## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load_data---------------------------------------------------------------- library(multiDEGGs) data("synthetic_metadata") data("synthetic_rnaseqData") data("synthetic_proteomicData") data("synthetic_OlinkData") ## ----------------------------------------------------------------------------- assayData_list <- list("RNAseq" = synthetic_rnaseqData, "Proteomics" = synthetic_proteomicData, "Olink" = synthetic_OlinkData) deggs_object <- get_diffNetworks(assayData = assayData_list, metadata = synthetic_metadata, category_variable = "response", regression_method = "lm", padj_method = "bonferroni", verbose = FALSE, show_progressBar = FALSE, cores = 2) ## ----eval=FALSE--------------------------------------------------------------- # View_diffNetworks(deggs_object) ## ----warning=FALSE------------------------------------------------------------ get_multiOmics_diffNetworks(deggs_object, sig_threshold = 0.05) ## ----------------------------------------------------------------------------- deggs_object_oneOmic <- get_diffNetworks(assayData = synthetic_rnaseqData, metadata = synthetic_metadata, category_variable = "response", regression_method = "lm", padj_method = "bonferroni", verbose = FALSE, show_progressBar = FALSE, cores = 2) get_sig_deggs(deggs_object_oneOmic, sig_threshold = 0.05) ## ----fig.width = 4.5, fig.height = 4, eval=FALSE------------------------------ # plot_regressions(deggs_object, # assayDataName = "RNAseq", # gene_A = "MTOR", # gene_B = "AKT2", # legend_position = "bottomright") ## ----------------------------------------------------------------------------- library(nestedcv) data("synthetic_metadata") data("synthetic_rnaseqData") # Regularized linear model with interaction pairs only fit.glmnet <- nestcv.glmnet( y = as.numeric(synthetic_metadata$response), x = t(synthetic_rnaseqData), modifyX = "multiDEGGs_filter", modifyX_options = list( keep_single_genes = FALSE, nfilter = 20 ), modifyX_useY = TRUE, n_outer_folds = 5, n_inner_folds = 6, verbose = FALSE ) summary(fit.glmnet) ## ----fig.width = 3, fig.height = 3-------------------------------------------- # Random forest model including both pairs and individual genes fit.rf <- nestcv.train( y = synthetic_metadata$response, x = t(synthetic_rnaseqData), method = "rf", modifyX = "multiDEGGs_filter", modifyX_options = list( keep_single_genes = TRUE, nfilter = 30 ), modifyX_useY = TRUE, n_outer_folds = 5, n_inner_folds = 6, verbose = FALSE ) fit.rf$summary # Plot ROC on outer folds plot(fit.rf$roc) ## ----------------------------------------------------------------------------- # Dynamic selection with t-test for single genes fit.dynamic <- nestcv.glmnet( y = as.numeric(synthetic_metadata$response), x = t(synthetic_rnaseqData), modifyX = "multiDEGGs_combined_filter", modifyX_options = list( filter_method = "ttest", nfilter = 20, dynamic_nfilter = TRUE, keep_single_genes = FALSE ), modifyX_useY = TRUE, n_outer_folds = 5, n_inner_folds = 6, verbose = FALSE ) ## ----------------------------------------------------------------------------- # Balanced selection with Wilcoxon-test importance fit.balanced <- nestcv.train( y = synthetic_metadata$response, x = t(synthetic_rnaseqData), method = "rf", modifyX = "multiDEGGs_combined_filter", modifyX_options = list( filter_method = "wilcoxon", nfilter = 40, dynamic_nfilter = FALSE ), modifyX_useY = TRUE, n_outer_folds = 5, n_inner_folds = 6, verbose = FALSE ) ## ----------------------------------------------------------------------------- sessionInfo() ## ----------------------------------------------------------------------------- citation("multiDEGGs")