A Simple Domain-Independent Approach to Generation

Gabor Angeli gangeli@berkeley.edu Percy Liang pliang@eecs.berkeley.edu

Dan Klein klein@eecs.berkeley.edu

Introduction

Task: Generate text from database records

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```


w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

Introduction

Task: Generate text from database records

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
gust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

Requires both content selection

Introduction

Task: Generate text from database records

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
gust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```


w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

Requires both content selection and surface realization

Complete Pipeline:

Do content selection and surface realization in a unified framework

Complete Pipeline:

Do content selection and surface realization in a unified framework

Content Selection: e.g. Barzilay and Lee (2004)

Surface Realization: e.g. Soricut and Marcu (2006), White, et al. (2007)

Complete Pipeline:

Do content selection and surface realization in a unified framework

Content Selection: e.g. Barzilay and Lee (2004)

Surface Realization: e.g. Soricut and Marcu (2006), White, et al. (2007)

Domain Independent Approach:

Applicable to multiple domains with minimal tweaking

Complete Pipeline:

Do content selection and surface realization in a unified framework

Content Selection: e.g. Barzilay and Lee (2004)

Surface Realization: e.g. Soricut and Marcu (2006), White, et al. (2007)

Domain Independent Approach:

Applicable to multiple domains with minimal tweaking

Contrast with domain-tuned systems,

e.g. Chen and Mooney (2008), Belz (2008)

Domain Independent

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```


w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

Domain Independent

w: Purple3 made a bad pass that was picked off by pink9.

Domain Independent

s: wind10m(time=6am,dir=SW,min=16,max=20,gust min=0,gust max=0) wind10m(time=9pm,dir=SSW,min=28,max=32,gust min=40,gust max=0) wind10m(time=12am,dir=-,min=24,max=28,gust min=36,gust max=0)

w: sw 16 - 20 backing ssw 28 - 32 gusts 40 by mid evening easing 24 - 28 gusts 36 late evening

Complete Pipeline:

Do content selection and surface realization in a unified framework

Content Selection: e.g. Barzilay and Lee (2004)

Surface Realization: e.g. Soricut and Marcu (2006), White, et al. (2007)

Domain Independent Approach:

Applicable to multiple domains with minimal tweaking

Contrast with domain-tuned systems,

e.g. Chen and Mooney (2008), Belz (2008)

Complete Pipeline:

Do content selection and surface realization in a unified framework

Content Selection: e.g. Barzilay and Lee (2004)

Surface Realization: e.g. Soricut and Marcu (2006), White, et al. (2007)

Domain Independent Approach:

Applicable to multiple domains with minimal tweaking

Contrast with domain-tuned systems,

e.g. Chen and Mooney (2008), Belz (2008)

Data Driven:

Learned from annotated training data

Train

temperature(time=5pa=6aa.min=48.mean=53.max=61)
windSpeed(time=5pa=6aa.min=3.mean=6.max=11.mode=0-10)
windSpeed(time=5pa=6aa.min=3.mean=6.max=11.mode=0-10)
windSpeed(time=5pa=6aa.min=0.mean=0.max=0)
windSpeed(time=5pa=6aa.min=0.mean=0.max=0)
windSpeed(time=5pa=6aa.min=2.mean=14.max=20)
prictipPeetratial(time=5pa=6aa.min=2.mean=14.max=20)
rainChance(time=5pa=6aa.min=2.mean=14.max=20)
rainChance(time=5pa=6aa.min=2.mean=14.max=20)

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

temperature(time=5pa=6aa.min=48.mean=53.max=61)
wind5peed(time=5pa=6aa.min=3.mea=11.mode=0-10)
wind5peed(time=5pa=6aa.min=3.mea=11.mode=0-10)
windDiffume=5pa=6aa.min=0.mean=0.max=0)
sust(time=5pa=6aa.min=0.mean=0.max=0)
sust(time=5pa=6aa.min=0.mean=0.max=0)
sus(cover(time=2aa=6aa.mode=75-100)
precipPotential(time=5pa=6aa.min=2.mean=14.max=20)
erainChare(time=5pa=6aa.min=2.mean=14.max=20)
erainChare(time=5pa=6aa.min=2.mean=14.max=20)

