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Abstract

This paper explores unsupervised learning of parsing models along two directions.
First, which models are identifiable from infinite data? We use a general tech-
nique for numerically checking identifiability based on the rank of a Jacobian ma-
trix, and apply it to several standard constituency and dependency parsing models.
Second, for identifiable models, how do we estimate the parameters efficiently?
EM suffers from local optima, while recent work using spectral methods [1] can-
not be directly applied since the topology of the parse tree varies across sentences.
We develop a strategy, unmixing, which deals with this additional complexity for
restricted classes of parsing models.

1 Introduction

Generative parsing models, which define joint distributions over sentences and their parse trees, are
one of the core techniques in computational linguistics. We are interested in the unsupervised learn-
ing of these models [2—6], where the goal is to estimate the model parameters given only examples
of sentences. Unsupervised learning can fail for a number of reasons [7]: model misspecification,
non-identifiability, estimation error, and computation error. In this paper, we delve into two of these
issues: identifiability and computation. In doing so, we confront a central challenge of parsing
models—that the topology of the parse tree is unobserved and varies across sentences. This is in
contrast to standard phylogenetic models [8] and other latent tree models for which there is a single
fixed global tree across all examples [9].

A model is identifiable if there is enough information in the data to pinpoint the parameters (up
to some trivial equivalence class); establishing the identifiability of a model is often a highly non-
trivial task. A classic result of Kruskal [10] has been employed to prove the identifiability of a wide
class of latent variable models, including hidden Markov models and certain restricted mixtures of
latent tree models [11-13]. However, these techniques cannot be directly applied to parsing models
since the tree topology varies over an exponential set of possible topologies. Instead, we turn to
techniques from algebraic geometry [14—17]; we show that a simple numerical procedure can be
used to check identifiability for a wide class of models in NLP. Using this tool, we discover that
probabilistic context-free grammars (PCFGs) are non-identifiable, but that simpler PCFG variants
and dependency models are identifiable.

The most common way to estimate unsupervised parsing models is by using local techniques such
as EM [18] or MCMC sampling [19], but these methods can suffer from local optima and slow
mixing. Meanwhile, recent work [1,20-23] has shown that spectral methods can be used to estimate
mixture models and HMMs with provable guarantees. These techniques express low-order moments
of the observable distribution as a product of matrix parameters and use eigenvalue decomposition
to recover these matrices. However, these methods are not directly applicable to parsing models
because the tree topology again varies non-trivially. To address this, we propose a new technique,
unmixing. The main idea is to express moments of the observable distribution as a mixture over
the possible topologies. For restricted parsing models, the moments for a fixed tree structure can
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(a) Constituency (PCFG-IE) (b) Dependency (DEP-IE)

Figure 1: The two constituency trees and seven dependency trees over L = 3 words, x1, z2, 3. (a)
A constituency tree consists of a hierarchical grouping of the words with a latent state z, for each
node v. (b) A dependency tree consists of a collection of directed edges between the words. In both
cases, we have labeled each edge from ¢ to j with the parameters used to generate the state of node
J given 1.

be “unmixed”, thereby reducing the problem to one with a fixed topology, which can be tackled
using standard techniques [1]. Importantly, our unmixing technique does not require the training
sentences be annotated with the tree topologies a priori, in contrast to recent extensions of [21] to
learning PCFGs [24] and dependency trees [25,26], which work on a fixed topology.

2 Notation

For a positive integer n, define [n] def {1,...,n} and (n) = {ey,...,e,}, where e; is the vector
which is 1 in component i and 0 elsewhere. For integers a, b € [n], let a®,,b = (a—1)n+b € [n?] be
the integer encoding of the pair (a, b). For a pair of matrices, A, B € R™*", define the columnwise

tensor product A ®° B € R™ X" to be such that (A @° B)(i,@mis)j = AijBiy;. For a matrix
A € R™*" et AT denote the Moore-Penrose pseudoinverse.

3 Parsing models

A sentence is a sequence of L words, x = (z1,...,21), where each word x; € (d) is one of
d possible word types. A (generative) parsing model defines a joint distribution Py(x, z) over a
sentence x and its parse tree z (to be made precise later), where 6 are the model parameters (a
collection of multinomials). Each parse tree z has a topology Topology(z) € Topologies, which
is both unobserved and varying across sentences. The learning problem is to recover 8 given only
samples of x.

Two important classes of models of natural language syntax are constituency models, which rep-
resent a hierarchical grouping and labeling of the phrases of a sentence (e.g., Figure 1(a)), and
dependency models, which represent pairwise relationships between the words of a sentence (e.g.,
Figure 1(b)).



3.1 Constituency models

A constituency tree z = (V, s) consists of a set of nodes V' and a collection of hidden states s =
{sv}vev. Each state s, € (k) represents one of k possible syntactic categories. Each node v has
the form [i : j] for 0 < ¢ < j < L corresponding to the phrase between positions ¢ and j of the
sentence. These nodes form a binary tree as follows: the root node is [0 : L] € V, and for each node
[i : j] € V with j — i > 1, there exists a unique m with ¢ < m < j defining the two children nodes
[i : m] € Vand [m : j] € V. Let Topology(z) be an integer encoding of V.

PCFG. Perhaps the most well-known constituency parsing model is the probabilistic context-free
grammar (PCFG). The parameters of a PCFG are § = (7, B, O), where m € R” specifies the initial

state distribution, B € RF* >k specifies the binary production distributions, and O € R4** specifies
the emission distributions.

