matrices and uniform densities on con-
vex, compact sets belong to Fd ; the logistic density
f (x) = e−x

(1−e−x)2 , Beta(a, b) densities with a, b ≥ 1,
Weibull(α) densities with α ≥ 1, �(α,λ) densities with
α ≥ 1, Gumbel and Laplace densities (amongst many
others) belong to F1. It is convenient to think of log-
concave densities as unimodal densities with exponen-
tially decaying tails. Unimodality here is meant in the
sense of the upper level sets being convex, though in
one dimension, we have a stronger characterisation.

LEMMA 2.1 (Ibragimov, 1956). A density f on R

is log-concave if and only if the convolution f ∗ g is
unimodal for every unimodal density g.

A more precise statement about the exponentially
decaying tails is as follows:

LEMMA 2.2 (Cule and Samworth, 2010). If f ∈
Fd , then there exist α > 0, β ∈ R such that f (x) ≤
e−α‖x‖+β for all x ∈ R

d .

Thus, in particular, random vectors with log-concave
densities have moment generating functions that are fi-
nite in a neighbourhood of the origin.

One of the features of the class of log-concave den-
sities that makes them so attractive for statistical infer-
ence is their stability under various operations. A key
result of this type is the following, due to Prékopa
(1973), and with a simpler proof given in Prékopa
(1980).

THEOREM 2.3. Let d = d1 + d2 for some d1, d2 ∈
N, and let f : Rd → [0,∞) be log-concave. Then

x 	→
∫
R

d2
f (x, y) dy

is log-concave on R
d1 .

Hence, marginal densities of log-concave random
vectors are log-concave. As a simple consequence, we
have the following corollary.

COROLLARY 2.4. If f,g are log-concave densities
on R

d , then their convolution f ∗ g is a log-concave
density on R

d .

PROOF. The function (x, y) 	→ f (x − y)g(y) is
log-concave on R

2d , so the result follows from The-
orem 2.3. �

Two further straightforward stability properties are
as follows.

PROPOSITION 2.5. Let X have a log-concave den-
sity f on R

d .

(i) If A ∈ R
m×d has m ≤ d and rank(A) = m, then

AX has a log-concave density on R
m.

(ii) If X = (X

1 ,X


2 )
, then the conditional density
of X1 given X2 = x2 is log-concave for each x2.

Together, Theorem 2.3, Corollary 2.4 and Proposi-
tion 2.5 indicate that the class of log-concave densities
is a natural infinite-dimensional generalisation of the
class of Gaussian densities. Indeed, one can argue that
a grand vision in the shape-constrained inference com-
munity is to free practitioners from restrictive paramet-
ric (often Gaussian) assumptions, while retaining many
of the properties of these parametric procedures that
make them so convenient for use in applications.

3. LOG-CONCAVE PROJECTIONS

Despite all of the nice properties of Fd described in
the previous section, the class is not convex (again, this
is also the case for the class of Gaussian densities). It
is therefore by no means clear that there should exist a
“closest” element of this set to a general distribution.
Nevertheless, it turns out that one can make sense of
such a notion, and that the appropriate concept is that
of log-concave projection.

Let � denote the class of upper semi-continuous,
concave functions φ : Rd → [−∞,∞) that are coer-
cive in the sense that φ(x) → −∞ as ‖x‖ → ∞. Thus,
Fd = {eφ : φ ∈ �,

∫
Rd eφ = 1}. For φ ∈ � and an ar-

bitrary probability measure P on R
d , define a kind of

log-likelihood functional by

L(φ,P ) :=
∫
Rd

φ dP −
∫
Rd

eφ.

Thus, instead of enforcing the (nonconvex) constraint
that φ should be a log-density explicitly, the functional
above has the flavour of a Lagrangian, though the La-
grange multiplier is conspicuous by its absence. Nev-
ertheless it turns out that any maximiser φ∗ ∈ � of this
functional with L(φ∗,P ) ∈ R must be a log-density. To
see this, note that if φ ∈ � has L(φ,P ) ∈R and c ∈ R,
then

∂

∂c
L(φ + c,P ) = 1 − ec

∫
Rd

eφ.

Hence, at a maximum, c = − log(
∫
Rd eφ), which is

equivalent to φ + c being a log-density.
Theorem 3.1 below gives a complete characteri-

sation of when there exists a unique maximiser of
L(φ,P ) over φ ∈ �. We first require several further
definitions: let L∗(P ) := supφ∈� L(φ,P ) and let Pd

denote the class of probability measures P on R
d sat-

isfying both
∫
Rd ‖x‖dP (x) < ∞ and P(H) < 1 for
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all hyperplanes H . Let Cd denote the class of closed,
convex subsets of R

d , for a probability measure P

on R
d , let Cd(P ) := {C ∈ Cd : P(C) = 1}, and let

csupp(P ) := ⋂
C∈Cd (P ) C denote the convex support of

P . Finally, let int(C) denote the interior of a convex set
C, and for a concave function φ : Rd → [−∞,∞), let
dom(φ) := {x : φ(x) > −∞} denote its effective do-
main.

THEOREM 3.1 (Dümbgen, Samworth and Schuh-
macher, 2011).

(i) If
∫
Rd ‖x‖dP (x) = ∞, then L∗(P ) = −∞.

(ii) If
∫
Rd ‖x‖dP (x) < ∞ but P(H) = 1 for some

hyperplane H , then L∗(P ) = ∞.
(iii) If P ∈ Pd , then L∗(P ) ∈ R and there exists a

unique φ∗ ∈ � that maximises L(φ,P ) over φ ∈ �.
Moreover, int(csupp(P )) ⊆ dom(φ∗) ⊆ csupp(P ).

A consequence of Theorem 3.1 and the preceding
discussion is that there exists a well-defined map ψ∗ :
Pd → Fd , given by

ψ∗(P ) := argmax
f ∈Fd

∫
Rd

logf dP.

We refer to ψ∗ as the log-concave projection. In the
case where P is the empirical distribution of some data,
this tells us that provided the convex hull of the data is
d-dimensional, there exists a unique log-concave max-
imum likelihood estimator (MLE), a result first proved
in Walther (2002) in the case d = 1, and Cule, Sam-
worth and Stewart (2010) for general d . If P has a
log-concave density f0, then ψ∗(P ) = f0; more gen-
erally, if P has a density f0 satisfying

∫
Rd f0| logf0| <

∞, then ψ∗(P ) minimises the Kullback–Leibler diver-
gence d2

KL(f0, f ) := ∫
Rd f0 log(f0/f ) over all f ∈ Fd .

These statements justify the use of the term “projec-
tion”.

4. COMPUTATION OF LOG-CONCAVE MAXIMUM
LIKELIHOOD ESTIMATORS

Let X1, . . . ,Xn
i.i.d.∼ P ∈ Pd , and let Pn denote their

empirical distribution. In this section, we discuss the
computation of the log-concave MLE f̂n := ψ∗(Pn)

when the convex hull Cn of X1, . . . ,Xn is d-dimen-
sional.