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph. iii temperature(time=5pa=6aa.min=48.mean=53.max=61)
ivindSpee(time=5pa=6aa.min=3.mean=6.max=11.mode=0-10)
vindSpee(time=5pa=6aa.min=3.mean=6.max=11.mode=0-10)
vindSpee(time=5pa=6aa.min=0.mean=0.max=0)
joint(time=5pa=6aa.min=0.mean=0.max=0)
joint(time=5pa=6aa.min=0.mean=1.max=0)
joint(time=5pa=6aa.min=2.mean=1.max=20)
presipPotential(time=5pa=6aa.min=2.mean=1.max=20)
presipPotential(time=5pa=6aa.min=2.mean=1.max=20)
presipPotential(time=5pa=6aa.min=2.mean=1.max=20)
presipPotential(time=5pa=6aa.min=2.mean=1.max=20)
presipPotential(time=5pa=6aa.min=2.mean=1.max=20)
presipPotential(time=5pa=6aa.min=2.mean=1.max=20)
presipPotential(time=5pa=6aa.min=2.mean=1.mean=20)
presipPotential(time=5pa=6aa.min=2.mean=2.mean=1.mean=2.mea

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

s: | temperature(time=Sps=Gas,min=48,mean=53,max=61) | windSpeed(time=Sps=Gas,min=3,mean=6,max=1,mode=0-10) | windSpced(time=Sps=Gas,mode=5p=Gas,mode=0-20) | sudt (time=Sps=Gas,min=0,mean=0,max=0) | skyCover(time=Sps=Gas,min=0,mean=0,max=0) | skyCover(time=Sps=Gas,min=2,max=1,max=20) | precipitoritial(time=Sps=Gas,min=2,max=1,max=20) | precipitoritial(time=Sps=Gas,min=2,max=1,max=20) | precipitoritial(time=Sps=Gas,min=2,max=1,max=20) | precipitoritial(time=Sps=Gas,min=2,max=0) | precipitoritial(time=Sps=Gas,min=0,max=0) | precipitoritial(time=Sps=Gas,min=0,max=0,max=0) | precipitoritial(time=Sps=Gas,min=0,max=0,max=0) | precipitoritial(time=Sps=Gas,min=0,max=0,max=0,max=0,max=0,max=0,max=0,max=0,max=0,max=0,max=0) | precipitoritial(time=Sps=Gas,min=0,max

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

. . .

Train

Test

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

Train

Test

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

Text: Generated from a sequence of templates (stay tuned)

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

Text: Generated from a sequence of templates (stay tuned)

World state: Set of database records

```
temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
gust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

Text: Generated from a sequence of templates (stay tuned)

World state: Set of database records

 $\mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf$

 $\mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf$

 $\mathbf{r}_1 = \mathbf{m} \quad \text{windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)}$

Each record is of a given record type

 $\mathbf{r}_1 = \mathbf{m} \text{ windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)}$

Each **record** is of a given **record type**Each **record** has a set of **fields**

 $\mathbf{r}_1 = \mathbf{r}_1 = \mathbf$

Each record is of a given record type

Each record has a set of fields

Each field has an associated value

```
\mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf
```

Each record is of a given record type

Each record has a set of fields

Each field has an associated value

Numeric: min=3, mean=6, max=11

Symbolic: time=5pm-6am, mode=0-10

 $\mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf$

Each record is of a given record type

Each record has a set of fields

Each field has an associated value

Numeric: min=3, mean=6, max=11

Symbolic: time=5pm-6am, mode=0-10

Note: No a priori correspondence between symbolic values and words

 $\mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf$

Each record is of a given record type

Each record has a set of fields

Each field has an associated value

Numeric: min=3, mean=6, max=11

Symbolic: time=5pm-6am, mode=0-10

Note: No a priori correspondence between symbolic values and words Language independent

Text is generated from a sequence of **templates**

Text is generated from a sequence of **templates**

temperature(time=5pm-6am,min=48,mean=53,max=61)

Text is generated from a sequence of templates

Text is generated from a sequence of templates

Templates extracted automatically from the training data (stay tuned)

s: skyCover(time=5pm-6am,mode=50-75)
temperature(time=5pm-6am,min=44,mean=49,max=60)
...

