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Understanding Correlation:
Factors That Affect the Size of r
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ABSTRACT. The authors describe and illustrate 6 factors that affect the size of a
Pearson correlation: (a) the amount of variability in the data, (b) differences in the
shapes of the 2 distributions, (c) lack of linearity, (d) the presence of 1 or more ‘“‘out-
liers,” (e) characteristics of the sample, and (f) measurement error. Also discussed
are ways to determine whether these factors are likely affecting the correlation, as
well as ways to estimate the size of the influence or reduce the influence of each.
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CORRELATION IS A COMMONLY USED STATISTIC in research and mea-
surement studies, including studies conducted to obtain validity and reliability
evidence. Understanding the meaning of a simple correlation is key to under-
standing more complex statistical techniques for which the simple correlation is
the foundation. In basic statistics courses, students typically learn about the con-
ceptual meaning of “relationship” between two variables (including size and di-
rection), how to calculate and interpret a sample correlation, how to construct
scattergrams or scatterplots to graphically display the relationship, and how to
conduct an inferential test for the significance of the correlation and interpret the
results. What is often missing in class discussions and activities, however, is a
focus on factors that can affect the size of the statistic based on the characteris-
tics of the correlation or the particular dataset used for the calculation of the cor-
relation. Without a solid understanding of these factors, students and researchers
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can find it difficult to “diagnose” a low correlation—or just to fully interpret re-
sults of simple or multivariate statistical analyses in the correlation “family.”

The purpose of this article is to describe and illustrate six factors that affect the
size of correlations, including (a) the amount of variability in either variable, X or
Y; (b) differences in the shapes of the two distributions, X or Y; (c) lack of linear-
ity in the relationship between X and Y; (d) the presence of one or more “outliers”
in the dataset; (e) characteristics of the sample used for the calculation of the cor-
relation; and (f) measurement error. Where possible, we illustrate the effects of
these characteristics on the size of a correlation with a hypothetical data example.

Although correlation is a fairly basic topic in statistics courses, the effects on
correlations of the six factors or characteristics discussed in this article are rarely
presented succinctly in one place. As will be shown next, several of these char-
acteristics are not typically discussed in basic statistics textbooks at all.

A correlation describes the relationship between two variables. Although there
are a number of different correlation statistics (Glass & Hopkins, 1996), the one
that is used most often is the Pearson product-moment correlation coefficient,
hereafter referred to as correlation in this article. This statistic describes the size
and direction of the linear relationship between two continuous variables (gener-
ically represented by X and Y), and ranges in value from —1.0 (perfect negative
relationship) to +1.0 (perfect positive relationship); if no relationship exists be-
tween the two variables, the value of the correlation is zero. The symbol r,, (or
r) is used to represent the correlation calculated with a set of sample data. The
correlation requires that both variables (X and Y) are measured on interval or
ratio scales of measurement. A formula for the correlation is:

where s,, is the covariance between the two variables and s, and s, are the stan-
dard deviations for X and Y, respectively. Another commonly presented formula
in textbooks uses z scores:

where z, and z, are the z scores for each individual on the X and Y variables, re-
spectively. The squared correlation (?) is a very useful statistic. It indicates the
proportion of shared variance, or the proportion of the total variance in Y that is
predictable from a regression equation.

Understanding the meaning of correlation is very important for measurement
practitioners and researchers. Simple correlations are used in many measurement
studies, such as studies aimed at obtaining validity and reliability evidence. Fur-
thermore, many multivariate statistical procedures—such as multiple regression,
factor analysis, path analysis, and structural equation modeling—build on, or are
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extensions of, simple correlations. Rodgers and Nicewander (1988) outlined 13
ways of interpreting a correlation. These included the interpretation of a correla-
tion as the standardized slope of the regression line, as the proportion of vari-
ability accounted for, and as a function of test statistics. Rovine and von Eye
(1997) added a 14th way: as the proportion of matches. In general, it is helpful
to understand that correlations can be used and interpreted in multiple ways.