A PCFG corresponds to the following generative process (see Figure 1(a) for an example): choose a
topology Topology(z) uniformly at random; generate the state of the root node using 7; recursively
generate pairs of children states given their parents using B; and finally generate words z; given
their parents using O. This generative process defines a joint probability over a sentence x and a
parse tree z:

L
PQ(X, z) = ‘ Topologies ‘_IWTS[O:L] H (S[i:m] Rk S[m:jpTBS[Z-:j] H w;rOS[i,lti], (1)
[izm], [m:j]eV/ i=1

‘We will also consider two variants of the PCFG with additional restrictions:

PCFG-1I. The left and right children states are generated independently—that is, we have the fol-
lowing factorization: B = Ty ®¢ T for some T}, T € RFXF,

PCFG-IE. The left and the right productions are independent and equal: B =T ®° T.

3.2 Dependency tree models

In contrast to constituency trees, which posit internal nodes with latent states, dependency trees
connect the words directly. A dependency tree z is a set of directed edges (i, 7), where i,j € [L]
are distinct positions in the sentence. Let Root(z) denote the position of the root node of z. We
consider only projective dependency trees [27]: z is projective if for every path from ¢ to j to £ in
z, we have that j and k are on the same side of i (that is, 7 — ¢ and k£ — ¢ have the same sign). Let
Topology(z) be an integer encoding of z.

DEP-I. We consider the simple dependency model of [4]. The parameters of this model are § =
(m, A, A\,), where € R is the initial word distribution and A4, A\, € R?*? are the left and
right argument distributions. The generative process is as follows: choose a topology Topology(z)
uniformly at random, generate the root word using m, and recursively generate argument words to
the left to the right given the parent word using A - and A-_, respectively. The corresponding joint
probability distribution is as follows:

71-TxRoot(z) H m]‘TAdir(i,j)xia 2
(i,5)€z

Po(x, z) = | Topologies | ~*
where dir(i,j) = if j < iand \ if j > i.
We also consider the following two variants:
DEP-IE. The left and right argument distributions are equal: A = A = A\

DEP-IES. A=A = A\ and 7 is the stationary distribution of A (thatis, 7 = Am).

Usually a PCFG induces a topology via a state-dependent probability of choosing a binary production
versus an emission. Our model is a restriction which corresponds to a state-independent probability.



4 Identifiability

Our goal is to estimate model parameters 6y € O given only access to sentences x ~ [Py, . Specifi-
cally, suppose we have an observation function ¢(x) € R™, which is the only lens through which an
algorithm can view the data. We ask a basic question: in the limit of infinite data, is it information-

theoretically possible to identify 6y from the observed moments 1(6y) 2 Eg, [0(x)]?

To be more precise, define the equivalence class of 6y to be the set of parameters # that yield the
same observed moments:

Se(bo) = {0 € © : pu(0) = p(bo)}- 3)
It is impossible for an algorithm to distinguish among the elements of Sg (6p). Therefore, one might
want to ensure that |Sg (6y)| = 1 for all §y € ©. However, this requirement is too strong for two rea-
sons. First, models often have natural symmetries—e.g., the k states of any PCFG can be permuted
without changing (6), so |Se(fo)| > k!. Second, |Se ()| = oo for some pathological §,’s—e.g.,
PCFGs where all states have the same emission distribution O are indistinguishable regardless of
the production distributions B. The following definition of identifiability accommodates these two
exceptional cases:

Definition 1 (Identifiability). A model family with parameter space © is (globally) identifiable from
¢ if there exists a measure zero set £ such that |So(00)| is finite for every 0y € O\E. It is locally
identifiable from ¢ if there exists a measure zero set £ such that, for every 6y € ©O\E, there exists an
open neighborhood N (0y) around 0y such that Se (6p) N N (6p) = {60 }.

Example of non-identifiability. Consider the DEP-IE model with L = 2 with the full observation
function ¢(x) = 7 ® xo. The corresponding observed moments are p(f) = 0.5A diag(w) +
0.5diag(m)AT. Note that A diag(n) is an arbitrary d x d matrix whose entries sum to 1, which
has d? — 1 degrees of freedom, whereas y(#) is a symmetric matrix whose entries sum to 1, which

has (“t1) — 1 degrees of freedom. Therefore, So(#) has dimension ) and therefore the model is
2 g 2

non-identifiable.

Parameter counting. It is important to compute the degrees of freedom correctly—simple param-
eter counting is insufficient. For example, consider the PCFG-IE model with L = 2. The observed
moments with respect to ¢(x) = 21 ® 2 is a d X d matrix, which places d? constraints on the
k2 + (d — 1)k parameters. When d > 2k, there are more constraints than parameters, but the PCFG-
IE model with L = 2 is actually non-identifiable (as we will see later). The issue here is that the
number of constraints does not reveal the fact that some of these constraints are redundant.

4.1 Observation functions

An observation function ¢(x) and its associated observed moments 1(0g) = Eg,[¢(x)] reveals
aspects of the distribution Py, (x). For example, ¢(x) = x; would only reveal the marginal distribu-
tion of the first word, whereas ¢(x) = 21 ® - - - ® x 1, reveals the entire distribution of x. There is a
tradeoff: Higher-order moments provide more information, but are harder to estimate reliably given
finite data, and are also computationally more expensive. In this paper, we consider the following
intermediate moments:

$12(x) L 11 @ 2y hon(x) & (zi @ 0,5 € [L])
$123(x) o @ ® s Bresn (X) def (i ®@x; @y 2 1,4,k € [L])
$1235(%) o (21 ® 22)(n " 23) s (X) e ((xi @ 2;)(n =) 4,5,k € [L])

def
da(X) = 21 Q- @

Above, nn € R? denotes a unit vector in R? (e.g., ;) which picks out a linear combination of matrix
slices from a third-order d x d x d tensor.