```
s: skyCover(time=5pm-6am,mode=50-75)
temperature(time=5pm-6am,min=44,mean=49,max=60)
...
```

Record
Field set
Template


```
s: skyCover(time=5pm-6am,mode=50-75)
temperature(time=5pm-6am,min=44,mean=49,max=60)
...
```

Record
Field set
Template

s: skyCover(time=5pm-6am,mode=50-75)
temperature(time=5pm-6am,min=44,mean=49,max=60)
...

Record $r_1 = skyCover_1$ Field set Template

s: skyCover(time=5pm-6am,mode=50-75) temperature(time=5pm-6am,min=44,mean=49,max=60) ...

Record $r_1 = skyCover_1$ Field set

Template

s: skyCover(time=5pm-6am,mode=50-75)
temperature(time=5pm-6am,min=44,mean=49,max=60)
...

Record $r_1 = \operatorname{skyCover}_1$ Field set $F_1 = \{ \operatorname{mode} \}$ Template

s: skyCover(time=5pm-6am,mode=50-75) temperature(time=5pm-6am,min=44,mean=49,max=60) ...

Record $r_1 = \operatorname{skyCover}_1$ Field set $F_1 = \{\operatorname{mode}\}$ Template

s: skyCover(time=5pm-6am,mode=50-75)
temperature(time=5pm-6am,min=44,mean=49,max=60)
...

Record $r_1 = \operatorname{skyCover}_1$ Field set $F_1 = \{\operatorname{mode}\}$ Template $W_1 = \langle \operatorname{mostly\ cloudy\ ,} \rangle$

s: skyCover(time=5pm-6am,mode=50-75)
temperature(time=5pm-6am,min=44,mean=49,max=60)
...

Record $r_1 = \operatorname{skyCover}_1$ Field set $F_1 = \{\operatorname{mode}\}$ Template $W_1 = \langle \operatorname{mostly\ cloudy\ ,} \rangle$

s: skyCover(time=5pm-6am,mode=50-75) temperature(time=5pm-6am,min=44,mean=49,max=60) ... $r_1 = skyCover_1$ $r_2 = temperature_1$

 $F_2 = \{\mathsf{time}, \mathsf{min}\}$

Field set $F_1 = \{ mode \}$

Record

Template $W_1 = \langle mostly \ cloudy \ , \rangle$

skyCover(time=5pm-6am, mode=50-75)

s:

s; ..., $T_1 = \langle mostly \ cloudy \ , \rangle, r_2 = temperature, F_2 = \{time, min\}$

temperature(time=5pm-6am,min=44,mean=49,max=60) $r_1 = skyCover_1$ Record temperature₁ $F_1 = \{\mathsf{mode}\}$ $F_2 = \{\mathsf{time}, \mathsf{min}\}$ Field set $W_1 = \langle mostly \ cloudy \ , \rangle$ **Template** $\langle with \ a \ low \ around \ [min \ .
angle$

0.01

0.05

 $\langle with \ a \ high \ around \ [max] \ . \rangle$

 $\langle with \ a \ high \ near \ [max] \ . \rangle$

mostly cloudy, with a low around 44.

mostly cloudy, with a low around 44.

(R1) List of last two record types

 $\llbracket r_2.t = \text{temperature and } (r_1.t, r_0.t) = (\text{skyCover}, \text{START})
bracket$

- (R1) List of last two record types
 - $\llbracket r_2.t = \text{temperature and } (r_1.t, r_0.t) = (\text{skyCover}, \text{START})
 bracket$
- (R2) Set of previous record types
 - $[r_2.t = temperature and {r_1.t} = {skyCover}]$

Features: Template

Record $r_1 = \operatorname{skyCover}_1$ $r_2 = \operatorname{temperature}_1$ Field set $F_1 = \{\operatorname{mode}\}$ $F_2 = \{\operatorname{time}, \operatorname{min}\}$ Template $W_1 = \langle \operatorname{mostly} \operatorname{cloudy} , \rangle$ $W_2 = \langle \operatorname{with} \operatorname{a} \operatorname{low} \operatorname{around} [\operatorname{min}] . \rangle$

Features: Template

