Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored. A JSS article is available at <doi:10.18637/jss.v111.i07>.
Reference manual: | mlr3spatiotempcv.html , mlr3spatiotempcv.pdf |
Vignettes: |
Getting Started (source, R code) Spatiotemporal Visualization (source, R code) |
Package source: | mlr3spatiotempcv_2.3.3.tar.gz |
Windows binaries: | r-devel: mlr3spatiotempcv_2.3.3.zip, r-release: mlr3spatiotempcv_2.3.3.zip, r-oldrel: mlr3spatiotempcv_2.3.3.zip |
macOS binaries: | r-release (arm64): mlr3spatiotempcv_2.3.3.tgz, r-oldrel (arm64): mlr3spatiotempcv_2.3.3.tgz, r-release (x86_64): mlr3spatiotempcv_2.3.3.tgz, r-oldrel (x86_64): mlr3spatiotempcv_2.3.3.tgz |
Old sources: | mlr3spatiotempcv archive |
Reverse suggests: | mlr3verse |
Please use the canonical form https://CRAN.R-project.org/package=mlr3spatiotempcv to link to this page.