Although virtually all basic statistics textbooks cover the topic of correlation,
very few describe and illustrate all six of the characteristics discussed here. We re-
cently examined a sample of 30 statistics textbooks published in the past 10
years.! All of the books we reviewed were written for basic and intermediate-level
statistics courses. Of the six characteristics that affect the value of r, lack of lin-
earity was covered most often (in 22, or 73%, of the textbooks). Next in order of
frequency of coverage was the lack of variability in X or Y (in 17, or 57%, of the
textbooks), followed by the presence of outliers (in 11, or 37%, of the textbooks).
The effect of measurement error on r was covered in only 4 (13%) of the books,
and the effect that dissimilar shapes of distributions for X and Y have on the max-
imum size of r was covered in just 2 (7%) of the books reviewed. Characteristics
of samples often overlap with other factors that affect the size of r, such as vari-
ability or presence of outliers. Thus, it was difficult to “rate” the textbooks on this
dimension; however, very few of the books included descriptions or examples that
went beyond the influence of variability on r. In terms of the other five dimen-
sions, we found only 1 textbook that directly addressed all of them.

The Hypothetical Dataset

For purposes of illustrating the effects that various characteristics have on the
size of r, we constructed a hypothetical dataset (Table 1). We purposefully kept
the data simple so that interested readers could easily replicate the analyses. The
hypothetical dataset consists of scores on five variables X, Y;, Y,, Y3, and Y, for
30 subjects. Each variable has six levels (or “scores”), and the numbers assigned
to the levels of the variables range from 1 to 6. Used as a class example, these
variables might be questions about “interest in the field of statistics,” “comfort
with math,” “anxiety about statistics,” and so on. Responses could be solicited
with a Likert-type scale. It is important to note that both variables in a correla-
tion must be measured on an interval or ratio measurement scale to use the Pear-
son correlation statistic; we assume, therefore, that these are interval-level data.?

Table 2 presents descriptive statistics for each variable. These include mea-

IA list of the textbooks reviewed is available from the first author.

2To keep this example simple, our hypothetical data consist of one-item measures. In “real
life,” measuring abstract constructs such as “anxiety” or “interest” with just one-item
measures is, of course, inappropriate; the resulting sets of scores would most likely be
quite unreliable.
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TABLE 1. Hypothetical Dataset for Correlation Illustrations
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TABLE 2. Descriptive Statistics for the Five Hypothetical Variables (N = 30)

Statistic X Y] Y2 Y3 Y4

M 3.50 3.50 3.16 2.17 4.20

Mdn 3.50 3.50 3.00 1.50 5.00

Mode(s) 3.00 3.00 3.00 1.00 5.00
4.00 4.00 4.00 6.00

SD 1.11 1.11 .85 1.49 1.63

Skewness 00 00 =77 1.11 -.55

Kurtosis 06 06 06 20 s
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sures of central tendency (mean, median, mode), standard deviations, and values
for the skewness and kurtosis of each distribution. Note that the distributions of
both X and Y; were intentionally constructed to have identical values of these sta-
tistics and to be symmetrical in shape. The correlation between these two vari-
ables serves as the “original” correlation in this article—allowing for subsequent
comparisons by varying the values of the Y variable (i.e., Y», Y3, and Y4). The cor-
relation between X and Y; is .83; a scattergram illustrating this relationship is
shown in Figure 1.