4.2 Automatically checking identifiability

One immediate goal is to determine which models in Section 3 are identifiable from which of the
observed moments (Section 4.1). A powerful analytic tool that has been succesfully applied in



previous work is Kruskal’s theorem [10, 11], but (i) it is does not immediately apply to models with
random topologies, and (ii) only gives sufficient conditions for identifiability, and cannot be used to
determine non-identifiability. Furthermore, since it is common practice to explore many different
models for a given problem in rapid succession, we would like to check identifiability quickly and
reliably. In this section, we develop an automatic procedure to do this.

To establish identifiability, let us examine the algebraic structure of Sg(6y) for 8y € O, where we
assume that the parameter space © is an open subset of [0, 1]™. Recall that Sg(6y) is defined by the
moment constraints p(6) = p(6p). We can write these constraints as hg, (#) = 0, where

hoo(8) = 1(6) — u(6o)

is a vector of m polynomials in 6.

Let us now compute the number of degrees of freedom of hg, around ¢y. The key quantity is
J(0) € R™*™ the Jacobian of hy, at 6 (note that the Jacobian of hg, does not depend on 6p; it
is precisely the Jacobian of p). This Jacobian criterion is well-established in algebraic geometry,
and has been adopted in the statistical literature for testing model identifiability and other related
properties [14—17].

Intuitively, each row of J(fy) corresponds to a direction of a constraint violation, and thus the row
space of J(6y) corresponds to all directions that would take us outside the equivalence class Sg (o).
If J(0y) has less than rank n, then there is a direction orthogonal to all the rows along which we
can move and still satisfy all the constraints—in other words, |So ()| is infinite, and therefore the
model is non-identifiable. This intuition leads to the following algorithm:

CHECKIDENTIFIABILITY:
1. Choose a point § € © uniformly at random.

2. Compute the Jacobian matrix J(6).

3. Return “yes” if the rank of J(#) = n and “no” otherwise.

The following theorem asserts the correctness of CHECKIDENTIFIABILITY. It is largely based on
techniques in [16], although we have not seen it explicitly stated in this form.

Theorem 1 (Correctness of CHECKIDENTIFIABILITY). Assume the parameter space © is a non-
empty open connected subset of [0,1]"; and the observed moments j1: R™ — R™, with respect to
observation function ¢, is a polynomial map. Then with probability 1, CHECKIDENTIFIABILITY
returns “yes” iff the model family is locally identifiable from ¢. Moreover, if it returns “yes”, then
there exists £ C © of measure zero such that the model family with parameter space © \ £ is
identifiable from ¢.

The proof of Theorem 1 is given in Appendix A.

4.3 Implementation of CHECKIDENTIFIABILITY

Computing the Jacobian. The rows of .J correspond to 9Eg[¢;(x)]/06 and can be computed ef-
ficiently by adapting dynamic programs used in the E-step of an EM algorithm for parsing models.
There are two main differences: (i) we must sum over possible values of x in addition to z, and (ii)
we are not computing moments, but rather gradients thereof. Specifically, we adapt the CKY algo-
rithm for constituency models and the algorithm of [27] for dependency models. See Appendix C.1
for more details.

Numerical issues. Because we implemented CHECKIDENTIFIABILITY on a finite precision ma-
chine, the results are subject to numerical precision errors. However, we verified that our numerical
results are consistent with various analytically-derived identifiability results (e.g., from [11]).

While we initially defined 6 to be a tuple of conditional probability matrices, we will now use its non-
redundant vectorized form 6 € R".



Model \ Observation function [ @15 | D | P123¢; | @123 | Pusey | Prnx
PCFG No, even from ¢, for L € {3,4,5}
PCFG-1/PCFG-IE No | Yesiff L > 4 | Yesiff L > 3
DEP-1 No Yesiff L > 3
DEP-IE / DEP-IES Yesiff L > 3

Figure 2: Local identifiability of parsing models. These findings are given by
CHECKIDENTIFIABILITY have the semantics from Theorem 1. These were checked for d €
{2,3,...,8}, k€ {2,...,d} (applies only for PCFG models), L € {2,3,...,9}.

4.4 Identifiability of constituency and dependency tree models

We checked the identifiability status of various constituency and dependency tree models using our
implementation of CHECKIDENTIFIABILITY. We focus on the regime where d > k for PCFGs;
additional results for d < k are given in Appendix B.

The results are reported in Figure 2. First, we found that the PCFG is not identifiable from ¢, (and
therefore not identifiable from any ¢) for L € {3, 4, 5}; we believe that the same holds for all L. This
negative result motivates exploring restricted subclasses of PCFGs, such as PCFG-I and PCFG-IE,
which factorize the binary productions. For these classes, we found that the sentence length L and
choice of observation function can influence identifiability: Both models are identifiable for large
enough L (e.g., L > 3) and with a sufficiently rich observation function (e.g., ¢123,).

The dependency models, DEP-I and DEP-IE, were all found to be identifiable for L > 3 from
second-order moments ¢.,. The conditions for identifiability are less stringent than their con-
stituency counterparts (PCFG-I and PCFG-IE), which is natural since dependency models are sim-
pler without the latent states. Note that in all identifiable models, second-order moments suffice to
determine the distribution—this is good news because low-order moments are easier to estimate.