We initially focus on the case d = 1, and follow
the Active Set approach of Dümbgen, Hüsler and Ru-
fibach (2007), which is implemented in the R package
logcondens (Dümbgen and Rufibach, 2011). Write
X(1) ≤ · · · ≤ X(n) for the order statistics of the sam-
ple, and let 
 denote the set of functions ψ : R →

[−∞,∞) that are continuous on [X(1),X(n)], linear
on each [X(k),X(k+1)] and −∞ on R \ [X(1),X(n)].
Let 
conc denote the concave functions in 
 . Then
log f̂n ∈ 
conc, because otherwise we could strictly
increase L(·,Pn) by replacing log f̂n with the ψ ∈

conc with ψ(Xi) = log f̂n(Xi). Since any ψ ∈ 


can be identified with the vector ψ := (ψ(X(1)), . . . ,

ψ(X(n)))

 ∈ R

n, our objective function can be written
as

L̃(ψ) = L̃(ψ1, . . . ,ψn)

:= 1

n

n∑
i=1

ψi −
n−1∑
k=1

δkJ (ψk,ψk+1),

where δk := X(k+1) − X(k) (assumed positive for sim-
plicity) and

J (r, s) :=
∫ 1

0
e(1−t)r+ts dt.

For j = 2, . . . , n− 1, let vj = (vj,1, . . . , vj,n)

 ∈R

n

have three nonzero components:

vj,j−1 := 1

δj−1
, vj,j := − 1

δj

− 1

δj−1
,

vj,j+1 := 1

δj

.

Then K := {ψ ∈ R
n : v


j ψ ≤ 0 for j = 2, . . . , n −
1} denotes the set of feasible vectors, because ψ =
(ψ1, . . . ,ψn)


 ∈ K if and only if

ψj − ψj−1

X(j) − X(j−1)

≥ ψj+1 − ψj

X(j+1) − X(j)

for j = 2, . . . , n − 1. Thus our optimisation problem
can be expressed as

Maximise L̃(ψ) over ψ ∈ K.

For any ψ ∈ R
n, we can define the set of “active”

constraints A(ψ) := {j ∈ {2, . . . , n − 1} : v

j ψ ≥ 0},

so that for ψ ∈ K, the inactive constraints correspond
to the “knots” of ψ , where ψ changes slope. Since

L̃ is strictly concave and infinitely differentiable, for
any A ⊆ {2, . . . , n − 1} and corresponding subspace
V(A) := {ψ ∈ R

n : v

j ψ = 0 for j ∈ A}, it is straight-

forward to compute

ψ̃(A) ∈ V∗(A) := argmax
ψ∈V(A)

L̃(ψ)

using Newton methods. The basic idea of the Active
Set approach is to start at a feasible point with a given
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active set of variables A. We then optimise the objec-
tive under that set of active constraints, and move there
if that new candidate point is feasible. If not, we move
as far as we can along the line segment joining our cur-
rent feasible point to the candidate point while remain-
ing feasible. This new point has a different active set
compared with our previous feasible iterate, so we can
optimise the objective under this new set of active con-
straints, and repeat. More precisely, define a basis for
R

n by b1 := (1)ni=1, bj := min(X(i) − X(j),0)ni=1 for
j = 2, . . . , n − 1 and bn := (X(i))

n
i=1. By considering

the first-order stationarity conditions, it can be shown
that any ψ ∈ V∗(A) maximises L̃ over K if and only if

b

j ∇L̃(ψ) ≤ 0 for all j ∈ A. The Active Set algorithm

can therefore proceed as in Algorithm 1.
The main points to note in this algorithm are that in

each iteration of the inner while loop, the active set
decreases strictly (which ensures this loop terminates
eventually), and that after each iteration of the outer
while loop, the log-likelihood has strictly increased,
and the current iterate ψ belongs to K ∩ V∗(A) for
some A ⊆ {2, . . . , n−1}. It follows that, up to machine
precision, the algorithm terminates with the exact so-
lution in finitely many steps. See Figure 1. Dümbgen,
Rufibach and Schuhmacher (2014) study the more in-
volved problem of estimating a log-concave (sub)-
probability density in settings where observations may
be subject to various different types of censoring, in-
cluding right and interval censoring. In their R pack-
age logconcens, they propose an EM algorithm for
computation (Dümbgen, Rufibach and Schuhmacher,
2013).

Returning to the original problem of computing the
log-concave MLE, for d ≥ 2, the feasible set is much
more complicated, and only slower algorithms are
available. For y = (y1, . . . , yn)


 ∈ R
n, let h̄y : Rd →

Algorithm 1: Pseudo-code for an Active Set algo-
rithm to compute (log f̂n(X(1)), . . . , log f̂n(X(n)))




Input: A ← {2, . . . , n − 1}
ψ ← ψ̃(A)

while maxj∈A b

j ∇L̃(ψ) > 0 do

j∗ ← min(argmaxj∈A b

j ∇L̃(ψ))

ψ
cand

← ψ̃(A \ {j∗})
while ψ

cand
/∈ K do

t∗ ← max{t ∈ [0,1] : (1 − t)ψ + tψ
cand

∈
K}
ψ ← (1 − t∗)ψ + t∗ψ

cand
A ← A(ψ)

ψ
cand

← ψ̃(A)

end
ψ ← ψ

cand
A ← A(ψ)

end
Output: ψ

R denote the smallest concave function with h̄y(Xi) ≥
yi for i = 1, . . . , n; these are called tent functions in
Cule, Samworth and Stewart (2010) (see Figure 2,
which is taken from that paper). We can write the
objective function in terms of the tent pole heights
y1, . . . , yn as

τ(y1, . . . , yn) := 1

n

n∑
i=1

h̄y(Xi) −
∫
Cn

exp
{
h̄y(x)

}
dx.

This function is hard to optimise over (y1, . . . , yn)

 ∈

R
n, partly because τ is not injective. However, Cule,

Samworth and Stewart (2010) defined the modified ob-

FIG. 1. Log-concave maximum likelihood estimators (solid) based on 4000 observations from a standard normal distribution (left) and the
U [0,1] distribution (right). The true densities are shown as dotted lines.
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FIG. 2. A schematic picture of a tent function in the case d = 2.

jective function

σ(y1, . . . , yn) := 1

n

n∑
i=1

yi −
∫
Cn

exp
{
h̄y(x)

}
dx.

Thus σ ≤ τ , but the crucial points are that σ is con-
cave and its unique maximum ŷ ∈ R

n satisfies log f̂n =
h̄ŷ . Even though σ is nondifferentiable, a subgradi-
ent of −σ can be computed at every point, so Shor’s
r-algorithm (Kappel and Kuntsevich, 2000) can be
used, as implemented in the R package LogCon-
cDEAD (Cule, Gramacy and Samworth, 2009). See
Figure 3, which is taken from Cule, Samworth and
Stewart (2010). Koenker and Mizera (2010) study an
alternative approximate approach based on imposing
concavity of the discrete Hessian matrix of the log-
density on a grid, and using a Riemann approximation
to the integrability constraint.

5. PROPERTIES OF LOG-CONCAVE
PROJECTIONS

For general distributions P ∈ Pd , it is not possible to
compute the log-concave projection ψ∗(P ) explicitly

FIG. 3. The log-concave maximum likelihood estimator (left) and
its logarithm (right) based on 1000 observations from a standard
bivariate normal distribution.

(though see Section 5.1 below for several exceptions
to this). Nevertheless, one can say quite a lot about
the properties of log-concave projections, starting with
affine equivariance.

LEMMA 5.1 (Dümbgen, Samworth and Schuh-
macher, 2011). Let X ∼ P ∈ Pd , let A ∈ R

d×d be
invertible, let b ∈ R

d , and let PA,b denote the distribu-
tion of AX + b. Then

ψ∗(PA,b)(x) = 1

|detA|ψ
∗(P )

(
A−1(x − b)

)
.

A generic hope for the log-concave projection is that
it should preserve as many properties of the original
distribution as possible. Indeed, as we will see, such
preservation results have motivated several associated
methodological developments.