Amount of Variability in X or Y

It is well known among statisticians that, other things being equal, the value of
r will be greater if there is more variability among the observations than if there
is less variability. However, many researchers are unaware of this fact (Glass &
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FIGURE 1. The full scattergram represents the relationship between X and Y,,
whereas the scattergram without the boxed values represents the relationship
between X and Y,. A circle represents one case. Circles with spikes represent
multiple cases. Each spike represents one case.
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Hopkins, 1996), and it is common for students in basic statistics courses (and
even some students in intermediate- and advanced-level courses) to have diffi-
culty comprehending this concept. Examples of this characteristic of r can be
found quite easily, and it is often termed range restriction, restriction of range,
or truncated range by authors of statistics and measurement textbooks (e.g.,
Abrami, Cholmsky, & Gordon, 2001; Aron & Aron, 2003; Crocker & Algina,
1986; Glenberg, 1996; Harris, 1998; Hopkins, 1998; Spatz, 2001; Vaughan,
1998). In predictive validity studies, the phenomenon occurs when a test is used
for selection purposes; subsequently, the scores obtained with the test are corre-
lated with an outcome variable that is only available for those individuals who
were selected for the educational program or job. For example, the correlation
between SAT scores and undergraduate grade point average (GPA) at some se-
lective universities is only about .20 (Vaughan). This does not necessarily mean
that there is little relationship between SAT scores and college achievement,
however. The range of SAT scores is small at selective colleges and universities
that use SAT scores as a criterion for admission. Furthermore, GPAs can be re-
stricted in elite colleges. Other things being equal, the correlation between SAT
scores and GPAs would be greater if there were a greater range of scores on the
SAT and a greater range of GPAs. Other examples of range restriction can be at-
tributed to the sampling methods used. For example, if individuals are chosen to
participate in a study based on a narrow range of scores on a variable, correla-
tions between that variable and any other variables will be low. The “ultimate”
situation in which low variability influences a correlation occurs when there is no
variability on either X or Y. In that case, the correlation between the variable with
no variability and any other variable is not even defined (Hays, 1994).

To illustrate the relationship between variability and the size of a correlation,
we reduced the amount of variability in both X and Y by removing the five high-
est scoring cases from the Y variable. This can be seen in the second distribution
of Y (Y>) in Table 1, in which all remaining participants’ scores range from 1 to
4 (rather than 1-6 in the original Y; distribution; by removing 5 cases from Y,
those same cases are also removed from X when the correlation is calculated).
With those 5 cases removed, the value of the correlation shrinks from .83 to .71.
Although the nature of the relationships among the remaining 25 cases is essen-
tially the same as it was when the original correlation was calculated, the size of
the correlation now is smaller due to the shrinkage in the variability in the data.
Therefore, it appears that the relationship is smaller, too. This can also be seen in
Figure 1, in which the removed cases are surrounded by a dotted box. Without
those cases in the scattergram, the relationship is seen as less strong (more of a
“circle” in shape).

In trying to determine why a correlation might be lower than it was expected
to be (or, perhaps, lower than other researchers have reported), examining the
amount of variability in the data can be very helpful. This can be done visually
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(by looking at a scatterplot), as well as by calculating the variances or standard
deviations. In terms of restriction of range, there are procedures available for the
estimation of the correlation for the entire group from the correlation obtained
with the selected group (Glass & Hopkins, 1996; Gulliksen, 1950; Nunnally &
Bernstein, 1994; Thorndike, 1982). However, the equation used to estimate the
unrestricted correlation requires knowledge of the standard deviations for X and
Y for the entire group and also requires several assumptions that are rarely ten-
able in practical situations (Crocker & Algina, 1986). Furthermore, the obtained
estimates are often imprecise unless the sample size, N, is very large (Gullickson
& Hopkins, 1976; Linn, 1983). As Glass and Hopkins noted, the main value of
using the equation is not to actually estimate the size of the unrestricted correla-
tion but, rather, to illuminate “the consequence of restricted or exaggerated vari-
ability on the value of r so that it can be interpreted properly” (p. 122).