S Unmixing algorithms

Having established which parsing models are identifiable, we now turn to parameter estimation for
these models. We will consider algorithms based on moment matching—those that try to find a ¢
satisfying £1(0) = u for some u. Typically, u is an empirical estimate of 1(6y) = Eg, [¢(x)] based
on samples x ~ Py, .

In general, solving 1(#) = w corresponds to finding solutions to systems of multivariate polyno-
mials, which is NP-hard [28]. However, () often has additional structure which we can exploit.
For instance, for an HMM, the sliced third-order moments M123,7(9) can be written as a product of
parameter matrices in 6, and each matrix can be recovered by decomposing the product [1].

For parsing models, the challenge is that the topology is random, so the moments is not a single prod-
uct, but a mixture over products. To deal with this complication, we propose a new technique, which
we call unmixing: We “unmix” the products from the mixtures, essentially reducing the problem to
one with a fixed topology.

We will first present the general idea of unmixing (Section 5.1) and then apply it to the PCFG-IE
model (Section 5.2) and the DEP-IES model (Section 5.3).

5.1 General case

We assume the observation function ¢(x) consists of a collection of observation matrices
{do(x)}oco (e.g., for o = (4,7), ¢o(x) = z; ® ;). Given an observation matrix ¢,(x) and a
topology t € Topologies, consider the mapping that computes the observed moment conditioned on

Note that these subclasses occupy measure zero subsets of the PCFG parameter space, which is expected
given the non-identifiability of the general PCFG.
We will develop our algorithms assuming true moments (u = u(6p)). The empirical moments converge

1 . . .
to the true moments at Op(n~ 2 ), and matrix perturbation arguments (e.g., [1]) can be used derive sample
complexity arguments for the parameter error.



that topology: U, .(8) = Eg[¢,(x) | Topology = t]. As we range o over O and t over Topologies,
we will enounter a finite number of such mappings. We call these mappings compound parameters,
denoted {¥,,},cp.

Now write the observed moments as a weighted sum:

10(0) = > P(¥ Topology = V) ¥, forallo € O, (4)
peEP

d;fMop
where we have defined M, to be the probability mass over tree topologies that yield compound
parameter ¥,,. We let {M,,}oco pep be the mixing matrix. Note that (4) defines a system of
equations ;1 = MW, where the variables are the compound parameters and the constraints are the
observed moments. In a sense, we have replaced the original system of polynomial equations (in 6)
with a system of linear equations (in V).

The key to the utility of this technique is that the number of compound parameters can be polynomial
in L even when the number of possible topologies is exponential in L. Previous analytic techniques
[13] based on Kruskal’s theorem [10] cannot be applied here because the possible topologies are too
many and too varied.

Note that the mixing equation ;» = MW holds for each sentence length L, but many compound pa-
rameters p appear in the equations of multiple L. Therefore, we can combine the equations across all
observed sentence lengths, yielding a more constrained system than if we considered the equations
of each L separately.

The following proposition shows how we can recover 6 by unmixing the observed moments :

Proposition 1 (Unmixing). Suppose that there exists an efficient base algorithm to recover 6 from
some subset of compound parameters {¥,(0) : p € Py}, and that e; is in the row space of M for
each p € Py. Then we can recover 0 as follows:

UNMIX (p):
1. Compute the mixing matrix M (4).
2. Retrieve the compound parameters W, (0) = (M), for each p € Py.
3. Call the base algorithm on {¥,(6) : p € Py} to obtain 6.

For all our parsing models, M can be computed efficiently using dynamic programming (Ap-
pendix C.2). Note that M is data-independent, so this computation can be done once in advance.

5.2 Application to the PCFG-IE model

As a concrete example, consider the PCFG-IE model over L = 3 words. Write A = OT. For
any 7 € R%, we can express the observed moments as a sum over the two possible topologies in
Figure 1(a):
def def . .
Pi2sy = Elz1 ® xg(nTatg)] = 0.5V, + 0.5¥o,, Uy, = Adiag(T dlag(W)ATn)AT,
def def . .
Pig2n = Elz1 ® $3(77T$2)] = 0.5¥3,, + 0.5¥q,,, Uy, = Adlag(’f(’)TT dlag(ATn)AT,
H231n o Elzy ® 23(n' z1)] = 0.5¥3., + 0.50 1., Vs, def Adiag(A"n)T diag(m)AT,

or compactly in matrix form:

H123n 0.5 0.51 0 Vi
H132n = 0 0.5I 0.1 Uy,
H231n 0.5 0 051 Vs,

observed moments i, mixing matrix M compound parameters W,

Let us observe p,, at two different values of 7, say at = 1 and ) = 7 for some random 7. Since
the mixing matrix M is invertible, we can obtain the compound parameters Wo.q = (M ~!11)2 and
\IJQ;T - (M_ll-’[’T)2'



Now we will recover 6 from Wy,; and Ws,, by first extracting A = OT via an eigenvalue decom-
position, and then recovering 7, 7', and O in turn (all up to the same unknown permutation) via
elementary matrix operations.

For the first step, we will use the following tool (adapted from Algorithm A of [1]), which allow us
to decompose two related matrix products:

Lemma 1 (Spectral decomposition). Let My, My € R have full column rank and D be a diag-
onal matrix with distinct diagonal entries. Suppose we observe X = MM, andY = MyDM, .
Then DECOMPOSE(X,Y") recovers My up to a permutation and scaling of the columns.

