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(a) physics-based collisions (b) avatar path planning (c) snow particles

(d) geometry-aware flooding effects (e) ray-marching-based scene relighting (f) occlusion-aware rendering

Figure 1. Real-time interactive components enabled by DepthLab: (a) virtual objects colliding with real stairs; (b) virtual avatar path planning and 
geometry-aware shadows; (c) AR snow effect; (d) virtual flooding effects bounded by physical walls; (e) scene relighting with three virtual point lights; 
(f) occlusion-aware rendering of a virtual cat behind the real bed. Please refer to the main paper [1] and the accompanying video for more results. 

ABSTRACT 
We demonstrate DepthLab [1], a playground for interactive 
augmented reality experiences leveraging the shape and depth 
of the physical environment on a mobile phone. Based on the 
ARCore Depth API, DepthLab encapsulates a variety of depth-
based UI/UX paradigms, including geometry-aware rendering 
(occlusion, shadows, texture decals), surface interaction be-
haviors (physics, collision detection, avatar path planning), 
and visual effects (relighting, 3D-anchored focus and aperture 
effects, 3D photos). We have open-sourced our software at 
https://github.com/googlesamples/arcore-depth-lab to facili-
tate future research and development in depth-aware mobile 
AR experiences. With DepthLab, we aim to help mobile devel-
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opers to effortlessly integrate depth into their AR experiences 
and amplify the expression of their creative vision. 
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INTRODUCTION 
Real-time depth data is readily available on mobile phones 
with passive or active sensors and on VR/AR devices. How-
ever, the use of this rich data about our environment is under-
explored and merely leveraged in mainstream AR applications. 
In this demonstration paper, we present DepthLab [1], an 
opensourced library based on ARCore Depth API [2] that 
encapsulates a variety of real-time UI/UX features for depth, 
including geometry-aware rendering and physics simulation, 
surface interaction behaviors, and visual effects. Our goal is 
to bring these advanced features to mobile AR experiences 
without relying on dedicated sensors or the need for computa-
tionally expensive surface reconstruction. 
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Figure 2. A high-level overview of DepthLab. We process the raw depth map from ARCore Depth API and provide customizable and self-contained 
components such as a 3D cursor, geometry-aware collision, and screen-space relighting. The DepthLab library aims to accelerate mobile app developers 
to build more photo-realistic and interactive AR applications. 

System Overview 
DepthLab enables users to interact with a seamless blend of 
the physical environment and virtual renderings. To achieve 
this, we architect and implement a set of data structures and 
real-time algorithms for mobile AR developers. 

The depth data is typically stored in a low-resolution depth 
buffer (160 × 120 in our examples1), which is a perspective 
camera image that contains a depth value instead of color in 
each pixel. We generate three categories of data structures: (1) 
Depth array stores depth in a 2D array of a landscape image 
with 16-bit integers on the CPU. (2) Depth mesh is a real-time 
triangulated mesh generated for each depth map on both CPU 
and GPU. (3) Depth texture is copied to the GPU from the 
depth array for per-pixel depth use cases in each frame. 

Based on the data structures, we classify our DepthLab com-
ponents into three categories: (1) Localized depth uses the 
depth array to operate on a small number of points directly on 
the CPU. It is useful for computing physical measurements, 
estimating normal vectors, and automatically navigating vir-
tual avatars for AR games. (2) Surface depth leverages the 
CPU or compute shaders on the GPU to create and update 
depth meshes in real time, thus enabling collision, physics, 
texture decal, geometry-aware shadows, etc. (3) Dense depth 
is copied to a GPU texture and is used for rendering depth-
aware effects, including relighting, 3D-anchored focus and 
aperture, and screen-space occlusion effects. 

Demonstration and Applications 
In our demonstration, the audience will be able to watch a 
live stream by the presenters showcasing DepthLab on Pixel 
phones. In addition, visitors will be instructed to download 
DepthLab from Google Play Store2. 

During the demonstration, the audience will experience the 
following demos: (1) Oriented Reticle uses depth hit testing 
to obtain the raycasted 3D position and surface normal of a 
raycasted screen point. (2) Material Wrap allows the user to 
change the material of real-world surfaces through touch. (3) 
Color Balloons uses the Oriented Reticle and the depth mesh 
in placing a surface-aligned texture decal within the physical 
environment. (4) Collider uses screen-space depth meshes 
to enable collisions between Unity’s rigid-body objects and 

1The resolution may be different depending on phone models. 
2ARCore Depth Lab: https://play.google.com/store/apps/ 
details?id=com.google.ar.unity.arcore_depth_lab 

the physical environment. (5) Laser Beam allows the user to 
shoot a slowly moving laser beam by touching anywhere on 
the screen. (6) Avatar Path Planning allows an AR character 
follows user-set waypoints while staying close to the surface 
of an uneven terrain. This scene uses raycasting and depth 
lookups on the CPU to calculate a 3D point on the surface 
of the terrain. (7) Relighting uses the GPU depth texture to 
computationally re-light the physical environment through the 
AR camera. Areas of the physical environment close to the 
artificial light sources are lit, while areas farther away are 
darkened. (8) Fog adds a virtual fog layer on the physical 
environment. Close objects will be more visible than objects 
further away. (9) Snow uses the GPU depth texture to compute 
collisions between snow particles, the physical environment, 
and the orientation of each snowflake. (10) Rain uses the GPU 
depth texture to compute collisions between rain particles and 
the physical environment. (11) Focus and Aperture Effect 
contains a simulated Bokeh-like fragment-shader effect. This 
blurs the regions of the AR view that are not at the user-
defined focus distance. The focus anchor is set in the physical 
environment by touching the screen. The focus anchor is a 3D 
point that is locked to the environment and always in focus. 
(12) Water uses a modified GPU occlusion shader to create a 
flooding effect with artificial water in the physical environment. 
(14) Object Placement uses depth lookups on the CPU to 
test collisions between the vertices of virtual objects and the 
physical environment. (15) Point Cloud computes a point 
cloud on the CPU using the depth array. Press the Update 
button to compute a point cloud based on the latest depth data. 
(16) Depth Mesh renders a template mesh created once on the 
GPU as a regular grid of triangles. The GPU shader displaces 
each vertex of the regular grid based on the reprojection of 
the depth values provided by the GPU depth texture. (17) 3D 
Photo uses depth meshes and project a cached camera image 
onto a frozen template mesh. As the virtual camera rotates, it 
create an animated stereo photo effects. 

Conclusion 
We demonstrate DepthLab, an interactive depth library that 
aims to empower mobile AR designers and developers to 
more realistically interact with the physical world using virtual 
content. We believe our contributions will inspire the next 
generation of AR applications, where scene-aware interactions, 
enabled by accurate 3D information, are the key to seamless 
blending of the virtual and the real world. 
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