Two weeks ago, New Scientist warmed up the story about a Danish groups’ claim that the LIGO collaboration’s signal identification is flawed. This story goes back to a paper published in Summer 2017.
After the publication of this paper, however, the VIRGO gravitational wave interferometer came online, and in August 2017 the both collaborations jointly detected another event. Not only was this event seen by the two LIGO detectors and the VIRGO detector, several telescopes also measured optical signals that arrived almost simultaneously and fit with the hypothesis of the event being a neutron-star merger. For most physicists, including me, this detection removed any remaining doubts about LIGO’s event-detection.
Now a few people have pointed out to me that the Journal of Cosmology and Astroparticle Physics (JCAP) recently published a paper by an Italian group which claims that the gravitational wave signal of the neutron-star merger event must be fishy:
- GRB 170817A-GW170817-AT 2017gfo and the observations of NS-NS, NS-WD and WD-WD mergers
J.A. Rueda et al
JCAP 1810, 10 (2018), arXiv:1802.10027 [astro-ph.HE]
The executive summary of the paper is this. They claim that the electromagnetic signal does not fit with the hypothesis that the event is a neutron-star merger. Instead, they argue, it looks like a specific type of white-dwarf merger. A white-dwarf merger, however, would not result in a gravitational wave signal that is measurable by LIGO. So, they conclude, there must be something wrong with the LIGO event. (The VIRGO measurement of that event has a signal-to-noise ratio of merely two, so it doesn’t increase the significance all that much.)
I am not much of an astrophysicist, but I know a few things about neutron stars, most notably that it’s more difficult to theoretically model them than you may think. Neutron stars are not just massive balls that sit in space. They are rotating hot balls of plasma with pressure gradients that induce various phases of matter. And the equation of state of nuclear matter in the relevant ranges is not well-understood. There’s tons of complex and even chaotic dynamics going on. In short, it’s a mess.
In contrast to this, the production of gravitational waves is a fairly well-understood process that does not depend much on exactly what the matter does. Therefore, the conclusion that I would draw from the Italian paper is that we are misunderstanding something about neutron stars. (Or at least they are.)
But, well, as I said, it’s not my research area. JCAP is a serious journal, and the people who wrote the paper are respected astrophysicists. It’s not folks you can easily dismiss. So I decided to look into this a bit.
First, I contacted the spokesperson of the LIGO collaboration, David Shoemaker. This is still the same person who last year answered my question what the collaboration’s response to the Danish criticism is by merely stating he has full confidence in LIGO’s results. Since the Danish group raised the concern that the collaboration suffers from confirmation bias, this did little to ease my worries.
This time I asked Shoemaker for a comment on the Italian groups’ new claim that the LIGO measurement conflicts with the optical measurements. Turns out that his replies landed in my junk folder until I publicly complained about the lack of response, which prompted him to try a different email account. Please see update below.
Secondly, I noticed that the first version of the Italian group’s paper that is available on the arXiv heavily referenced the Danish group.
Curiously enough, these references seem to have entirely disappeared from the published version. I therefore contacted Andrew Jackson from the Danish group to hear if he has something to say about the Italian group’s claims and whether he’d heard of them. He didn’t respond.
Third, I contacted the corresponding author of the Italian paper, Jorge Rueda, but he did not correspond with me. I then moved on to the paper’s second author Remo Ruffini, which was more fruitful. According to Wikipedia, Ruffini is director of the International Centre for Relativistic Astrophysics Network and co-author of 21 textbooks about astrophysics and gravity.
I asked Ruffini whether he had been in contact with the LIGO collaboration about their findings on the neutron star merger. Ruffini did not respond to this question, though I asked repeatedly. When I asked whether they have any reason to doubt the LIGO detection, Ruffini referred me to (you’ll love this) the New Scientist article.
I subsequently got Ruffini’s permission to quote his emails, so let me just tell you what he wrote in his own words:
“Dear Sabine not only us but many people are questioning the Ligo People as you see in this link: the drama is of public domain. Remo Ruffini”
Michael Brooks, btw, who wrote the New Scientist article knew about the story because I had written about it earlier, so it has now gone around a full circle. After I informed Ruffini that I write a blog he told me that:
“we are facing the greatest dramatic disaster in all scientific world since Galileo. Do propagate this dramatic message to as many people as possible.”
Yo.
Update: Here is the response from Shoemaker that Google pushed in the junk folder (not sure why). I am sorry I complained about the lack of response without checking the junk folder - my bad.
He points out that there is a consensus in the community that the gravitational wave event in question can be explained as a neutron-star merger. (Well, I guess it’s a consensus if you disregard the people who do not consent.) He also asks me to mention (as I did earlier) that the data of the whole first observing run is available online. Alas, this data does not include the 2017 event that is under discussion here. For this event only a time-window is available. But for all I can tell, the Italians did not even look at that data.
Basically, I feel reassured in my conclusion that you can safely ignore the Italian paper.
2nd Update: The non-corresponding corresponding author of the Italian paper has now popped up after being alerted about this blogpost. He refuses to comment on his co-author’s claims that LIGO is wrong and the world needs to be told. Having said this, I wish all these people would sort out their issues without me.