DECOMPOSE(X,Y):
1. Find Uy, Uy € R4** such that range(U; ) = range(X ) and range(Us) = range(X ).
2. Perform an eigenvalue decomposition of (U, YUs) (U XUs)~! = VSV L.
3. Return (U )TV,

First, run DECOMPOSE(X = Wj,,Y = W¥J_) (Lemma 1), which corresponds to M; = A and

My = Adiag(m)T". This produces AILS for some permutation matrix IT and diagonal scaling S.
Since we know that the columns of A sum to one, we can identify AII.

To recover the initial distribution 7 (up to permutation), take W5,11 = An and left-multiply by
(AID)T to get II~ 7. For T, put the entries of 7 in a diagonal matrix m! diag( )H. Take Wy, =

AT diag(m)AT and multiply by (AH) on the left and ( 2: (II~* diag()IT) ! on the right,
which yields II"!TTI. (Note that II is orthogonal, so H 1 = .) Finally, multiply AIl = OTTI
and (IT-Y7TTI) 1, which yields OII.

The above algorithm identifies the PCFG-IE from only length 3 sentences. To exploit sentences of
different lengths, we can compute a mixing matrix M which includes constraints from sentences
of length 1 < L < Ly« up to some upper bound Ly,,y. For example, L.« = 10 results in a
990 x 2376 mixing matrix. We can retrieve the same compound parameters (V2.1 and Wo.,) from
the pseudoinverse of M and as proceed as before.

5.3 Application to the DEP-IES model

We now turn to the DEP-IES model over L = 3 words. Our goal is to recover the parameters
0 = (m, A). Let D = diag(w) = diag(Am), where the second equality is due to stationarity of .

def

p = E[z] =
iz € Elz; xz] =7 Y(DAT + DAT + DATAT + AD + ADAT + AD + DAT),
pi1s & Elzy @ 23] =7 H(DAT + DATAT + DAT + ADAT + AD + AAD + AD),
firz = Elz1 © 23] = 271 (DAT + AD),

where IEH is taken with respect to length 2 sentences. Having recovered 7 from 1, it remains to
recover A. By selectively combining the moments above, we can compute AA + A = [7(p13 —
pi2) + 2fir] diag(py) !, Assuming A is generic position, it is diagonalizable: A = QAQ~" for
some diagonal matrix A = diag(Aq, ..., \q), possibly with complex entries. Therefore, we can
recover A2 + A = Q7 1(AA + A)Q. Since A is diagonal, we simply have d independent quadratic
equations in \;, which can be solved in closed form. After obtaining A, we retrieve A = QAQ™L.

6 Discussion

In this work, we have shed some light on the identifiability of standard generative parsing models us-
ing our numerical identifiability checker. Given the ease with which this checker can be applied, we
believe it should be a useful tool for analyzing more sophisticated models [6], as well as developing
new ones which are expressive yet identifiable.

There is still a large gap between showing identifiability and developing explicit algorithms. We
have made some progress on closing it with our unmixing technique, which can deal with models
where the tree topology varies non-trivially.
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A Proof of Theorem 1

Theorem 1 (restated). Assume © is a non-empty open connected subset of [0,1]™ and p: R™ —
R™ is a polynomial map. With probability 1, the following holds.

e CHECKIDENTIFIABILITY returns “no” = for almost all 6y € © and any open neighbor-
hood N (6y) around 6y, |Se(0o) N N (0)| is infinite (not locally identifiable).

o CHECKIDENTIFIABILITY returns “yes” = (i) for almost all 0y € ©, there exists an open
neighborhood N (0y) around 0y such that |Se(6p) N N (00)| = 1 (locally identifiable); and
(ii) there exists a set £ C © with measure zero such that |Se\¢(6o)| is finite for every
0o € O\ & (identifiability of ©\E).

The proof of Theorem 1 crucially relies on the following lemma from [16] which holds even in the
case that p is merely an analytic function (see Lemma 9 of [17] for a simpler proof in the case p is

a polynomial map); it states that the Jacobian achieves its maximal rank almost everywhere in O.

To state this precisely, first define ryax def max{rank(J(f)) : 6 € ©} and Opax ef {§ € ©:

rank(J(0)) = rmax }-
Lemma 2. The set © \ O, has Lebesgue measure zero. That is, Onayx is almost all of ©.

Proof of Theorem 1. By Lemma 2, CHECKIDENTIFIABILITY chooses a point 0 € Opmax With prob-

ability 1. We henceforth condition on this event, so rank(J(6)) = rmax.

Case I: rank(J(0)) < n (i.e., “no” is returned). In this case, we have rp.x < n. We now employ
an argument from the proof of Proposition 20 of [16]. Fix any 6y € Onax. Since © is open, Weyl’s
theorem implies that there is an open neighborhood U around 6 in © on which rank(J(6)) = rmax
forall @ € U (i.e., rank(J(+)) is constant on U). Therefore, by the constant rank theorem, there is
an open neighborhood N () around 6 in © such that 1~ (1(60)) N N (6p) is homeomorphic with
an open set in R~ "max_ Therefore Sg (6y) N N (6p) is uncountably infinite.

Case 2: rank(J(0)) = n (i.e., “yes” is returned). In this case, we have rp,,x = n. Therefore
for every 6y € Opax, the Jacobian J(6y) has full column rank, and thus by the inverse function
theorem, p is injective on a neighborhood of 6. This in turn implies that for all 8y € © .y, there
exists an open neighborhood N (6y) around 6y such that Sg (6p) N N (6p) = {6o}. This proves (i).