LEMMA 5.2 (Dümbgen, Samworth and Schuh-
macher, 2011). Let P ∈ Pd , let φ∗ := logψ∗(P ),
and let P ∗(B) := ∫

B eφ∗
for any Borel set B ⊆ R

d .
If � : Rd → [−∞,∞) is such that ψ∗ + t� ∈ � for
sufficiently small t > 0, then∫

Rd
�dP ≤

∫
Rd

�dP ∗.

As a special case of Lemma 5.2, we obtain the fol-
lowing corollary.

COROLLARY 5.3. Let P ∈ Pd . Then P and the
log-concave projection measure P ∗ from Lemma 5.2
are convex ordered in the sense that∫

Rd
h dP ∗ ≤

∫
Rd

h dP

for all convex h : Rd → (−∞,∞].
Applying Corollary 5.3 to �(x) = t
x for arbitrary

t ∈ R
d allows us to conclude that

∫
Rd x dP ∗(x) =∫

Rd x dP (x); in other words, log-concave projection
preserves the mean μ of a distribution P ∈ Pd . On the
other hand, we see that the projection shrinks the sec-
ond moment, in the sense that A := ∫

Rd (x − μ)(x −
μ)
 d(P − P ∗)(x) is nonnegative definite. In fact, we
can say more: from the convex ordering in Corol-
lary 5.3 and Strassen’s theorem (Strassen, 1965), there
exist random vectors X ∼ P and X∗ ∼ P ∗, defined on
the same probability space, such that E(X|X∗) = X∗
almost surely. Thus E{X∗(X − X∗)
} = 0, and from
the decomposition X = X∗ + (X − X∗), we deduce
that A = 0 if and only if P has a log-concave density.
A different proof of this fact was given in Chen and
Samworth (2013), Theorem 5.



498 R. J. SAMWORTH

FIG. 4. Left: A comparison of the original log-concave MLE (red) and smoothed log-concave MLE (green) based on 200 observations from
a standard normal density (dotted). The short vertical lines indicate the observations, and the longer, dashed vertical lines show the locations
of the knots of the log-concave MLE. Right: The same comparison on the log scale.

This property validates the definition of the smoothed
log-concave projection, proposed in the case d = 1 by
Dümbgen and Rufibach (2009) and studied for general
d in Chen and Samworth (2013). Writing P̃d := {P ∈
Pd : ∫

Rd ‖x‖2 dP (x) < ∞}, this smoothed projection
ψ̃∗ : P̃d → Fd is given by

ψ̃∗(P ) := ψ∗(P ) ∗ Nd(0,A)

=
∫
Rd

ψ∗(x − y)dNd(0,A)(y).

When P is the empirical distribution of some data,
ψ̃∗(P ) is a smooth (real analytic), fully automatic den-
sity estimator that is log-concave (cf. Corollary 2.4),
matches the first two moments of the data and is sup-
ported on the whole of Rd . See Figure 4.

Our next property concerns the preservation of prod-
uct structure, or, in the language of random vectors,
independence of components.

PROPOSITION 5.4 (Chen and Samworth, 2013).
Let P ∈ Pd be of the form P = P1 ⊗ P2 for some
P1 ∈ Pd1 , P2 ∈ Pd2 with d1 + d2 = d . Then for every
x = (x


1 , x

2 )
 ∈ R

d1+d2 , we have

ψ∗(P )(x) = ψ∗(P1)(x1)ψ
∗(P2)(x2).

Similarly, if in addition P ∈ P̃d , then ψ̃∗(P )(x) =
ψ̃∗(P1)(x1)ψ̃

∗(P2)(x2).

Proposition 5.4 inspires a new approach to Indepen-
dent Component Analysis; see Section 8 below. In-
cidentally, the converse of this result is false: for in-
stance, for q ∈ (0,1], consider a distribution P sup-
ported on five points in R

2, with

P
({

(0,0)
}) = q,

P
({

(−1,−1)
}) = P

({
(−1,1)

})
= P

({
(1,−1)

})
= P

({
(1,1)

})
= (1 − q)/4.

Then it can be shown that ψ∗(P ) is the uniform density
on the square [−1,1] × [−1,1] for q ∈ (0,1/3].

In a similar spirit, it is not necessarily the case that
the log-concave projection of a marginal of a joint dis-
tribution is equal to the corresponding marginal of the
log-concave projection of the joint distribution. For
example, if P is the discrete uniform distribution on
the three points {(−1,−1), (0,31/2 − 1), (1,−1)} in
R

2 (which form an equilateral triangle), then the log-
concave projection is the continuous uniform density
on the triangle, with corresponding marginal density
f1(x1) = (1 −|x1|)1{|x1|≤1} on the x-axis. On the other
hand, the log-concave projection of the discrete uni-
form distribution on {−1,0,1} is the uniform density
on [−1,1].

We conclude this section by mentioning two fur-
ther properties that are not preserved by log-concave
projection, namely stochastic ordering and convolu-
tion. More precisely, regarding stochastic ordering,
let P and Q be distributions on the real line with1

P({0}) = P({1}) = 1/2 and Q({0}) = 1/2, Q({1}) =
2/5, Q({2}) = 1/10. Then P is stochastically smaller
than Q, in the sense that the respective distribution

1I thank Min Xu and Yining Chen for helpful conversations lead-
ing to this example.
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functions F and G satisfy F(x) ≥ G(x) with strict in-
equality for some x0. Now ψ∗(P ) is the uniform den-
sity on [0,1], while it can be shown using the ideas
in Section 5.1 below that ψ∗(Q)(x) = ebx−β for x ∈
[0,2], where b ∈ [−1.337,−1.336] is the unique real
solution to

1

b
− 2

e2b − 1
= 7

5
,

and where β = log( e2b−1
b

) ∈ [−0.3619,−0.3612]. In
particular, ψ∗(Q)(0) = e−β ≥ 1.4 > 1 = ψ∗(P )(0), so
ψ∗(P ) is not stochastically smaller than ψ∗(Q); see
Figure 5.

To see that log-concave projection does not preserve
convolution in general,2 let P({0}) = P({1}) = 1/2.
Then Q := P ∗P satisfies Q({0}) = Q({2}) = 1/4 and
Q({1}) = 1/2. We know that ψ∗(P ) is the uniform
density on [0,1], but ψ∗(Q) maximises

1

4
logf (0) + 1

2
logf (1) + 1

4
logf (2)

over f ∈ F1, so is log-linear on [0,1] and on [1,2]. In
particular, ψ∗(Q) is not equal to the triangular density
on [0,2], so ψ∗(Q) �= ψ∗(P )∗ψ∗(P ) in this example.

FIG. 5. The distribution functions corresponding to ψ∗(P ) (dot-
ted) and ψ∗(Q) (solid) in the stochastic ordering example at the
end of Section 5.

2The question of whether or not log-concave projection preserves
convolution was asked to me by Varun Jog.

5.1 The One-Dimensional Case

When d = 1, the log-concave projection can be char-
acterised in terms of its integrated distribution func-
tion. For φ ∈ �, let

S(φ) :=
{
x ∈ dom(φ) :

φ(x) >
1

2

{
φ(x + δ) + φ(x − δ)

}

for all δ > 0
}

denote the closed subset of R consisting of the points
x0 where φ is not affine in a neighbourhood of x0.

THEOREM 5.5 (Dümbgen, Samworth and Schuh-
macher, 2011). Let P ∈ P1 have distribution function
F , and let F ∗ be a distribution function with density
f ∗ = eφ∗ ∈ F1. Then f ∗ = ψ∗(P ) if and only if∫ x

−∞
{
F ∗(t) − F(t)

}
dt

{≤ 0 for all x ∈ R,

= 0 for all x ∈ S
(
φ∗) ∪ {∞}.