```
Record r_1 = \operatorname{skyCover}_1 r_2 = \operatorname{temperature}_1 Field set F_1 = \{\operatorname{mode}\} F_2 = \{\operatorname{time}, \operatorname{min}\} Template W_1 = \langle \operatorname{mostly} \operatorname{cloudy} , \rangle W_2 = \langle \operatorname{with} \operatorname{a} \operatorname{low} \operatorname{around} [\operatorname{min}] . \rangle
```

Templates extracted from induced alignments of Liang, et. al (2009)

Templates extracted from induced alignments of Liang, et. al (2009)

Records: skyCover₁

Fields: mode=50-75

Text: mostly cloudy

 $temperature_1\\$

with a low around

min=44 *45*

Templates extracted from induced alignments of Liang, et. al (2009)

Ideal: Extract alignments directly from the alignment

Templates extracted from induced alignments of Liang, et. al (2009)

Records: $skyCover_1$ temperature₁ Fields: mode=50-75 time=17-30 min=44 mean=49 Text: $mostly\ cloudy\ ,\ with\ a\ low\ around\ 45$.

Ideal: Extract alignments directly from the alignment

Challenge: Alignments are often noisy

Templates extracted from induced alignments of Liang, et. al (2009)

Records: $skyCover_1$ temperature₁

Fields: mode=50-75 time=17-30 min=44 time=49 time=17-30 time=17

Coarse < [mode] > < with a [time] [min] [mean] > Base < mostly cloudy , > < with a low around [min] . >

Ideal: Extract alignments directly from the alignment

Challenge: Alignments are often noisy

Approach: Extract templates of different granularities:

Templates extracted from induced alignments of Liang, et. al (2009)

Records: $skyCover_1$ temperature₁

Fields: mode=50-75 time=17-30 min=44 mean=49 low around 45 .

Coarse< [mode] > < with a [time] [min] [mean] >Base < mostly cloudy, > < with a low around [min].

Ideal: Extract alignments directly from the alignment

Challenge: Alignments are often noisy

Approach: Extract templates of different granularities:

COARSE: taken verbatim from the [noisy] alignment

Template Extraction

Templates extracted from induced alignments of Liang, et. al (2009)

Records: $skyCover_1$ temperature₁

Fields: mode=50-75 time=17-30 time=44 time=49 time=17-30 time=44 time=49 time=49

Ideal: Extract alignments directly from the alignment

Challenge: Alignments are often noisy

Approach: Extract templates of different granularities:

COARSE: taken verbatim from the [noisy] alignment

BASE: created by abstracting field matching regexp (e.g. [0-9]+)

Note: Features defined over both template granularities

(R1) Template
$$\| \operatorname{Base}(T_2) = \langle \textit{with a low around } [\min] \rangle \|$$

Note: Features defined over both template granularities

 $\langle \textit{with a low around} \; [\min] \; . \rangle \quad 0.83$ $..., T_1 = \langle \textit{mostly cloudy }, \rangle, r_2 = \text{temperature}, F_2 = \{ \text{time,min} \} \quad \langle \textit{with a high around} \; [\max] \; . \rangle \quad 0.01$ $\langle \textit{with a high near} \; [\max] \; . \rangle \quad 0.05$

Note: Features defined over both template granularities

 $\langle \textit{with a low around} \; [\min] \; . \rangle \quad 0.83$ $..., T_1 = \langle \textit{mostly cloudy} \; , \rangle, r_2 = \text{temperature}, F_2 = \{ \text{time,min} \} \quad \langle \textit{with a high around} \; [\max] \; . \rangle \quad 0.01$ $\langle \textit{with a high near} \; [\max] \; . \rangle \quad 0.05$

Note: Features defined over both template granularities