To show (ii), define £ ) \ Omax, and now claim that for every 6y € Oy, the equivalence
class Sg .. (0o) is finite. Observe that by (i), the set S, (o) contains only geometrically isolated
solutions to the system of polynomial equations given by p(6) = u(6g). Therefore the claim fol-
lows immediately from Bézout’s Theorem, which implies that the number of geometrically isolated
solutions is finite. O

Remark. All the models considered in this paper have moments ;& which correspond to a polyno-
mial map. However, for some models (e.g., exponential families), x will not be a polynomial map,
but rather, a general analytic function. In this case, Theorem 1 holds with one modification to (ii).
If CHECKIDENTIFIABILITY returns “yes”, then we have the following weaker guarantee in place of
(ii): Se,,.. (Ao) is countable (but not necessarily finite) for all 6y € ©,.x. The above proof does not
require the fact that p is a polynomial map except in the invocation of Bézout’s Theorem. In place
of Bézout’s Theorem, we use the following argument. If Sg_,__(6o) is uncountable, then it contains
a limit point 8* € Sg,,,. (6o); thus for any small enough neighborhood N (6*) of 6*, there is some
0 € Seo,,..(0p) N N(0*). This contradicts (i) as applied to 6*, and thus we conclude that Sg___ (6o)
is countable.

B Additional results from the identifiability checker

PCFG models with d < k. The PCFG models that we’ve considered so far assume that the
number of words d is at least the number of hidden states k, which is a realistic assumption for
natural language. However, there are applications, e.g., computational biology, where the vocabulary
size d is relatively small. In this regime, identifiability becomes trickier because the data doesn’t

10



reveal as much about the hidden states, and brings us closer to the boundary between identifiability
and non-identifiability. In this section, we consider the d < k regime.

The following table gives additional identifiability results from CHECKIDENTIFIABILITY for values
of d, k, and L where d < k (recall that the results reported in Section 4.4 only considered values
where d > k). In each cell, we show the (k,d, L) values for which CHECKIDENTIFIABILITY
returned “yes”; the values checked were k € {3,4,...,8},d€{2,...,k—1}, L € {3,4,...,9}.

¢12 [ ¢** [ ¢123€1 [ ¢123 [ QS***el [ ¢***
PCFG None
(3,2,>6)
(4,2,> 8) (3225
(5:3: > 6) (4,3,>4)
(6,3,>7) (6,5,>4) AP
PCFG-I | None (6.4.> 5) None (7.5, > 4) 52,375 g;
(6,5,> 4) (7,6,> 4) S
(7,3,> 8) (6,>4,>4)
(77 4’ S 6) (7,2,>9)
(77 57 S 5) (7,3,>5)
(7: 6: > 4) (7,>4,>4)
(3,2,>6) (3,2,>5)
(4,2, 8) (2>6) | B30
(4,3,>5) (4,3,>4) (47 37 S R
(57332 6) (57232 7) (572’; 7)
(6,3,>7) | (6,5,>4) (5,4,>4) (5,4,>4) e
POFGIB I Nove | (54> 5) | (1.5.>5) | (62424 | ©2>8) | 0523
(7.3,>8) (6,>4,> 1) | o505
(7.4,2.6) (71.2,29) 1 1735 5)
(7,6,>4) (7,>4,> 4) ==
Fixed topology models. We now present some results for latent class models (LCMs) and hidden

Markov models (HMMs). While identifiability for these models are more developed than for parsing
models, we show that the identifiability checker can refine the results even for the classic models.

The parameters of an HMM are § = (7, T, O), where m € R” specifies the initial state distribu-
tion, T € R¥*¥ specifies the state transition probabilities, and O € R?*¥ specifies the emission
distributions. The probability over a sentence x is:

Pp(x) = 1" T diag(O " zp) - - - T diag(O " )T diag(O " x1)7. 6))

The parameters of an LCM are 6 = (7, O)—the same as that of an HMM except with T' = I. The
probability over a sentence x is also given by (5) (with 1" = I).

The following table summarizes some identifiability results obtained by CHECKIDENTIFIABILITY
(for d > k); these results have all been proven analytically in previous work (e.g., [8,10,11,20,21])
except for the identifiability of HMMs from ¢,..

¢12 [ ¢** ¢123el [ ¢123 [ ¢***el [ (b***
LCM No Yesiff L > 3
HMM | No | Yesiff L > 3

It is known that LCMs are not identifiable from ¢, for any value of L [8]. However, LCMs con-
stitute a subfamily of HMMs arising from a measure zero subset of the HMM parameter space.
Therefore the identifiability of HMMs from ¢, (for L > 3) does not contradict this result. The
result does not appear to be covered by application of Kruskal’s theorem in previous work [11], so
we prove the result rigorously below.
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It can be checked using (5) that
Eg[¢12(x)] = O diag(m)T O
Eg[¢34(x)] = O diag(Tm)TTOT.

Let M7 % 0, My % OT diag(r), and D % diag(T'n) diag (7). Provided that

1. #>0,

2. O has full column rank,

3. 7T is invertible,

4. the ratios of probabilities (T'r); /7;, ranging over ¢ € [k], are distinct

(all of which are true for all but a measure zero set of parameters in ©), the matrices M; and M,
have full column rank and the diagonal matrix D has distinct diagonal entries. Therefore Lemma 1
can be applied with X = Eg[¢12(x)] = MMy and Y = Eg[ps4(x)] = My DM, to recover
M, = O. It is easy to see that 7w and 7" can also easily be recovered.

Note that the fourth condition above, that T'7 be entry-wise distinct from 7, is violated when a LCM
distribution is cast as an HMM distribution (by setting 7' = I so T'm = m). However, the set of
HMM parameters satisfying this equation is a measure zero set.