In particular, if P is absolutely continuous with re-
spect to Lebesgue measure with continuous density f ,
and if S(logψ∗(P )) contains an open interval I , then
ψ∗(P ) = f on I . Theorem 5.5 is especially useful as
a way of verifying the form of log-concave projection
in cases where one can guess what it might be. For in-
stance, consider the family of symmetrised Pareto den-
sities

f (x;α,σ) := ασα

2(|x| + σ)α+1 , x ∈ R, α > 1, σ > 0.

Theorem 5.5 can be used to verify that the correspond-
ing log-concave projection is

f ∗(x;α,σ) = α − 1

2σ
exp

{
−(α − 1)|x|

σ

}
, x ∈ R;

see Chen and Samworth (2013). Since the preimage
under ψ∗ of any f ∈ Fd is a convex set, this shows
that the preimage of the Laplace density x 	→ e−|x|/2
is infinite-dimensional. Theorem 5.5 can also be used
to show results such as the following proposition.

PROPOSITION 5.6 (Dümbgen, Samworth and
Schuhmacher, 2011). Suppose that P ∈ P1 has log-
density φ that is differentiable, convex on a bounded
interval [a, b] and concave on (−∞, a]∪ [b,∞). Then
there exist a′ ∈ (−∞, a] and b′ ∈ [b,∞) such that
logψ∗(P ) is affine on [a′, b′] and logψ∗(P ) = φ on
(−∞, a′] ∪ [b′,∞).
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FIG. 6. Left: the scaled t2 density f (x) = (1 + x2)−3/2/2 (green) and its Laplace log-concave projection f ∗(x) = e−|x|/2 (blue). Right:
the density of the normal mixture 0.7N(−1.5,1) + 0.3N(1.5,1) (green) together with its log-concave projection (blue); the normal mixture
satisfies the conditions of Proposition 5.6.

These ideas are illustrated in Figure 6, taken from
Dümbgen, Samworth and Schuhmacher (2011).

6. STRONGER FORMS OF CONVERGENCE AND
CONSISTENCY

In minor abuse of standard notation, if (fn), f

are densities on R
d , we write fn

d→ f to mean∫
Rd g(x)fn(x) dx → ∫

Rd g(x)f (x) dx for all bounded
continuous functions g : Rd → R. The constraint of
log-concavity rules out certain pathologies and means
we can strengthen certain convergence statements:

THEOREM 6.1 (Cule and Samworth, 2010,
Schuhmacher, Hüsler and Dümbgen, 2011). Let (fn)

be a sequence in Fd with fn
d→ f for some density f

on R
d . Then f is log-concave. Moreover, if α0 > 0 and

β0 ∈ R are such that f (x) ≤ e−α0‖x‖+β0 for all x ∈R
d ,

then for all α < α0,∫
Rd

eα‖x‖∣∣fn(x) − f (x)
∣∣dx → 0

as n → ∞.

Thus, in the presence of log-concavity, convergence
in distribution statements automatically yield conver-
gence in certain exponentially weighted total variation
distances.

A very natural question about log-concave projec-
tions, with important implications for the consistency
of the log-concave maximum likelihood estimator, is
“In what sense does a distribution Q ∈ Pd need to
be close to P ∈ Pd in order for ψ∗(Q) to be close

to ψ∗(P )”? To answer this, we first recall that the
Mallows-1 distance3 d1 between probability measures
P,Q on R

d with finite first moment is given by

d1(P,Q) := inf
(X,Y )∼(P,Q)

E‖X − Y‖,
where the infimum is taken over all pairs of ran-
dom vectors (X,Y ) defined on the same probabil-
ity space with X ∼ P and Y ∼ Q. It is well known

that d1(Pn,P ) → 0 if and only if both Pn
d→ P and∫

Rd ‖x‖dPn(x) → ∫
Rd ‖x‖dP (x).

THEOREM 6.2 (Dümbgen, Samworth and Schuh-
macher, 2011). Suppose that P ∈ Pd and that
d1(Pn,P ) → 0. Then L∗(Pn) → L∗(P ), Pn ∈ Pd for
sufficiently large n, and, taking α0 > 0 and β0 ∈ R

such that ψ∗(P )(x) ≤ e−α0‖x‖+β0 for all x ∈ R
d , we

have for α < α0 that∫
Rd

eα‖x‖∣∣ψ∗(Pn)(x) − ψ∗(P )(x)
∣∣dx → 0

as n → ∞.

The Mallows convergence cannot in general be

weakened to Pn
d→ P . In particular, if P = U{−1,1}

and Pn = (1−n−1)U{−1,1}+n−1U{−(n+1), n+1},
then Pn

d→ P but it can be shown that∫ ∞
−∞

∣∣ψ∗(Pn) − ψ∗(P )
∣∣ → 4

51/2 + 1
.

3Also known as the Wasserstein distance, Monge–Kantorovich
distance and Earth Mover’s distance.
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Writing dTV(f, g) := 1
2

∫
Rd |f − g|, Theorem 6.2 im-

plies that the log-concave projection ψ∗ is continuous
when considered as a map between the metric spaces
(Pd, d1) and (Fd, dTV). However, it is not uniformly
continuous: for instance, let Pn = U [−1/n,1/n] and
Qn = U [−1/n2,1/n2]. Then d1(Pn,Qn) = 1

2n
−

1
2n2 → 0, but since ψ∗(Pn)(x) = n

2 1{x∈[−1/n,1/n]} and

ψ∗(Qn)(x) = n2

2 1{x∈[−1/n2,1/n2]}, we have

dTV
(
ψ∗(Pn),ψ

∗(Qn)
) = 1 − 1

n
→ 1.

One of the great advantages of working in the gen-
eral framework of log-concave projections for arbi-
trary P ∈ Pd , as opposed to simply focusing on em-
pirical distributions, is that one can study analytical
properties of the projection as above, meaning that the
only probabilistic arguments required to deduce con-
vergence statements about the log-concave maximum
likelihood estimator are simple facts about the conver-
gence of the empirical distribution. This is illustrated
in the following corollary.

COROLLARY 6.3 (Dümbgen, Samworth and Schuh-
macher, 2011). Suppose that X1,X2, . . . are inde-
pendent and identically distributed with distribution
P ∈ Pd , and let Pn denote the empirical distribution of
X1, . . . ,Xn. Then, with probability one, f̂n := ψ∗(Pn)

is well defined for sufficiently large n, and taking
α0 > 0 and β0 ∈ R such that f ∗(x) := ψ∗(P )(x) ≤
e−α0‖x‖+β0 for all x ∈ R

d , we have for α < α0 that∫
Rd

eα‖x‖∣∣f̂n(x) − f ∗(x)
∣∣dx

a.s.→ 0

as n → ∞.

PROOF. let H := {h : Rd → [−1,1] : |h(x) −
h(y)| ≤ ‖x − y‖ for all x, y ∈ R

d}, and define the
bounded Lipschitz distance between probability mea-
sures P and Q on R

d by

dBL(P,Q) := sup
h∈H

∫
Rd

h d(P − Q).

Then dBL metrises convergence in distribution for
probability measures on R

d , and from Varadarajan’s
theorem (Dudley, 2002, Theorem 11.4.1), we deduce
that dBL(Pn,P )

a.s.→ 0. In particular, since the set of
probability measures P on R

d with P(H) < 1 for
all hyperplanes H is an open subset of the set of all
probability measures on R

d in the topology of weak
convergence (Dümbgen, Samworth and Schuhmacher,
2011, Lemma 2.13), it follows that with probability

one, Pn ∈ Pd for sufficiently large n, and f̂n is well
defined for such n.