The Shapes of the Distributions of X and Y

The correlation can achieve its maximum value of 1.0 (positive or negative)
only if the shapes of the distributions of X and Y are the same (Glass & Hopkins,
1996; Hays, 1994; Nunnally & Bernstein, 1994). Carroll (1961) showed that the
maximum value of r, when the distributions of X and Y do not have the same
shape, depends on the extent of dissimilarity (or lack of similarity in skewness
and kurtosis): the more dissimilar the shapes, the lower the maximum value of
the correlation. Nunnally and Bernstein also noted that the effect on the size of r
depends on how different the shapes of the distributions are, as well as how high
the correlation would be if the distributions had identical shapes. In terms of the
latter, the effect is greater if the correlation between the same-shaped distribu-
tions is greater (other things being equal). For example, if the correlation were
.90 between same-shaped distributions, changes in the shape of one of the distri-
butions could reduce the size of the correlation to .80 or .70. On the other hand,
if the correlation were .30 between same-shaped distributions, even dramatic
changes in the shape of one of the distributions will have relatively little effect
on the size of r (assuming that N is fairly large—approximately 30 or more sub-
jects—so that there is some stability in the data). Nunnally and Bernstein also
discussed the situation wherein one variable is dichotomous and the other is nor-
mally distributed. They showed that the maximum value of the correlation is
about .80, which can occur only if the p value (difficulty index) of the dichoto-
mous variable is .50; as the p value deviates from .50 (in either direction), the
ceiling on the correlation becomes lower than .80.

To illustrate this characteristic of the correlation, we retained the original X
variable’s distribution (which is symmetrical) but altered the distribution of the Y
variable. As compared with the original distribution for Y (Y;), the distribution of
Y; is skewed positively. (See the value of the skewness statistic in Table 2.) The



258 The Journal of Experimental Education

correlation between X and Y; is now .68, which is illustrated in Figure 2. Note
that Y3 has a differently shaped distribution and greater variance than Y. Yet, Y3
has a lower correlation with X than Y; has with X.

If different-shaped distributions attenuate r, one or both variables can be trans-
formed so that the distributions become more similar in shape. However, nonlin-
ear transformations of X or Y will have only a small effect on the size of the cor-
relation unless the transformations markedly change the shapes of the
distributions (Glass & Hopkins, 1996).

Lack of Linearity

The correlation measures the extent and direction of the linear relationship be-
tween X and Y. If the actual relationship between X and Y is not linear—rather,
if it is a curvilinear or nonlinear relationship—the value of r will be very low and
might even be zero. Although the relationships between most variables examined
in educational and behavioral research studies are linear, there are interesting ex-
amples of nonlinear relationships among adults between age and psychomotor

7 -

FIGURE 2. Scattergram of X and Y..
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skills that require coordination (Glass & Hopkins, 1996). Also, some researchers
studying the relationships between anxiety and test performance have reported
curvilinear relationships (Hopkins, 1998). Abrami et al. (2001) described the
anxiety—test performance relationship: “One of the most famous examples of a
curvilinear relationship in the social sciences is the inverted U-shaped relation-
ship between personal anxiety and test performance. It is now well known that
‘moderate’ levels of anxiety optimize test performance” (p. 434).

The best way to detect a curvilinear relationship between two variables is to
examine the scattergram. If a curvilinear relationship exists between X and Y, the
Pearson correlation should not be used; it will seriously underestimate the
strength of the relationship. Instead, the correlation ratio, or eta (1), is defined by
Vogt (1999) as “a correlation coefficient that does not assume that the relation-
ship between two variables is linear” (p. 99). This statistic allows one to calcu-
late the size of the relationship between any two variables and would be a method
of choice. It is a “universal measure of relationship” (Nunnally & Bernstein,
1994, p. 137) because it measures the relationship between two variables regard-
less of the form of the relationship (linear or nonlinear). Also, it can be used with
nominal or continuous (interval- or ratio-level) data. Like 2, n? indicates the pro-
portion of “shared variance” between the two variables.

Another approach to take if the relationship is nonlinear is to transform one or
both variables—by raising variables to powers, expressing variables as loga-
rithms, or taking square roots of variables (Abrami et al., 2001). Creating a scat-
tergram and computing r again after the transformations may show a linear rela-
tionship that was not apparent prior to transformation. However, the linear
relationship is now with the transformed variable, not the original variable. This
can make interpretation more complex.

To illustrate a nonlinear relationship, we altered the original Y variable again.
The values of the new Y variable (Y,) are included in Table 1, and the scattergram
showing the relationship between X and Y, is shown in Figure 3. The calculated
value of the Pearson correlation between X and Y, is zero. If we did not look at
the scattergram in this case, we would erroneously conclude that there is no re-
lationship between the two variables when, in fact, there is a very strong and like-
ly meaningful relationship. The value of 1 is .91, and n? is .83.