Discussion. CHECKIDENTIFIABILITY tests for local identifiability. If it finds that a model family
is not locally identifiable, then it is not globally identifiable. However the inverse claim is not
necessarily true: if it finds that a model family is locally identifiable, it is not necessarily globally
identifiable. Theorem 1 provides the somewhat weaker guarantee that a restricted model family is
globally identifiable, where the equivalence classes Sg\ ¢ (fo) are only taken with respect to a subset
O\ £ C O of the parameter space. However, there is a gap between this property (which is with
respect to O \ £) and true global identifiability (which is with respect to ©).

On the other hand, having explicit estimators guarantees us proper global identifiability with respect
to the original model family ©. In fact, the exceptional set £ can typically be characterized explicitly.
For instance, in the case of PCFG-IE, the set © \ £ contains those § = (7, T, O) that satisfy full
rank conditions:

O\ &= {(mT,0): 7= 0,T is invertible, O has full column rank}. (6)

Additionally, the explicit estimators also provides an explicit characterization of the elements in
the equivalence class Sg(6p) for each 6y € © \ £: the set Sg(fp) contains exactly k! elements
corresponding to permutation of the hidden states. Specifically,

Se((m,T,0)) = {(IT" #, I~ T, OI) : I is a permutation matrix. 7

Note that this is shaper than Theorem 1, which only says that the equivalence classes have to be
finite.

C Dynamic programs

For a sentence of length L, the number of parse trees is exponential in L. Therefore, dynamic
programming is often employed to efficiently compute expectations over the parse trees, the core
computation in the E-step of the EM algorithm. In the case of PCFG, this dynamic program is
referred to as the CKY algorithm, which runs in O(L3k:3) time, where k is the number of hidden
states. For simple dependency models, a O(L?) dynamic program was developed by [29]. At a
high-level, the states of the dynamic program in both cases are the spans [i : j] of the sentence (and
for the PCFG, the these states include the hidden states z[;.;; of the nodes).

In this paper, we need to compute (i) the Jacobian matrix for checking identifiability (Section 4.2)
and (ii) the mixing matrix for recovering compound parameters (Section 5.1). Both computations
can be performed efficiently with a modified version of the classic dynamic programs, which we
will describe in this section.
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C.1 Computing the Jacobian matrix

Recall that the j-th row of the Jacobian matrix J is (the transpose of) the gradient of h;(6) =
1;(8) — pj(6o). Specifically, entry Jj; is the derivative of the j-th moment with respect to the i-th
parameter:

Oh; (0
Jji = (9]0( ) ()
OEg|o;
_ OEalo) o
0
— Z$¢J(X) (10)

We can encode the sum over the exponential set of possible sentences x and parse trees z using a
directed acyclic hypergraph so that each hyperpath through the hypergraph corresponds to a (x, z)
pair. Specifically, a hypergraph consists of the following:

e a set of nodes V with a designated start node START € V and an end node END € V), and

e a set of hyperedges £ where each hyperedge e € £ has a source node e.a € V and a pair
of target nodes (e.b, e.c) € V x V (we say that e connects e.a to e.b and e.c) and an index
e.i € [n] corresponding to a component of the parameter vector § € R™.

Define a hyperpath P to be a subset of the edges £ such that:

e (START,a,b) € P for some a,b € V;
e if (a,b,c) € P and b # END, then (b,d, e) € P for some d, e € V; and
e if (a,b,¢) € P and ¢ # END, then (¢, d, e) € P for some d, e € V.

Each hyperpath P, encoding (x, z), is associated with a probability equal to the product of all of the
parameters on that hyperpath:

po(x,2) = po(P) = ] be.s- (11)
ecP
In this way, the hypergraph compactly defines a distribution over exponentially many hyperpaths.

Now, we assume that each moment ¢;(x) corresponds to a function f; : £ — R mapping each
hyperedge e to a real number so that the moment is equal to the product over function values:

¢;(x) =[] £i(e), (12)
ecP

where P is any hyperpath that encodes the sentence x and some parse tree z (we assume that the
product is the same no matter what 2 is).

Now, let us write out the Jacobian matrix entries in terms of hyperpaths:

aoeo.i
Li=22 3 St 11 easito) (13)

P epeP v e€P,e#eq

The sum over hyperpaths P can be computed efficiently as follows. For each hypergraph node a,
we compute an inside score a(a), which sums over all possible partial hyperpaths terminating at
the target node, and an outside score 3(a), which sums over all possible partial hyperpaths from the
source node:

ala) def Z 0..ae.b)ale.c), (14)
ec:e.a=a
B(a) def Z O..a(e.c)f(e.a) Z 0..a(e.b)f(e.a). (15)
ec€&:e.b=a ec:e.c=a
The Jacobian entry J;; can be computed as follows:
Jji = Zﬁ(e.a)oz(e.b)a(e.c)]l[i = e.]. (16)
ecf
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Figure 3: An example of a backbone structure in blue corresponding to the compound parameter
OT diag(Tm)TTOT, which appears in two different topologies, for two observation matrices, ¢12
and ¢s3, respectively.