Since we also have∫
Rd

‖x‖dPn(x)
a.s.→

∫
Rd

‖x‖dP (x)

by the strong law of large numbers, it follows that
d1(Pn,P )

a.s.→ 0. The second part of the result therefore
follows by Theorem 6.2. �

Corollary 6.3 yields the (strong) consistency of the
log-concave maximum likelihood estimator in expo-
nentially weighted total variation distances, and also
provides a robustness to misspecification guarantee in
the case where the true distribution P does not have a
log-concave density.

7. RATES OF CONVERGENCE AND ADAPTATION

Historically, a great deal of effort has gone into un-
derstanding rates of convergence in shape-constrained
estimation problems, with both local (pointwise) and
global rates being considered. For the log-concave
maximum likelihood estimator, the following result,
a special case of Balabdaoui, Rufibach and Wellner
(2009), Theorem 2.1, establishes the pointwise rates of
convergence in the case d = 1.

THEOREM 7.1 (Balabdaoui, Rufibach and Wellner,

2009). Let X1, . . . ,Xn
i.i.d.∼ f0 ∈ F1, let f0(x0) > 0

and suppose that φ0 := logf0 is twice continuously dif-
ferentiable in a neighbourhood of x0 with φ′′

0 (x0) < 0.
Let W be a standard two-sided Brownian motion on R,
and let

Y(t) :=

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0
W(s)ds − t4 for t ≥ 0,∫ 0

t
W(s) ds − t4 for t < 0.

Then the log-concave maximum likelihood estimator
f̂n satisfies

(7.1)

n2/5{
f̂n(x0) − f0(x0)

}
d→

(
f0(x0)

3|φ′′
0 (x0)|

24

)1/5
H ′′(0),

where {H(t) : t ∈ R} is the “lower invelope” process
of Y , so that H(t) ≤ Y(t) for all t ∈ R, H ′′ is concave
and H(t) = Y(t) if the slope of H ′′ decreases strictly
at t .

This lower invelope process was introduced and
studied in detail in Groeneboom, Jongbloed and Well-
ner (2001a). The nonstandard limiting distribution is



502 R. J. SAMWORTH

characteristic of shape-constrained estimation prob-
lems. Balabdaoui, Rufibach and Wellner (2009) study
the more general case where more than two derivatives
of φ0 may vanish at x0, in which case a faster rate is ob-
tained; they also study the joint convergence of f̂n with
its derivative f̂ ′

n. The pointwise convergence rate in d

dimensions remains an open problem, though Seregin
and Wellner (2010) obtained a minimax lower bound
for pointwise estimation at x0 with respect to absolute
error loss of order n−2/(d+4), provided φ0 is twice con-
tinuously differentiable in a neighbourhood of x0 and
the determinant of the Hessian matrix of φ0 at x0 does
not vanish. This is the familiar rate attained by, e.g. ker-
nel density estimators, under similar smoothness con-
ditions but without the log-concavity assumption.

An interesting feature of (7.1) is that the limiting
distribution depends in a complicated way on the un-
known true density. This makes it challenging to apply
this result directly to construct confidence intervals for
f0(x0). However, in the special case where x0 is the
mode of f0, Doss and Wellner (2016a) have recently
proposed an approach for confidence interval construc-
tion based on comparing the log-concave MLE at x0
with the constrained MLE f̂ 0

n , say, where the mode
of the density is fixed at m ∈ R, say. Their key obser-
vation is that, under the null hypothesis that the log-
concave density f0 attains its maximum at m, and pro-
vided (logf0)

′′(m) < 0, the likelihood ratio statistic is
asymptotically pivotal, in the sense that

2 logλn := 2
n∑

i=1

log
f̂n(Xi)

f̂ 0
n (Xi)

d→D,

where D is a universal limiting distribution (not de-
pending on f0). Under the alternative hypothesis that
the log-concave density f0 does not have a mode at m,
the statistic λn tends to be inflated; in fact, (2/n) logλn

converges in probability to a deterministic, positive
limit.

We now turn to global rates of convergence, and
write d2

H(f, g) := ∫
Rd (f 1/2 − g1/2)2 for the squared

Hellinger distance between densities f and g. The
same rate as for pointwise estimation had been ex-
pected in the light of the facts that any concave function
on R

d is twice differentiable (Lebesgue) almost every-
where in its domain (Aleksandrov, 1939), and that for
twice continuously differentiable functions, concavity
is equivalent to a second derivative condition, namely
that the Hessian matrix is nonpositive definite. The fol-
lowing minimax lower bound therefore came as a sur-
prise:

THEOREM 7.2 (Kim and Samworth, 2016). Let

X1, . . . ,Xn
i.i.d.∼ f0 ∈ Fd , and let F̃n denote the set of

all estimators of f0 based on X1, . . . ,Xn. Then for
each d ∈ N, there exists cd > 0 such that

inf
f̃n∈F̃n

sup
f0∈Fd

Ef0d
2
H(f̃n, f0) ≥

{
c1n

−4/5 if d = 1,

cdn−2/(d+1) if d ≥ 2.

Theorem 7.2 yields the expected lower bound when
d = 1,2 [note that 2/(d + 1) = 4/(d + 4) = 2/3 when
d = 2]. However, it also reveals that log-concave den-
sity estimation in three or more dimensions is funda-
mentally more challenging in this minimax sense than
estimating a density with two bounded derivatives. The
reason is that although log-concave densities are twice
differentiable almost everywhere, they can be badly be-
haved (in particular, discontinuous) on the boundary of
their support; recall that uniform densities on convex,
compact sets in R

d belong to Fd . It turns out that it is
the difficulty of estimating the support of the density
that drives the rate in these higher dimensions.

The following complementary result provides the
corresponding global rate of convergence for the log-
concave MLE in squared Hellinger distance in low-
dimensional cases.

THEOREM 7.3 (Kim and Samworth, 2016). Let

X1, . . . ,Xn
i.i.d.∼ f0 ∈ Fd , and let f̂n denote the log-

concave MLE based on X1, . . . ,Xn. Then

sup
f0∈Fd

Ef0d
2
H(f̂n, f0) =

⎧⎪⎪⎨
⎪⎪⎩

O
(
n−4/5)

if d = 1,

O
(
n−2/3 logn

)
if d = 2,

O
(
n−1/2 logn

)
if d = 3.

Thus the log-concave MLE attains the minimax opti-
mal rate in terms of squared Hellinger risk when d = 1,
and attains the minimax optimal rate up to logarith-
mic factors when d = 2,3. We mention that in the
case d = 1, Doss and Wellner (2016b) proved that
d2

H(f̂n, f0) = Op(n−4/5) for each fixed f0 ∈ F1, and
indeed showed that the same rate holds for the MLEs
over classes of s-concave densities with s > −1; see
Section 9.1. The proofs of these results rely on em-
pirical process theory and delicate bracketing entropy
bounds for the relevant class of log-concave densities,
made more complicated by the fact that the domains
of the log-densities can be an arbitrary d-dimensional
closed, convex set. The argument proceeds by approxi-
mating these domains by convex polytopes, which can
be triangulated into simplices, and appropriate bracket-
ing entropy bounds for concave functions on such do-
mains are known (e.g., Gao and Wellner, 2017). Criti-
cally, when d ≤ 3, the region between two nested con-
vex polytopes with p and q vertices respectively can
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be triangulated into O(p + q) simplices (e.g., Brass,
2005).