Presence of One or More Outliers

An outlier can be defined as a score or case that is so low or so high that it
stands apart from the rest of the data. Reasons for outliers include data collection
errors, data entry errors, or just the fact that a valid (although unusual) value oc-
curred (Brase & Brase, 1999); inadvertent inclusion of an observation from a dif-
ferent population (Glenberg, 1996); or a subject not understanding the instruc-
tions or wording of items on a questionnaire (Cohen, 2001). As with many of the
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FIGURE 3. Scattergram of X and Y,.

characteristics of a dataset that can affect the size of r, an outlier’s effect will be
greater in a small dataset than in a larger one. The presence of an outlier in a
dataset can result in an increase or decrease in the size of the correlation, de-
pending on the location of the outlier (Glass & Hopkins, 1996; Lockhart, 1998).

To illustrate the effect of an outlier on the correlation between X and Y, we
added a 31st case to the original X and Y distributions (i.e., the X and Y; distri-
butions in Table 1). We assigned a value of 9 on X and 10 on Y for this addition-
al case. The new scattergram is shown in Figure 4, and the value of ris .91. (Re-
call that the original correlation was .83; adding the outlier case “stretched” the
scattergram and increased the calculated value of r.)

As is the case with nonlinear relationships, one simple way to detect the pres-
ence of one or more outliers is to examine the scattergram; statistical outlier
analysis (e.g., Tukey, 1977) can also be useful above and beyond analysis by vi-
sual inspection. If an outlier is present, the researcher should first check for data
collection or data entry errors. If there were no errors of this type and there is no
obvious explanation for the outlier—the outlier cannot be explained by a third
variable affecting the person’s score—the outlier should not be removed. If there
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FIGURE 4. Scattergram of X and revised Y, to include an outlier.

is a good reason for a participant responding or behaving differently than the rest
of the participants, the researcher can consider eliminating that case from the
analysis; however, the case should not be removed only because it does not fit
with the researcher’s hypotheses (Field, 2000). Sometimes the researcher has to
live with an outlier (because he or she cannot find an explanation for the odd re-
sponse or behavior). Also, as Cohen (2001) noted, the outlier might represent an
unlikely event that is not likely to happen again—hence, the importance of repli-
cation of the study.

Characteristics of the Sample

Unique characteristics of a sample can affect the size of r. Sometimes these
characteristics overlap with one or more of the other situations already dis-
cussed—truncated range, presence of outliers, skewed data. Sprinthall (2003),
for example, described a study reported by Fancher (1985) in which the correla-
tions between 1Q scores and grades decreased as the age of the participants in-
creased: .60 for elementary school students, .50 for secondary school students,
40 for college students, and only .30 for graduate students: . . . the lower 1Qs
are consistently and systematically weeded out as the students progress toward
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more intellectually demanding experiences” (Sprinthall, p. 286). Of course, the
amount of variability in the IQ scores likely decreased, too, across the various
sample groups.

In addition to examples in which the unique characteristics of the sample co-
incide with one of the other characteristics that affect r, there are situations when
the correlation is different for one group versus another group because of the na-
ture of the participants studied. For example, we expect that the relationship be-
tween shoe size and spelling ability would be fairly large and positive when cal-
culated on a sample of children aged 4 through 10 years but would be negligible
when calculated on a sample of college freshmen. Combining different sub-
groups into one group prior to calculating a correlation also can produce some
interesting results. Glenberg (1996) showed how the correlation between the age
of widowers and their desire to remarry was positive for two separate subgroups:
one group of fairly young widowers and one group of fairly old widowers. When
the two subgroups were combined into a total group, however, the relationship
between the two variables actually became negative.

Finally, sample selection can affect the strength of relationships calculated
with correlations. “Sometimes misguided researchers select only the extreme
cases in their samples and attempt to look at the relationship between the two
variables” (Runyon, Haber, & Coleman, 1994, p. 136). The example presented
by Runyon et al. dealt with the relationship between scores on a depression test
and performance on a short-term memory task. A researcher might administer a
depression measure to a group of patients and then select only those patients who
scored in the top 25% and the bottom 25%. The calculated correlation between
the two variables would be artificially enhanced by the inclusion of only the two
extreme groups, providing an erroneous impression of the true relationship be-
tween depression and short-term memory.