Example: PCFG. For a PCFG, nodes V have the form (i, j, s) € [L] x [L] x [k], corresponding to
a hidden state s over span [i : j]. For each hidden state s, we have a hyperedge e connecting e.a =
START to e.b = (s,0, L) and e.c = END; this hyperedge has parameter index e.i corresponding to
ms. For each span [i : j] with j — 4 > 1, split point ¢ < m < j, and hidden states s1, s2, s3 € [k],
£ contains a hyperedge e connecting e.a = (4, j, s1) to e.b = (i, m, s2) and e.c = (m, j, s3); the
parameter index e.i corresponds to the binary production By,,g, s,)s,- For each span [i — 1 : 4],
hidden state s € [k] and word = € [d], we have a hyperedge e connecting e.a = (i — 1,4, s) to
e.b = END and e.c = END with parameter index e.i corresponding to the emission O, .

The moments can be encoded as follows: For example, if ¢;(x) = I[z; = t], then we define f;(e)
to be 0 if the source node corresponds to position i (e.a = (¢ — 1,4, s)) and the parameter index e.i
does not correspond to Oy, for some s € [k], and 1 otherwise. In this way, [ . p fj(e) is zero if P
encodes a sentence with x; # t.

Higher-order moments simply correspond to hyperedge-wise multiplication of these first-order mo-
ments. For example, if ¢}, (x) = I[z;, = t1] and ¢;,(x) = I[z;, = to], then the second-order
moment ¢;(x) = I[z;, = t1,x;, = to] corresponds to f;(e) = f;, (e) fj,(e).

C.2 Computing the mixing matrix

Recall that the mixing matrix A/ includes a row for each observation matrix o € O and a column for
each compound parameter p € P. Assuming a uniform distribution over topologies, computing each
entry of M reduces to counting the number of topologies ¢ consistent with a particular compound
parameter W,,:

Mop = P(\I’O,Topology = \I/p) (17)
= | Topologies | ! Z MW, =, (18)
t

First, we will characterize the set of compound parameters graphically in terms of backbone struc-
tures. As an example, consider the PCFG-IE model and the observation matrix ¢12 (0 = 12) cor-
responding to the marginal distribution over the first two words of the sentence. Given a topology
t, consider starting at the root, descending to the lowest common ancestor of x; and x2, and then
following both paths down to x; and w2, respectively. We refer to this traversal as the backbone
structure with respect to topology ¢ and observation matrix ¢,2. See Figure 3 for an example of the
backbone structure, outlined in blue.

Note that the compound parameter W12 ;(0) = Eg[p12(x) | Topology = t] can be written as a
product over the parameter matrices, one for each edge of the backbone structure. For Figure 3, this
would yield

U191(0) = OT diag(Tm)TTOT. (19)
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For general trees, we would have
y9,4(0) = OT™ diag(T™7)(TT)"20". (20)

for some positive integers n1, na, ng corresponding to the number of edges (in ¢) from the common
node to the preterminal node 21, the preterminal node z;2, and the root 2y, respectively.

Note that the compound parameter does not depend on the structure of ¢ outside the backbone—
that part of the topology is effectively marginalized out—so the compound parameter U5 () will
be identical for all topologies sharing that same backbone structure. Therefore, there are only a
polynomial number of compound parameters despite an exponential number of topologies t.

We define a dynamic program that recursively computes M, for the PCFG-IE model under a fixed
second-order observation matrix ¢, ;,. Specifically, for each span [7 : j] define H (3, j) to be the set
of pairs (t,n) where ¢ is a partial backbone structure ¢ and n is the number of partial topologies over
span [¢ : j] which are consistent with ¢.

In the base case H (i — 1,1), if i is either of the designated leaf positions defined by the observation
matrix (¢g or jp), then we return the single-node backbone structure e; otherwise, we return the null
backbone structure @:

o {He ) ifi=igori=jo
H(z—l,l)—{{@’l)} otherwise. v

In the recursive case H(i,j), we consider all split points m, partial backbones ¢; and t5 from
H{(i,m) and H(m, j), respectively, and create a new tree with ¢; and/or ¢, as the subtrees if they
are not null:

+ + +
H(i,j) = |J U U (COMBINE(ty, t5), n172) , (22)
1<m<j (t1,n1) €EH(i,m) (t2,n2) EH(m,j)
(T:tl,T:tQ) iftlsé¢andt27é¢,
T:t if 1 7é 9,
T :ty if to 75 9,
@ otherwise.

COMBINE(t1,t2) = (23)

Here, we use the notation | T to denote a multi-set union: {(£,n1)} Ut {(t,n2)} = {(t,n1 + na)}.
In this notation, the backbone structure in Figure 3 would be represented as 7 : (T': O : ¢, T : O :
o), which can be easily converted to the compound parameter OT diag(T7)TTOT.

For third-order observation matrices (e.g., @i, jokon)> We add an additional case to H (i—1, 7) to return
(0, 1) if i = ko; note that ko is represented by a special node o because that observation is projected
using 7. The first case of COMBINE(t1, t2) undergoes one change: if 5 is a chain ending in o, then
wereturn (7" : to, T : t1). The reason for this is best demonstrated by an example: consider topology
1 in Figure 3, and the two observation matrices @132, and ¢231,. Without the reordering, we would
have the backbone structure: (T : (T : ¢,7 : 0),T : @) and (T : (T : o,T : o), T : o). However,
they have the same compound parameter OT diag(T'"O " n)T " diag(7)TO. This is because the
contribution of a subtree ending in o is simply a diagonal matrix (diag(7 " O 7) in this case) which
is applied on the hidden state regardless of whether it came from the left or right side.

One might also see why the unmixing technique does not directly apply to the PCFG-I model, where T is
replaced with 77 for left edges and 75 for right edges. In that case, there are many backbone structures (and
thus more compound parameters) due to the different interleavings of left and right edges.
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