Although Theorem 7.3 provides strong guarantees
on the worst case performance of the log-concave MLE
in low-dimensional cases, it ignores one of the appeal-
ing features of the estimator, namely its potential to
adapt to certain characteristics of the unknown true
density. Dümbgen and Rufibach (2009) obtained the
first such result in the case d = 1. Recall that given
an interval I , β ∈ [1,2] and L > 0, we say h : R → R

belongs to the Hölder class Hβ,L(I ) if for all x, y ∈ I ,
we have∣∣h(x) − h(y)

∣∣ ≤ L|x − y|, if β = 1,∣∣h′(x) − h′(y)
∣∣ ≤ L|x − y|β−1, if β > 1.

THEOREM 7.4 (Dümbgen and Rufibach, 2009).

Let X1, . . . ,Xn
i.i.d.∼ f0 ∈ F1, and assume that φ0 :=

logf0 ∈ Hβ,L(I ) for some β ∈ [1,2], L > 0 and com-
pact interval I ⊆ int(dom(φ0)). Then

sup
x0∈I

∣∣f̂n(x0) − f0(x0)
∣∣ = Op

((
logn

n

)β/(2β+1))
.

Here the log-concave MLE is adapting to unknown
smoothness. When measuring loss in the supremum
norm, the need to restrict attention to a compact inter-
val in the interior of support of f0 is suggested by the
right-hand plot in Figure 1.

Other adaptation results are motivated by the thought
that since the log-concave MLE is piecewise affine,
we might hope for faster rates of convergence in cases
where logf0 is made up of a relatively small number
of affine pieces. We now describe two such results. For
k ∈ N we define Fk to be the class of log-concave den-
sities f on R for which logf is k-affine in the sense
that there exist intervals I1, . . . , Ik such that f is sup-
ported on I1 ∪ · · · ∪ Ik , and logf is affine on each Ij .
In particular, densities in F1 are uniform or (possibly
truncated) exponential, and can be parametrised as

fα,s1,s2(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1

s2 − s1
1{x∈[s1,s2]} if α = 0,

α

eαs2 − eαs1
eαx1{x∈[s1,s2]} if α �= 0,

for (α, s1, s2) ∈ T := (R × T0) ∪ ((0,∞) × {−∞} ×
R) ∪ ((−∞,0) × R × {∞}), where T0 := {(s1, s2) ∈
R

2 : s1 < s2}. Define a continuous, strictly increasing
function ρ :R → (0,∞) by

(7.2) ρ(x) :=
⎧⎪⎨
⎪⎩

2ex(x − 1) − x2 + 2

2ex − 2 − 2x − x2 if x �= 0,

2 if x = 0;

FIG. 7. The function ρ defined in (7.2).

cf. Figure 7. It can be shown that ρ(x) ≤ max{ρ(2),

ρ(x)} ≤ max(3,2x) for all x ∈ R.

THEOREM 7.5 (Kim, Guntuboyina and Samworth,

2018). Let X1, . . . ,Xn
i.i.d.∼ fα,s1,s2 ∈ F1 with n ≥ 5,

and let f̂n denote the log-concave MLE. Then, writing
κ∗ := α(s2 − s1),

Ef0dTV(f̂n, f0) ≤ min{2ρ(|κ∗|),6 logn}
n1/2 .

In fact, Theorem 7.5 is a special case of the re-
sult given in Kim, Guntuboyina and Samworth (2018),
which allows the true density f0 to be arbitrary, and
includes an additional approximation error term that
measures the proximity of f0 to the class F1. An im-
portant consequence of Theorem 7.5 is the fact that if
|α| is small, then the log-concave MLE can attain the
parametric rate of convergence in total variation dis-
tance. In particular, if f0 is a uniform density on a com-
pact interval (so that κ∗ = 0), then Ef0dTV(f̂n, f0) ≤
4/n1/2; cf. the right-hand plot of Figure 1 again. In-
terestingly, this behaviour is in stark contrast to that
of the least squares convex regression estimator with
respect to squared error loss in the random design
problem where covariates are uniformly distributed on
[0,1] and the responses are uniform on {−1,1}: in
that case, the true regression function is zero, but the
risk of the estimator is infinite (Balázs, Gyögy and
Szepesvári, 2015)! The proof of Theorem 7.5 relies on
a version of Marshall’s inequality for log-concave den-
sity estimation. A special case of this result states that

if X1, . . . ,Xn
i.i.d.∼ fα,s1,s2 ∈ F1, then writing X(1) :=

mini Xi , X(n) := maxi Xi and κ := α(X(n) − X(1)), we
have

(7.3)

sup
x∈R

∣∣F̂n(x) − F0(x)
∣∣

≤ ρ
(|κ|) sup

x∈R
∣∣Fn(x) − F0(x)

∣∣,
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where F0 and F̂n denote the distribution functions cor-
responding to the true density and the log-concave
MLE respectively, and where Fn denotes the empirical
distribution function.4

We now aim to generalise these ideas to situa-
tions where f0 is close to Fk , but assume only that

X1, . . . ,Xn
i.i.d.∼ f0 ∈F1. An application of Lemma 5.2

to the function �(x) = log f0(x)

f̂n(x)
yields

d2
KL(f̂n, f0) ≤ 1

n

n∑
i=1

log
f̂n(Xi)

f0(Xi)
=: d2

X(f̂n, f0).

In particular, an upper bound on d2
X(f̂n, f0) immedi-

ately provides corresponding bounds on d2
TV(f̂n, f0),

d2
H(f̂n, f0) and d2

KL(f̂n, f0).

THEOREM 7.6 (Kim, Guntuboyina and Samworth,
2018). There exists a universal constant C > 0 such
that for n ≥ 2,

Ef0d
2
X(f̂n, f0)

≤ min
k=1,...,n

{
Ck

n
log5/4 en

k
+ inf

fk∈Fk
d2

KL(f0, fk)

}
.

To help understand this theorem, first consider the
case where f0 ∈ Fk . Then Ef0d

2
X(f̂n, f0) ≤ Ck

n
·

log5/4(en/k), which is nearly the parametric rate when
k is small. More generally, this rate holds when f0 ∈ F1
is only close to Fk in the sense that the approxima-
tion error d2

KL(f0, fk) is O(k
n

log5/4 en
k

). The result is
known as a “sharp” oracle inequality, because the lead-
ing constant for this approximation error term is 1. See
also Baraud and Birgé (2016), who also obtain an ora-
cle inequality for their general ρ-estimation procedure.
It is worth noting that the techniques of proof, which
rely on empirical process theory and local bracketing
entropy bounds, are completely different from those
used in the proof of Theorem 7.5.

8. HIGHER-DIMENSIONAL PROBLEMS

The minimax lower bound in Theorem 7.2 is rela-
tively discouraging for the prospects of log-concave
density estimation in higher dimensions. It is natural,
then, to consider additional structures that reduce the
complexity of the class Fd , thereby increasing the po-
tential for applications outside low-dimensional set-
tings. The purpose of this section is to explore two

4The original Marshall’s inequality (Marshall, 1970) applies
to the (integrated) Grenander estimator, in which context ρ(|κ|)
in (7.3) may be replaced by 1.

ways of imposing such structures, namely through in-
dependence and symmetry constraints.