```
\langle \textit{with a low around} \; [\min] \; . \rangle \quad 0.83 \langle \textit{with a high around} \; [\max] \; . \rangle \quad 0.01 \langle \textit{with a high near} \; [\max] \; . \rangle \quad 0.05
```

Generation treated as a sequence of local decisions Similar in spirit to Ratnaparkhi (1996)

Generation treated as a sequence of local decisions Similar in spirit to Ratnaparkhi (1996)

Record	d_0	d_3	d_6
Field set	d_1	d_4	
Template	d_2	d_5	

Generation treated as a sequence of local decisions Similar in spirit to Ratnaparkhi (1996)

Record	d_0	d_3	d_6
Field set	d_1	d_4	
Template	d_2	d_5	

Log-linear model: Each decision trained using a log-linear model

$$p(d_j \mid d_{j-1}, d_{j-2}, \dots, \mathbf{s}; \theta) \propto \exp\{\phi_j(d_j, d_{j-1}, d_{j-2}, \dots, \mathbf{s})^\top \theta\}$$

Generation treated as a sequence of local decisions Similar in spirit to Ratnaparkhi (1996)

Record	d_0	d_3	d_6
Field set	$oxed{d_1}$	d_4	
Template	d_2	d_5	

Log-linear model: Each decision trained using a log-linear model

$$p(d_j \mid d_{j-1}, d_{j-2}, \dots, \mathbf{s}; \theta) \propto \exp\{\phi_j(d_j, d_{j-1}, d_{j-2}, \dots, \mathbf{s})^\top \theta\}$$

Log-likelihood maximized using L-BFGS

Generation treated as a sequence of local decisions Similar in spirit to Ratnaparkhi (1996)

Record	d_0	d_3	d_6
Field set	d_1	$oxed{d_4}$	
Template	d_2	d_5	

Log-linear model: Each decision trained using a log-linear model

$$p(d_j \mid d_{j-1}, d_{j-2}, \dots, \mathbf{s}; \theta) \propto \exp\{\phi_j(d_j, d_{j-1}, d_{j-2}, \dots, \mathbf{s})^\top \theta\}$$

Log-likelihood maximized using L-BFGS

No dynamic program since decisions have long-range dependencies

Generation treated as a sequence of local decisions Similar in spirit to Ratnaparkhi (1996)

Record	d_0	d_3	d_6
Field set	$\boxed{d_1}$	d_4	
Template	d_2	d_5	

Log-linear model: Each decision trained using a log-linear model

$$p(d_j \mid d_{j-1}, d_{j-2}, \dots, \mathbf{s}; \theta) \propto \exp\{\phi_j(d_j, d_{j-1}, d_{j-2}, \dots, \mathbf{s})^\top \theta\}$$

Log-likelihood maximized using L-BFGS

No dynamic program since decisions have long-range dependencies Training problem is fully supervised

Generation treated as a sequence of local decisions Similar in spirit to Ratnaparkhi (1996)

Record	d_0	d_3	d_6
Field set	d_1	$oxed{d_4}$	
Template	d_2	d_5	

Log-linear model: Each decision trained using a log-linear model

$$p(d_j \mid d_{j-1}, d_{j-2}, \dots, \mathbf{s}; \theta) \propto \exp\{\phi_j(d_j, d_{j-1}, d_{j-2}, \dots, \mathbf{s})^\top \theta\}$$

Log-likelihood maximized using L-BFGS

No dynamic program since decisions have long-range dependencies Training problem is fully supervised

Generating a new text is done using greedy search

ROBOCUP: RoboCup sportscasting data

ROBOCUP: RoboCup sportscasting data

Content Selection: Chose one record