Measurement Error

As noted earlier, the effects of measurement error on correlations are rarely
presented in basic statistics textbooks; only 4 (13%) of the 30 books we reviewed
included this topic as part of the discussion of correlation. Measurement error,
which decreases the reliability of the measures of the variables, can be attributed
to a variety of sources: intraindividual factors (fatigue, anxiety, guessing, etc.),
administrative factors, scoring errors, environmental factors, ambiguity of ques-
tions, too few questions, and so on. In classical test theory, reliability is defined
as the ratio of true-score variance to observed-score variance (Hopkins, 1998;
Thompson, 2003). Other things being equal, the correlation between two vari-
ables will be lower when there is a large amount of measurement error—or low
measurement reliability—than when there is a relatively small amount of mea-
surement error. This makes sense, given the fact that reliability is the correlation
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of a test with itself (Lockhart, 1998); if a test does not correlate with itself, it can-
not correlate with another variable. Consequently, the reported value of » may
“substantially underestimate the true correlation between the underlying vari-
ables that these imperfect measures are meant to reveal” (Aron & Aron, 1994, p.
90). Thus, the reliability of a measure places an upper bound on how high the
correlation can be between the measured variable and any other variable; the re-
liability index, which is the square root of the reliability coefficient, indicates the
maximum size of the correlation (Hopkins).

The reduction in the size of a correlation due to measurement error is called
attenuation, and there is a correction for attenuation that allows one to estimate
what the correlation between the two variables would be if all measurement error
were removed from both measures (Hopkins, 1998; Muchinsky, 1996; Nunnally
& Bernstein, 1994). To use this equation, the researcher needs to know the relia-
bility of each measure:

r
X
R~ —

Pty

where r* is the estimated correlation; r,, is the calculated correlation between the
two variables; and r,, and r,, are the reliability coefficients of the measures of X
and Y, respectively. This equation really results in an estimate rather than a cor-
rection—that is, the estimate of the correlation between two variables if both
measures were perfectly reliable. Nunnally and Bernstein advised caution in the
use of the formula, especially because it can be used to fool one into believing
that a higher correlation has been found than what actually occurred—and, with
very small samples, the corrected correlation can even surpass 1.0! They also
noted some appropriate uses:

However, there are some appropriate uses of the correction for attenuation given
good reliability estimates. One such use is in personality research to estimate the
correlation between two traits from imperfect indicators of these traits. Determining
the correlation between traits is typically essential in this area of research, but if the
relevant measures are only modestly reliable, the observed correlation will underes-
timate the correlations among the traits. (p. 257)

As an example of the use of the correction for attenuation formula, assume that
the correlation between measures of two traits is .65; the reliabilities of the mea-
sures are .70 and .80. The estimated correlation between two perfectly reliable
measures here is .86.

Summary and Conclusion

In this article, we have discussed and illustrated six factors that affect the size
of a correlation coefficient. When confronted with a very low or zero correlation,
researchers should ask questions about these factors. Is there a lack of variabili-
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ty in the data? Do the marginal distributions have dissimilar shapes? Is there a
nonlinear or curvilinear relationship between the two variables? Are there one or
more outliers in the dataset? Are there other unique characteristics of the sample
that might be responsible for an unusually low value of r? Is the measurement re-
liability for either variable (or both) low? To detect these possible problems or
explanations for low correlations, various strategies can be used. Examining scat-
terplots will help identify a lack of variability in the data, a lack of linearity in
the relationship, or the presence of outliers. Various descriptive statistics—stan-
dard deviations or variances and skewness statistics—can help identify a lack of
variability or dissimilar distribution shapes, respectively. Complete descriptions
of samples and sampling methods may help identify special characteristics of the
sample that might be responsible for unusually low (or high) values of r. And, fi-
nally, the reliability coefficients will reveal the possibility of an attenuated cor-
relation due to measurement error. It is also possible, of course, that none of the
six factors are responsible for the low value of r and that, instead, there just is no
relationship between the two variables. Furthermore, it is also possible that, al-
though one or more of the six characteristics is affecting the size of r, the prob-
lem is exacerbated by a small sample size; if the sample were larger, the extent
of the adverse effect would be reduced. Correlations calculated on data collected
from a small sample (say, 30 or fewer subjects) can be affected substantially by
any changes in scores, including the addition of an outlier or transformations of
the variables. The effects on correlations of dissimilar distribution shapes are
greater for small samples than large ones, as well.