In the simplest, noiseless case of Independent Com-
ponent Analysis (ICA), one observes independent
replicates of a random vector

(8.1) X := AS,

where A ∈ R
d×d is a deterministic, invertible matrix,

and S is a d-dimensional random vector with indepen-
dent components. One can think of the model as be-
ing the density estimation analogue of multiple index
models in regression. ICA models have found an enor-
mous range of applications across signal processing,
machine learning and medical imaging, to name just
a few; see Hyvärinen, Karhunen and Oja (2001) for an
introduction to the field. The main interest is in estimat-
ing the unmixing matrix W := A−1, with estimation of
the marginal distributions of the components of S as a
secondary goal. Let W denote the set of all invertible
d × d real matrices, let Bd denote the set of all Borel
subsets of Rd , and let P ICA

d denote the set of P ∈ Pd

with

P(B) =
d∏

j=1

Pj

(
w


j B
) ∀B ∈ Bd,

for some W = (w1, . . . ,wd)
 ∈ W and P1, . . . ,Pd ∈
P1. Thus P ICA

d is the set of distributions of ran-
dom vectors X with E(‖X‖) < ∞ satisfying (8.1).
As stated, the model (8.1) is not identifiable, as we
can write X = ADPP 
D−1S, where D is a diago-
nal d × d matrix with nonzero diagonal entries, and
P ∈ R

d×d is a permutation matrix (note that ADP is
invertible and P 
D−1S has independent components).
Fortunately, these can be regarded as “trivial” lack of
identifiability problems, because it is typically the di-
rections of the set of rows of W := A−1 that are of
interest, not their order or magnitude. Eriksson and
Koivunen (2004) proved that the pair of conditions that
none of P1, . . . ,Pd are Dirac point masses and at most
one of them is Gaussian is necessary and sufficient for
the ICA model to be identifiable up to the permutation
and scaling transformations described above.

Now let F ICA
d denote the set of f ∈ Fd with

f (x) = |detW |
d∏

j=1

fj

(
w


j x
)

for some W = (w1, . . . ,wd)
 ∈ W and f1, . . . , fd ∈
F1. In this way, F ICA

d is the set of densities of random
vectors X satisfying (8.1), where each component of S
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has a log-concave density. Define the log-concave ICA
projection on Pd by

ψ∗∗(P ) := argmax
f ∈F ICA

d

∫
Rd

logf dP.

In general, ψ∗∗(P ) only defines a nonempty, proper
subset of F ICA

d rather than a unique element. However,
the following theorem gives uniqueness in an impor-
tant special case, and the form of the log-concave ICA
projection here is key to the success of this approach to
fitting ICA models.

THEOREM 8.1 (Samworth and Yuan, 2012). If P ∈
P ICA

d , then ψ∗∗(P ) defines a unique element of F ICA
d .

In fact, the restrictions of ψ∗∗ and ψ∗ to P ICA
d coin-

cide. Moreover, suppose that P ∈ P ICA
d , so

P(B) =
d∏

j=1

Pj

(
w


j B
) ∀B ∈ Bd,

for some W = (w1, . . . ,wd)
 ∈ W and P1, . . . ,Pd ∈
P1. Then f ∗∗ := ψ∗∗(P ) can be written explicitly as

f ∗∗(x) = |detW |
d∏

j=1

f ∗
j

(
w


j x
)
,

where f ∗
j := ψ∗(Pj ).

The fact that ψ∗ preserves the ICA structure is a con-
sequence of Lemma 5.1 and Proposition 5.4. However,
the most interesting aspect of this result is the fact that
the unmixing matrix W is preserved by the log-concave
projection. This suggests that, at least from the point of
view of estimating W , there is no loss of generality in
assuming that the marginal distributions of the com-
ponents of S have log-concave densities provided they
have finite means. Another crucial result is the fact that
the log-concave ICA projection of P ∈ P ICA

d does not
sacrifice identifiability: in fact, ψ∗∗(P ) is identifiable
if and only if P is identifiable.

Given data X1, . . . ,Xn
i.i.d.∼ P ∈ Pd with empirical

distribution Pn, we can therefore fit an ICA model by
computing f̂n := ψ∗∗(Pn). This estimator has similar
consistency properties to the original log-concave pro-
jection, and requires the maximisation of

�(W,f1, . . . , fd;X1, . . . ,Xn)

:= log |detW | + 1

n

n∑
i=1

d∑
j=1

logfj

(
w


j Xi

)

over W ∈ W and f1, . . . , fd ∈ F1. For reasons of nu-
merical stability, however, it is convenient to “pre-
whiten” the estimator by setting Zi := �̂−1/2Xi for
i = 1, . . . , n, where �̂ denotes the sample covari-
ance matrix. We can then instead obtain a maximiser
(Ô, ĝ1, . . . , ĝd) of �(O,g1, . . . , gd;Z1, . . . ,Zn) over
O ∈ O(d), the set of d × d orthogonal matrices,

and g1, . . . , gd ∈ F1, before setting ˆ̂
W := Ô�̂−1/2

and ˆ̂
fj := ĝj . This estimator has the same consis-

tency properties as the original proposal, provided that∫
Rd ‖x‖2 dP (x) < ∞. In effect, it breaks down the esti-

mation of the d2 parameters in W into two stages: first,
we use �̂ to estimate the d(d + 1)/2 free parameters
of the symmetric, positive definite matrix �, leaving
only the maximisation over the d(d − 1)/2 free pa-
rameters of O ∈ O(d) at the second stage. Even after
pre-whitening, however, there is an additional compu-
tational challenge relative to the original log-concave
MLE caused by the fact that the objective function � is
only bi-concave5 in O and g1, . . . , gd , but not jointly
concave in these arguments. Since we only have to
deal with computation of univariate log-concave max-
imum likelihood estimators, however, marginal up-
dates are straightforward, and taking the solution with
highest log-likelihood over several random initial val-
ues for the variables can lead to satisfactory solutions
(Samworth and Yuan, 2012).

Symmetry constraints provide another alternative
approach to extending the scope of shape-constrained
methods to higher dimensions. For simplicity of expo-
sition, we focus on the simplest case of spherical sym-
metry, as studied recently by Xu and Samworth (2017),
though more general symmetry constraints may also
be considered. We write FSS

d for the set of spheri-
cally symmetric f ∈ Fd , and let �SS denote the class
of upper semi-continuous, decreasing, concave func-
tions φ : [0,∞) → [−∞,∞). The starting point for
the symmetry-based approach is the observation that a
density f on R

d belongs to FSS
d if and only if f (x) =

eφ(‖x‖) for some φ ∈ �SS. One can then define the no-
tion of spherically symmetric log-concave projection,
which has several similarities with the theory presented
in Sections 3 and 5 (though with some notable differ-
ences, especially with regard to moment preservation
properties). In particular, given data X1, . . . ,Xn ∈ R

d

5In other words, � is concave in O for fixed g1, . . . , gd , and con-
cave in g1, . . . , gd for fixed O .
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that are not all zero, there exists a unique spherically
symmetric log-concave MLE f̂ SS

n . This estimator can
be computed using a variant of the Active Set algorithm
outlined in Section 4. Importantly, this algorithm only
depends on d through the need to compute Zi := ‖Xi‖
for i = 1, . . . , n at the outset, and it therefore scales ex-
tremely well to high-dimensional cases, even when d

may be in the hundreds of thousands.
The following worst case bound reveals that f̂ SS

n

succeeds in evading the curse of dimensionality:

THEOREM 8.2 (Xu and Samworth, 2017). Let f0 ∈
FSS

d , let X1, . . . ,Xn
i.i.d.∼ f0, and let f̂ SS

n denote the cor-
responding spherically symmetric log-concave MLE.
Then there exists a universal constant C > 0 such that

sup
f0∈FSS

d

Ed2
X

(
f̂ SS

n , f0
) ≤ Cn−4/5.