```
s: kick(arg1=purple3)

badPass(arg1=purple3, arg2=pink9)

turnover(arg1=purple3, arg2=pink9)
```

ROBOCUP: RoboCup sportscasting data

Content Selection: Chose one record

```
s: kick(arg1=purple3)

badPass(arg1=purple3, arg2=pink9)

turnover(arg1=purple3, arg2=pink9)
```

Surface Realization:

w: Purple3 made a bad pass that was picked off by pink9.

ROBOCUP: RoboCup sportscasting data

SUMTIME: Weather forecasts for oil rigs

ROBOCUP: RoboCup sportscasting data

SUMTIME: Weather forecasts for oil rigs

Content Selection: No content selection

```
s: wind10m(time=6am,dir=SW,min=16,max=20,gust min=0,gust max=0)
wind10m(time=9pm,dir=SSW,min=28,max=32,gust min=40,gust max=0)
wind10m(time=12am,dir=-,min=24,max=28,gust min=36,gust max=0)
```

ROBOCUP: RoboCup sportscasting data

SUMTIME: Weather forecasts for oil rigs

Content Selection: No content selection

```
s: wind10m(time=6am,dir=SW,min=16,max=20,gust min=0,gust max=0)
wind10m(time=9pm,dir=SSW,min=28,max=32,gust min=40,gust max=0)
wind10m(time=12am,dir=-,min=24,max=28,gust min=36,gust max=0)
```

Surface Realization:

w: sw 16 - 20 backing ssw 28 - 32 gusts 40 by mid evening easing 24 - 28 gusts 36 late evening

ROBOCUP: RoboCup sportscasting data

SUMTIME: Weather forecasts for oil rigs

WEATHERGOV: Weather forecasts from weather.gov

ROBOCUP: RoboCup sportscasting data

SUMTIME: Weather forecasts for oil rigs

WEATHERGOV: Weather forecasts from weather.gov

Content Selection: Complex; chose a few out of around 35 records

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

ROBOCUP: RoboCup sportscasting data

SUMTIME: Weather forecasts for oil rigs

WEATHERGOV: Weather forecasts from weather.gov

Content Selection: Complex; chose a few out of around 35 records

```
s: temperature(time=5pm-6am,min=48,mean=53,max=61)
windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)
sust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)
skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)
rainChance(time=5pm-6am,mode=someChance)
...
```

Surface Realization:

w: A 20 percent chance of showers after midnight. Increasing clouds, with a low around 48. southwest wind between 5 and 10 mph.

Automatic metrics:

Content selection: F₁ score (record precision and recall)

Surface realization: BLEU score (system output versus human annotated)

Automatic metrics:

Content selection: F₁ score (record precision and recall)

Surface realization: BLEU score (system output versus human annotated)

Objective metric, but may not agree with human judgement

Automatic metrics:

Content selection: F₁ score (record precision and recall)

Surface realization: BLEU score (system output versus human annotated)

Objective metric, but may not agree with human judgement

Human evaluation: Mechanical turk

Automatic metrics:

Content selection: F₁ score (record precision and recall)

Surface realization: BLEU score (system output versus human annotated)

Objective metric, but may not agree with human judgement

Human evaluation: Mechanical turk

100 random shuffled scenarios shown to 10 Turkers

Automatic metrics:

Content selection: F₁ score (record precision and recall)

Surface realization: BLEU score (system output versus human annotated)

Objective metric, but may not agree with human judgement

Human evaluation: Mechanical turk

100 random shuffled scenarios shown to 10 Turkers

Rank english fluency and semantic correctness on 1-5 scale

Score	English Fluency	Semantic Correctness
5	Flawless	Perfect
4	Good	Near Perfect
3	Non-native	Minor Errors
2	Disfluent	Major Errors
1	Gibberish	Completely Wrong