For most of the factors described in this article, there are strategies available
to either reduce the effect of the phenomenon or estimate the “true” strength of
the relationship between the two variables. Data transformations can be useful
when dissimilar distribution shapes or a lack of linearity occur. For nonlinear re-
lationships, calculating a different relationship statistic—n—is also appropriate.
If the “culprit” is the presence of one or more outliers (which can result in a spu-
riously high or low correlation), reasons for the presence of the outliers should
be explored; if a reasonable explanation can be found, the researcher may be able
to justify removing the odd case(s) and then recalculating the correlation. When
restriction of range or measurement error exists, equations are available to esti-
mate what the correlations would be if the data were unrestricted or error-free.
(The equation used to estimate an unrestricted correlation requires information
and assumptions that are rarely tenable, however.)

There are several other interesting and important correlation-related topics that
are beyond the scope of this article but deserve brief mention. Knowing that cor-
relations are not sensitive to some factors or conditions is as important for stu-
dents and researchers as knowing about the factors that do affect the size of r.
One common source of confusion that belongs in this arena pertains to the fact
that correlations are “mean-free.” Using interrater reliability as an example can
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result in a powerful illustration of this fact. If two raters tend to agree on the rel-
ative placement of participants’ scores but differ dramatically in the levels of the
scores assigned, the correlation will be very high and positive but the two raters’
means will differ greatly. Similarly, linear transformations of scores (such as con-
verting raw scores to z scores) will not change the correlation between those data
and another variable. A second common misconception is that sample size (N)
has a direct relationship to the size of —a misconception that often results in er-
roneous interpretations of reliability and validity coefficients (Goodwin & Good-
win, 1999). Although small samples can result in unstable or inaccurate results
(Hinkle, Wiersma, & Jurs, 2003), the size of N itself has no direct bearing on the
size of the calculated value of r.

Another misconception students and researchers sometimes develop is that a
correlation can be interpreted as a proportion or a percentage; therefore, under-
standing the difference between r and 72 is a very useful way to prevent this mis-
conception. The limitations of statistical significance tests—particularly in terms of
the ease with which a correlation can be found to be statistically significant when
the sample size is very large—is another important aspect of the study of correla-
tion; distinguishing between statistical and practical significance can be crucial.
Finally, no discussion of correlation is complete without emphasizing that the cor-
relations found in correlational research studies cannot be interpreted as causal re-
lationships between two variables. However, as one of the reviewers of this article
pointed out, in an experimental study where random assignment is used, a correla-
tion (point biserial) can be computed. In that case, a causal inference can be drawn
for the relationship between the grouping variable and the outcome variable.

Given that correlations are so widely used in research in education and the be-
havioral sciences—as well as in measurement research aimed at estimating va-
lidity and reliability—it is critical that students have knowledge of the important
(and sometimes subtle) factors that can affect the size of . Knowledge of the role
these factors play is also very helpful when students or researchers find unex-
pectedly low correlations in their research. An unexpectedly low correlation
might be “explained” by one or more of the factors that affect the size of r; know-
ing this, a researcher would be encouraged to continue with his or her line of re-
search rather than abandon it under the mistaken impression that there is no re-
lationship between the variables of interest. It is also important to note that some
factors—such as outliers and sample characteristics—can result in spuriously
high correlations. In all cases, researchers should be advised to carefully consid-
er possible contributing factors when interpreting correlational results.
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