Similar to the ordinary log-concave MLE, we have
d2
X(f̂ SS

n , f0) ≥ d2
KL(f̂ SS

n , f0), and the interesting fea-
ture of this bound is that it does not depend on d .
Nevertheless, a viable alternative, which also satisfies
the same worst case risk bound, and which is equally
straightforward to compute, is to let h̃n denote the (or-
dinary) log-concave MLE based on Z1, . . . ,Zn, and
then set

(8.2) f̃n(x) :=
{
h̃n

(‖x‖)
/
(
cd‖x‖d−1)

if x �= 0,

0 if x = 0,

where cd := 2πd/2/�(d/2). This estimator, however,
ignores the fact that the density of Z1 is a “special”

log-concave density, belonging to the class

H :=
{
r 	→ rd−1eφ(r) : φ ∈ �SS,

∫ ∞
0

rd−1eφ(r) dr = 1
}
,

and means that f̃n does not belong to FSS
d in general.

Moreover, f̃n is inconsistent at x = 0 (the estimator
is zero for ‖x‖ < mini Zi) and behaves badly for small
‖x‖; cf. Figure 8, taken from Xu and Samworth (2017).

A further advantage of f̂ SS
n in this context relates to

its adaptation behaviour. To describe this, for k ∈ N,
we say φ ∈ �SS is k-affine, and write φ ∈ �SS,k , if
there exist r0 ∈ (0,∞] and a partition I1, . . . , Ik of
[0, r0) into intervals such that φ is affine on each Ij

for j = 1, . . . , k, and φ(r) = −∞ for r > r0. Define
Hk := {h ∈H : h(r) = rd−1eφ(r) for some φ ∈ �SS,k}.

THEOREM 8.3 (Xu and Samworth, 2017). Let f0 ∈
FSS

d be given by f0(x) = eφ0(‖x‖), where φ0 ∈ �SS

and let X1, . . . ,Xn
i.i.d.∼ f0. Let f̂ SS

n be the spheri-
cally symmetric log-concave MLE. Define h0 ∈ H by
h0(r) := rd−1eφ0(r) for r ∈ [0,∞). Then, writing ν2

k :=
2 ∧ infh∈Hk d2

KL(h0, h), there exists a universal con-
stant C > 0 such that

Ed2
X

(
f̂ SS

n , f0
)

≤ C min
k=1,...,n

(
k4/5ν

2/5
k

n4/5 log
en

kνk

+ k

n
log5/4 en

k

)
.

Interestingly, this result implies the following sharp
oracle inequality: there exists a universal constant C >

FIG. 8. A comparison of the spherically-symmetric log-concave MLE f̂ SS
n (left) and the estimator f̃n defined in (8.2) (right) based on a

sample of size n = 1000 from a standard bivariate normal distribution.
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0 such that

Ed2
X

(
f̂ SS

n , f0
) ≤ min

k=1,...,n

(
ν2
k + C

k

n
log5/4 en

k

)
.

9. OTHER TOPICS

9.1 s-Concave Densities

As an attempt to allow heavier tails than are per-
mitted by log-concavity, say a density f is s-concave
with s < 0, and write f ∈ Fd,s , if f = (−φ)1/s for
some φ ∈ �. Such densities have convex upper level
sets, but allow polynomial tails, and satisfy Fd,s2 ⊇
Fd,s1 ⊇ Fd for s2 < s1 < 0. Some, but not all, of the
properties of Fd translate over to these larger classes
(e.g., Dharmadhikari and Joag-Dev, 1988). Results on
the maximum likelihood estimator in the case d =
1 are recently available (Doss and Wellner, 2016b),
but estimation techniques based on Rényi divergences
are also attractive here (Koenker and Mizera, 2010,
Han and Wellner, 2016a).

9.2 Finite Mixtures of Log-Concave Densities

Finite mixtures offer another attractive way of gen-
eralising the scope of log-concave modelling (Chang
and Walther, 2007, Eilers and Borgdorff, 2007, Cule,
Samworth and Stewart, 2010). The main issue con-
cerns identifiability: for instance, the mixture distribu-
tion pNd(−μ, I) + (1 − p)Nd(μ, I ) with p ∈ (0,1)

has a log-concave density if and only if ‖μ‖ ≤ 1 (Cule,
Samworth and Stewart, 2010). However, all is not lost:
for instance, consider distribution functions on R of the
form

G(x) := pF(x − μ1) + (1 − p)F(x − μ2),

where p ∈ [0,1], μ1 ≤ μ2 and F(−x) = 1 − F(x),
so that the distribution corresponding to F is sym-
metric about zero. Hunter, Wang and Hettmansperger
(2007) proved that if p /∈ {0,1/2,1} and μ1 < μ2,
then p, μ1, μ2 and F are identifiable. Balabdaoui and
Doss (2018) have recently exploited this result to fit a
two-component location mixture of a symmetric, log-
concave density. One can imagine this as a model for a
population of adult human heights, where the two com-
ponents correspond to men and women.

9.3 Log-Concave Probability Mass Functions

Let p denote a probability mass function supported
on a subset S of the integers, so that S := {z ∈ Z :
p(z) > 0}. Balabdaoui et al. (2013) define p to be log-
concave if the following two conditions hold:

(a) If z1 < z2 < z3 and min{p(z1),p(z3)} > 0, then
p(z2) > 0;

(b) p(z)2 ≥ p(z − 1)p(z + 1) for all z ∈ Z.

Writing ψ(z) := logp(z) and defining the discrete
Laplacian (�ψ)(z) := ψ(z + 1) − 2ψ(z) + ψ(z − 1),
it can be seen that a probability mass function p sup-
ported on S ⊆ Z is log-concave if and only if S is
the intersection of an interval with Z and (�ψ)(z) ≤ 0
for all z ∈ S . Log-concave probability mass functions
have many of the same properties as log-concave den-
sity functions, and Balabdaoui et al. (2013) show how
much of the theory and methodology can be adapted to
this setting.

9.4 Regression Problems

Consider the basic regression model

Y = m(x) + ε,

where x ∈ R
d is considered fixed for simplicity, m

belongs to a class of real-valued functions M and
ε ∼ P with E(ε) = 0. There is a large literature on
estimating m under different shape constraints (e.g.,
van Eeden, 1958, Groeneboom, Jongbloed and Well-
ner, 2001b, Han and Wellner, 2016b, Chen and Sam-
worth, 2016). But log-concavity does not seem to be
a natural constraint to impose on a regression func-
tion. On the other hand, it may well represent a sen-
sible model for the distribution of the error vector
ε. Given covariates x1, . . . , xn ∈ R

d and correspond-
ing independent responses Y1, . . . , Yn, Dümbgen, Sam-
worth and Schuhmacher (2011, 2013) considered esti-
mating (m, logψ∗(P )) by

(
m̂, φ∗) ∈ argmax

(m,φ)∈M×�

1

n

n∑
i=1

φ
(
Yi − m(xi)

)

−
∫
Rd

eφ + 1.

Such a maximiser exists, assuming only that M is
closed under the addition of constant functions, and
that M(x) := {(m(x1), . . . ,m(xn)) : m ∈ M} is a
closed subset of Rn. Under a triangular array scheme, it
can be shown that in the case of linear regression with
a fixed number of covariates, the estimator of the vec-
tor of regression coefficients is consistent (Dümbgen,
Samworth and Schuhmacher, 2013, Corollary 2.2),
while numerical evidence suggests that the estima-
tor can yield significant improvements over the ordi-
nary least squares estimator in settings where ε has a
log-concave, but not Gaussian, density. Similar to the
Independent Component Analysis problem studied in
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Section 8, the optimisation problem is again only bi-
concave, though stochastic search algorithms offer a
promising approach (Dümbgen, Samworth and Schuh-
macher, 2013).
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