```
s: temperature(time=5pm-6am,min=53,mean=57,max=67)
windSpeed(time=5pm-6am,min=16,mean=20,max=21,mode=10-20)
windDir(time=5pm-6am,mode=S)
sust(time=5pm-6am,min=23,mean=27,max=29)
skyCover(time=5pm-6am,mode=75-100)
precipPotential(time=5pm-6am,min=19,mean=75,max=93)
rainChance(time=5pm-9pm,mode=definitely)
rainChance(time=2am-6am,mode=chance)
thunderChance(time=5pm-6am,mode=definitely)
...
```

w: Rain. Some of the storms could be severe and 53. South wind between 16 and 21 mph chance of precipitation is 95%.

English Fluency: 3.45 Semantic Correctness: 4.00

BASELINE

Subset of features

R1 List of last record type

R5 Stop under language model

F1 Field set

T1 Template

T3 First word of template under LM

BASELINE

Subset of features

R1 List of last record type

R5 Stop under language model

F1 Field set

T1 Template

T3 First word of template under LM

Bigram record model; most common field set; language model

BASELINE

Subset of features

R1 List of last record type

R5 Stop under language model

F1 Field set

T1 Template

T3 First word of template under LM

Bigram record model; most common field set; language model

OURSYSTEM: All features

BASELINE

Subset of features

R1 List of last record type

R5 Stop under language model

F1 Field set

T1 Template

T3 First word of template under LM

Bigram record model; most common field set; language model

OURSYSTEM: All features

OurSystem-Custom: 8 domain-dependent features for SumTime

BASELINE

Subset of features

R1 List of last record type

R5 Stop under language model

F1 Field set

T1 Template

T3 First word of template under LM

Bigram record model; most common field set; language model

OURSYSTEM: All features

OurSystem-Custom: 8 domain-dependent features for SumTime

WASPER-GEN: ROBOCUP state of the art by Chen and Mooney (2008)

BASELINE

Subset of features

R1 List of last record type

R5 Stop under language model

F1 Field set

T1 Template

T3 First word of template under LM

Bigram record model; most common field set; language model

OURSYSTEM: All features

OurSystem-Custom: 8 domain-dependent features for SumTime

WASPER-GEN: ROBOCUP state of the art by Chen and Mooney (2008)

SUMTIME-Hybrid: SUMTIME hand crafted system of Reiter, et al. (2005)

BASELINE

Subset of features

R1 List of last record type

R5 Stop under language model

F1 Field set

T1 Template

T3 First word of template under LM

Bigram record model; most common field set; language model

OURSYSTEM: All features

OurSystem-Custom: 8 domain-dependent features for SumTime

WASPER-GEN: ROBOCUP state of the art by Chen and Mooney (2008)

SUMTIME-Hybrid: SUMTIME hand crafted system of Reiter, et al. (2005)

pCRU-greedy: SUMTIME state of the art by Belz (2008)

Evaluation: ROBOCUP Results

Evaluation: ROBOCUP Results

OURSYSTEM

Evaluation: ROBOCUP Results

Evaluation: SUMTIME Results

- SUMTIME-Hybrid
- OURSYSTEM

Evaluation: SumTime Results

- SumTime-Hybrid
- OURSYSTEM
- pCRU-greedy
- OURSYSTEM-CUSTOM

Evaluation: SumTime Results

- OURSYSTEM 1
- pCRU-greedy
- OURSYSTEM-CUSTOM

Complete pipeline

Same framework for content selection and surface realization

Complete pipeline

Same framework for content selection and surface realization

Domain independent Approach

Minimal tweaking between domains

Complete pipeline

Same framework for content selection and surface realization

Domain independent Approach

Minimal tweaking between domains

Data driven

Weighted tuned to human generated output

Complete pipeline

Same framework for content selection and surface realization

Domain independent Approach

Minimal tweaking between domains

Data driven

Weighted tuned to human generated output

Comparable results

Results comparable to state of the art

Thank You!

